Category Archives: IPM

Choosing plants for Beneficial Habitat At Home

light pink flower with a fuzzy bee crawling on it
A bee gathers pollen from a cosmos flower.

Recall from this post that I’m creating habitat for beneficial arthropods (including insects, spiders, predatory mites, etc.) around my house this spring. Because more of us may be doing this while we’re staying home to keep each other safe, I’m sharing my experiences here (as well as on Twitter and Instagram). The previous post covered site selection. Today I will talk about the species I’ve chosen (and why).

What I’m planting in my yard

Sunny yard alongside a house with several freshly-dug garden beds
My side yard faces south and gets the most sun. But it’s a pretty small area and I want it to look reasonably tidy. I’m still building rapport with my neighbors.

The front and side yards get plenty of sun (because they face south and west), so I’m looking for plants that thrive in full sun. And I’ll admit that I’m interested in more than just supporting beneficial arthropods. I also want my front and side yards to look reasonably nice. (I don’t want to make enemies of my new neighbors!) And I want to grow flowers for cutting. So I am not sticking strictly to native plant species or to perennials. Some plants I picked just because I thought they looked nice. For example, I was beguiled by ‘Chim Chiminee’ Rudbeckia. The pollen and nectar produced by the native species may have been bred out of this variety. I’ll find out. I also just love ‘Persian Carpet’ zinnias.

Plants growing in a large clump with smaller flowers in combinations of yellow, orange, and red.
I grew these ‘Persian Carpet’ zinnias in my garden last year. I love the mix of colors and the abundant blooms that last well when cut.

I’ve started a lot of plants from seeds I had in my fridge (e.g., snap dragons, echinacea, bachelor’s buttons). Others I will direct-seed outside (e.g., sunflowers, zinnia, cosmos), and I may also purchase some transplants from local nurseries (many have great strategies for safe curbside pick-up!).

Several small seedlings growing in paper pots.
I’m starting some plants from seed at home. Using paper pots means that I can compost them when I’m done, and not worry about carrying pathogens over from year to year on plastic pots that I would have to wash very thoroughly after use. Once a plant pathologist, always a plant pathologist!

Choosing plants for beneficial arthropods – the basics

Which plant species to grow to support beneficial arthropods (whether it’s pollinators or natural enemies of pests, or both) is a common question. The answer is both straight-forward, and also complicated. In addition to shelter and protection from pesticides, all beneficial arthropods need something to eat. In general, plants that provide plenty of nectar and pollen help to provide this food. Many natural enemies of pests will also eat pollen or nectar (e.g., at certain life stages, or as a supplement to the pests they eat). Even if they don’t, the pollen and nectar will often attract small arthropods that natural enemies can feed on. So, the simple answer is that a plant that produces lots of pollen and nectar, will thrive in the setting where you want to plant it, and is not invasive is a good choice for supporting beneficial arthropods. Plants that are marketed as supporting pollinators are easy to find and are likely to also support natural enemies.

Bright purple flower with three petals with a yellow and black striped fly perched on it
This Ohio spiderwort (Tradescantia ohiensis) in our beneficial arthropod habitat plots is being visited by a hover fly. Hover fly larvae are excellent aphid predators!

But, of course, it’s not exactly that simple…

Choosing plants – natives, cultivars, and more

Many people ask if they should only grow native plant species, or if it’s ok to plant cultivated varieties of native species, or non-native species. (Hopefully it’s obvious that you should never plant an invasive species in your yard!) Annie White at the University of Vermont wrote a 254-page dissertation on the topic. These two sentences from her abstract summarize her findings nicely: “Our study shows that many insect pollinators prefer to forage on native species over cultivated varieties of the native species, but not always, and not exclusively. Some native cultivars may be comparable substitutions for native species in pollinator habitat restoration projects, but all cultivars should be evaluated on an individual basis.” You might also want to take a look at this article from the University of Maryland and this one from the Xerces Society. In summary, I would say it’s up to you whether you want to plant exclusively native species, or not.

According to David Smitley from Michigan State University, perennials are usually better choices for bees than annuals, but this article includes a list of annuals that are attractive to bees. Alyssum is an annual that definitely supports natural enemies, but many of the other annuals on this list may also support natural enemies.

Deep orange sunflower with a bee visiting it, starting to gather pollen
Although they are annuals, sunflowers are still very attractive to bees. Also, I like them as cut flowers.

Choosing plants – attracting specific arthropods

If you are trying to attract very specific natural enemies (e.g., parasitoid wasps, lady beetles) your plant choice can also get more complicated. Some great work has been done by researchers at Michigan State University documenting which arthropods (pollinators, natural enemies, and some pests) visited different plant species native to Michigan. They also offer a simplified summary. “Habitat Planning for Beneficial Insects” from the Xerces Society includes notes in the charts at the end about which beneficial insects are particularly attracted to the species listed. This resource from Oregon State University describes some specific plants and the arthropods they support. Finally, although this study was conducted in the United Kingdom, there might be some relevance to the Northeast U.S.

Lists and searchable databases

In addition to the resources already listed, you may find the following helpful in selecting plants:

If you want to focus on native plants, there are many organizations committed to supporting local native plants…too many to list here, but some online searching may turn up an organization that is local for you.

My current plant list

This table lists what I either have already seeded (inside or outside), or am planning to direct seed outside when it gets a little warmer. In addition to the common, scientific, and cultivar name of each plant and whether it is a perennial or an annual in NY, I also included information about why I chose it. I only marked plants as supporting bees or natural enemies if I could find documentation of that fact in the resources above. It may be that more of the plants on this list support beneficial arthropods. If you have additional information on these plants, please let me know! In some cases (for example, zinnia) the species is reported to support beneficial arthropods, but I don’t know if the cultivars I’m growing will. In many cases, the decorative value of the plant was a big part of why I chose it. The arnica? Well, I just saw that in a seed catalog this winter and ordered some on a whim.

Common name Scientific name Cultivar Annual or Perennial in NY Bees Natural enemies Decorative
Arnica Arnica chamissonis perennial
Bachelor’s buttons Centaurea cyanus annual X X
Blanketflower Gaillardia aristata Burgundy perennial X X X
Blue vervain Verbena hastata perennial X
Calendula Calendula officinalis Remembrance Mix annual X X
Celosia Celosia argentea cristata Red Flame annual X X
Cosmos Cosmos bipnnatus Dwarf Sensation annual X X X
Echinacea Echinacea purpurea perennial X X
Marigold Tagetes erecta Senate House annual X X
Poppy Papaver somniferum Frilled White Poppy annual maybe X
Poppy Papaver sp. seed saved by a colleague annual maybe X
Pyrethrum daisy Chrysanthemum cocineum perennial X
Rudbeckia Rudbeckia hirta Chim chiminee perennial maybe X
Snap dragon Antirrhinum majus annual X X
Strawflower Xerochrysum bracteatum annual X
Sunflower Helianthus anus Mammoth Greystripe annual X probably X
Sunflower Helianthus anus Evening Sun annual X probably X
Sunflower Helianthus anus Sonja Dwarf annual X probably X
Zinnia Zinnia elegans Queen Lime with Blush annual maybe X
Zinnia Zinnia elegans Candy Cane Mix annual maybe X
Zinnia Zinnia elegans Benary’s Wine annual maybe X
Zinnia Zinnia elegans Persian Carpet annual maybe X

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. All images are hers, unless otherwise noted.

This work is supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

Compatibility: Pesticides and natural enemies of pests

Green insect with lacey wings
Lacewings (especially larvae; this one is an adult) are great natural enemies of pests. You want to keep them happy and healthy!

Natural enemies of pests are going to help you out with pest control, so when you are applying pesticides, it’s in your best interest to choose products that will have the least impact on them. Two quick points before we get into details for where to find this information:

  1. Remember that the information in this post is not a substitute for a pesticide label. The label is the law, and you must read and follow the label of any pesticide you are using. Laws and labels change. It is your responsibility to use pesticides legally. Trade names used here are for convenience only; no endorsement of products is intended, nor is criticism of unnamed products implied. For questions about pesticide use, regulations, and safety, contact the Cornell Pesticide Management Education Program: pmep_webmaster@cornell.edu.
  2. A great way to protect natural enemies is by following the steps for IPM. Preventing pests (e.g., through cultural strategies and exclusion), scouting to detect pests early when populations are low, and proper identification of pests will help you reduce your need to use pesticides and can save you money. Win win!

Ok, let’s assume you’re doing good IPM and you’ve gotten to the point where you need to choose a pesticide. How do you make the best choice for protecting natural enemies? Here are a few options. (Note that I did post about this about 2 years ago. I’ve learned more, so I thought an update would be in order.)

Read the label

This should go without saying. You should be doing this anyway when you are considering using a pesticide. The label may contain information about the compatibility of a pesticide with either natural enemies or pollinators. And of course it will contain important information about how to minimize risks to yourself and the environment when you use it.

EIQ

EIQ stands for Environmental Impact Quotient. You can read more details on the NYSIPM website, but in a nutshell the EIQ puts a number on the risks of pesticides at the rates they are applied in the field. You can use the EIQ calculator on our website to compare these numbers for different pesticides. The higher the number, the higher the risk. There are different components to the EIQ; risks to consumers, workers, and the environment (ecological). The ecological risk will include risks to natural enemies (as well as fish, birds, and bees).

Pocket IPM Greenhouse Scout App

The Greenhouse Scout app provides information for doing IPM in greenhouses, including pest insects, beneficial insects, application technology, and pesticide interactions. It also gives you a place to record scouting results and track product applications.
A screenshot from the home screen of the Pocket IPM Greenhouse Scout App. You can find information about compatibility with natural enemies under either “Beneficials” or “Pesticide Interactions”.

Especially if you are growing in a greenhouse and releasing a lot of natural enemies, you may find this app helpful. In addition to providing information about compatibility of pesticides with arthropod natural enemies you may be releasing, you can also use it to help you keep records of scouting and product applications.

 

Cornell Guidelines

If you are a commercial producer, hopefully you are already utilizing the Cornell Guidelines, as they are a wealth of information on many subjects. At least some of them also include information on the toxicity of different pesticides to natural enemies. For example, if you have the grape guidelines, check out Table 4.2.2 for insecticide toxicity to natural enemies.

Websites and apps from companies that produce natural enemies

Companies that sell natural enemies (especially predatory and parasitoid arthropods for greenhouse pest control) have an interest in making sure that customers don’t inadvertently kill the natural enemies they buy with pesticides they are applying. I am aware of searchable databases or charts describing pesticide compatibility from four companies that sell (mostly) arthropod and nematode natural enemies: Agrobio, Biobest, BioWorks, and Koppert. If you know of some I’ve missed, please let me know! There are of course other companies that supply natural enemies. Here I’m focusing on resources that help you choose pesticides to conserve natural enemies.

Agrobio

This website is also available as an app for Android (but not Apple) devices. To use it, start by clicking Organisms selection and choose the natural enemies you want to conserve. Then, click Ingredients selection and choose the pesticides you are thinking about applying. You can only search active ingredients, not product names. Finally, click Query. Use the legend to help you interpret the table that’s produced.

Biobest

This website is also available as an app for Android and Apple devices. Use either the Active ingredient or the Commercial product tab to select pesticides by active ingredient or trade name. Then, search for the name of the Beneficial organism you want to conserve. Note that there are a lot of pesticide/natural enemy combinations for which toxicity data just aren’t available. If you select a pesticide, then natural enemies for which no data are available will be grayed out in the Beneficial organism list. As you check boxes next to pesticides and natural enemies, a chart is automatically generated. The legend includes keys for information on toxicity (to natural enemies and bumble bees), application methods, and persistence of the product. You can generate a pdf of your results, but it won’t include the legends.

BioWorks

Check out this resource that summarizes the compatibility of BioWorks biopesticides with arthropod and nematode natural enemies.

Koppert

This website is also available as an app for Android and Apple devices. Start by entering the name of the Beneficial organism you want to conserve. You can search by either the Koppert product name, or the Latin (scientific) name, but you can’t select from a drop-down menu. Just start typing. Then, choose the Agent (pesticide you are considering applying), by either trade name or active ingredient. Again, you need to know the name; you can’t select from a drop-down list. Start typing, and then check the box next to the product you are interested in. Click Results and be sure to click on ‘Legend’ at the bottom to help you interpret the table. There is also a more complete explanation of information in the legend under Info.

Some caveats about these websites

Admittedly, finding information about conserving natural enemies that are not commercially available for release (e.g., in greenhouses) has some challenges. These websites tend to focus on what you can buy and release, rather than on what may be naturally occurring in a field. Although sometimes there is some overlap. These apps/websites don’t include all natural enemies, and data aren’t available for all natural enemy/pesticide combinations. Also, these websites/apps usually list natural enemies by scientific names. Do you know what the scientific name of a lacewing is? I didn’t before I started this job!

To help with this last barrier, I created a chart (also below) to help you figure out what scientific names you should look for on these websites/apps if you want to conserve a particular natural enemy. It also includes information about which pests the natural enemies target, whether they are commercially available, and whether they are naturally occurring (not necessarily native) in NY.

Arthropod and nematode natural enemies

Can I buy them? Found in NY? If I want to conserve this beneficial arthropod… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
yes yes aphid midges Aphidoletes aphidimyza aphids Aphidoletes aphidimyza
some yes beetles that are predators (for example, rove beetles, ground beetles, and others) Coleoptera is the scientific name of the insect group that includes all beetles. The following families are generally predatory: Coccinellidae (lady beetles), Carabidae (ground beetles), Staphylinidae (rove beetles), Cantharidae (soldier beetles), Melyridae (flower beetles) many insect pests Coleoptera is a beneficial insect listed on at least one compatibility app. However, some coleoptera are pests. And, since this is such a broad group, the compatibility information provided may not be correct for all beneficial beetle species.
yes hover flies, syrphid flies Syrphus spp, and many, many others aphids Syrphus spp.; Syrphus corollae; Episyrphus balteatus
some yes lacewings Chrysoperla spp. and some others aphids, insect eggs, small larvae Chrysopa carnea = Chrysoperla carnea; Chrysoperla spp.
some yes lady beetles Coccinellidae aphids, mites, small insects, insect eggs Coccinelidae, Coccinella 7-punctata, Hippodamia convergens
some yes minute pirate bug Orius insidiosus insect eggs, small caterpillars, thrips, mites, aphids Orius laevigatus may be a reasonable proxy; Orius spp.; Orius insidiosus
yes yes nematodes Steinernema spp., Heterorhabditis spp. thrips, fungus gnats, shore flies, some grubs Nematodes (note that this is a very broad category and it’s possible there are differences among species), Heterorhabditis bacteriophora, Steinernema, Steinernema feltiae, Steinernema carpocapsae
some yes parasitoid wasp Aphidius spp. aphids Aphidius spp., Aphidius colemani, Aphidius matricariae, Aphidius ervi
some yes parasitoid wasp Eulophidae, Diglyphus spp. leafminer larvae Diglyphus isaea
yes yes parasitoid wasp Braconids, Dacnusa sibirica leafminers Dacnusa sibirica
yes parasitoid wasp Aphelinidae, Aphelinus semiflavus aphids on potatoes Aphelinus abdominalis or Aphelinus mali may be reasonable proxies
yes yes predatory gall midge Feltiella acarisuga spider mites Feltiella acarisuga
some yes predatory mites Amblyseius (= Neoseiulus) fallacis, Typhlodromus spp., and probably others thrips, whitefly, pest mites; may vary among natural enemy species Amblyseius californicus, Amblyseius cucumeris, Amblyseius swirskii, Phytoseiulus persimilis are sold commercially and may be good proxies for the pesticide compatibility of naturally-occurring predatory mites
yes yes spined soldier bug Podisus maculiventris many immature insects, including many species of caterpillars Podisus maculiventris
 

some

some trichogramma wasps Trichogramma spp. moth eggs Trichogramma spp., Trichogramma brassicae, Trichogramma cacoeciae, Trichogramma evanescens, Trichogramma pretiosum

Other species of interest…

Can I buy them? Found in NY? If I want to conserve this beneficial insect… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
yes yes bumble bee Bombus spp. NA – pollinator Bombus spp., Bombus terrestris
yes yes European honey bee Apis mellifera NA – pollinator Apis, Apis mellifera

Notes:

Different strains or populations of these natural enemies are sold by different companies and each population may differ from natural populations. Each company is most likely to report compatibility data that applies to their population. It’s not perfect, but it’s a start.

When the first word in the scientific name of an insect (e.g. Trichogramma) is followed by the designation ‘spp.’, it means multiple species that all belong to the same genus. Some compatibility information is given for only the larger group (e.g., Aphidius spp. or Syrphus spp.).

Natural enemies that are pesticides (active ingredients are microorganisms, i.e., fungi, bacteria, viruses)

If I want to conserve this microbial natural enemy… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
Bt Bacillus thuringiensis (various strains are available, and they control different pests) many caterpillars and some immature beetle and fly pests (target pest varies by strain) Bacillus thuringiensis
entomopathogenic fungus Paecilomyces fumosoroseus = Isaria fumosorosea, Beauveria bassiana, Metarhizium anisopliae (= M. brunneum) (various strains) many insects (target pest depends on fungal species and strain) Paecilomyces (=Isaria) fumosoroseus, Beauveria bassiana, Metarhizium anisopliae (= M. brunneum)
fungi that attack plant diseases there are multiple species, including Trichoderma harzianum (several strains) Plant pathogens (the target pathogen depends on the fungal strain) Trichoderma harzianum T-22 is the only fungal natural enemy I found on these apps, so far. It is unlikely that its compatibility is representative of other fungi that are natural enemies.

Notes:

Different strains or populations of these microorganisms are sold by different companies and each of these populations may differ from natural populations. Each company is most likely to report compatibility data that applies to their population. It’s not perfect, but it’s a start.

In these apps/websites, microbial active ingredient may be listed as the natural enemy (e.g., Paecilomyces fumosoroseus on Biobest website), but sometimes it’s only listed as a pesticide active ingredient. For compatibility of biopesticides with chemical pesticides, you should start by reading the label, then seek information provided by the manufacturer.

All tables were assembled by Amara Dunn, NYSIPM using information from Natural Enemies of Vegetable Insect Pests (Hoffman & Frodsham) and were last updated January 2020.

Give it a try!

Imagine you were considering using one of the following active ingredients:

abamectin

acequinocyl

fenpyroximate

…to control spider mites. (Of course, before you did this, you’d read the labels and be sure that the use you were considering was legal!) If you were concerned about hurting parasitoids that help with aphid control (for example, the species Aphidius colemani and Aphidius ervi) which of these active ingredients would be the best choice (from a compatibility standpoint)?

 

Go ahead!

 

Look it up!

 

A note about microorganisms as natural enemies

Green leaf with blue rectangles with smiling faces representing microbes as natural enemies of the pest microbes (yellow rectangles with shocked faces). The blue microbes are producing blue droplets (representing antimicrobial compounds).
Microbes used to control pests are biopesticides. In this conceptual diagram, the happy blue microbes are producing antimicrobial compounds that are killing the plant pathogens (represented by yellow rectangles with shocked faces).

There are a few “natural enemies” on this chart that are actually biopesticides, and I have listed them separately. Remember that microorganisms (fungi, bacteria, viruses) that are natural enemies of pests are biopesticides. A few of them can be found in the websites/apps summarized above. There are two compatibility questions when it comes to using biopesticides with living microorganisms as active ingredients: (1) Will this biopesticide harm other natural enemies (e.g., predators and parasitoids)? and (2) Will the living microbe in this biopesticide be killed by other pesticides I might use? The websites/apps have some information about the compatibility of biopesticides with arthropod natural enemies. If you’re wondering about the compatibility of biopesticides with other pesticides, that may be a topic for another post (so many posts to write, so little time!). I’ll just offer two quick pieces of advice here:

  1. Read the label of the biopesticide. If it doesn’t contain compatibility information (for use with other pesticides) or doesn’t answer your questions about compatibility with other natural enemies, contact the manufacturer to get your questions answered.
  2. If you happen to be using one of their products, BioWorks describes the compatibility of their products with other pesticides, and this information is linked to individual product pages.

And what about the bees?

Take a look at the resources created by the Pollinator Network @ Cornell. They have prepared decision-making guides for several crops already, with more to come.

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. All images are hers, unless otherwise noted.

Conservation biocontrol in the time of COVID-19

rows of small Christmas tree seedlings in a field on a sunny day, with a pond in the background
I was so excited to check on our Christmas tree and beneficial insect habitat plots on this sunny May day!

Thanks to everyone who’s been following the project I’ve been working on with Betsy Lamb and Brian Eshenaur to establish (and document the impacts of) habitat for natural enemies of pests and pollinators (collectively, beneficial insects) around a research planting of Christmas trees! For many people, life does not look the same as it did in January, and we are no exception. Don’t worry, we and the excellent Field Research Unit staff at Cornell AgriTech will be maintaining our research beneficial insect habitat plots (and the Christmas trees around them) so that we can continue to do research here in future years. But, in the interest of keeping people safe and working remotely as much as possible, we won’t collect insects this season. I will be going out about once a week to take pictures of both plants and insects (by myself, with a mask on hand just in case). You can see these pictures on either my Twitter or Instagram accounts.

Clusters of still-closed yellow flower buds
Zizia aurea (golden alexander) is the earliest-blooming plant species we have in our beneficial insect habitat plots. And it wasn’t blooming yet the first week of May.

There’s also a new project you can follow this spring and summer (here, and on Twitter and Instagram)! I recently moved into a new house, and was already planning to put in a (mostly flower) garden, including plants that support beneficial insects. Since many people are doing more things at home, this seemed like a good year to share my experience establishing habitat for beneficial insects in a home garden.

First step? Site selection. My backyard is a bit shady (and I suspect it will be shadier when the leaves come out). You can’t tell from this picture, but the ground also tends to be a little squishy after it rains.

Lawn with shadows from nearby trees
Even before the leaves have come out, I can tell that my backyard is not going to be the sunniest.

The front and side yards face south and west and are drier.

Lawn along the side of a house that is mostly sunny
The side yard at my house faces south, and gets more sun (except first thing in the morning).

In my experience, the list of plants that support beneficial insects is longer if you have plenty of sun and reasonably dry soil. This doesn’t mean that you can’t support beneficial insects in a wet and/or shady spot. But you need to choose plant species carefully. You will be more successful if you choose plants that will thrive in the conditions you have. More on plant selection in a later post.

In addition to simple aesthetics, another important part of site selection around the home is knowing what’s underneath the ground. My local utility company provided information about getting water, gas, electric, and internet service lines on my property marked before I start digging. They recommended marking these lines even if I’m just planning to dig by hand with a shovel. If you are planning to use larger equipment, this is even more important (and may be required, depending on where you live). Better safe than sorry. Call before you dig!

Sunny lawn with a stripe of yellow paint and and a yellow flag marking the buried gas line
My buried gas line runs through the side yard. I got it marked before I started digging.

Out of an abundance of caution, I’m going to use the location of the buried gas line on my property as a good place to locate a path (rather than a flower bed that requires digging).

I’ll talk more about weed control in a future post, but when you are selecting a site (and deciding how big an area you want to plant), you should also be thinking about how you are going to manage weeds. I am planning to get mulch. But I have resigned myself to the fact that I may be doing some extra hand weeding this summer. It will be a good activity to get me out of the house in the evenings and on the weekends.

Stay tuned for more updates on this project!

 

This post was written by Amara Dunn, Biocontrol Specialist with the New York State Integrated Pest Management Program. All pictures in this post were taken by her.

This work is supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

How do biofungicides fit in vegetable disease management? An update after Year 2

Healthy squash plants, just starting to flower in the foreground, with a field and barn in the background.
Some of the squash plants in one of our 2019 field trials looking at the role of biofungicides in managing cucurbit powdery mildew.

We have been working on a 2-year project funded by the New York Farm Viability Institute to look at adding biofungicides to the management of two vegetable diseases: cucurbit powdery mildew and white mold. In addition to summarizing results from Year 1 of the trial, previous blog posts also covered some of the details about how to best use the biofungicides we’re testing. During the summer of 2019, we completed our second year of trials. The numbers have all been crunched, and here’s a summary of what we learned. If you want to read all the nitty gritty details, a lengthy full report from Year 2 will be available (and linked to this page) soon.

Project goals

During the second year of this project, we wanted to answer a few questions for growers:

  1. Can you replace some conventional fungicide applications for cucurbit powdery mildew in winter squash with one of three OMRI-listed biofungicides (LifeGard, Regalia, or Serifel) while maintaining disease control, crop quality, and yield?
  2. Can you get better control of white mold in green beans by Contans prior to planting, and Double Nickel at bloom?
  3. What are the costs (versus benefits) of using these biofungicides in these ways?
  4. Can NDVI sensors help us detect disease early? Can they help us detect differences in plant health as a result of using biofungicides?

White mold – what we did

This table summarizes the white mold treatments in green beans. Replicated plots were treated with Contans in the third week of May, prior to planting; Double Nickel when snap beans were at 10% bloom (late June or early July) and 7 days later; both Double Nickel and Contans; or neither. Treatments are summarized below.

Timing Non-treated Contans Double Nickel Contans + Double Nickel
Pre-plant Contans
(2 lb/A)
Contans (2 lb/A)
10% bloom Double Nickel LC (2 qt/A) Double Nickel LC (2 qt/A)
7 days later Double Nickel LC (2 qt/A) Double Nickel LC (2 qt/A)

White mold – what we saw and what it means

There was very little disease in the white mold trials on either collaborating farm in 2019. This is great news for the collaborating farms, but it means that we couldn’t answer our question about whether using both Contans and Double Nickel in a single season would improve control of white mold. Sarah Pethybridge did three years of efficacy trials with Double Nickel and other OMRI-approved products. In small plot trials with uniform disease pressure Double Nickel was as effective as the conventional fungicides it was compared to in reducing disease. You can read about her results here.

Cucurbit powdery mildew – what we did

We conducted the cucurbit powdery mildew trials on one farm in Eastern NY and on research farms on Long Island and in Western NY, always using the bush acorn squash variety ‘Honey Bear’. This table summarizes the treatments we compared. Essentially, we started with two early biofungicide sprays, then shifted to rotating products when disease was detected. But, in some treatments we replaced the scheduled conventional product with a biofungicide every other week. The biofungicides we looked at were the same as last year: LifeGard, Regalia, and Serifel. We compared these treatments to both a regular conventional fungicide program and a “Conventional + skip” program where we just skipped every other conventional fungicide. And, we included an organic program with traditional OMRI-listed products plus the biofungicides. Important note: Luna Experience is NOT allowed for use on Long Island. We used it in a research plot in order to be able to make comparisons to trials conducted in other parts of the state. You can learn more about fungicide options for managing cucurbit powdery mildew here, and here.

Date Non-treated Conventional Conventional + skip Conventional + LifeGarda Conventional + Regaliaa Conventional + Serifelb Organicab 
~14 days before disease LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

LifeGard WG (4 oz/100 gal)
~7 days before disease LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

LifeGard WG (4 oz/100 gal)
First disease detection Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) MilStop (3 lb/A)
+7-10 days Luna Experiencec (10 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

Serifel (8 oz/A)
+14-17 days Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Suffoil-X (1% v/v)
+21-24 days Vivando (15 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

MilStop (3 lb/A)
+28-31 days Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Serifel (8 oz/A)
+35-38 days Quintec (6 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

Suffoil-X (1% v/v)

a LifeGard and Regalia were tank mixed with Nu Film P (1 qt/100 gal)

b Serifel was tank mixed with EcoSpreader (4 fl oz/100 gal) when applied at spray volumes of 30 to 40 gal/A.

c Luna Experience is not allowed for use on Long Island. The Long Island trial was conducted on a research farm.

 

We summarized disease severity on multiple dates over the season by calculating the area under the disease progress curve (AUDPC). This value describes with a single number how quickly disease developed and how bad it got. We also measured NDVI using a GreenSeeker as a way to quantify how green and healthy the leaves were. At the end of the season, we collected yield and Brix data.

Cucurbit powdery mildew – what we saw

Not surprisingly, there was some variability among sites. But at two sites disease severity was not statistically different when we compared the standard weekly conventional fungicide program to skipping every other fungicide spray. This was disappointing, since we were expecting more severe powdery mildew from extending the spray interval, providing room for the biopesticides to improve control. However, in the Long Island trial, although powdery mildew was more severe when the spray interval was extended, applying a biopesticide during the skip week did not improve control.

For the most part, replacing alternate conventional fungicides with biofungicides resulted in disease levels that were somewhere between the conventional fungicide program and the non-treated control. At two sites LifeGard and Serifel performed slightly better than Regalia. To keep this post a reasonable length, we’re only showing results from the Long Island trial, here.

Bar graph showing the amount of disease observed in each treatment in the Long Island trial. Alternating LifeGard, Regalia, or Serifel with conventional fungicides resulted in disease levels similar to skipping every other conventional fungicide. But skipping every other conventional fungicide did not result in statistically worse disease than the full fungicide program. The costs per acre of the conventional, conventional + skip, organic, conventional alternated with LifeGard, conventional alternated with Regalia, and conventional alternated with Serifel treatments were $204, $114, $274, $207, $268, and $348, respectively.
In the Long Island trial, the conventional, conventional + skip, and all three of the conventional/biofungicide programs provided pretty good powdery mildew control. The organic program was still better than the non-treated control. This graph shows only disease on the upper surface of the leaves (AUDPC = area under the disease progress curve). The black lines on each bar show one standard error above and below the mean value for that treatment. Bars with the same letter are not statistically different from each other. This graph also shows the cost (per acre) of the cucurbit powdery mildew fungicides for each treatment above each bar.

The above graph shows a summary of disease on the upper leaf surface over the whole season. We’re not reporting the data here, but if you look at disease ratings on individual dates or on the lower surface of the leaves, skipping every other fungicide or alternating conventional fungicides with biofungicides were not as good as the weekly conventional fungicide program.

At all three sites, yield was not statistically different when we compared the standard weekly conventional fungicide program to skipping every other fungicide spray. There were no statistically significant differences in yield in the Eastern NY trial, and few differences in the Western NY trial. In both trials, when Regalia was alternated with conventional fungicides the yield was slightly but not significantly lower than the conventional/LifeGard and the conventional/Serifel treatments. In the Long Island trial, only the full conventional treatment and treatments that included LifeGard or Regalia had significantly higher yields than the non-treated control. Again, we’ll show just the data from Long Island to keep this story briefer.

Bar graph showing the average weight of marketable fruit harvested from each treatment in the Long Island trial. The heights of the bars are fairly similar, but the bars representing the conventional, conventional/LifeGard, and conventional/Regalia treatments are the tallest. The value per acre of the marketable fruit harvested from the conventional, conventional + skip, organic, conventional/LifeGard, conventional/Regalia, and Conventional/Serifel treatments is $37,837, $46,335, $42,550, $38,561, $48,022, $45,661, and $43,862, respectively.
Yields from all treatments in the Long Island trial were pretty high. The black lines on each bar show one standard error above and below the mean value for that treatment. Bars with the same letter are not statistically different from each other. The yield per plot of 12 plants was extrapolated to the yield per acre (assuming 6 ft between rows and 2 ft between plants within rows, resulting in 3,620 plants/A) and used to estimate the average grocery store value (per acre) of each treatment, shown above each bar. The value of the organic treatment (*) was not adjusted to account for presumably higher prices for certified organic produce.

Our data did not suggest that NDVI readings taken with the GreenSeeker were a good replacement for visual scouting, or that this was a good tool for detecting differences in plant health among treatments. When NDVI readings differed among treatments, powdery mildew symptoms were readily evident. The most substantial differences in NDVI values among treatments were in the Long Island trial, where both the non-treated control and the organic treatment had much lower average NDVI values over the season.

On the whole, Brix were unaffected by powdery mildew management strategy. The only statistically significant differences in Brix values among treatments were in the Eastern NY trial where the conventional/LifeGard treatment had significantly lower Brix than the conventional/Serifel treatment.

Cucurbit powdery mildew – what it means

When the full conventional fungicide program didn’t result in statistically better disease control than skipping every other spray at 2 of the 3 sites, it’s not possible to say whether or not the biofungicides were good replacements for conventional fungicides against powdery mildew. However, they did not prove to be in the Long Island trial. Our results did not suggest that measurement of NDVI values with a GreenSeeker should replace visual scouting for cucurbit powdery mildew.

Depending on the trial location (and accompanying variations in spray schedules and rates), replacing some conventional fungicides with biofungicides ranged from slightly less expensive than the full conventional program to more than twice the cost. Although in most cases there were no statistically significant differences in the value of the crop between the conventional/biofungicide programs and the full conventional program, the numerical value of the marketable crop ranged from being slightly higher (LifeGard alternated with conventional fungicides on Long Island) to lower (all other biofungicide treatments). Again, the lack of statistically significant differences between the full conventional spray program and the conventional spray program with skips in 2 of the 3 trials makes any conclusions about the economics of replacing some conventional fungicides with biofungicides, tentative, at best. There’s a lot of room to fine-tune incorporation of biofungicides into spray programs to maximize cost effectiveness.

Recall from last year’s results that we did not detect any benefit from adding biofungicides to a full cucurbit powdery mildew fungicide program. So if you’d like to use biofungicides for cucurbit powdery mildew, replacing a conventional fungicide application or two is probably a better way to go. If you’ve tried this, we’d love to hear how it worked for you!

 

Remember that the information in this post is not a substitute for a pesticide label. The label is the law, and you must read and follow the label of any pesticide you are using. It is your responsibility to use pesticides legally.

 

This post was written by Amara Dunn (NYSIPM) and Meg McGrath (Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University). Thank you to the New York Farm Viability Institute for funding.

Creating habitat for beneficial insects: Time, money, and weeds

On the left is a picture of a woman in a sundress and straw hat standing in the middle of a sunny sunflower field with her arms raised in the air. Written at the top of the picture is the title “What I thought establishing habitat for beneficial insects would be like…”. On the right is a picture of three people, either on their hands and knees or bending over, pulling weeds (including dandelions) that are several feet tall. This picture has the title: “What it’s actually like.”In December, I updated you on how perennial wildflowers and grasses were establishing in our beneficial insect habitat plots during the 2019 growing season. As I wrote that post, I quickly realized that there was too much good information for just one post. So here’s the rest of the story when it comes to plant establishment – time, money, and weeds.

Before I get started, below is a quick reminder of what our treatments were. You can read all the details here.

Treatment Description
A Spring transplant, no mulch
B Spring transplant with mulch
C Spring direct seed
D Buckwheat cover crop, then fall transplant
E – control Whatever was growing there, just keep it mowed
F Soil solarization, then fall direct seed
G Herbicide and tillage, then fall direct seed

Weed control

One thing that has surprised me about this project (although others certainly gave me fair warning) was how big a role weed management plays in establishing habitat for beneficial insects. It’s definitely still a struggle in our plots.

Bryan Brown did weed assessments for us in May and September of 2019. The graph below shows the average percent of the area of each plot covered by either weeds (orange) or beneficial habitat flowers and grasses (blue).

Bar graph shows the average percent of plots covered with either weed or beneficial habitat plants in May 2019. Weed control in the treatment (B) where transplants were mulched had the best weed control. The worst weed control was in treatment D, where seedlings were planted in Fall 2018 after a buckwheat cover crop.
Mulching provided the best weed management when plots were assessed in May of 2019. Each bar shows the average of four plots per treatment, and has an error bar showing variation among these plots (one standard error above or below the average for the treatment).

This was before we did any hand-weeding. By far, the plots that were mulched in Spring 2018 (treatment B) had the fewest weeds compared to beneficial habitat plants. You’ll also notice that in May there were still relatively few weeds in the plots where we tried to deplete the weed seed bank in the soil through solarization (treatment F) or repeated herbicide and tillage (treatment G).

Picture on the left is of treatment B (Spring transplant and mulch) and shows small wildflower plants surrounded by mulch and few weeds. The middle picture shows treatment C (spring direct seed), a weedy plot. The picture on the right shows treatment F (solarization and fall direct seed), where you can still see at least 50% of the plot is bare soil, although many small and a few larger weeds are visible.
What some of the plots looked like on May 16, 2019 when Bryan did the weed assessment.

By September 2019, the spring transplant treatments looked even better. Our wildflowers grew well during 2019 (with the help of some extra hand weeding). The plants we transplanted in Fall 2018 are still struggling and not nearly as large as the wildflowers in treatments A and B. I think this may have more to do with the weed competition they experienced that first fall (when we couldn’t plant for a few weeks after the buckwheat was mowed) than transplant timing. Hopefully they will catch up.

Picture on the left is of treatment A (spring transplant, no mulch) and shows tall wildflower plants with some weeds. The middle picture shows treatment B (Spring transplant and mulch), full of large wildflowers and few weeds. The picture on the right shows treatment D (buckwheat and fall transplant), where the wildflower plants are much smaller, there are more weeds, and some bare ground is visible.
What some of the plots looked like on September 19, 2019 when Bryan did the weed assessment.

There are still a lot of weeds in the direct-seeded treatments (C, F, or G). Remember that our weed management strategy in these plots is repeated mowing to control annual weeds. Over time, the perennial wildflowers and grasses should take over. But it’s not supposed to be a quick method.

Bar graph shows the average percent of plots covered with either weed or beneficial habitat plants in September 2019. Weed control in the treatment (B) where transplants were mulched still had the best weed control. The worst weed control (besides the control plot where no beneficial habitat plants were planted) was in the three treatments using spring or fall direct seeding (C = spring direct seeding, F = soil solarization and fall direct seeding, G = herbicide and tillage with fall direct seeding).
Spring transplant treatments (A and B) looked the best after their second full growing season. The fall transplants (D) had more weeds, but these plants also have been in the ground for one less growing season. I’m still hoping they will catch up. Each bar shows the average of four plots per treatment, and has an error bar showing variation among these plots (one standard error above or below the average for the treatment).

Effort

Most of the treatments we are comparing required much less work in their second year (2019) than in their first (2018). The exception is that we spent a lot more time hand weeding treatment D (buckwheat cover crop followed by fall transplanting) in 2019. Although we weeded the two spring transplanted plots the same number of times in 2019 (twice), it took longer to hand weed the plots without mulch. I’m not surprised. If you’re looking for the right establishment method for your project, you really need to ask yourself how much help you have available and when. If you can get a lot of people excited about helping you install the planting, but worry about getting consistent volunteers year after year, mulch may be the right choice for you. In the direct seeded treatments (C – spring; F – fall following solarization; G – fall following herbicide and tillage), the time input for 2019 was mowing, which was relatively quick. And we did just a little hand weeding of perennial weeds.

Bar graph shows time (in person hours) spent on each treatment for both 2018 (in blue) and 2019 (in orange). The tallest bars are for treatments A, B, and D, but most of the bar for treatment B is blue (representing transplanting, mulching, and hand weeding in 2018). For treatment D, half the bar is orange (representing hand weeding in 2019). Treatment A shows more orange than treatment B, but less than treatment D.
Transplanting (treatments A, B, and D) still takes more time than direct seeding, but the extra time we spent mulching in 2018 paid off in 2019 when we spent less time hand weeding (treatment B compared to A and D).

Costs

Nearly all of our costs were incurred in the first year of the project (2018). The only additional costs from 2019 were for gas to run the mower. We did replace a few plants in transplanted plots in Fall 2019, but we used some extra plants we had purchased in 2018. Below is the total cost of the plants and other supplies for each treatment. Transplanting will always be more expensive than direct seeding.

Treatment Costs
A $417.12
B $539.29
C $18.83
D $390.55
E $3.40
F $149.10
G $23.12

 

You may remember that we were also collecting insects. I promise I will write more about the insects we caught in another post. If you are tired of looking at snow and bare trees outside, you can see pictures of some of the insects we caught in my post from August 2019.

This post was written by Amara Dunn. All pictures were taken by her, unless otherwise credited.

This work is supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

Creating habitat for beneficial insects: How are things growing?

Planting of purple, yellow, and white flowers with blue sky in the background
Lots of flowers bloomed in 2019 in our habitat plots. Some we had planted, and some we hadn’t.

Obviously, nothing is growing right now, but I thought this would be a good time to update you on the success of our beneficial insect habitat plots during the 2019 growing season.

When things bloomed

Recall that the goal is to have at least one plant blooming all season long. We choose wildflower species accordingly, and it worked! The following table shows which months each species bloomed in 2019 (at least in the transplanted plots). An ‘X’ means the species was blooming during that month.

Wildflower May June July Aug Sep
Golden alexanders X X
Catmint X X X  X
Lanced-leaved coreopsis X X
Tall white beard tongue X X
Ohio spiderwort X X
Anise hyssop X X  X
Echinacea X X  X
Orange coneflower X X  X
Boneset X X X
Wild bergamot X X
Common milkweed X
NY ironweed X  X
Showy goldenrod  X
New England aster  X
Blue false indigo

You may notice that the blue false indigo never bloomed in 2019, which was disappointing. Most of these plants are still alive (as you’ll see later in this post). They just didn’t bloom. Maybe next year?

Here’s what each species looks like:

Plant with tiny yellow flowers arranged like Queen Anne’s Lace.
Golden alexanders (Zizia aurea)
Small purple bell-shaped flowers on stems with frosty-green leaves
Catmint (Nepeta faassinii)
Yellow daisy-shaped flowers with toothed edges
Coreopsis (Coreopsis lanceolata)
Clusters of white or pink bell-shaped flowers on top of tall stems
Tall white beard tongue (Penstemon digitalis). Obviously not all of these flowers are white!
Three-petaled purple flowers growing on plant with grass-like leaves.
Ohio spiderwort (Tradescantia ohiensis)
Small, pale purple flowers clustered at the top of a stem
Anise hyssop (Agastache foeniculum)
Pink daisy-shaped flowers with organge centers
Echinacea (Echinacea purpurea)
Large clump of daisy shaped flowers with yellow petals and dark brown centers
Orange coneflower (Rudbeckia fulgida var. fulgida)
Small white flowers in flat clusters
Boneset (Eupatorium perfoliatum)
Pale pink-purple flowers that look like small tufts on the top of stems
Wild bergamot (Monarda fistulosa)
Pale pink flowers with 5 sets of petals and a complex shape
Common milkweed (Asclepias syriaca)
Bright magenta flowers formed into small tufts at the top of the plant
NY Ironweed (Vernonia noveboracensis)
Large clump of small, bright yellow flowers
Showy goldenrod (Solidago speciosa)
Purple daisy-shaped flowers with yellow centers and very narrow petals. A small bee is visiting one of the flowers
New England aster (Symphyotrichum novae-angliae)
Pale blue-purple legume flowers. One is being visited by a bumble bee
Blue false indigo (Baptisia australis); hasn’t bloomed yet in our field. Photo credit: Ansel Oommen, Bugwood.org

Transplanted wildflowers

The wildflowers in our transplanted plots are surviving pretty well (>80%). In the plots that were transplanted in the fall after the buckwheat cover crop, the survival is a bit lower. I think this has to do with some weed control issues (more on this in a future post).

Percent of plants surviving was lowest in treatment D, but still above 80%. Survival did not change very much from Spring to Fall 2019.
How well have the transplanted wildflowers survived so far? Treatment A was transplanted in Spring 2018 and not mulched. Treatment B was transplanted in Spring 2018 and mulched. Treatment D was transplanted in Fall 2018 following a buckwheat cover crop. All have been hand weeded periodically. In both Spring and Fall of 2019 I counted plants to see how well they survived. The black lines on each bar in the graph show one standard error above and below the mean percent survival.

Some species have survived better than others, as the following chart shows. Again, we counted plants both in Spring and Fall 2019.

Bar graph showing the mean percent of plants of each species that were still alive in Spring and Fall 2019. With the exception of milkweed, all survival rates were at or above 80%, and losses were minimal from Spring to Fall.
Do some species of wildflowers survive better when transplanted? There’s a little bit of variability, but overall most are surviving pretty well.

What about the direct-seeded plots?

Only three species of wildflowers planted by seed in Spring or Fall 2018 bloomed during the 2019 season. The table below shows which months these blooms were seen (marked with an ‘X’).

Common name May June July Aug Sep
Coreopsis X X X
Blackeyed susan X X X
Partridge pea X X

Here’s what the flowers of blackeyed susan look like. The plant has much hairier leaves than the orange coneflower.

A daisy-shaped flower with yellow petals and a dark brown center
Blackeyed susan (Rudbeckia hirta)

And here’s the partridge pea:

Yellow flower with compound leaves cupped in a person’s hand
Partridge pea (Chamaecrista fasciculata)

But, I also spotted some wild bergamot, tall white beard tongue, asters, golden alexanders, and either echinacea or orange coneflower seedlings. (I haven’t honed my horticultural skills enough yet to distinguish the foliage of these last two wildflowers.)

Pictures of seedlings labeled (left to right, top to bottom) aster, golden alexanders, echinacea or orange coneflower, wild bergamot, and beard tongue.
Seedlings of some wildflowers could be identified in the direct-seeded plots by September 2019.

There were also plenty of weeds blooming throughout the summer, and many of them were providing pollen and nectar for pollinators and natural enemies. Here are just a few examples:

Four pictures showing a bee on a yellow flower, several daisy-shaped flowers with white petals and yellow centers, a yellow dandelion with a pink lady beetle on it, and a bumble bee visiting a pink clover flower
From left to right: A bee feeding on a weed in the aster family, blooming chamomile, a lady beetle on a dandelion, and a bumble bee visiting clover (that wasn’t planted).

This table summarizes when during the season different weeds were in bloom. Again, an ‘X’ indicates the weed was blooming that month.

Weed May June July Aug Sep
Campion X X X X X
Chamomile X X X X X
Clover X X X X X
Dandelion X X X X X
Vetch X X X X X
Viola X X X X X
Mustard X X X X
Deadnettle X X
Baby blue eyes X
Henbit X
Asters X X X X
Buckwheat X X X X
Oxalis X X X X
Plantain X X X X
Wild lettuce X X X X
Cinquefoil X X X
Indian hemp X X X
Redshank X X X
Chickweed X X
Galinsoga X X
Geraniums X
Sandwort X
Grass X X
Horse weed X X
Lambsquarters X X
Ragweed X X
Black bindweed X
Chicory X

There’s more!

In addition to keeping track of what bloomed from May through September, we were also still tracking costs and time spent on each plot in 2019. And of course we collected a LOT of insects. But those stories will have to wait for another post.

This post was written by Amara Dunn. All pictures were taken by her, unless otherwise credited.

This work is supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

Learn more about classical biocontrol

Several brown, slimy-looking larvae on a leaf of a lily plant that has been chewed up. A small black wasp that is less than a third of the size of the larva is perched on one of them.
A tiny wasp lays its eggs in the larvae of the invasive lily leaf beetle. Releasing these wasps in the northeastern U.S. is a form of classical biocontrol. Photo credit: Dan Gilrein

Last week, some colleagues told me about a cool online database that will help you learn more about how classical biocontrol is helping us fight invasive insects.

Classical biocontrol means introducing a natural enemy of a pest to help manage that pest. The natural enemy establishes a population where you have released it (and maybe even spreads), so that you don’t need to repeatedly release more natural enemies. It is a strategy that can be especially useful against invasive pests.

One thing that makes a pest invasive is the fact that when it arrives in a new place (for example, on a new continent), native organisms don’t eat it because they have not evolved with this new pest as a food source. Sometimes scientists can search the geographic area from which the invasive pest came and find a natural enemy of that pest. Many tests are done over a long period of time in order to assess potential unintended consequences of introducing this natural enemy to a new place. For example, scientists determine whether the new natural enemy is likely to also impact populations of native organisms (especially those that are not pests). Only after extensive study will this new natural enemy be released to help reduce populations of the invasive pest.

When done carefully, classical biocontrol can be a lower-risk solution to managing invasive pests compared to chemical pest management. It is also a long-term solution. The new natural enemy reproduces in its new geographic range and brings the invasive pest population into balance. The invasive species won’t be eliminated, but it will likely do less damage.

A new database from the University of Massachusetts lets you learn more about insects that have been introduced to North America to control invasive insect pests as classical biological control agents. You can Search the Catalog by the scientific name of the target pest, the scientific name of the natural enemy, information about where and when the natural enemy was first released, or other criteria.

Held against the background of a person's hand, you can see the underside of a hemlock branch. It looks like there are small tufts of white cotton where each needle attaches to the branch.
The invasive hemlock woolly adelgid on a hemlock branch. Several different classical biocontrol agents have been released in the U.S. to manage this invasive pest. Photo credit: Amara Dunn

You will need to know the scientific name of the pest or natural enemy you are interested in, but a quick Google search can help you with that. For example, Adelges tsugae is the hemlock woolly adelgid, which you may have heard about. If not, you can learn more here. Laricobius nigrinus was released to help manage hemlock woolly adelgid. Other examples include Agrilus planipennis (emerald ash borer) and Lilioceris lilii (lily leaf beetle). NYS IPM is involved in a project to use classical biocontrol to manage this last pest in NY.

As the days start to get shorter and cooler, you might find yourself spending more time indoors. And if that’s the case, why not spend some time learning more about how classical biocontrol is helping to manage pests in the landscapes around you?

Come visit our beneficial insect habitat plots!

In the foreground you can see a small Christmas tree. In the background, you can see a patch of mixed wildflowers. Behind it are trees, and partly cloudy sky, and a pond.

You’ve read about all the different methods we are testing for establishing native wildflowers and grasses as habitat for pollinators and natural enemies of pests. You know we learned a lot in our first season. You know we’ve been using several different techniques to collect insects in these plots. And you saw a pictorial summary of our sampling and some of the insects we’ve caught in Summer 2019.

Wouldn’t you like to come see these plots in person, hear about our preliminary results, and learn more about attracting pollinators and other beneficial insects to your farm or yard?

If you live reasonably close to Geneva, NY, you can! We are having two field events this fall:

On Wednesday, September 25, 2019, stop by our field between 3:30 and 6:30 PM for an Open House. There will be no program, just stop by and talk with Betsy Lamb, Brian Eshenaur, and I. All the details can be found here, including the address and a map to help you find our field.

On Thursday, September 26, 2019, we have a Twilight Field Day from 5 to 7 PM. This meeting has been planned with growers in mind (especially Christmas tree and nursery growers). DEC credits (1.5) will be available for categories 1a, 3a, 24, 25, and 10, and dinner is included. The cost for this meeting is $15, and we need you to register so we know how much food to provide. All the details (including the registration link) can be found here.

If you’re coming to either of these events, we’ll have lots of signs up to help you find our field. Look for the following image:

illustration of a pink daisy-shaped flower with orange center and a Christmas tree, next to the logo for New York State Integrated Pest Management

This work is supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

A summer of biocontrol…in pictures

Several types of wildflowers (yellow, white, deep magenta, purple, pink) growing in a field.
Summer isn’t over yet for farmers and extension staff doing field experiments!

Labor Day weekend may be viewed by some as the end of summer, but farmers know that the summer growing (and harvesting!) season is far from over. Similarly, the field projects I’m involved with this summer (read more here and here) are still running. Over the fall and winter I’ll be analyzing data and sharing results (on this blog, and at winter meetings). In the meantime, here’s a pictorial summary of my summer projects (so far).

Plant whose leaves have 3 lobes (like elongated clover leaves) with toothed edges. Flower is an open cluster of tiny yellow flowers, similar to Queen Anne’s Lace.
Golden alexanders (Zizia aurea) was our earliest-blooming wildflower in our beneficial insect habitat plots around the Christmas trees. It was blooming on May 16 in Geneva, NY.
A bee already covered in fine yellow dust looks for nectar and (more) pollen in a dandelion bloom.
Some of us may not like them in our lawns, but starting in the first week of May (Geneva, NY) dandelions were providing food for beneficial insects like this bee.
You can see the rear-end of a lady beetle (red body, with black spots) as it searches for pollen and nectar among small, bright yellow flowers.
This shy lady beetle was finding food in the flowers of this weedy mustard plant in mid-May (Geneva, NY).
Man walking through a field of grass on a cloudy day, swinging a long white net on a long wooden handle just above the ground.
After expert training from Cornell entomologist Jason Dombroskie (pictured here during our training session in late April), we’ve been using a sweep net to catch insects that fly or perch on the wildflowers in the habitat plots we started last summer. We sampled this way once every month.
One blue and one yellow bowl filled with soapy water and rocks set on ground covered with wood chip mulch. Several different types of plants are growing nearby.
Starting the week of May 20th, we set out pan traps (blue and yellow plastic bowls filled with soapy water and weighed down with rocks) approximately every other week. These traps catch insects flying through our plots, especially those that are attracted to the colors blue and yellow. This includes many bee species.
Various types of weeds and other plants grow around a spot where a deli cup is buried up to the rim in the ground. The deli cup is also full of liquid. Suspended over the deli cup on “legs” of thick wire is a clear-plastic dinner plate.
Also during the week of May 20th, we started setting pitfall traps once each month. Insects walking along the ground fall into these deli cups filled with a drowning solution. We put rain covers over them (made out of clear plastic dinner plates and wire from old flags) to prevent a heavy rain from flooding the deli cups during the 3 days the traps are set.
A red lady beetle with 7 spots on its back crawls across a green stem of vetch that is being held by a hand that is dirty (probably from weeding).
We caught and saw so many insects (and non-insects, like spiders) this summer! This seven-spotted lady beetle was a frequent visitor to our plots.
A fly with big eyes and black and yellow stripes on its body perches on a yellow coreopsis flower, probably looking for pollen and nectar.
Many flies are important pollinators, like this one that resembles a bee at first glance. Many flies are also important natural enemies of pests (either as adults, or as worm-like larvae).
Small insect with eyes that bug out to the sides of its head, triangular and diamond-shaped black and white patches on its otherwise brown wings and body.
This minute pirate bug may be tiny (it’s magnified 20X), but it is an important natural enemy of pests.
Looking down into a clear plastic cup that contains eleven different bees and wasps, ranging from a large bumble bee to tiny wasps that you can barely see.
We caught so many different kinds of bees and wasps!
Two black, yellow, and white striped caterpillars feed on the broad green leaves of a milkweed plant.
Plenty of caterpillars (like these monarchs) enjoyed munching on the foliage of our wildflowers.
A black and orange striped butterfly visits a daisy-shaped flower with pink petals and an orange cone-shaped center.
And in late July, we started seeing adult butterflies visiting the flowers like the viceroy butterfly on these purple coneflowers (Echinacea purpurea).
Eight beetles with eyes that bug out from the sides. They look brown when viewed from the top, but when viewed from underneath they look iridescent blue-green.
I learned that these are tiger beetles. They are fast-moving ground predators, and we caught a lot in our pitfall traps.
Plant stems covered in small purple flowers in the background, and plant stems covered in large white bell-shaped flowers in the foreground.
Different wildflowers bloomed at different times, like these purple catmint (Nepeta faassinii) and tall white beard tongue (Penstemon digitalis) in June.
On left, an open cluster of tiny white, slightly fuzzy flowers. On the right, flowers that look like pale purple puffs at the top of the stems.
White boneset (Eupatorium perfoliatum) and pale purple wild bergamot (Monarda fistulosa) were blooming in late July.
In the foreground, daisy-shaped flowers with yellow petals and black centers. In the background, a tall plant with open clusters of deep magenta flowers that look slightly fuzzy. You can see a field and blue sky in the background.
And now the rudbeckia (two different species, but Rudbeckia fulgida var. fulgida is pictured here) and deep magenta NY ironweed (Vernonia noveboracensis) are in full bloom. But the asters and goldenrod haven’t started, yet.
Short Christmas trees, planted in rows with grass in between. A pond, several fields, a line of trees, and a cloudy sky are in the background.
And the Christmas trees planted around these beneficial insect habitat plots keep growing!
Three people (two women and a man) wearing work clothes, holding gardening tools, and standing in the middle of a field with some yellow flowers in the foreground and a cloudy sky in the background.
I couldn’t have done this without the help of my great co-workers, Betsy Lamb, Deb Marvin, and Brian Eshenaur! They were still smiling after a morning of weeding the wildflowers by hand!
Smiling young woman holding a sheet with pictures of butterflies, and standing next to blooming purple coneflowers. You can see a field in the background.
A student from a local college helped me a lot with insect collection!
Several rows of cucurbit plants just starting to flower. In the background, you can see a road, a field, and a barn.
Meanwhile, field trials with biofungicides are ongoing, targeting cucurbit powdery mildew on winter squash and white mold on snap beans and tomatoes (not pictured). This project is funded by the New York Farm Viability Institute.
: Two women, both in red shirts, standing in the middle of a field. One holds two weeds. The other holds a clipboard and a water bottle.
Elizabeth Buck (left) and Crystal Stewart (right) are running the trials in western NY and eastern NY, respectively. This project is funded by the New York Farm Viability Institute.
Woman on left is wearing a red shirt, talking, and gesturing with her hands. Woman on right in wearing a green shirt and watching and listening to the woman on the left.
Meg McGrath (left) is running the trial on Long Island, but we all got together at a twilight meeting in eastern NY last week. This project is funded by the New York Farm Viability Institute.
Woman in a blue shirt and baseball cap looking into the camera. In the background you can see white bell-shaped flowers and blue sky with a few puffy clouds.
So far, it’s been a good summer! I’ve really enjoyed working with great colleagues and learning new things!

The field projects I’ve just described will be wrapping up in September. Check back to learn about the results. Better yet, click the green “Subscribe” button towards the top and right of this page, and you’ll receive an email when a new post is available!

 

In the meantime, there will still be at least a few more weeks of pictures posted regularly on Twitter (@AmaraDunn) and Instagram (@biocontrol.nysipm).

Biofungicide project was funded by the New York Farm Viability Institute.

Creating habitat for beneficial arthropods was supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

Have you been meaning to learn more about spotted lanternfly? Here’s your chance!

This isn’t biocontrol, but it’s very important! Have you heard about the invasive spotted lanternfly? Do you want to learn where we are in our efforts to keep it out of New York, and to manage it if (and when) it does show up?

New York State Integrated Pest Management is hosting a meeting in Binghamton, NY on Thursday August 15 where you can get answers to these questions.

This conference has been approved for 7.5 Certified Nursery Landscape Professional credits, and 6 NYS Pesticide Recertification credits in the categories of 1a, 2, 3a, 6a, 9, 10, 22 and 25.

Details:
August 15, 2019
8:30 am – 4:30 pm
Broome County Regional Farmers Market
840 Upper Front St., Binghamton NY

Register online.

Get more information here about speakers and registration costs.

5th Annual New York State Integrated Pest Management Conference Spotted Lanternfly: At our doorstep or already in our fields? It's not if but when and where this invasive pest will show up in NYS. Be on the front line of stopping the invasion! Learn where to look and how to correctly identify and report sightings of all spotted lanternfly life stages. Spotted lanternfly is a concern to: growers; foresters; nursery, greenhouse, and Christmas tree operations, landscapers, Master Gardeners and all NYS residents. In fact, anyone whose business or travel takes them through quarantine zones should understand New York State's regulations. Experts from across PA and NY will provide updates on what is b doen to prevent SLF's establishment in New York and tools available to combat this threat to our fields, forests and homes.