Tag Archives: field crops

Cereal Leaf Beetle Biocontrol Project Underway

This month’s post is about a project being led by Jaime Cummings, the Field Crops and Livestock IPM Coordinator at NYS IPM. The goal is to improve biological control of the cereal leaf beetle, a pest of small grains. Before we tell you about the biocontrol project, you’ll need some background information on this pest and the other management options available. You can use the following links to navigate to each section of this post:

Cereal leaf beetles and damage they cause

Scouting for cereal leaf beetle and deciding when to spray

Biocontrol of cereal leaf beetle

Our project: Improving biocontrol of cereal leaf beetle

Cereal leaf beetle damage on the flag leaf of a winter wheat plant. (Photo by J. Cummings, NYS IPM)

Cereal leaf beetles and the damage they cause

The cereal leaf beetle (CLB), Oulema melanopus, can be a significant pest of winter and spring small grains production in NY, especially in parts of western NY.  This invasive species was first detected in Michigan in 1962, and has since become established in many grain producing states in the US, despite quarantine and pesticide eradication efforts in the 1960’s and 1970’s.

Left: a black beetle with a red middle (thorax), sitting on the leaf of a small grain crop; Right: a yellowish larva sitting on the leaf of a small grains crop
Figure 1. Cereal leaf beetle adult (A) and larval (B) stages. (Photos by J. Cummings, NYS IPM)

You may be familiar with this pest either in the larval or beetle stage (Fig. 1).  CLB has one or two generations per growing season, and the adults overwinter in hedgerows, woods or field margins.  We usually start seeing the adults move into small grains fields in April or May to lay eggs which develop into the damaging larvae.  The larger the larvae get, the more damage they inflict on the crop.  After about two weeks of feeding, the larvae drop to the ground and pupate for about two weeks before the adults emerge again.

When looking for these pests, keep an eye out for the typical larval feeding damage that looks like strips of green tissue missing between leaf veins.  Severely damaged leaves may appear skeletonized, and intense feeding pressure in a field may result in a ‘frosted’ appearance of flag leaves (Fig. 2).

green heads of winter wheat surrounded by leaves that have tan stripes on them
Figure 2. Severe cereal leaf beetle larval feeding on winter wheat. (Photo by J. Cummings, NYS IPM)

Considering that the top two leaves of the wheat/barley/oat crop are what contributes most to grain yield, severe infestations of CLB can significantly impact yield and grain quality.  Even in small grain or mixed stand forage crops, this pest can have negative effects on the yield and quality of the forage because they can significantly reduce leaf area and photosynthetic capability of the crop.

Scouting for cereal leaf beetle and deciding when to spray

It’s important to scout for this pest, usually starting in early to mid-June when larvae are first appearing.  The economic threshold for insecticide application for CLB is when you count an average of three or more larvae per plant before the boot stage or one or more larvae per flag leaf after the boot stage.  Occurrence of this pest can be inconsistent within a field, therefore plan to scout weekly and walk a random pattern throughout each field stopping at 10 random locations to count larvae on 10 plants at each location.  Because insecticides labeled for CLB target the larval stages, in order for your pesticide applications to be most effective, make sure that at least 25% of CLB eggs have hatched and that larvae are present and actively feeding when you decided to spray.  And, if you’re seeing adults in late June or beyond, it’s probably too late to spray for the larvae.  (Always follow label recommendations and restrictions when applying pesticides)

Paying attention to CLB populations in your fields via scouting is an important part of an integrated management approach for minimizing losses to this pest.  A growing degree day (GDD) model for CLB developed in Michigan determined that adult CLB begin to emerge around 350-400 GDD (base 48) to begin egg laying.

Biocontrol of cereal leaf beetle

Unfortunately, there is no specific host plant resistance available for CLB, but there are natural predators of the larvae and eggs which can help to keep the pest population in check, and possibly below the economic threshold when well-established in an area.  Lady beetles are known to prey on CLB larvae and eggs, and there is at least one egg parasite though it is not widely distributed.

There is also a CLB larval parasitoid wasp, Tetrastichus julis, which was originally introduced from Europe as a biological control agent in Michigan in 1967 (Fig. 3).  Subsequent releases into other states, including NY in 1973, have led to a sporadic establishment of this biological control parasitoid throughout small grain production areas of the US.

Tiny black wasp perched on dark brown larva clinging to a leaf
Figure 3. Tetrastichus julis, a parasitic wasp on a cereal leaf beetle larva. (Photo courtesy of Washington State Department of Agriculture)

Our project: Improving biocontrol of cereal leaf beetle

Given that CLB damage can be widespread and undermanaged in many small grains fields in NYS, and under the advice of Dr. Elson Shields (Cornell University Field Crops Entomologist), the NYS IPM program decided to try to determine the parasitism levels of CLB larvae in various locations around the state and to try to increase populations of the parasitoid in the Aurora area of Cayuga County, where the CLB tends to be a perennial pest.  The multiyear project was initiated this year, with CLB larval collections from locations in six counties.  However, there were no CLB present to collect at two of the locations, so the data collected in 2019 includes only four locations (Table 1).

Table 1.  Cereal leaf beetle collection efforts for determining parasitism levels in 2019.

Location County Collection date Crop # CLB larvae collected
Seneca Falls Seneca 6-Jun winter wheat, rye, barley 96
Aurora/Musgrave Cayuga 12-Jun spring barley 92
Ithaca Tompkins 12-Jun winter wheat, rye, barley 45
Penn Yan Yates 13-Jun spring oats and peas 110
Oriskany Oneida 11-Jun winter wheat 0
Homer Cortland 10-Jun winter wheat 0

 

At each location, a target of approximately 100 CLB larvae of all different sizes/growth stages were collected by hand from wheat, barley or oat fields.  The larvae were temporarily reared in incubation chambers on host plant leaves until approximately half of the larvae were dissected to determine baseline parasitism levels for each location (Fig. 4).

Left: Petri dishes with white filter paper and torn up leaves of oats; Right: Brown and yellow larvae of the cereal leaf beetle (some are squished) on a moist white filter paper in a petri dish
Figure 4. Cereal leaf beetle rearing chambers (A) and dissection process (B). (Photo by J. Cummings, NYS IPM)

The eggs of the parasitoid are visible when the CLB larvae are cut open under a microscope (Fig. 5).

close-up image of squashed yellow larvae. Dark head capsules are still visible, and small oblong eggs of the parasitoid can be seen next to one squished larva. The picture has the following labels: Dissected CLB larvae, and T. julis parasitoid wasp eggs from inside CLB larva
Figure 5. Dissected CLB larvae, and one with T. julis parasitoid eggs. (Photo by J. Cummings, NYS IPM)

After baseline parasitism levels were determined for each collection location, the other half of the CLB larvae were then released at the Cornell Musgrave research farm near Aurora, NY (Fig. 6).  This process will be repeated over the next few years.

Left: Hand hold an open petri dish filled with oat leaves, cereal leaf beetle larvae, and white filter paper; Right: Small dark larvae on an oat leaf with feeding damage
Figure 6. Cereal leaf beetle larvae with known level of parasitism being released in Cayuga County (Photos by J. Thomas-Murphy, Cornell University)

The goals of this project are to determine the established levels of the T. julis parasitoid around the state since the initial release in 1973, and to try to determine if we can increase its population at the research farm through consecutive releases.  From this first year of data collection, we know that the parasitoid population is low at the research farm in Cayuga County (6%) and at two of the collection sites (7% and 10%, in Seneca and Yates Counties, respectively), but was at approximately 30% at the Ithaca (Tompkins County) collection site (Fig. 7).

Graph shows that in Seneca County and Cayuga County only 7% and 6% (respectively) of cereal leaf beetle larvae were parasitized, while in Tompkins County the parasitism rate was 30%, and in Yates County the parasitism rate was 10%
Figure 7. Percent T. julis parasitized cereal leaf beetle larvae collected from various locations.

We also know that although there has been a need to spray insecticides to manage CLB at the research farm in Cayuga County and near the other collection sites, there has been no need to spray for CLB at the Ithaca (Tompkins County) collection sites.  It’s likely that the T. julis parasitoid population at the Ithaca site keeps the CLB population below economic threshold levels.  We hope that by intentionally distributing this parasitoid into an area with known CLB problems, we can establish a robust parasitoid population that may result in a reduction of necessary insecticide sprays for this pest.

This post was written by Jaime Cummings, Ken Wise, and Amara Dunn, all of the New York State Integrated Pest Management Program.

Creating habitat for beneficial insects: Starting Year 2

A close-up picture of a lady beetle on a plant
Lady beetle from our beneficial insect habitat plots

Last year I introduced you to the research field at Cornell AgriTech in Geneva, NY where Dr. Betsy Lamb, Brian Eshenaur and I are studying and demonstrating Christmas tree IPM. One part of this project is using perennial wildflowers to attract natural enemies of pests as part of an IPM strategy. The wildflowers (and some perennial grass) species were chosen because of the food and shelter they provide to pollinators. These same resources should make them useful to natural enemies of pests, too.

A plot containing wildflowers (some yellow and purple ones in bloom), with woodchip mulch visible between plants.
Mulching transplants planted in Spring 2018 was the most expensive establishment method, but these plots were looking pretty good a year later, even before we weeded.

By the end of our first field season, we had started using six different methods to establish wildflowers as habitat for beneficial insects (plus a weedy mowed control treatment). We also collected data on how much time and money we spent on establishment and how successful our weed management was. You can read about results from Year 1 in my post from last November.

But beneficial insect habitat establishment is not a one-year project. The establishment methods we started to implement in 2018 are ongoing, including periodic mowing of direct seeded plots, and hand-weeding of transplanted plots. We’ll keep track of how much time and money we invest in these plots in 2019, too.

The same plot is shown in two pictures. The picture on the left has some bare ground visible and many patches of grass and broadleaf weeds. The picture on the right shows the plot after it was mowed.
Plots that were direct seeded in 2018 will be mowed this year to favor the perennial beneficial insect habitat plants over annual weeds. This plot was treated with alternating herbicide and tillage during Summer 2018, and wildflower seed was planted in Fall 2018; (A, left) plot before mowing, (B, right) same plot after mowing.
Two pictures of the same plot before (left) and after (right) weeding. The un-weeded plot has lots of dandelion seed heads and no bare ground is visible. After weeding, you can see some bare ground and it’s easier to see the wildflower plants.
Plots that were transplanted in 2018 will be hand weeded this year to help the perennial wildflowers and grasses out-compete weeds. This plot was transplanted in Spring 2018 into bare (not tilled) ground and no mulch was used; (A, left) plot before weeding, (B, right) same plot after weeding.

And we want to know whether these plots are actually attracting beneficial or pest insects. So, in 2019 we are starting “Phase II” of our beneficial insect habitat work. We want to know which and how many insects (and other arthropods, like spiders) are being attracted to each type of plot. We will also count insects in no habitat plots (weedy, mowed occasionally) and mowed grass plots in the middle of the Christmas tree field for comparison.

Insect collection began in early May, and we are using four different techniques:

  • Sweep net – This is what it sounds like. We “sweep” a net through the air above the ground to capture mostly flying insects, or those who may be resting on the plants.
  • Butterfly and moth count – We walk through the field, counting how many of each butterfly or moth species we see in each plot.
  • Pan traps – These are bright yellow and blue bowls filled with soapy water. One bowl of each color is placed in each plot for 2 days, then we collect the insects that have been attracted to the colorful bowls and were trapped in the soapy water. This method will help us count flying insects, especially bees and wasps.

    A bright blue plastic bowl and a bright yellow plastic bowl are filled with soapy water and small rocks. Both are set on bare ground with some plants growing nearby.
    Bright blue and yellow bowls filled with soapy water and weighed down with rocks will attract certain flying insects. By counting insects collected in these pan traps, we can learn which insects are spending time in each plot.
  • Pitfall traps – These are clear plastic 16-oz deli cups (like you might use for take-out food) that are sunk into the ground in each plot. Insects that crawl along the ground fall in. We will use this method to count mostly ground-dwelling insects.

    A 16-ounce plastic deli cup sunk in bare soil of a plot so that the rim is level with the ground. The cup is half-full of liquid and also has caught a few green beetles. The trap is covered by a clear plastic dinner plate held about 6 inches above the ground by wire legs.
    A pitfall trap collects ground-dwelling insects. This one is protected by a rain cover. We didn’t want all the rain we’ve been getting this spring to overflow the traps and wash away the insects we caught!

I will write another blog post or two about this project during or at the end of this season. If you want to see more frequent updates, follow me on Twitter (@AmaraDunn). I’ll post weekly pictures of this project, including which beneficial insect habitat plants are blooming each week. You can also see lots of pictures from this project on Instagram (biocontrol.nysipm).

How do they work? Bioinsecticide edition

When an insect is treated with the right bioinsecticide, the insect stops damaging plants, and eventually dies.
Bioinsecticides include microorganisms and other naturally-derived compounds that control insect pests.

My post from last February described modes of action for biopesticides that target plant diseases…as well as the difference between a biopesticide and a biostimulant. January’s post described the modes of action of five biofungicides in an ongoing vegetable trial. But there are plenty of insect and mite pests out there, too. You can attract or release predatory or parasitic insects and mites or beneficial nematodes to deal with these arthropod (insect and mite) pests. But you can also use bioinsecticides that control insects and mites. The active ingredients include microorganisms (bacteria, fungi, viruses), plant extracts, or other naturally-occurring substances. Want to know how they work? Keep reading.

Bioinsecticides can have one (or more) of the following modes of action:

  1. Kill on contact
  2. Kill after ingestion
  3. Repel
  4. Inhibit feeding
  5. Inhibit growth
  6. Inhibit reproduction

The examples included in the following descriptions are reported either on the bioinsecticide labels or in promotional materials produced by the manufacturers. And these are just examples, not meant to be an exhaustive list of bioinsecticides with each mode of action.

Killing on contact

Tiny spores of insect-killing fungi land on the body of an insect, germinate, infect the insect, grow throughout its body, and eventually kill it.
Some bioinsecticides contain living spores of a fungus. These spores need to land on the insect. Then they germinate (like a seed), invade and grow throughout the body of the insect, and eventually kill it. If the humidity is high enough, the fungus may even produce more spores on the body of the dead insect.

Some bioinsecticides need to directly contact the body of the insect or mite in order to kill it. Bioinsecticides that contain living fungi work this way. The tiny fungal spores land on the insect or mite pest, germinate (like a seed), and infect the body of the pest. The fungus grows throughout the pest’s body, eventually killing it. If the relative humidity is high enough, you might even see insects that look like they are covered with powder or fuzz (but this is not necessary for the pest to die). This powdery or fuzzy stuff growing on the pest is the fungus producing more spores. Bioinsecticides that contain the fungal species Beauveria bassiana (e.g., BotaniGard, Mycotrol), Metarhizium anisopliae or brunneum (e.g., Met52), or Isaria fumosorosea (NoFly) are examples of fungal bioinsecticides with contact activity.

An insect covered in the white powdery fungus that has started growing out of its body following infection.
If the relative humidity is high enough, insects infected with a fungus may start growing new fungus on the outside of their bodies, appearing fuzzy or like they are covered in powder. Photo credit: Louis Tedders, USDA ARS, Bugwood.org

Bioinsecticides that contain spinosad (including Entrust, SpinTor, and others) work because the active ingredient affects the nervous and muscular systems of the insect or mite, paralyzing and eventually killing it. It can kill the pest either through contact, or through ingestion (more on that in a moment). The bioinsecticide Venerate contains dead Burkholderia bacteria (strain A396) and compounds produced while growing the bacteria. One mode of action of Venerate is that it contains enzymes that degrade the exoskeleton (outer shell) of insects and mites on contact.

Killing by ingestion

Some bioinsecticides need to be eaten (ingested) in order to kill. Pesticides that contain the bacteria Bacillus thuringiensis (often called Bt for short) as the active ingredient are a good example. Proteins that were made by Bt while the bioinsecticide was being manufactured are eaten by insects and destroy their digestive systems. Several different subspecies of Bt are available as bioinsecticides, and the subspecies determines which insect pest it will be effective against. There are many bioinsecticides registered in NY that contain Bt as an active ingredient. Check NYSPAD for labels, and make sure you choose the right pesticide for the pest and setting where you need control. Bt products do not work on mites, aphids, or whiteflies.

A caterpillar eats a bioinsecticides that kills by ingestion. Later, the caterpillar dies.
Some bioinsecticides (blue diamonds in this diagram) will only kill pests if they are eaten first. Pesticides that contain Bacillus thuringiensis (Bt) bacteria or insect viruses are examples of this mode of action.

Insect viruses are another example of a bioinsecticide active ingredient that kills through ingestion. For example, Gemstar contains parts of a virus that infects corn earworms and tobacco budworms. Once these caterpillars eat the Gemstar, the virus replicates inside the pest, eventually killing it.

Repel

Some bioinsecticides repel insects from the plants you want to protect. However, this mode of action may only work on certain pest species, or certain life stages of the pest. Read and follow the label. Bioinsecticides containing azadirachtin or neem oil, and Grandevo are reported to have repellent activity for some pests. Grandevo contains dead bacteria (Chromobacterium substugae strain PrAA4-1) and compounds produced by the bacteria while they were alive and growing.

One leaf has been treated with a bioinsecticides that repels pests, but one leaf has not. The caterpillars are feeding on the leaf that was not treated.
Some bioinsecticides (blue diamonds and happy microbes in this diagram) protect plants because they repel insect and mite pests. This protects treated plants from pest damage.

Inhibit feeding

If you want insect and mite pests dead as soon as possible, I understand the sentiment. But in many cases stopping the pests from eating your plants would be just as good, right? Some bioinsecticides cause pests to lose their appetite days before they actually die. Like bioinsecticides that kill pests outright, some bioinsecticides that inhibit feeding require ingestion, while others work on contact. And these bioinsecticides may work this way for only certain pest species of certain ages. Read and follow those labels! Bioinsecticides containing Bt require ingestion and some can stop pest feeding before actually killing the pest. The same goes for Gemstar (corn earworm virus). This is another mode of action of azadirachtin products against some pests.

A caterpillar eats or comes in contact with a bioinsecticide that causes the caterpillar to stop feeding.
Some bioinsecticides (blue diamonds and happy microbes in this diagram) cause insect and mite pests to lose their appetites. Depending on the bioinsecticide, it either needs to contact the pest or be eaten by it.

Inhibit growth

Many insects and mites need to molt (shed their skin as they go from one life stage to another). Bioinsecticides that interfere with molting prevent pests from completing their life cycle. Like feeding inhibitors, these bioinsecticides won’t directly kill the pests you have, but they can prevent them from multiplying. This is another mode of action (again, for certain pests at certain stages of development) listed for azadirachtin products and Venerate (Burkholderia spp. strain A396).

Some aphids were treated with a bioinsecticides that inhibits growth. They stay the same size. Another aphid that was not treated grows and molts normally.
Some bioinsecticides (blue diamonds in this diagram) don’t kill insects and mites outright, but they can prevent them from molting and growing into the next life stage. Pests that can’t move on to the next life stage will eventually die without completing their life cycle.

Inhibit reproduction

There are two main types of bioinsecticides that prevent or slow insect reproduction. Pheromones are compounds that confuse insects that are looking for mates. If males and females can’t find each other, there won’t be a next generation of the pest. Pheromones can be especially useful when the adults that are looking for mates don’t feed (e.g., moths). Isomate and Checkmate are two examples of pheromones available for certain fruit pests. Other bioinsecticides actually reduce the number of offspring produced by a pest. This is one of the modes of action of Grandevo (Chromobacterium substugae strain PRAA4-1) against certain pests.

Male and female moths are unable to find each other and mate because of the presence of pheromones nearby.
Pheromones (represented here by blue diamonds) are a type of bioinsecticide that confuses insects looking for a mate. As a result, males and females can’t find each other, don’t mate, and don’t lay eggs.

Why do I care?

Do you mean besides the fact that you are a curious person and you want to know how biopesticides work? Knowing the mode of action for the pesticide you use (among other things) allows you to maximize its efficacy. Does the bioinsecticide need to contact the pest, or be eaten by it? This determines where, when, and how you apply it. Do you want to use a bioinsecticide that inhibits growth of the pest? Make sure you use it when pests are young. (Sidenote: Like all biopesticides, bioinsecticides generally work best on smaller populations of younger pests.) Is the first generation of the pest the one that causes the most damage? Don’t rely on a bioinsecticide that inhibits reproduction. Although if the pest overwinters in your field and doesn’t migrate in, maybe you could reduce the population for the next season.

Now is a great time of year to consider the insect and mite pests you are likely to encounter this season, then learn which bioinsecticides include these pests (and your crop and setting) on the label. Always read and follow the label of any pesticide (bio or not). How do you know whether these bioinsecticides are likely to work in NY on the pests listed on the label? That’s a topic for another post. In the meantime, the Organic Production Guides for fruit and vegetables from NYS IPM are a great place to start. When available, they report efficacy of OMRI-listed insecticides (including some bioinsecticides). Your local extension staff are another great resource.

A new resource to help you protect pollinators

honey bee is perched on top of a young developing squash with the flower still attached
Many crops (and plenty of non-crop plants) rely on pollinators. Let’s protect them!

As I’ve discussed before, the natural enemies that provide biological control of pests include both larger creatures (like insects, mites, and nematodes) and microorganisms (fungi, bacteria, and viruses) that combat pests in a variety of ways. Microorganism natural enemies are regulated as pesticides (one type of biopesticide), while the larger natural enemies are not. Growers who are successfully using biocontrol insects, mites, and nematodes usually recognize that they need to apply pesticides in such a way that they are compatible with the biocontrol organisms they use. Take a look at my April post for a summary of online resources that can help you check compatibility of pesticides (including biopesticides) with natural enemies.

Some of these compatibility resources include information on the effects of pesticides (and biopesticides) on bees. Pollinators (including honey bees, lots of other bees, and some non-bees) are very important beneficial insects. You may have noticed that they have found their way into several of my blog posts. So, I wanted to let you know about a brand new resource (hot off the digital presses) to help you protect pollinators.

Image of the cover of the resouces entitled: Pesticide decision-making guide to protect pollinators in tree fruit orchards
“A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards” is a terrific resource to help you choose pesticides (and pesticide combinations) that are least-toxic to bees.

A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards” was written by Maria van Dyke, Emma Mullen, Dan Wixted, and Scott McArt. Although it’s focus is tree fruit orchards (and therefore the pesticides used in them), it should be useful for growers of other crops who want to choose pesticides that are least toxic to bees. A few highlights:

  • It includes information not only on pesticides used alone, but (when available) on synergistic effects when multiple pesticide active ingredients are used together. When you combine some chemicals (either in the tank or in the environment) the mixture is more toxic than both chemicals alone.
  • Where available, it summarizes pesticide toxicity to other bees besides just honey bees (e.g., bumble bees and solitary bees). You can read more about why this is important in this recent article.
  • It describes what we know about sub-lethal (in other words, negative effects on the bees that are less serious than death) effects of pesticides on bees.
  • It includes about half a dozen biopesticide active ingredients.
bumble bee feeding on a purple flower
Pollination is being done by more than just honey bees! This bumble bee (plus many more bee species) are important pollinators in NY.

You might be asking: If a chemical on this table is toxic to bees, will it also be toxic to the insect and mite natural enemies I am releasing or conserving on my farm or in my garden? I wish I had a definitive answer to that. As you can see from the nearly three pages of Literature Cited at the end of this document, collecting these data is a time-consuming process. For now, stick with the compatibility resources that are already available, and ask the companies you buy from (pesticides or natural enemies) about compatibility.

In closing, a huge amount of work went into this resource to summarize so much useful and current (as of October 2018) information in an easy-to-read table. Bravo to the authors! The Pollinator Network @ Cornell has other helpful resources for growers on protecting pollinators. Winter is a great time to make plans for using IPM and protecting the pollinators and natural enemies that are so good for the crops we grow!