Tag Archives: biofungicide

Compatibility: Pesticides and natural enemies of pests

Green insect with lacey wings
Lacewings (especially larvae; this one is an adult) are great natural enemies of pests. You want to keep them happy and healthy!

Natural enemies of pests are going to help you out with pest control, so when you are applying pesticides, it’s in your best interest to choose products that will have the least impact on them. Two quick points before we get into details for where to find this information:

  1. Remember that the information in this post is not a substitute for a pesticide label. The label is the law, and you must read and follow the label of any pesticide you are using. Laws and labels change. It is your responsibility to use pesticides legally. Trade names used here are for convenience only; no endorsement of products is intended, nor is criticism of unnamed products implied. For questions about pesticide use, regulations, and safety, contact the Cornell Pesticide Management Education Program: pmep_webmaster@cornell.edu.
  2. A great way to protect natural enemies is by following the steps for IPM. Preventing pests (e.g., through cultural strategies and exclusion), scouting to detect pests early when populations are low, and proper identification of pests will help you reduce your need to use pesticides and can save you money. Win win!

Ok, let’s assume you’re doing good IPM and you’ve gotten to the point where you need to choose a pesticide. How do you make the best choice for protecting natural enemies? Here are a few options. (Note that I did post about this about 2 years ago. I’ve learned more, so I thought an update would be in order.)

Read the label

This should go without saying. You should be doing this anyway when you are considering using a pesticide. The label may contain information about the compatibility of a pesticide with either natural enemies or pollinators. And of course it will contain important information about how to minimize risks to yourself and the environment when you use it.


EIQ stands for Environmental Impact Quotient. You can read more details on the NYSIPM website, but in a nutshell the EIQ puts a number on the risks of pesticides at the rates they are applied in the field. You can use the EIQ calculator on our website to compare these numbers for different pesticides. The higher the number, the higher the risk. There are different components to the EIQ; risks to consumers, workers, and the environment (ecological). The ecological risk will include risks to natural enemies (as well as fish, birds, and bees).

Pocket IPM Greenhouse Scout App

The Greenhouse Scout app provides information for doing IPM in greenhouses, including pest insects, beneficial insects, application technology, and pesticide interactions. It also gives you a place to record scouting results and track product applications.
A screenshot from the home screen of the Pocket IPM Greenhouse Scout App. You can find information about compatibility with natural enemies under either “Beneficials” or “Pesticide Interactions”.

Especially if you are growing in a greenhouse and releasing a lot of natural enemies, you may find this app helpful. In addition to providing information about compatibility of pesticides with arthropod natural enemies you may be releasing, you can also use it to help you keep records of scouting and product applications.


Cornell Guidelines

If you are a commercial producer, hopefully you are already utilizing the Cornell Guidelines, as they are a wealth of information on many subjects. At least some of them also include information on the toxicity of different pesticides to natural enemies. For example, if you have the grape guidelines, check out Table 4.2.2 for insecticide toxicity to natural enemies.

Websites and apps from companies that produce natural enemies

Companies that sell natural enemies (especially predatory and parasitoid arthropods for greenhouse pest control) have an interest in making sure that customers don’t inadvertently kill the natural enemies they buy with pesticides they are applying. I am aware of searchable databases or charts describing pesticide compatibility from four companies that sell (mostly) arthropod and nematode natural enemies: Agrobio, Biobest, BioWorks, and Koppert. If you know of some I’ve missed, please let me know! There are of course other companies that supply natural enemies. Here I’m focusing on resources that help you choose pesticides to conserve natural enemies.


This website is also available as an app for Android (but not Apple) devices. To use it, start by clicking Organisms selection and choose the natural enemies you want to conserve. Then, click Ingredients selection and choose the pesticides you are thinking about applying. You can only search active ingredients, not product names. Finally, click Query. Use the legend to help you interpret the table that’s produced.


This website is also available as an app for Android and Apple devices. Use either the Active ingredient or the Commercial product tab to select pesticides by active ingredient or trade name. Then, search for the name of the Beneficial organism you want to conserve. Note that there are a lot of pesticide/natural enemy combinations for which toxicity data just aren’t available. If you select a pesticide, then natural enemies for which no data are available will be grayed out in the Beneficial organism list. As you check boxes next to pesticides and natural enemies, a chart is automatically generated. The legend includes keys for information on toxicity (to natural enemies and bumble bees), application methods, and persistence of the product. You can generate a pdf of your results, but it won’t include the legends.


Check out this resource that summarizes the compatibility of BioWorks biopesticides with arthropod and nematode natural enemies.


This website is also available as an app for Android and Apple devices. Start by entering the name of the Beneficial organism you want to conserve. You can search by either the Koppert product name, or the Latin (scientific) name, but you can’t select from a drop-down menu. Just start typing. Then, choose the Agent (pesticide you are considering applying), by either trade name or active ingredient. Again, you need to know the name; you can’t select from a drop-down list. Start typing, and then check the box next to the product you are interested in. Click Results and be sure to click on ‘Legend’ at the bottom to help you interpret the table. There is also a more complete explanation of information in the legend under Info.

Some caveats about these websites

Admittedly, finding information about conserving natural enemies that are not commercially available for release (e.g., in greenhouses) has some challenges. These websites tend to focus on what you can buy and release, rather than on what may be naturally occurring in a field. Although sometimes there is some overlap. These apps/websites don’t include all natural enemies, and data aren’t available for all natural enemy/pesticide combinations. Also, these websites/apps usually list natural enemies by scientific names. Do you know what the scientific name of a lacewing is? I didn’t before I started this job!

To help with this last barrier, I created a chart (also below) to help you figure out what scientific names you should look for on these websites/apps if you want to conserve a particular natural enemy. It also includes information about which pests the natural enemies target, whether they are commercially available, and whether they are naturally occurring (not necessarily native) in NY.

Arthropod and nematode natural enemies

Can I buy them? Found in NY? If I want to conserve this beneficial arthropod… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
yes yes aphid midges Aphidoletes aphidimyza aphids Aphidoletes aphidimyza
some yes beetles that are predators (for example, rove beetles, ground beetles, and others) Coleoptera is the scientific name of the insect group that includes all beetles. The following families are generally predatory: Coccinellidae (lady beetles), Carabidae (ground beetles), Staphylinidae (rove beetles), Cantharidae (soldier beetles), Melyridae (flower beetles) many insect pests Coleoptera is a beneficial insect listed on at least one compatibility app. However, some coleoptera are pests. And, since this is such a broad group, the compatibility information provided may not be correct for all beneficial beetle species.
yes hover flies, syrphid flies Syrphus spp, and many, many others aphids Syrphus spp.; Syrphus corollae; Episyrphus balteatus
some yes lacewings Chrysoperla spp. and some others aphids, insect eggs, small larvae Chrysopa carnea = Chrysoperla carnea; Chrysoperla spp.
some yes lady beetles Coccinellidae aphids, mites, small insects, insect eggs Coccinelidae, Coccinella 7-punctata, Hippodamia convergens
some yes minute pirate bug Orius insidiosus insect eggs, small caterpillars, thrips, mites, aphids Orius laevigatus may be a reasonable proxy; Orius spp.; Orius insidiosus
yes yes nematodes Steinernema spp., Heterorhabditis spp. thrips, fungus gnats, shore flies, some grubs Nematodes (note that this is a very broad category and it’s possible there are differences among species), Heterorhabditis bacteriophora, Steinernema, Steinernema feltiae, Steinernema carpocapsae
some yes parasitoid wasp Aphidius spp. aphids Aphidius spp., Aphidius colemani, Aphidius matricariae, Aphidius ervi
some yes parasitoid wasp Eulophidae, Diglyphus spp. leafminer larvae Diglyphus isaea
yes yes parasitoid wasp Braconids, Dacnusa sibirica leafminers Dacnusa sibirica
yes parasitoid wasp Aphelinidae, Aphelinus semiflavus aphids on potatoes Aphelinus abdominalis or Aphelinus mali may be reasonable proxies
yes yes predatory gall midge Feltiella acarisuga spider mites Feltiella acarisuga
some yes predatory mites Amblyseius (= Neoseiulus) fallacis, Typhlodromus spp., and probably others thrips, whitefly, pest mites; may vary among natural enemy species Amblyseius californicus, Amblyseius cucumeris, Amblyseius swirskii, Phytoseiulus persimilis are sold commercially and may be good proxies for the pesticide compatibility of naturally-occurring predatory mites
yes yes spined soldier bug Podisus maculiventris many immature insects, including many species of caterpillars Podisus maculiventris


some trichogramma wasps Trichogramma spp. moth eggs Trichogramma spp., Trichogramma brassicae, Trichogramma cacoeciae, Trichogramma evanescens, Trichogramma pretiosum

Other species of interest…

Can I buy them? Found in NY? If I want to conserve this beneficial insect… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
yes yes bumble bee Bombus spp. NA – pollinator Bombus spp., Bombus terrestris
yes yes European honey bee Apis mellifera NA – pollinator Apis, Apis mellifera


Different strains or populations of these natural enemies are sold by different companies and each population may differ from natural populations. Each company is most likely to report compatibility data that applies to their population. It’s not perfect, but it’s a start.

When the first word in the scientific name of an insect (e.g. Trichogramma) is followed by the designation ‘spp.’, it means multiple species that all belong to the same genus. Some compatibility information is given for only the larger group (e.g., Aphidius spp. or Syrphus spp.).

Natural enemies that are pesticides (active ingredients are microorganisms, i.e., fungi, bacteria, viruses)

If I want to conserve this microbial natural enemy… (whose scientific name is…) that helps me control… I should look for these names on the compatibility apps: 
Bt Bacillus thuringiensis (various strains are available, and they control different pests) many caterpillars and some immature beetle and fly pests (target pest varies by strain) Bacillus thuringiensis
entomopathogenic fungus Paecilomyces fumosoroseus = Isaria fumosorosea, Beauveria bassiana, Metarhizium anisopliae (= M. brunneum) (various strains) many insects (target pest depends on fungal species and strain) Paecilomyces (=Isaria) fumosoroseus, Beauveria bassiana, Metarhizium anisopliae (= M. brunneum)
fungi that attack plant diseases there are multiple species, including Trichoderma harzianum (several strains) Plant pathogens (the target pathogen depends on the fungal strain) Trichoderma harzianum T-22 is the only fungal natural enemy I found on these apps, so far. It is unlikely that its compatibility is representative of other fungi that are natural enemies.


Different strains or populations of these microorganisms are sold by different companies and each of these populations may differ from natural populations. Each company is most likely to report compatibility data that applies to their population. It’s not perfect, but it’s a start.

In these apps/websites, microbial active ingredient may be listed as the natural enemy (e.g., Paecilomyces fumosoroseus on Biobest website), but sometimes it’s only listed as a pesticide active ingredient. For compatibility of biopesticides with chemical pesticides, you should start by reading the label, then seek information provided by the manufacturer.

All tables were assembled by Amara Dunn, NYSIPM using information from Natural Enemies of Vegetable Insect Pests (Hoffman & Frodsham) and were last updated January 2020.

Give it a try!

Imagine you were considering using one of the following active ingredients:




…to control spider mites. (Of course, before you did this, you’d read the labels and be sure that the use you were considering was legal!) If you were concerned about hurting parasitoids that help with aphid control (for example, the species Aphidius colemani and Aphidius ervi) which of these active ingredients would be the best choice (from a compatibility standpoint)?


Go ahead!


Look it up!


A note about microorganisms as natural enemies

Green leaf with blue rectangles with smiling faces representing microbes as natural enemies of the pest microbes (yellow rectangles with shocked faces). The blue microbes are producing blue droplets (representing antimicrobial compounds).
Microbes used to control pests are biopesticides. In this conceptual diagram, the happy blue microbes are producing antimicrobial compounds that are killing the plant pathogens (represented by yellow rectangles with shocked faces).

There are a few “natural enemies” on this chart that are actually biopesticides, and I have listed them separately. Remember that microorganisms (fungi, bacteria, viruses) that are natural enemies of pests are biopesticides. A few of them can be found in the websites/apps summarized above. There are two compatibility questions when it comes to using biopesticides with living microorganisms as active ingredients: (1) Will this biopesticide harm other natural enemies (e.g., predators and parasitoids)? and (2) Will the living microbe in this biopesticide be killed by other pesticides I might use? The websites/apps have some information about the compatibility of biopesticides with arthropod natural enemies. If you’re wondering about the compatibility of biopesticides with other pesticides, that may be a topic for another post (so many posts to write, so little time!). I’ll just offer two quick pieces of advice here:

  1. Read the label of the biopesticide. If it doesn’t contain compatibility information (for use with other pesticides) or doesn’t answer your questions about compatibility with other natural enemies, contact the manufacturer to get your questions answered.
  2. If you happen to be using one of their products, BioWorks describes the compatibility of their products with other pesticides, and this information is linked to individual product pages.

And what about the bees?

Take a look at the resources created by the Pollinator Network @ Cornell. They have prepared decision-making guides for several crops already, with more to come.


This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. All images are hers, unless otherwise noted.

How do biofungicides fit in vegetable disease management? An update after Year 2

Healthy squash plants, just starting to flower in the foreground, with a field and barn in the background.
Some of the squash plants in one of our 2019 field trials looking at the role of biofungicides in managing cucurbit powdery mildew.

We have been working on a 2-year project funded by the New York Farm Viability Institute to look at adding biofungicides to the management of two vegetable diseases: cucurbit powdery mildew and white mold. In addition to summarizing results from Year 1 of the trial, previous blog posts also covered some of the details about how to best use the biofungicides we’re testing. During the summer of 2019, we completed our second year of trials. The numbers have all been crunched, and here’s a summary of what we learned. If you want to read all the nitty gritty details, a lengthy full report from Year 2 will be available (and linked to this page) soon.

Project goals

During the second year of this project, we wanted to answer a few questions for growers:

  1. Can you replace some conventional fungicide applications for cucurbit powdery mildew in winter squash with one of three OMRI-listed biofungicides (LifeGard, Regalia, or Serifel) while maintaining disease control, crop quality, and yield?
  2. Can you get better control of white mold in green beans by Contans prior to planting, and Double Nickel at bloom?
  3. What are the costs (versus benefits) of using these biofungicides in these ways?
  4. Can NDVI sensors help us detect disease early? Can they help us detect differences in plant health as a result of using biofungicides?

White mold – what we did

This table summarizes the white mold treatments in green beans. Replicated plots were treated with Contans in the third week of May, prior to planting; Double Nickel when snap beans were at 10% bloom (late June or early July) and 7 days later; both Double Nickel and Contans; or neither. Treatments are summarized below.

Timing Non-treated Contans Double Nickel Contans + Double Nickel
Pre-plant Contans
(2 lb/A)
Contans (2 lb/A)
10% bloom Double Nickel LC (2 qt/A) Double Nickel LC (2 qt/A)
7 days later Double Nickel LC (2 qt/A) Double Nickel LC (2 qt/A)

White mold – what we saw and what it means

There was very little disease in the white mold trials on either collaborating farm in 2019. This is great news for the collaborating farms, but it means that we couldn’t answer our question about whether using both Contans and Double Nickel in a single season would improve control of white mold. Sarah Pethybridge did three years of efficacy trials with Double Nickel and other OMRI-approved products. In small plot trials with uniform disease pressure Double Nickel was as effective as the conventional fungicides it was compared to in reducing disease. You can read about her results here.

Cucurbit powdery mildew – what we did

We conducted the cucurbit powdery mildew trials on one farm in Eastern NY and on research farms on Long Island and in Western NY, always using the bush acorn squash variety ‘Honey Bear’. This table summarizes the treatments we compared. Essentially, we started with two early biofungicide sprays, then shifted to rotating products when disease was detected. But, in some treatments we replaced the scheduled conventional product with a biofungicide every other week. The biofungicides we looked at were the same as last year: LifeGard, Regalia, and Serifel. We compared these treatments to both a regular conventional fungicide program and a “Conventional + skip” program where we just skipped every other conventional fungicide. And, we included an organic program with traditional OMRI-listed products plus the biofungicides. Important note: Luna Experience is NOT allowed for use on Long Island. We used it in a research plot in order to be able to make comparisons to trials conducted in other parts of the state. You can learn more about fungicide options for managing cucurbit powdery mildew here, and here.

Date Non-treated Conventional Conventional + skip Conventional + LifeGarda Conventional + Regaliaa Conventional + Serifelb Organicab 
~14 days before disease LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

LifeGard WG (4 oz/100 gal)
~7 days before disease LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

LifeGard WG (4 oz/100 gal)
First disease detection Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) Vivando (15 fl oz/A) MilStop (3 lb/A)
+7-10 days Luna Experiencec (10 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

Serifel (8 oz/A)
+14-17 days Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Quintec (6 fl oz/A) Suffoil-X (1% v/v)
+21-24 days Vivando (15 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

MilStop (3 lb/A)
+28-31 days Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Luna Experiencec (10 fl oz/A) Serifel (8 oz/A)
+35-38 days Quintec (6 fl oz/A) LifeGard WG (4 oz/100 gal) Regalia (2 qt/A) Serifel

(8 oz/A)

Suffoil-X (1% v/v)

a LifeGard and Regalia were tank mixed with Nu Film P (1 qt/100 gal)

b Serifel was tank mixed with EcoSpreader (4 fl oz/100 gal) when applied at spray volumes of 30 to 40 gal/A.

c Luna Experience is not allowed for use on Long Island. The Long Island trial was conducted on a research farm.


We summarized disease severity on multiple dates over the season by calculating the area under the disease progress curve (AUDPC). This value describes with a single number how quickly disease developed and how bad it got. We also measured NDVI using a GreenSeeker as a way to quantify how green and healthy the leaves were. At the end of the season, we collected yield and Brix data.

Cucurbit powdery mildew – what we saw

Not surprisingly, there was some variability among sites. But at two sites disease severity was not statistically different when we compared the standard weekly conventional fungicide program to skipping every other fungicide spray. This was disappointing, since we were expecting more severe powdery mildew from extending the spray interval, providing room for the biopesticides to improve control. However, in the Long Island trial, although powdery mildew was more severe when the spray interval was extended, applying a biopesticide during the skip week did not improve control.

For the most part, replacing alternate conventional fungicides with biofungicides resulted in disease levels that were somewhere between the conventional fungicide program and the non-treated control. At two sites LifeGard and Serifel performed slightly better than Regalia. To keep this post a reasonable length, we’re only showing results from the Long Island trial, here.

Bar graph showing the amount of disease observed in each treatment in the Long Island trial. Alternating LifeGard, Regalia, or Serifel with conventional fungicides resulted in disease levels similar to skipping every other conventional fungicide. But skipping every other conventional fungicide did not result in statistically worse disease than the full fungicide program. The costs per acre of the conventional, conventional + skip, organic, conventional alternated with LifeGard, conventional alternated with Regalia, and conventional alternated with Serifel treatments were $204, $114, $274, $207, $268, and $348, respectively.
In the Long Island trial, the conventional, conventional + skip, and all three of the conventional/biofungicide programs provided pretty good powdery mildew control. The organic program was still better than the non-treated control. This graph shows only disease on the upper surface of the leaves (AUDPC = area under the disease progress curve). The black lines on each bar show one standard error above and below the mean value for that treatment. Bars with the same letter are not statistically different from each other. This graph also shows the cost (per acre) of the cucurbit powdery mildew fungicides for each treatment above each bar.

The above graph shows a summary of disease on the upper leaf surface over the whole season. We’re not reporting the data here, but if you look at disease ratings on individual dates or on the lower surface of the leaves, skipping every other fungicide or alternating conventional fungicides with biofungicides were not as good as the weekly conventional fungicide program.

At all three sites, yield was not statistically different when we compared the standard weekly conventional fungicide program to skipping every other fungicide spray. There were no statistically significant differences in yield in the Eastern NY trial, and few differences in the Western NY trial. In both trials, when Regalia was alternated with conventional fungicides the yield was slightly but not significantly lower than the conventional/LifeGard and the conventional/Serifel treatments. In the Long Island trial, only the full conventional treatment and treatments that included LifeGard or Regalia had significantly higher yields than the non-treated control. Again, we’ll show just the data from Long Island to keep this story briefer.

Bar graph showing the average weight of marketable fruit harvested from each treatment in the Long Island trial. The heights of the bars are fairly similar, but the bars representing the conventional, conventional/LifeGard, and conventional/Regalia treatments are the tallest. The value per acre of the marketable fruit harvested from the conventional, conventional + skip, organic, conventional/LifeGard, conventional/Regalia, and Conventional/Serifel treatments is $37,837, $46,335, $42,550, $38,561, $48,022, $45,661, and $43,862, respectively.
Yields from all treatments in the Long Island trial were pretty high. The black lines on each bar show one standard error above and below the mean value for that treatment. Bars with the same letter are not statistically different from each other. The yield per plot of 12 plants was extrapolated to the yield per acre (assuming 6 ft between rows and 2 ft between plants within rows, resulting in 3,620 plants/A) and used to estimate the average grocery store value (per acre) of each treatment, shown above each bar. The value of the organic treatment (*) was not adjusted to account for presumably higher prices for certified organic produce.

Our data did not suggest that NDVI readings taken with the GreenSeeker were a good replacement for visual scouting, or that this was a good tool for detecting differences in plant health among treatments. When NDVI readings differed among treatments, powdery mildew symptoms were readily evident. The most substantial differences in NDVI values among treatments were in the Long Island trial, where both the non-treated control and the organic treatment had much lower average NDVI values over the season.

On the whole, Brix were unaffected by powdery mildew management strategy. The only statistically significant differences in Brix values among treatments were in the Eastern NY trial where the conventional/LifeGard treatment had significantly lower Brix than the conventional/Serifel treatment.

Cucurbit powdery mildew – what it means

When the full conventional fungicide program didn’t result in statistically better disease control than skipping every other spray at 2 of the 3 sites, it’s not possible to say whether or not the biofungicides were good replacements for conventional fungicides against powdery mildew. However, they did not prove to be in the Long Island trial. Our results did not suggest that measurement of NDVI values with a GreenSeeker should replace visual scouting for cucurbit powdery mildew.

Depending on the trial location (and accompanying variations in spray schedules and rates), replacing some conventional fungicides with biofungicides ranged from slightly less expensive than the full conventional program to more than twice the cost. Although in most cases there were no statistically significant differences in the value of the crop between the conventional/biofungicide programs and the full conventional program, the numerical value of the marketable crop ranged from being slightly higher (LifeGard alternated with conventional fungicides on Long Island) to lower (all other biofungicide treatments). Again, the lack of statistically significant differences between the full conventional spray program and the conventional spray program with skips in 2 of the 3 trials makes any conclusions about the economics of replacing some conventional fungicides with biofungicides, tentative, at best. There’s a lot of room to fine-tune incorporation of biofungicides into spray programs to maximize cost effectiveness.

Recall from last year’s results that we did not detect any benefit from adding biofungicides to a full cucurbit powdery mildew fungicide program. So if you’d like to use biofungicides for cucurbit powdery mildew, replacing a conventional fungicide application or two is probably a better way to go. If you’ve tried this, we’d love to hear how it worked for you!


Remember that the information in this post is not a substitute for a pesticide label. The label is the law, and you must read and follow the label of any pesticide you are using. It is your responsibility to use pesticides legally.


This post was written by Amara Dunn (NYSIPM) and Meg McGrath (Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University). Thank you to the New York Farm Viability Institute for funding.

A summer of biocontrol…in pictures

Several types of wildflowers (yellow, white, deep magenta, purple, pink) growing in a field.
Summer isn’t over yet for farmers and extension staff doing field experiments!

Labor Day weekend may be viewed by some as the end of summer, but farmers know that the summer growing (and harvesting!) season is far from over. Similarly, the field projects I’m involved with this summer (read more here and here) are still running. Over the fall and winter I’ll be analyzing data and sharing results (on this blog, and at winter meetings). In the meantime, here’s a pictorial summary of my summer projects (so far).

Plant whose leaves have 3 lobes (like elongated clover leaves) with toothed edges. Flower is an open cluster of tiny yellow flowers, similar to Queen Anne’s Lace.
Golden alexanders (Zizia aurea) was our earliest-blooming wildflower in our beneficial insect habitat plots around the Christmas trees. It was blooming on May 16 in Geneva, NY.
A bee already covered in fine yellow dust looks for nectar and (more) pollen in a dandelion bloom.
Some of us may not like them in our lawns, but starting in the first week of May (Geneva, NY) dandelions were providing food for beneficial insects like this bee.
You can see the rear-end of a lady beetle (red body, with black spots) as it searches for pollen and nectar among small, bright yellow flowers.
This shy lady beetle was finding food in the flowers of this weedy mustard plant in mid-May (Geneva, NY).
Man walking through a field of grass on a cloudy day, swinging a long white net on a long wooden handle just above the ground.
After expert training from Cornell entomologist Jason Dombroskie (pictured here during our training session in late April), we’ve been using a sweep net to catch insects that fly or perch on the wildflowers in the habitat plots we started last summer. We sampled this way once every month.
One blue and one yellow bowl filled with soapy water and rocks set on ground covered with wood chip mulch. Several different types of plants are growing nearby.
Starting the week of May 20th, we set out pan traps (blue and yellow plastic bowls filled with soapy water and weighed down with rocks) approximately every other week. These traps catch insects flying through our plots, especially those that are attracted to the colors blue and yellow. This includes many bee species.
Various types of weeds and other plants grow around a spot where a deli cup is buried up to the rim in the ground. The deli cup is also full of liquid. Suspended over the deli cup on “legs” of thick wire is a clear-plastic dinner plate.
Also during the week of May 20th, we started setting pitfall traps once each month. Insects walking along the ground fall into these deli cups filled with a drowning solution. We put rain covers over them (made out of clear plastic dinner plates and wire from old flags) to prevent a heavy rain from flooding the deli cups during the 3 days the traps are set.
A red lady beetle with 7 spots on its back crawls across a green stem of vetch that is being held by a hand that is dirty (probably from weeding).
We caught and saw so many insects (and non-insects, like spiders) this summer! This seven-spotted lady beetle was a frequent visitor to our plots.
A fly with big eyes and black and yellow stripes on its body perches on a yellow coreopsis flower, probably looking for pollen and nectar.
Many flies are important pollinators, like this one that resembles a bee at first glance. Many flies are also important natural enemies of pests (either as adults, or as worm-like larvae).
Small insect with eyes that bug out to the sides of its head, triangular and diamond-shaped black and white patches on its otherwise brown wings and body.
This minute pirate bug may be tiny (it’s magnified 20X), but it is an important natural enemy of pests.
Looking down into a clear plastic cup that contains eleven different bees and wasps, ranging from a large bumble bee to tiny wasps that you can barely see.
We caught so many different kinds of bees and wasps!
Two black, yellow, and white striped caterpillars feed on the broad green leaves of a milkweed plant.
Plenty of caterpillars (like these monarchs) enjoyed munching on the foliage of our wildflowers.
A black and orange striped butterfly visits a daisy-shaped flower with pink petals and an orange cone-shaped center.
And in late July, we started seeing adult butterflies visiting the flowers like the viceroy butterfly on these purple coneflowers (Echinacea purpurea).
Eight beetles with eyes that bug out from the sides. They look brown when viewed from the top, but when viewed from underneath they look iridescent blue-green.
I learned that these are tiger beetles. They are fast-moving ground predators, and we caught a lot in our pitfall traps.
Plant stems covered in small purple flowers in the background, and plant stems covered in large white bell-shaped flowers in the foreground.
Different wildflowers bloomed at different times, like these purple catmint (Nepeta faassinii) and tall white beard tongue (Penstemon digitalis) in June.
On left, an open cluster of tiny white, slightly fuzzy flowers. On the right, flowers that look like pale purple puffs at the top of the stems.
White boneset (Eupatorium perfoliatum) and pale purple wild bergamot (Monarda fistulosa) were blooming in late July.
In the foreground, daisy-shaped flowers with yellow petals and black centers. In the background, a tall plant with open clusters of deep magenta flowers that look slightly fuzzy. You can see a field and blue sky in the background.
And now the rudbeckia (two different species, but Rudbeckia fulgida var. fulgida is pictured here) and deep magenta NY ironweed (Vernonia noveboracensis) are in full bloom. But the asters and goldenrod haven’t started, yet.
Short Christmas trees, planted in rows with grass in between. A pond, several fields, a line of trees, and a cloudy sky are in the background.
And the Christmas trees planted around these beneficial insect habitat plots keep growing!
Three people (two women and a man) wearing work clothes, holding gardening tools, and standing in the middle of a field with some yellow flowers in the foreground and a cloudy sky in the background.
I couldn’t have done this without the help of my great co-workers, Betsy Lamb, Deb Marvin, and Brian Eshenaur! They were still smiling after a morning of weeding the wildflowers by hand!
Smiling young woman holding a sheet with pictures of butterflies, and standing next to blooming purple coneflowers. You can see a field in the background.
A student from a local college helped me a lot with insect collection!
Several rows of cucurbit plants just starting to flower. In the background, you can see a road, a field, and a barn.
Meanwhile, field trials with biofungicides are ongoing, targeting cucurbit powdery mildew on winter squash and white mold on snap beans and tomatoes (not pictured). This project is funded by the New York Farm Viability Institute.
: Two women, both in red shirts, standing in the middle of a field. One holds two weeds. The other holds a clipboard and a water bottle.
Elizabeth Buck (left) and Crystal Stewart (right) are running the trials in western NY and eastern NY, respectively. This project is funded by the New York Farm Viability Institute.
Woman on left is wearing a red shirt, talking, and gesturing with her hands. Woman on right in wearing a green shirt and watching and listening to the woman on the left.
Meg McGrath (left) is running the trial on Long Island, but we all got together at a twilight meeting in eastern NY last week. This project is funded by the New York Farm Viability Institute.
Woman in a blue shirt and baseball cap looking into the camera. In the background you can see white bell-shaped flowers and blue sky with a few puffy clouds.
So far, it’s been a good summer! I’ve really enjoyed working with great colleagues and learning new things!

The field projects I’ve just described will be wrapping up in September. Check back to learn about the results. Better yet, click the green “Subscribe” button towards the top and right of this page, and you’ll receive an email when a new post is available!


In the meantime, there will still be at least a few more weeks of pictures posted regularly on Twitter (@AmaraDunn) and Instagram (@biocontrol.nysipm).

Biofungicide project was funded by the New York Farm Viability Institute.

Creating habitat for beneficial arthropods was supported by:

  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • New York State Department of Agriculture and Markets
  • Towards Sustainability Foundation

And the results are in…from Year 1. What do biofungicides add to vegetable disease management Part 3

Cucurbit powdery mildew on a winter squash leaf.
One of our goals for this project was to understand what biofungicides might add to a cucurbit powdery mildew management program.


In 2018 we conducted field trials using biofungicides in cucurbit powdery mildew and snap bean white mold management programs. Hopefully you’ve read part 1 and part 2 of this biofungicide story. If not, now might be a good time.

Part 1 will give you more details about the trial design. We wanted to know whether adding biofungicides would improve disease control, plant health, or yield. For cucurbit powdery mildew, we were adding one of three different biofungicides to a conventional chemical spray program. We also included a treatment that was all OMRI-listed (organic) products. For white mold on snap beans, we were curious about using an in-season biofungicide (Double Nickel, Bacillus amyloliquefaciens strain D747) in combination with a pre-season biofungicide (Contans, Paraconiothyrium minitans strain CON/M/91-08). In 2018, our white mold treatments were just Double Nickel and Cueva (an OMRI-listed copper). In 2019, we’ll add the pre-season Contans treatment.

Part 2 explains more about the modes of action of the five biofungicides we are looking at. The post also includes practical information about how to use these biofungicides to maximize their efficacy – compatibility with other products, best way to store them, when to apply them, etc.

Now it’s time to talk about what we learned from this first year (of a two-year project).

The bottom line

We don’t want to keep you in suspense, so here’s a quick summary of what we learned. Fortunately for the eastern NY grower who graciously allowed us to run the trial on his farm (but unfortunately for us), the snap bean field had very little white mold in 2018. Even the plots that were not sprayed with Double Nickel or Cueva had almost no disease. So we weren’t surprised when there were no differences in disease, plant health, or yield among the white mold treatments. Results from Sarah Pethybridge’s efficacy trials with OMRI-approved products for white mold are available online.

A healthy field of snap bean plants.
Our snap bean trial in eastern NY in 2018 had very little white mold. (Photo credit: Crystal Stewart)

Cucurbit powdery mildew was a bit more severe than white mold (low pressure in eastern NY, moderate pressure in western NY and on Long Island), but we were not able to detect statistically significant benefits from adding biofungicides to a conventional spray program. Disease severity, plant health (as measured by NDVI), yield, and fruit quality (Brix) were the same whether you used a conventional spray program, or a conventional spray program plus a biofungicide. We didn’t measure significant differences in yield among any of the treatments at any of the three sites.

The conventional powdery mildew spray program alone, or when combined with LifeGard, Regalia, or Serifel significantly reduced disease compared to no treatment for cucurbit powdery mildew. Adding any of the biofungicides to the conventional spray program did not improve control compared to using only the conventional sprays. The organic (OMRI-listed products) treatment was not significantly different from either no sprays at all, or the conventional spray program.
Severity of powdery mildew on the upper sides of the leaves in the Western NY trial. Here, disease severity is quantified using the area under the disease progress curve (AUDPC). This number summarizes disease severity from multiple dates, and the larger the number, the worse the disease. If two treatments share the same letter, the average disease in those treatments is not significantly different. The error bars give you an idea of how much variability there was in each treatment.

NDVI results

NDVI (normalized difference vegetation index) values did not detect cucurbit powdery mildew early. (Since there was so little white mold, we couldn’t test NDVI for early detection.) There was some inconsistent correlation between NDVI readings and disease, yield, and Brix in winter squash. In WNY we used both a handheld GreenSeeker and a gator-mounted Crop Circle to measure NDVI. Both devices had similar results. Based on this first year of testing with these two devices, NDVI measurements were not useful as an early indicator of cucurbit powdery mildew.

In addition,  NDVI measurements did not  detect subtle differences in plant health among treatments. At only one of our three sites (Long Island) were there any significant differences in NDVI among treatments. This was only on the last two rating dates in the season, when powdery mildew was visibly more severe in the non-treated control than the conventional fungicide treatments.

On the last two rating dates of the season (August 31 and September 17), NDVI values were significantly higher in the conventional powdery mildew spray program treatment and all three of the conventional + biofungicide treatments, compared to the plots that were not treated for powdery mildew. Adding the biofungicides did not significantly improve NDVI, compared to using only conventional products.
Normalized difference vegetation index (NDVI) measured on winter squash in the Long Island trial on three dates at the end of the season. NDVI values closer to 1 indicate more healthy, green foliage. If two treatments have the same a letter on the same date, the average NDVI readings on that date were not different between the two treatments. Data from August 31 are labeled with uppercase, while data from September 17 are labeled with lowercase letters. There were no differences among any treatments on August 24. The error bars give you an idea of how much variability there was in each treatment. We couldn’t do statistics on the organic treatment because too many plants were killed by Phytophthora blight in the plots that received this treatment.

Some caveats

The non-treated control (received no powdery mildew fungicide) was often not significantly different from the conventional fungicide control (our best management program). We know that controlling powdery mildew on cucurbits is important, so if we don’t detect a significant difference between the non-treated control and the treatment that should have provided the best control, it is then hard to draw further conclusions from the data.

We didn’t measure statistically significant differences in marketable yield among any of the treatments at any of the sites. Data for eastern NY are shown in this graph.
We didn’t detect statistically significant differences in marketable yield among any of the treatments in any of the trials. Here are the data from eastern NY. Notice that all six bars are labeled with the letter “a”. As with previous graphs, the error bars give you an idea of how much variability there was across the different plots in each treatment.

When disease pressure is low (as it was in Eastern NY), we would expect not to see many differences between treatments. Similarly, if the conventional fungicide program provided excellent disease control (as it did on Long Island), it would be hard to detect an improvement in control from adding a biofungicide. Another challenge we dealt with in the Long Island trial was Phytophthora blight. By the end of the season, we had lost two of the four plots receiving the organic treatment to this disease. This limited our ability to statistically analyze the biofungicide data. On Long Island, the organic spray program initially performed well – as seen on August 31  – comparable to the conventional treatments. But by the final assessment on September 17, the organic program was no longer as effective. This was not surprising since it was 10 days after the last application. Suffoil-X was the final organic product applied, and it has little residual activity.

In the Long Island trial, there was very little disease on August 16 or 24. On August 31, disease had increased in the non-treated control, but the organic treatment was still suppressing disease well. Control in the organic treatment had declined by September 17, but this was 10 days after the last spray was applied.
Average severity of powdery mildew on the upper surface of leaves on the last four assessment dates in the 2018 Long Island trial. All of the treatments (except the non-treated control) suppressed powdery mildew well through August 31. Control in the organic treatment had declined by September 17, but this was 10 days after the last spray was applied.

In WNY, we had an epic aphid outbreak. An entomologist colleague identified them as probably melon aphids, and also that 2018 was generally a bad year for aphids. It’s also possible that while trying to control cucumber beetles earlier in the season, we killed some aphid natural enemies, contributing to an aphid outbreak later in the season. I know cucumber beetles are tough, but if you can manage them without decimating your local natural enemies, you’ll be doing yourself a favor!

The underside of a squash leaf covered with aphids; an acorn squash fruit covered with shiny honeydew from aphids; a close-up picture of an adult aphid and some young aphids.
The severe aphid outbreak in the western NY trial may have made it more difficult to detect differences among treatments. In late August, some of the leaves were covered with aphids (A), and many fruit were covered with honeydew (B). Getting a close look at the aphids is essential for correct identification (C).

We deliberately used a very intensive spray program, starting our biofungicide applications early, and continuing to apply them as we added conventional fungicides later in the season. This was an expensive powdery mildew management program. But, in this first year of the project, we didn’t want to be left wondering if a lack of differences was due to underapplication of the biofungicides.

If you want to see more of the data we collected from the cucurbit powdery mildew trial, you can find it in the Proceedings from the 2019 Empire State Producers Expo.

What does this all mean?

First, this is only the first year of our project and one year of data. It’s a start, but we’ll hopefully learn more in a second year. Since we didn’t measure a significant improvement in yield, we didn’t see evidence that adding biofungicides to a full chemical spray program for powdery mildew justified the cost. The relative costs of the treatments we used are listed in the table below, and the approximate per acre costs of each product are in the Proceedings from the 2019 Empire State Producers Expo. Replacing a chemical spray or two with a biofungicide could be a more economical option. That’s something we’re planning to look at in 2019.

Date Non-treated Conventional Conventional + LifeGard Conventional + Regalia Conventional + Serifel Organic
7/19/18 LifeGard Regalia Serifel LifeGard
7/27/18 LifeGard Regalia Serifel LifeGard
8/3/18 Vivando LifeGard + Vivando Regalia + Vivando Serifel + Vivando MilStop
8/10/18 Quintec LifeGard + Quintec Regalia + Quintec Serifel + Quintec Serifel
8/17/18 Luna Experience LifeGard + Luna Regalia + Luna Serifel + Luna SuffoilX
8/24/18 Vivando LifeGard + Vivando Regalia + Vivando Serifel + Vivando MilStop
8/31/18 Quintec LifeGard + Quintec Regalia + Quintec Serifel + Quintec Serifel
9/7/18 Luna Experience LifeGard + Luna Regalia + Luna Serifel + Luna SuffoilX
Total cost (per A) $228.28 $343.32 $536.28 $696.28 $257.76
Cost increase vs. conventional (per A) $  – $115.04 $308.00 $468.00 $29.48

Based on results from this year, we can’t yet recommend that you run out and buy a handheld NDVI sensor for early detection of cucurbit powdery mildew. We’ll collect NDVI data again in 2019, and let you know what we learn. Although our results from the field trials were somewhat inconclusive in this first year, we’re hopeful that the information we’ve compiled about how these biofungicides work and how to use them will be useful. If you’re thinking of using Contans, Double Nickel, LifeGard, Regalia, or Serifel in 2019, first take a look at these fact sheets related to our white mold and powdery mildew trials. And if you have used biofungicides, we’d be interested in hearing about it; click here to send an e-mail.

This post was written by Amara Dunn (NYS IPM), Elizabeth Buck (Cornell Vegetable Program), Meg McGrath and Sarah Pethybridge (both Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University), Crystal Stewart (Eastern NY Commercial Horticulture Program), and Darcy Telenko (Department of Botany & Plant Pathology, Purdue University). Thank you to the New York Farm Viability Institute for funding.

How do they work? How do I use them? What do biofungicides add to vegetable disease management Part 2

rows of healthy winter squash plants with flags
Winter squash in our cucurbit powdery mildew biopesticide trial conducted in western NY, eastern NY, and on Long Island in 2018. We are also testing biopesticides for white mold. Photo credit: Meg McGrath.

Remember from Part 1 of this post that we (I and many great colleagues) are studying what biopesticides can add to effective disease management of cucurbit powdery mildew and white mold. After “what is a biopesticide?” the next most common questions about this project are about the specific biopesticides we’re testing:

  • How do they work?
  • Can I tank mix them with other pesticides or with fertilizers?
  • Do I need to use these products differently than I would use a chemical pesticide?

Today’s post will try to answer those questions.


Modes of action – How do they work?

As you may recall from February’s post, biopesticides work in different ways, and the five biofungicides we’re studying cover the range of these modes of action.

table summarizing modes of action for Contans, Double Nickel, LifeGard, Regalia, and Serifel
Biopesticides protect plants from diseases in different ways. I like to divide them up into the five modes of action (MOAs) in this table. Like many biopesticides, some of the products we are testing have more than one MOA. Click on the table to enlarge it.

Eats pathogen

The fungus active ingredient of Contans (Paraconiothyrium minitans strain CON/M/91-08; formerly called Coniothyrium minitans) “eats” (parasitizes and degrades) the tough sclerotia of the fungus, Sclerotinia sclerotiorum that causes white mold. Sclerotia survive in the soil from year to year. However, for this strategy to be effective, the fungal spores within Contans have to first make contact with the sclerotia. The time between colonization and degradation of sclerotia is about 90 days.

Makes antimicrobial compounds

The active ingredients in Serifel and Double Nickel are bacteria – same species but different strains. They both produce compounds that are harmful to plant pathogens (antimicrobial). According to the manufacturer, most of the foliar efficacy of Double Nickel is due to the antimicrobial compounds already present in the container. But the manufacturer notes that some of the efficacy also comes from the live bacteria that are responsible for this product’s other modes of action, especially the induction of plant resistance (more on this later). The strain of bacteria in Serifel has been formulated so that it contains only living bacteria (no antimicrobial compounds). The manufacturer’s goal is for the bacteria to produce antimicrobial products unique to the specific environmental conditions after application. Double Nickel and Serifel are examples of different strategies for using antimicrobial-producing bacteria to fight plant diseases. Our goal is to explain how the products work; not tell you which strategy is better.

smiling blue bacteria on a leaf; angry yellow bacteria have no place to land
Some biopesticides contain microbes that grow on the plant. These beneficial microbes use up space and nutrients so there is no room for the pathogen, excluding it.

Excludes pathogen

The bacteria in Double Nickel and Serifel also can protect plants from disease by growing over (colonizing) the plant so that there is no space or nutrients available for pathogens. How important this mode of action is to the efficacy of Double Nickel depends on the setting and time of year (according to the manufacturer). Cucurbit leaves exposed to sun, heat, and dry air are not great places for bacteria to grow, and pathogen exclusion is not likely to be very important in protecting cucurbit leaves from powdery mildew. The antimicrobial MOA is more important here. Apple blossoms being protected from fire blight in the early spring could be a different story. The bacteria in Serifel tolerate a wide range of temperatures in the field, but the manufacturer recommends applying this product with a silicon surfactant to help the bacteria spread across the plant surface better.

Induces plant resistance

Plants have mechanisms to defend themselves. Some pathogens succeed in causing disease when they avoid triggering these defenses, or when they infect the plant before it has a chance to activate these defenses. Some biofungicides work by triggering plants to “turn on” their defense mechanisms. This is called “inducing plant resistance.” It is the sole mode of action of the bacteria in LifeGard, and one of the modes of action for the active ingredients in Double Nickel, Regalia, and Serifel.

Promotes plant growth and/or stress tolerance

The last biofungicide being studied in this trial has a plant extract as an active ingredient, instead of a microorganism. Regalia works by both inducing plant resistance, and also promoting plant growth and stress tolerance. Some of the other products in this trial also share these MOAs. According to the label, some crops treated with Regalia produce more chlorophyll or contain more soluble protein. This final MOA (promotion of plant growth and stress tolerance) is also sometimes shared with “biostimulants”. But remember that “biostimulant” is not currently a term regulated by the EPA. This may be changing in the future, so stay tuned. Biostimulants enhance plant health and quality. They are not registered as pesticides, and must not be applied for the purpose of controlling disease. Make sure you read and follow the label of any product you apply.

Best practices – How do I use them?

We’ll get to some product-specific details in a minute, but first some notes about best uses for all five of these products.

  • They need to be used preventatively. For biofungicides to eat pathogens, exclude them from plants, induce plant resistance, or improve plant growth and stress tolerance, they need to beat the pathogen to the plant. It takes time for the plant to fully activate its defenses, even if “flipping the switch” to turn those defenses on happens quickly. The same applies to promoting plant growth and stress tolerance. And if you want the beneficial microorganism to already be growing where the pathogen might land, of course you need to apply the product before the pathogen is present. Microbes that produce antimicrobial compounds also work best if they are applied when disease levels are low.
  • Use IPM. These biofungicides (and most, if not all, biofungicides) were designed to be used with other pest management strategies like good cultural practices, host resistance, and other pesticides. For example, they can be included in a conventional spray program to manage pesticide resistance.
  • Mix what you need, when you need it. Don’t mix biofungicides and then leave them in the spray tank overnight. Some products may need to be used even more promptly. Check the label.
  • Store carefully. Generally, away from direct sunlight and high heat. Follow the storage instructions on the label.
  • They have short intervals, but still require PPE. One of the benefits of biofungicides is short pre-harvest intervals (PHIs) and re-entry intervals (REIs). All five of the products we’re studying have a 0 day PHI and a 4 hour REI. But they all still require personal protective equipment (PPE) when handling and applying them. Read and follow those labels!
  • Tank mixing best practices still apply. The table at the end of this post has details about biological compatibility of these products in tank mixes, as reported by the manufacturers. But just like other pesticides, you need to follow the label instructions for mixing. If you have questions about a specific tank mix partner, confirm compatibility with a company rep. Do a “jar test” if you are mixing two products for the first time and want to know if they are physically compatible.

Biopesticides (especially those that contain living microorganisms) often need to be handled and used differently than chemical pesticides. They may be more sensitive to temperature, moisture, or UV light, which may impact the best time or place to apply them. And of course you don’t want to tank mix a living microorganism with something that will kill the good microbe. (Cleaning your tank well between sprays is always recommended, whether or not you are using a biopesticide.) The following table summarizes details for the five products we’re studying provided by the manufacturers – from product labels, company websites, and conversations with company reps. We have not personally tested this information.

summary of FRAC codes, where and when to apply, temperature tolerance in the field, rainfastness, UV tolerance, tank mix compatibility, storage and shelf life for 5 biopesticides
Exactly how should you use these biofungicides to maximize their efficacy? This table summarizes best practices (as reported by the manufacturers) for each of the five fungicides tested in this trial. Click on the table to enlarge it.

We’ve created handouts that summarize the designs of both the cucurbit powdery mildew and the white mold trials, the modes of action of the five biofungicides we’re testing, and the best practices information presented above.

cucurbit powdery mildew biofungicide trial summary

white mold biofungicide trial summary

Stay tuned for Part 3 of this post – results from our first year of field trials!


This post was written by Amara Dunn (NYS IPM) and Sarah Pethybridge (Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University). Thank you to the New York Farm Viability Institute for funding.

What do biofungicides add to vegetable disease management? Part 1 – Introducing the project

butternut squash plants grown on a black plastic-covered raised bed
This summer we compared three biofungicides added to a conventional cucurbit powdery mildew management program in field trials conducted in western and eastern NY and on Long Island. Photo credit: Caitlin Vore, Cornell Vegetable Program

What we’re doing

This summer I have been working with great colleagues (Elizabeth Buck, Dr. Julie Kikkert, Dr. Margaret McGrath, Jud Reid, and Crystal Stewart) on a project funded by the New York Farm Viability Institute looking at the use of biofungicides (Remember what biofungicides are?) in vegetable disease management. Dr. Darcy Telenko (formerly of the Cornell Vegetable Program) helped plan the project before starting her new position at Purdue University, and Dr. Sarah Pethybridge has provided valuable advice based on her extensive work with white mold (including control with biofungicides). BASF, Bayer, BioWorks, Certis, Dow, and Marrone BioInnovations provided product for the field trials.

The project has two goals:

  1. Quantify what biofungicides add to management of cucurbit powdery mildew and white mold in terms of…
    – disease control
    – yield
    – plant health
    – economic value (comparing yield gains to fungicide costs)
  2. Evaluate the utility of NDVI (normalized difference vegetation index) as a measure of plant health and disease detection in fresh vegetables

Why this project?

For both diseases (cucurbit powdery mildew and white mold), we’re considering biofungicides used with other pest management – other biofungicides, conventional chemical fungicides, and/or cultural practices. Biofungicides are not expected to be silver bullets, and they work best when used in an IPM strategy. But when deciding whether or how to use them in your operation, it’s good to know what value you’re getting for the extra costs of purchasing and applying the products. This summer we ran trials in three major vegetable-producing regions of the state: western New York, eastern NY, and on Long Island.

Biofungicides for cucurbit powdery mildew

cucurbit powdery mildew on the upper side of a squash leaf
Cucurbit powdery mildew looks like a dusting of powdered sugar on the cucurbit leaf. These powdery spots start on the underside of the leaf, and then develop on the upper surface of the leaf, so excellent spray coverage is important. Photo credit: Amara Dunn, NYS IPM

For combatting cucurbit powdery mildew, we’re comparing three biofungicides: LifeGard (Bacillus mycoides isolate J), Regalia (extract from the giant knotweed plant Reynoutria sachalinensis), and Serifel (Bacillus amyloliquefaciens MBI 600). All three were applied weekly starting when the plants were small. Then, when the first signs of powdery mildew showed up, we started a rotation of conventional fungicides (Vivando, Quintec, and Luna Experience). These three treatments plus a rotation of all-organic fungicides (LifeGard, MilStop, Serifel, and a mineral oil) are being compared to two control treatments: the conventional fungicides alone, and plants that received no treatment for powdery mildew. We ran the trials on a variety of bushing acorn squash (‘Honey Bear’) that has intermediate resistance to powdery mildew.

Biofungicides for white mold

bean pod half rotted by white mold fungus
Most vegetable crops are susceptible to white mold, with legumes being among the most vulnerable. The name comes from the dense white “tufts” that the fungus forms. These develop into dark, hard sclerotia that can survive for years in the soil. Photo credit: Amara Dunn, NYS IPM

In the white mold trial, we’re looking at Double Nickel (Bacillus amyloliquefaciens strain D747) alone or in combination with Contans (Paraconiothyrium minitans strain CON/M/91-08; formerly Coniothyrium minitans). Next year we’ll look at these biofungicides in combination with reduced tillage at one site. Reduced tillage is another IPM strategy for white mold. The active ingredient in Contans is a fungus that eats the resting structures (sclerotia) of the fungus that causes the disease white mold. Because of this, it needs time to work, and is applied either in fall or spring. The goal is to reduce the number of sclerotia present in the next crop. Next year we’ll collect data on whether application of Contans reduced disease. In the meantime, during the 2018 growing season treatments we tested were Double Nickel, Cueva (an OMRI-approved copper) and no treatment for white mold on snap bean. Previous research by the EVADE Lab at Cornell AgriTech at The New York State Agricultural Experiment Station, Geneva, New York, has shown that Double Nickel is a promising biofungicide for white mold.

What is NDVI, anyway?

In a nutshell, the “normalized difference vegetation index” (NDVI) is a way to quantify how much healthy, green foliage is present. The device we used emits different types (wavelengths) of light (red and near infrared), and measures how much of each type of light is reflected back from the leaves of the plant. Leaves that are dark green and healthy reflect more infrared light and absorb a lot of red light. Less healthy leaves reflect less infrared light. A NDVI value closer to 1 indicates healthier plants. A NDVI value closer to 0 indicates less healthy plants (or more bare ground).

GreenSeeker device over a dark green (healthy) cucurbit plant and a light green (less healthy) cucurbit plant. Arrows show that red and infrared light are reflected differently from these two plants. NDVI values closer to 1 indicate a lot of healthy green leaves. NDVI values closer to 0 indicate less healthy (or fewer) leaves.
NDVI (normalized difference vegetation index) quantifies the amount of dark green foliage based on how much light of different wavelengths is reflected. It is used in some crops to decide when to apply fertilizer, or to help detect below-ground pests. Photo credit: Amara Dunn, NYS IPM

NDVI and similar indices are already used in other crops and in other places to help growers make decisions about when to fertilize, or to help detect parts of a field where a pest may be present. So far in NY, NDVI is not being widely used by fresh market vegetable growers for disease detection. Collecting NDVI data from this project will do two things:

  1. Help us quantify the health of plants. Even though NDVI is not a measure of disease, we would expect to see more healthy foliage if biofungicides are contributing to disease control.
  2. Provide some preliminary data to help us determine whether NDVI measurements could be useful to NY fresh vegetable growers.
people walking through a winter squash field
Growers and industry reps had a chance to visit the 2018 cucurbit powdery mildew field trials shortly before they were harvested. Photo credit: Amara Dunn, NYS IPM

Field meetings were held at each powdery mildew trial location so that local growers could see the trials and hear about the project. We’re currently wrapping up data analysis from the 2018 field season. You’ll be able to learn about results from the first year of this two-year project at winter meetings around NY, in extension newsletters, and here on this blog. Also, stay tuned for Part 2 of this post with details about how these biofungicides work (modes of action), and how to use them most effectively.

This post was written by Amara Dunn (NYS IPM), Sarah Pethybridge (Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University), and Darcy Telenko (Department of Botany & Plant Pathology, Purdue University).

Mix and Match: Compatibility of biocontrol with other pest management strategies

Delphastus eating whitefly
This small black Delphastus is helping to control whiteflies in a greenhouse. It’s important that other pest management strategies in this greenhouse are used in such a way that they do not harm the Delphastus.

If you were going to tank mix chemical pesticides, you would of course read the label to check for compatibility before mixing products. The same concept applies when using living organisms for pest control. Whether you are using parasitoid wasps, predatory mites, microorganisms, or nematodes, you need to know whether your biocontrols are compatible with each other and any other pest management products you plan to use. For example, a biocontrol fungus might be killed if you tank mix it with (or apply it just before) a chemical fungicide. Insecticides (whether or not they are biological) could be harmful to natural enemy insects and mites. Even some beneficial insects are not compatible with each other because they may eat each other instead of (or in addition to) the pest.

It’s a good idea to keep an updated list of the products and organisms you plan to use for pest management, and their compatibility with each other. For biopesticides (remember the difference between “biopesticide” and “biocontrol”?), start by reading the label (see label excerpt below). You must follow all instructions you find there. Many manufacturers also provide lists, tables, databases, or apps to help you find compatibility information (some links at the end of this post). This is especially useful for insect, mite, and nematode natural enemies, which are not pesticides and do not have pesticide labels. When possible, obtain compatibility information from the manufacturer or supplier you will be using. Different strains of the same microorganism or nematode may have different sensitivities to chemicals.

Compatibility information from Preferal label
This excerpt from the label of the bioinsecticide Preferal provides some information on its compatibility with other products. All instructions on a pesticide label must be followed.

Remember that NY pesticide labels (including biopesticide labels) can be found through the NYSPAD system.

Below are some links to resources from several manufacturers and suppliers of biocontrol products. No endorsement of specific companies or products mentioned in this post is intended. If you know of a link to additional information that is missing, please let me know so that I can include it!

Beneficial nematodes from BASF – This chart describes compatibility of beneficial nematodes sold by BASF with natural enemies and pesticides. Note that only the genus name of each “biological” active ingredient is listed, and that over time, the names of some predatory mites (and whether they belong to the genus Amblyseius or Neoseiulus) have changed.

Biobest Side Effect Manual – This side effects manual is available either as an interactive website, or as an app. Choose pest management products by active ingredient or name of the commercial product (including the biocontrol microorganisms Beauveria bassiana and several types of Bacillus thuringiensis). The list of “beneficial organisms” to choose from includes bumble bees and nematodes, but not beneficial microorganisms (fungi, bacteria, and viruses). Select active ingredients/commercial products and beneficial organisms from both lists, then use the legend to interpret the compatibility information that is generated.

Compatibility of BioWorks products – Compatibility sheets are linked from each product page.

Koppert Side Effects Information – This information is available either as an interactive website, or as an app. Select beneficial organisms of interest (by either the Koppert product name or the Latin name). Select one or more “Agents” (pest management products) by either the trade name or the active ingredient. Click on Results, and use the Legend to interpret the output.