Tag Archives: insect

Growing perennial wildflowers from seed

Pink echinacea, and pale purple wild bergamot flowers in a raised bed
Perennial wildflowers add both beauty and food for beneficial insects to your yard.

Why grow perennial wildflowers?

Native wildflowers feed and shelter beneficial insects that pollinate our plants and help us control pests. Beneficial insects include a diverse collection of pollinators — not just honey bees — as well as natural enemies (flies, wasps, beetles, bugs and other insects that kill pests). While not technically insects, spiders and predatory mites also serve as natural enemies of pests. Cooperating with insect natural enemies for pest control helps us reduce damage from pests while reducing risks to the environment and people from other pest management strategies like pesticides.

The pollen and nectar produced by these native flowers – and many non-native flowers – either directly feed these friendly insects, or feed other insects that are prey for natural enemies. The leaves and stems also provide shelter for beneficial insects year-round. While we’re focusing on flowers today, many grasses also provide this shelter. Beyond all the ecological benefits, native wildflowers are beautiful!

Preparing perennial seeds to germinate

Seeds with spikey tails held in the palm of a white woman’s hand
Growing perennial flowers from seed does take longer, but it can be fun and rewarding!

In this part of the world (now known as upstate New York), seeds from native perennial wildflowers that mature in summer and fall experience a lot of “weathering” between maturation and germination the following spring. This includes cycles of freezing and thawing temperatures as well as varying levels of moisture during the winter. They may even pass through the digestive system of animals. This is why planting perennial wildflower seed in the fall is a great option. You are allowing nature to do the work of preparing the seeds for germination in the spring. If you harvest seeds of native perennial wildflowers and want to start them in the spring with other seeds, you will need to do this work yourself.

Some seeds have very hard seed coats that need to be broken by physical force (for example scratching with sandpaper, a file, or a knife), heat (for example, submerging in boiling water), cold (for example, freezing), or chemicals (like a strong acid). This is called seed scarification. Seeds that require scarification – and those that don’t – may also require stratification, which signals to the seeds that they can “wake up” (called breaking dormancy) and start germinating. Seed stratification generally requires exposing the seeds to the right level of moisture and the right temperature for the right length of time. Some examples include:

  • Hot water soak – Pour hot water over seeds and allow them to soak overnight or for 24 hours
  • Cold moist stratification – Mix seeds with sterile sand, vermiculite, or another substance that won’t hold too much moisture. You could also place seeds between layers of a damp paper towel or coffee filter. Make sure that whatever medium you use is only damp and not too wet. Put the mixture in a plastic bag or closed container in your refrigerator for the required amount of time.

If you buy perennial wildflower seeds, they may have already been stratified. Follow the instructions that come with your seed or reach out to the seller for more information.

Light brown seeds sitting on top of damp potting mix in a plastic container
One way to stratify seeds (prepare them for germination) is to place them in moist potting mix in the refrigerator for several weeks to several months.

Species-specific instructions

Examples of perennial wildflower seeds that benefit from scarification and/or stratification follow. After these seeds are scarified and/or stratified, germination may be improved by putting them in a warm place (but not for all species). Remember that you can always sprinkle seeds on well-prepared, weed-free soil outside in the fall and let the winter do the work for you! Also, your experience germinating these seeds may differ from the recommendations below. There is so much beautiful diversity in these perennial wildflowers!

  • Blue false indigo (Baptisia australis) – First scarify the seeds. Gently rub them between medium-grit sandpaper to scratch the seed coat. Then use the cold moist stratification method, leaving them in the refrigerator for about 10 days.
  • New York Ironweed (Vernonia noveboracensis) – Use cold moist stratification, keeping seeds chilled for 60 days.
  • Asters (Symphyotrichum spp.) – If you look up how to seed asters, you’ll see different instructions for different species, including seeding them in the spring without stratification and using a 60-day cold stratification period. Amara tried germinating Symphyotrichum oblongifolium (aromatic aster) seed and had better luck with cold moist stratification than seeding without stratification. You might see different results with different species.
  • Milkweed (Asclepias spp.) – Store (well-dried!) seeds in the freezer for several months (e.g., from the time you harvest them in the fall, until you are ready to start them in the spring). Learn more from Petra at Fruition Seeds.
  • Coreopsis (Coreopsis spp.) – Note that some coreopsis species are annuals in upstate NY. Perennial species will likely germinate best with cold moist stratification (30-60 days, depending on species).
  • Echinacea (Echinacea purpurea) – These seeds will likely germinate just fine if you plant them in moist soil and provide warmth (e.g., a heat mat) just as you would annual seeds.
  • Blazing star (Liatris spicata) – Moist stratify for 60 days before planting seeds.
  • Beard tongue (Penstemon spp.) – Cold stratify for 30-60 days before planting seeds. Some species may require light for germination. Cover seed of these species with only a very thin layer of potting mix (if any) and provide light when germinating.
  • Mountain mints (Pycnanthemum spp.) – You should be able to germinate seeds without stratification, but they will likely germinate better with light. Cover seed with only a very thin layer of potting mix (if any) and provide light when germinating.
  • Rudbeckia (Rudbeckia spp.) – Different species of Rudbeckia may require different stratification (or none) for seed to germinate. For many species, cold moist stratification for at least 30 days is recommended.
  • Goldenrod (Solidago spp.) – There are many species. Most will likely germinate best if seed is moist stratified for 60 days, and then receive light after seeding. Cover seed with only a very thin layer of potting mix (if any) and provide light when germinating.
  • Spiderwort (Tradescantia ohiensis) – For this species, you are better off direct-seeding in the fall. The recommended cold moist stratification period is 120 days, and these seeds will germinate better in cool soil.
  • Golden alexanders (Zizia aurea) – You may have better luck sowing these seeds outside in the fall than trying to start them inside in the spring. Their leaves are fairly distinctive (like celery) so seedlings are easier to spot outdoors. If you do want to try starting them indoors, use a 60-day cold moist stratification.

For some of the species that require longer stratification, you may be worried that you’re running out of time this spring. Remember that even after you have prepared your seeds to germinate, they will likely need around 6 weeks to germinate and grow big enough to consider transplanting outdoors. Don’t despair! Fall is a great time to transplant perennial wildflowers. And perhaps your heat mats and grow lights (or other seed germination spot) are otherwise occupied starting annual vegetable and herb transplants this spring. If you start stratifying seeds in early May, even those that require 60 days in the fridge will be ready for germination in early July. Then your seedlings will have plenty of time to grow big and strong before fall transplanting. Just be sure to keep them watered.

 

Resources consulted on seed germination:

 

This post was written by Amara Dunn-Silver, Biocontrol Specialist and Elizabeth Lamb, Ornamentals IPM Coordinator with the NYSIPM Program.

This work is supported by NYS Departments of Environmental Conservation and Agriculture and Markets.

Harvesting and sowing your own native seeds – August 17, 2023

Pink echinacea and bright yellow goldenrod flowers
Echinacea and goldenrod are just two species of native perennial wildflowers that feed beneficial insects.

For the past six years, we’ve been cultivating perennial grasses and wildflowers that feed and support beneficial insects. All of these plants came from seeds—whether sown by us or by others—and we’ll focus this year’s annual open house on these wonderful seeds.

Come join folks from New York State Integrated Pest Management, and Petra Page-Mann from Fruition Seeds to talk about how we harvest, clean, store, and germinate seeds of perennial wildflowers that support beneficial insects. Stop by our open house between 3:30 and 6:30 p.m on Thursday, August 17. We’ll offer guided explorations of our established plots of perennial wildflowers and grasses at 3:45, 4:45, and 5:45 p.m. You are also welcome to explore the field on your own, or browse our interactive resources on display. There will be a few hard copies of resources available at the event, and we’ll continue to add digital resources to this folder up to and following the event. Everyone will go home with seeds of native perennial plants that support beneficial insects.

No registration needed for this free event. Find all the details at our event page. When you arrive at the entrance to the farm, look for signs with the pink echinacea flower and the Christmas tree on them, and follow the signs to our field.

Graphic of pink echinacea flower, Christmas tree, and the NYSIPM logo
Follow these signs to find our field!

Funds for this project were provided by NYS Dept of Ag and Markets and the USDA National Institute of Food and Ag.

Protect Pollinators and Natural Enemies of Pests, Choose Pesticides Carefully

A bumble bee and a smaller bee resting on a magenta cosmos covered with tiny water droplets
These bees are just two of the beneficial insects you’ll want to protect from pesticides.

Hopefully we can all agree that protecting friendly insects (pollinators and natural enemies of pests) on our farms and in our gardens and landscapes is important. We want to manage pests, without hurting bees, butterflies, ladybugs, parasitoid wasps, minute pirate bugs, hover flies, ground beetles, and so many more of our insect friends. Using IPM tools other than pesticides is a great way to do this. When it is necessary to use pesticides as an IPM tool, how do you choose a pesticide – whether it is organic, conventional, or biological – that poses the least risk?

Practices that help reduce risk to beneficial insects

No matter how hazardous or toxic any substance is, insects are only at risk if they are exposed to that substance. By using integrated pest management practices like crop rotation, sanitation, and scouting for pests, you can reduce the number of pesticide applications needed to manage pests. Making fewer pesticide applications is a great way to start protecting beneficial insects. Some pesticides are particularly dangerous to insects because they linger so long in the environment after they are applied (have a long residual), posing a greater risk. Other pesticides quickly break down in the environment after being applied to plants, so they pose less risk.

Bee pollinating a cucurbit flower
Wild bees are important pollinators of cucurbit flowers. We can thank them for many of our pumpkins, squashes, cucumbers, and melons.

Being careful about when you apply a pesticide can also reduce the likelihood that a beneficial insect will be exposed to it. Bees are less active at certain times of day (especially early morning and evening). However, some wild bee species forage at different times of day. For example, squash bees are early risers, and can be found visiting squash, pumpkin, and cucumber flowers before honey or bumble bees are active. Check the area where you plan to apply a pesticide, and pick a different time if bees are present. Some pesticide labels require that you do not apply that product while bees are foraging. Some pesticides will still harm bees that visit a flower some time after the pesticide is applied. Avoiding pesticide applications when plants are flowering will provide additional protection to beneficial insects, but may not be practical on all crops.

Where you apply pesticides also matters. Have you planted some habitat for beneficial insects? Prevent pesticide spray drift into these habitats. Are there flowers blooming amongst the grass on the orchard floor? Mowing them before you spray the fruit trees overhead could make insects less likely to visit during or right after you spray.

Resources to consult

First, read the pesticide label (and follow it). The label is the law and will have instructions on how to protect pollinators and other non-target organisms when using a pesticide.

If you know the pesticides you are considering, and especially if you know the specific natural enemies you are trying to protect, you can find some good information from companies that sell beneficial insects, or pesticides. I am aware of searchable databases or charts describing pesticide compatibility from four companies that sell (mostly) arthropod and nematode natural enemies: Agrobio, Biobest, BioWorks, and Koppert.

EIQ stands for Environmental Impact Quotient. You can read more details on the NYSIPM website, but in a nutshell the EIQ quantifies the risks of pesticides. You can use the EIQ calculator on our website to compare these numbers for different pesticides at the rates you plan to use them. The higher the number, the higher the risk. There are different components to the EIQ; risks to consumers, workers, and the environment (ecological). The ecological risk includes risks to natural enemies (as well as fish, birds, and bees). The EIQ calculator will give you an overall EIQ value as well as values for each category of risk (consumers, workers, ecological). Or, you can download this spreadsheet of EIQ values for pesticides, and sort by values for bees or beneficials (columns P and Q).

The University of California IPM Program’s pesticide active ingredients database summarizes the toxicity of some pesticides (including insecticides) to natural enemies and pollinators, as well as other hazards.

The Cornell Pollinator Network produces Pollinator Protection Guides for an increasing number of crop groups to help you understand the toxicity of different pesticide active ingredients to bees.

orange and black-striped fly with large eyes perches on small white flowers
Larvae (maggots) of this hover fly are excellent aphid predators. Killing your hover flies with pesticides could contribute to an aphid outbreak.

A few pesticides to avoid

You’re using good IPM, and you still need to use an insecticide. You’re trying to choose. I used information I collected from a few different sources (listed at the end of this post) to categorize some insecticides as “most” or “moderately” harmful. These are not exhaustive lists.

Most harmful to beneficial insects:

  • Carbaryl – active ingredient found in some products called Sevin
  • Neonicotinoids – active ingredients include imidacloprid, acetamiprid, thiamethoxam and may be found in such products as Admire, Assail, and Actara; In NY many products with these active ingredients are now classified as restricted use, so only certified pesticide applicators are allowed to buy or use them.
  • Natural pyrethrins – PyGanic is one product with this active ingredient; similar to synthetic pyrethroids, but this active ingredient degrades quickly in the environment (short residual)
  • Synthetic pyrethroids – active ingredients include bifenthrin, cypermethrin, lambda-cyhalothrin, permethrin, and others; can be found in products called Sevin, Eight, Warrior, and others; similar to natural pyrethrins, but last much longer in the environment (long residual)
  • Spinetoram – Radiant is one product that contains this active ingredient; a synthetic version of spinosad, but more toxic to beneficial insects than spinosad

Moderately harmful to beneficial insects:

  • Azadirachtin – active ingredient found in products such as Aza-Direct, Azaguard, Neemix
  • Bifenazate – active ingredient found in products such as Acramite
  • Chlorantraniliprole – active ingredient found in Coragen; among natural enemies, parasitoid wasps are probably most at risk. There may be some synergistic effects on bees when combined with other pesticides (see Cornell Pollinator Protection Guides)
  • Indoxacarb – active ingredient found in products such as Avaunt
  • Insecticidal soaps – active ingredient is potassium salts of fatty acids and can be found in M-Pede and many other products; most harmful to soft-bodied insects (including predatory mites), while beetles may be less susceptible
  • Spinosad – active ingredient in Entrust; similar to spinetoram, but it is the natural version of this chemical; not as toxic to beneficial insects as spinetoram

So what are the alternatives?

Remember that pesticides, by definition, are toxic to some living things; that’s why they kill and repel pests. There is no such thing as a completely safe pesticide. But here are a few insecticides that are gentlest on beneficial insects. And let me reiterate: Reducing the use of pesticides through good IPM is the best way to protect insects from pesticides.

  • Beauveria bassiana – several strains of this fungus are active ingredients in different insecticides, including BotaniGard
  • Bt or Bacillus thuringiensis – bacterial active ingredient in pesticides such as Agree, Dipel, and others; quite specific to the insect groups specified on the label; different subspecies are effective against different groups of insects
  • Flonicamid – active ingredient in Beleaf
  • Horticultural oils – there are many different active ingredients that fall in this group; may be more toxic to bees than to natural enemies, but require direct contact with the insect
  • Cordyceps (formerly Isaria or Paecilomyces) fumosorosea – another fungal active ingredient found in products such as PFR-97
  • Clarified hydrophobic neem oil – Note that “whole” neem oil contains azadirachtin (which I listed in the “moderately harmful group”), while clarified hydrophobic neem oil does not. Azadirachtin is extracted from neem oil, leaving the clarified hydrophobic neem oil behind.
Small insect with a black and white diamond pattern on its back on a sunflower petal
This cute little insect is a minute pirate bug. In addition to munching on pollen, it will also eat small pests like thrips, mites, and small caterpillars.

A few reminders…

  • Remember that the information in this post is not a substitute for a pesticide label. The label is the law, and you must read and follow the label of any pesticide you are using. Laws and labels change. It is your responsibility to use pesticides legally. Trade or company names used here are for convenience and information only; no endorsement of products or companies is intended, nor is criticism of unnamed products or companies implied.
  • For questions about pesticide use, regulations, and safety, contact the Cornell Cooperative Extension Pesticide Safety Education Program. If you live in New York State, you can find labels for pesticides that are registered in NY at the DEC’s NYSPAD website.
  • Just because a pesticide isn’t on the “most” or “moderately” harmful lists above, does not mean it is harmless to insects. These lists are not exhaustive, and for some products insufficient information exists.

  Sources consulted:

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. Special thanks to Diana Obregon Corredor for providing review and input.

This work is supported by NYS Departments of Environmental Conservation and Agriculture and Markets.

Biopesticide modes of action

Diagram showing an unhappy-looking caterpillar that has stopped eating a leaf. Blue diamond shapes and pale blue rectangles with smiling faces are also on the leaf.
Biopesticides include microorganisms, plant extracts, and other naturally-derived compounds that control pests.

Biopesticides are one aspect of biological control. The active ingredients in biopesticides include microorganisms (microbes), plant extracts, and naturally-occurring chemicals (like potassium bicarbonate). As a result, some of the ways they control pests (their modes of action or MOAs) are different from conventional, synthetic chemical pesticides. Also, many of them have several MOAs, and not all MOAs apply to all pests listed on the label. If a biopesticide contains live microbes, and especially if its MOA requires the microbes to stay alive on the plant for some period of time after application, this also has important implications for how the product is stored and applied. Understanding the mode of action of a product will help you get the most out of it.

I like to break down biopesticide MOAs into the following categories:

Diagrams - Tiny spores of insect-killing fungi land on the body of an insect, germinate, infect the insect, grow throughout its body, and eventually kill it. Below, a diagram shows blue spores contacting a yellow rectangle with a frightened face, representing a pathogen. The spores grow and kill the pathogen.
Eat – Some biopesticides contain living spores of a fungus (blue). These spores need to land on the insect pest or plant pathogen (yellow rectangle). Then they germinate (like a seed), invade and grow, eventually killing the pest. If the humidity is high enough, the fungus may even produce more spores and spread to other pests.

Eat live microbe grows on/in pest

Biopesticides with this MOA can work against insect pests (e.g., products that contain Beauveria bassiana) or plant diseases (e.g. Contans, which contains Paraconionthyrium minitans strain CON/M/91-08). Many biopesticides with this MOA contain fungal spores. These spores will germinate once they land on the insect or disease-causing pathogen, and may have temperature and/or humidity requirements for germination. Make sure you store the product correctly, confirm compatibility with other products before tank mixing or applying, and apply under recommended environmental conditions.

 

Diagram - A caterpillar eats and is sprayed with a bioinsecticide (blue diamonds), and then dies. Plant pathogens (yellow rectangles) are poisoned by biopesticide microbes (blue rectangles) and the antimicrobial compounds they produce (blue droplets).
Poison – Some biopesticides (blue diamonds or blue smiling rectangles with droplets) work much like conventional chemical pesticides. They directly kill or otherwise inhibit the insect pests (like this caterpillar) or plant pathogens (yellow rectangles with frightened faces) when they contact it or are eaten by it.

Poison – biopesticide (or its products) kills the pest directly

Biopesticides with this MOA can work against insect pests (like products containing Bacillus thuringiensis) or plant diseases (e.g., Double Nickel containing Bacillus amyloliquefacies strain D747, or products containing potassium bicarbonate). Obviously, potassium bicarbonate products do not contain live microbes. Some biopesticides that poison pests do have live microbes that continue to produce antimicrobial products after they are applied. Others work because of the compounds the microbes produced while the biopesticide was being made.

 

Green leaves covered with smiling blue rectangles. Yellow rectangles with angry faces are next to the leaves.
Keep out – Some biopesticides contain microbes (blue smiling rectangles) that grow on the plant. These beneficial microbes use up space and nutrients so there is no room for the pathogen (angry yellow rectangles.

Keep out – live microbe grows on plant, leaving no room for pests

Biopesticides with this MOA can work against plant disease (e.g., Actinovate which contains Streptomyces lydicus WYEC 108, or Serifel, which contains Bacillus amyloliquefaciens strain MBI 600) and may be bacteria or fungi. The microbes in biopesticides with this MOA must be alive when applied and need to be able to grow on the part of the plant that is being protected.

 

Diagram of a plant with blue smiling rectangles on both leaves and roots. Little yellow lightning bolts surround the roots and leaves.
Turn on resistance – Some biopesticides contain microbes (blue smiling rectangles) or other natural compounds that activate the plants defense system, so that it’s ready when it encounters a pathogen.

Turn on resistance – turns on the plant’s defenses before pest attacks

As far as I know, these biopesticides only work against plant diseases, but as new products are developed, or as we learn more about existing biopesticides, this may change. Some examples include Regalia (giant knotweed extract) and Lifeguard WG (Bacillus mycoides isolate J). Some of these products contain live microbes that need to stay alive (like LifeGard), while others do not. These biopesticides need to be applied before infection.

 

Diagram - The plant on the left has no smiling blue rectangles on leaves or roots. The plant on the right has these blue rectangles on roots and leaves and is larger.
Grow strong plants – Some biopesticides contain microbes (blue smiling rectangles) or other natural compounds that enable the plant to grow stronger and healthier. As a result, the plant can better withstand attack from a pest.

Grow strong plants – makes plant stronger, healthier, more resilient

These biopesticides primarily work against plant diseases. Some examples include: Serenade (Bacillus subtilis strain QST 713), RootShield (Trichoderma harzianum), and Sil-Matrix (potassium silicate). Some of these products contain live microbes that need to stay alive, while others do not (e.g., Sil-Matrix). These biopesticides need to be applied before infection.

 

Diagram - One leaf is covered with blue diamonds and smiling rectangles (bioinsecticide), but the other is not. The caterpillar is feeding on the leaf that has no bioinsecticide.
Repel – Some bioinsecticides (blue diamonds and blue rectangles with smiling faces) protect plants because they repel insect and mite pests.

Repel – pest avoids plants treated with biopesticide

Biopesticides with this MOA can work against insect pests, but perhaps only on certain insect life stages. Some products with this MOA could contain live microbes, while others do not. You can evaluate the effectiveness of products with this MOA, not by scouting for dead insects, but by looking for reduced damage or lower insect populations on treated plants. Examples include: Grandevo WDG (Chromobacterium subtsugae strain PRAA4-1 and its spent fermentation products) and products containing azadirachtin.

 

Diagram - A caterpillar eats or comes in contact with a bioinsecticide, and then stops feeding.
Stop feeding – Some bioinsecticides (diamonds and rectangles on the leaf) cause insect and mite pests to lose their appetites.

Stop feeding – stops pest from feeding; pest eventually starves

Biopesticides with this MOA can work against insect pests either by contact or ingestion and may only be effective against insects of certain ages or life stages. It depends on the biopesticide and pest. Examples include insect-killing viruses and some types of Bacillus thuringiensis products. Some products with this MOA could contain live microbes, while others do not. Live pests will still be present for some time after applying a product that works in this way, since the pests die of starvation. Watch for feeding damage to stop or a reduction in insect numbers over time to know if the product is working.

 

Diagram – Three aphids on a leaf, two of which are exposed to blue diamonds. The aphids exposed to the diamonds stay the same size. Another aphid that was not exposed grows normally.
Stop growth – Some bioinsecticides (blue diamonds in this diagram) don’t kill insects and mites outright, but they can prevent them from molting and growing into the next life stage. Pests that can’t move on to the next life stage will eventually die.

Stop growth – stops pest from growing or molting; pest eventually dies

Biopesticides with this MOA may work against insect pests either by contact or ingestion and may only be effective against pests of certain ages or life stage. It depends on the biopesticide and pest. Examples include Venerate (Burkholderia spp. strain A396) and some products containing azadirachtin. Some products with this MOA could contain live microbes, while others do not. Products with this MOA will not kill pests immediately, but will prevent them from growing or molting. Watch for insect populations to decline over time, but do not expect pests to die immediately.

 

Diagram - Two yellow moths surrounded by blue diamonds. A red heart has a line through it.
Stop reproduction – Pheromones (represented here by blue diamonds) are a type of bioinsecticide that confuses insects looking for a mate. As a result, males and females can’t find each other, don’t mate, and females don’t lay eggs.

Stop reproduction – hampers pests’ ability to find a mate or produce eggs

The two main groups of biopesticides I know of with this MOA are (1) pheromones that make it hard for male and female insects to find each other, or (2) products that reduce the number of eggs female insects lay. Grandevo (Chromobacterium subtsugae strain PRAA4-1 and spent fermentation products) is an example of the later, but may not work in this way against all ages and species of pests listed on the label. The products I know of with this MOA do not contain live microbes. This mode of action will reduce insect populations in subsequent generations, not the current one. So use it on a pest with multiple generations per season, or in combination with other MOAs.

 

Things to keep in mind:

If the biopesticide contains live microbes, make sure you…

  • store the biopesticide correctly (and for the correct amount of time); check the label.
  • confirm compatibility of the biopesticide with other products before tank mixing or applying; read the label and contact the manufacturer with questions.

In addition, if the biopesticide contains microbes that need to stay alive for some period of time after application in order to be effective, make sure you also…

  • pay special attention to the recommended optimal environmental conditions for application; start by reading the label.

Remember!

  • Biopesticides are pesticides. Their labels are the law. Read the labels and follow them, along with other pesticide application laws in your state.
  • Not all biopesticides are permitted for use in certified organic production. Check with your certifier if you have questions.

 

Questions to ask when you are considering/purchasing a biopesticide

The manufacturer or dealer should be able to tell you:

  • How does it work (MOA)?
  • Is it alive? Does it need to stay alive to work?
  • Special instructions for storage or use? (e.g., temperature, spray tank pH, time of day)
  • Is it compatible (in the tank, greenhouse, or field) with other products in use (e.g., pesticides, fertilizers)?

 

Additional biopesticide Resources

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program.

Fall is for planting…these resources can help!

A mixture of plant seedlings in plots and trays sitting on a gravel surface
Cooler days and more moisture make fall a less-stressful time for transplanting perennials.

You’ve probably heard that fall is the best time to plant perennials (including seed for perennial wildflowers). Are you planning to start or expand a planting that supports pollinators and natural enemies of pests (beneficial insects) this fall? Trying to decide what to plant? I wanted to make sure you know about some resources from NYSIPM (some of them new this summer) that can help!

Who are you trying to attract?

Red lady beetle with black spots perched on a goldenrod plant
Some lady beetle species weed on pollen, in addition to aphids and other insects.

The good news is that flowers that produce lots of pollen and nectar and provide season-long blooms (usually as part of a mixed planting) will support a diverse group of both natural enemies that eat pests and pollinators. If you want to get a bit more specific than that, you might consider checking out:

  • Natural Enemies and What They Eat in the Field – Targeting a particular pest? This chart can help you determine which natural enemies will help.
  • (New!) Pocket Guide to Beneficial Insects – This guide was created for urban growers in New York City, but fortunately all of the beneficial insects in the Guide can be found throughout NY. It will help you recognize beneficial insects when you see them.

These resources are linked from this page. The NYSIPM website is in the process of migrating, and I’ll update this link once this page moves. You can also read about “friends in the garden” (natural enemies) that you’ll find on the ground and on plants or flying through the air in previous blog posts.

Picking plants

A raised bed containing a variety of different plants (with red, purple, yellow, or pink flowers) and labels naming each plant
Choosing a mixture of flowering plants can provide season-long blooms for beneficial insects.
  • Plants for Natural Enemies (full list) – A very large spreadsheet summarizing data from university research and extension resources; Everything I could find about individual plant species and which insects (especially natural enemies) they support.
  • (New!) Plants for Natural Enemies (2 pg handout) – Much shorter table listing 26 plants (perennials and annuals) that will support natural enemies (and pollinators); Bloom times are for central NY, and may vary in other locations (especially different USDA plant hardiness zones).

These resources are also linked from this page. And I’ve written a few blog posts about choosing plants (here and here).

 

What are you planting this fall?

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program.

Which biopesticides work? Updated resources

A caterpillar eats or comes in contact with a bioinsecticide that causes the caterpillar to stop feeding.
Some bioinsecticides cause insect and mite pests to lose their appetites. Depending on the bioinsecticide, it either needs to contact the pest or be eaten by it.

Biological pesticides (biopesticides) are pesticides with active ingredients that are considered natural. According to the EPA they “include naturally occurring substances…microorganisms that control pests…and pesticidal substances produced by plants containing added genetic material.” This last category is more often recognized as certain (but not all) genetically modified organisms (GMOs). The “naturally occurring substances” (plant extracts, some natural chemicals) and microorganisms (bacteria, fungi, viruses) are the focus of today’s post. There’s a deeper dive into how biopesticides work in another blog post.

Biopesticides can be an important tool for integrated pest management because some of them may pose less risk to people or the environment than some conventional chemical pesticides. (But always read and follow the label on biopesticides to ensure you are minimizing risks!)

If you are considering using a biopesticide as part of your IPM program, you will of course want to know whether or not it is effective against a particular pest on a particular crop. A few years ago I wrote a post about efficacy of biocontrol. With some great help, I’ve been collecting summaries of efficacy trials on biopesticides conducted by universities. These summaries are available as downloadable Microsoft Excel spreadsheets for the following crops:

  • Berries
  • Field crops
  • Grapes
  • Greenhouse, nursery, and ornamental crops
  • Hemp
  • Hops
  • Tree fruit

The Cornell Vegetables website has some excellent information about biopesticides for vegetable diseases.

Green leaf with blue rectangles with smiling faces representing microbes as natural enemies of the pest microbes (yellow rectangles with shocked faces). The blue microbes are producing blue droplets (representing antimicrobial compounds).
Microbes used to control pests are biopesticides. In this conceptual diagram, the happy blue microbes are producing antimicrobial compounds that are killing the plant pathogens (represented by yellow rectangles with shocked faces).

Once you download a spreadsheet, take a look at the ‘Notes’ sheet for some important background information, then look at the data on either the ‘Diseases’ or the ‘Arthropods’ (insects and mites) sheet. You can sort the data on either sheet by crop, pest name, name of the product, active ingredient, or other column headings. I’ve included both a simple rating of efficacy (-, +/-, +, ++), and a numerical summary that shows how much each product improved control compared to doing nothing to control the pest.

The spreadsheets do indicate whether each product was registered in New York State at the time the sheet was last reviewed. Remember that you must confirm that the product you want to use is currently registered in New York, and that the label includes your setting, crop, and pest. You can check for current registration and download NYS pesticide labels from NYSPAD.

If you are not able to open an Excel spreadsheet, please let me know and I’m happy to get you the info in a format that works for you.

 

This work is supported by NYS Departments of Environmental Conservation and Agriculture and Markets, as well as the National Institute of Food and Agriculture, Crop Protection and Pest Management Extension Implementation Program, award number 2021-70006-35672.

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program.

EPNs: Good worms

light brown dead grub in a petri dish broken open and surrounded by hundreds of tiny, white, crescent-shaped nematodes
Insect-killing nematodes (tiny white crescent) emerging from a dead insect larva. Photo credit: Peggy Greb, USDA Agricultural Research Service, Bugwood.org

Nematodes are tiny worms. While some of them can damage plants, some prefer to eat insects, and these “good worms” (entomopathogenic nematodes is the technical term, but we can call them EPNs for short) can be helpful biocontrol agents. Teresa Rusinek (Cornell Cooperative Extension eastern NY Commercial Horticulture Program) wrote a guest blog post about her work testing EPNs for control of wireworms in sweet potatoes. Elson Shields (Cornell Entomology) has spent many years perfecting the use of persistent EPNs that are native to New York in agricultural fields where they control insect pests. Kyle Wickings is my go-to expert on using EPNs to manage white grubs in turf. A former graduate student in Kyle’s lab (Max Helmberger) made an amazing video describing the life cycle of EPNs. John Sanderson is the Cornell guru of greenhouse biocontrol (including EPNs for greenhouse insect pests).

So many people have developed so many great materials on EPNs, the purpose of this post is to point you to some of these great resources. Why re-invent the wheel? And if I’ve missed something, please let me know!

John Sanderson (Cornell University) has done some great work evaluating different EPN species for controlling insect pests in greenhouses. You can watch a webinar summarizing this work here.

Carol Glenister (IPM Laboratories) and Elson Shields (Cornell University) did a presentation on “Getting the Most Out of Beneficial Nematodes in Organic Production” for the UMass Amherst Extension Vegetable Program. You can watch the recording on YouTube, and you can read their answers to frequently asked questions online.

Screen shot of Grub ID homepage including the url: grubid.cals.cornell.edu
Proper identification is essential to good IPM, and Kyle Wickings’ Grub ID key helps you do just that.

Need help identifying your white grubs (a critical first step to using EPNs effectively in your lawn)? Kyle Wickings developed a simple key.

Are you concerned about grub damage in your home lawn? Put back that pesticide bottle, and start by scouting and identifying grubs, then apply some EPNs (only if you need them). You can find all the details here.

white grub on soil with a few grass plants nearby
Count how many white grubs you actually have per square foot (and identify them) before deciding if an EPN application would help.

If you are growing alfalfa, Elson Shield’s lab has all the information you need to successfully use EPNs to control alfalfa snout beetles, starting with an overview, and including detailed resources to help you be successful.

Wondering if EPNs can help you control fruit and vegetable insect pests? In consultation with my colleagues, I developed a summary of what we know about which fruit, vegetable, and ornamental pests you are likely to be able to manage with EPNs. More research is ongoing, so this list will continue to evolve.

This work is supported by NYS Departments of Environmental Conservation and Agriculture and Markets.

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program, but was only possible due to the great work done by colleagues. All images are Amara’s, unless otherwise noted.

Permission to procrastinate on some fall yard work

Several maple leaves colored red, orange, yellow, and green laying on sidewalk pavement
Fall leaves are beautiful…but fall garden clean-up isn’t always fun. Maybe skip some of that clean-up this year.

If you have been procrastinating on your fall garden clean-up (like me), I’ve got good news for you! You may want to just erase some of those tasks from your to-do list altogether. And you can do it guilt-free!

As you may recall from my post this spring, a messy garden provides good shelter for friendly insects like pollinators and natural enemies of pests over the winter. Whether it’s leaves on the ground or dead plant stems, it’s not a bad idea to leave at least some debris in your yard and garden. The Xerces Society provides a nice summary of the benefits fallen leaves offer to insects and other creatures. You can read an eloquent description of all the benefits of a messy yard here.

Some pink zinnia flowers growing near stems of perennials that are brown with dry seed heads
As these plants continue to senesce, I will leave the stems in the garden over the winter.

Just to prove I’m putting my money where my mouth is, here are some pictures from my own yard. I’m thinking about cutting down the sunflower stalks and propping them up next to my compost bin in the back yard, just to make things a little tidier in the front yard.

some pink, yellow and orange flowers still blooming among dying plant stems
These sunflowers, cosmos, and zinnia plants are no longer looking so nice. But I will leave many of them in the garden until spring.

I’m going to still take out (and send to my local municipal compost facility) my vegetable plants (tomatoes and peppers). Leaving dead stems from healthy plants in your garden is one thing, but this year’s vegetable plants can harbor next year’s vegetable diseases and insect pests if left over the winter. Disposing of diseased or insect-infested plants away from your garden is just good IPM.

A few more caveats…

First, you should know that ticks complicate the simple advice to “leave the leaves”. If you’ve had problems with ticks in your yard (learn how to monitor for ticks here), be strategic about where you leave things messy, and where you clean them up. For example, consider cleaning up areas where your family and pets spend more time. You should also be careful about where you pile leaves. My co-worker Joellen explains why here. And definitely use other IPM strategies to protect yourself from ticks, regardless of your yard clean-up plans.

Small pile of leaves and dead plant stems next to a white fence
This was the leaf (and other plant debris) pile in my backyard this spring. Piles like this can shelter lots of invertebrates…including ticks.

Second, if you’ve got a garden bed in the front yard that you just can’t stand to leave messy through the winter, it’s ok to clean it up and not feel guilty. Maybe pick another part of your yard that you can leave a bit messy instead. Don’t let the perfect become the enemy of the good.

Happy Fall!

Maple tree with orange and yellow leaves against a bright blue sky

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. All images are hers, unless otherwise noted.

This work is supported by:

  • New York State Department of Agriculture and Markets
  • New York State Department of Environmental Conservation

Know your friends…on the ground

Small clump of blue-green grass surrounded by some bare ground and weeds
We may not spend a lot of time looking at the ground, but there are plenty of friendly insects living at the soil surface and taking shelter in plants like this little bluestem grass that don’t produce pollen-rich flowers, but still support beneficial insects.

In August I wrote about some of the friendly insects that might be visiting your garden this summer. I promised to write more about the natural enemies of pests that you might find at ground level. That time has come! Because these insects (and some other arthropods) live at or near the soil surface, you’re much less likely to see them, unless you happen to be cleaning out a garden bed this fall (which is not actually recommended). Also, they may be more active at night. But they are still doing lots of good things in your garden or on your farm, so they’re worth knowing about.

Rove beetles

Black beetle with a long segmented abdomen that protrudes beyond the short wing covers that look like a cape.
Rove beetles have wing covers that are much shorter than the rest of their body. Image courtesy of Joseph Berger, Bugwood.org.

These beetles live in the soil or at the soil surface and they eat lots of different soil invertebrates, including pests like slugs, snails, thrips, and eggs of other insects. They also eat seeds, so they could help reduce your weed seed bank, too. Like other beetles, they have hard covers over their wings called elytra. Because these covers are much shorter than their bodies, I think it makes them look like they are wearing little capes.

 

Carabid beetles

Black beetle crawling on the ground
Ground beetles may not look very exciting, but they’re great predators to have in fields and yards. Image courtesy of Mary C Legg, Bugwood.org.

Also called ground beetles, this large group of insects mostly live on the ground, and tend to have prominent jaws and move very fast. Their speed makes them great predators of many insects, as well as snails and slugs. Depending on the species, they may also eat seeds. They like to spend the winter in sheltered places including perennial grasses that grow in clumps. In the spring, they can travel almost 200 feet from these grassy shelters (Landis et al. 2000. Annual Review of Entomology 45:175-201). They come in different sizes, but tend to be darker colored.

On the left a black ground beetle with large jaws, and on the right a ground beetle with large jaws that is brown on top of its body and iridescent green on the underside of its body
Just a few more examples of ground beetles, because they’re so cool!

Centipedes

brown centipede with one pair of legs per body segment
Centipedes may not be so pretty to look at, but they’re good predators to have around. Image courtesy of Joseph Berger, Bugwood.org.

They may not look as friendly as lady beetles, but centipedes are also generalist predators that eat lots of invertebrates (including pests) in the soil. In case you were wondering, the difference between a centipede and a millipede is that centipedes have only two legs (one pair) on each segment of their body, while millipedes have four legs (two pairs) per body segment. But they can move pretty quickly, so it’s understandable if you don’t have time to count.

Spiders and harvestmen

From left to right – black and yellow spider, cream-colored spider on a red flower eating a bee, brown daddy long legs on green foliage.
These are just a few of the eight-legged friends you might find in your garden or fields. Some species you’re more likely to find on plants, and others spend more time on the ground.

I wrote about spiders in my previous post, but many species live on or near the ground. Both are good predators, and friends you’d like to have in your fields or garden. Technically, harvestmen (also called daddy long legs) are not spiders, but they do have eight legs. Because they don’t have an obvious “waist” they appear as though their head and body are a single “blob”.

Fireflies

Adult firefly, mostly black with some orange markings
Adult fireflies are more easily recognizable, even when they aren’t lit up. Image courtesy of Whitney Cranshaw, Colorado State University, Bugwood.org.

Yes, you read that correctly. When they are immature, fireflies (or lightening bugs, depending on where you grew up) look a bit more like worms than beetles (which is what they actually are). They live on the ground (especially in places with more moisture) and feed on invertebrates with soft bodies, including both snails and insects. Although we tend to notice them when they are flying, adult fireflies (depending on the species) also spend plenty of time on the ground, and may or may not be predators. The Xerces Society has some really good information about fireflies and their conservation.

immature firefly with distinct body segments. Looks sort of like an armored worm, but with six legs
Immature fireflies may not be so familiar, but are good “friends” because they eat soft-bodied invertebrates, including pests. Image courtesy of Gerald J. Lenhard, Louisiana State University, Bugwood.org.

So remember, not everything that creeps or crawls through your fields or garden is a problem. There are lots of friendly insects (and other arthropods) that can help you with pest control. Take a closer look and you might be surprised!

 

This post was written by Amara Dunn, Biocontrol Specialist with the NYSIPM program. All images are hers, unless otherwise noted.

This work is supported by:

  • New York State Department of Agriculture and Markets
  • New York State Department of Environmental Conservation
  • The Towards Sustainability Foundation

Come learn about creating habitat for beneficial insects!

panoramic view of a plot of perennial wildflowers and grasses on a sunny day

It’s hard to believe it, but we are in our fourth year of a project establishing perennial wildflowers and grasses to support populations of pollinators and natural enemies of pests. You can read more about this ongoing project in past blog posts, but in just a few weeks, you can also come visit these plots in person (if you live near Geneva, NY)!

Our Habitat for Beneficial Insects Open House is taking place on Thursday, August 19, 2021. We’re inviting members of the public, home gardeners, and beneficial insect enthusiasts to stop in between 1:30 and 3:30 PM to:

  • see how the wildflower plots are looking
  • learn about the methods we’ve used to establish them
  • practice recognizing some of the beneficial insects we’ve attracted

In order to offer an experience that is accessible and as safe as possible for all attendees, we are requesting that everyone wear a mask unless you maintain at least 6 feet of distance between yourself and people you do not live with, regardless of your COVID vaccination status. There will be plenty of space at the field to spread out, and we will have microphones available so that you will still be able to hear even if you are standing further from a speaker than usual. We will have masks available if you do not have one. (But if you have a favorite insect or wildflower themed mask, we want to see them!) These recommendations follow Cornell’s current guidance and if that guidance changes, we will let you know.

To get there, put this address into your GPS:
1097 County Rd. 4
Geneva, NY 14456

Then look for these signs to find our field and park:

New York State IPM logo next to diagrams of a pink echinacea flower and a green Christmas tree

You can email Amara Dunn with questions.

This event is supported by:

  • New York State Department of Agriculture and Markets
  • Crop Protection and Pest Management -Extension Implementation Program Area grant no. 2017-70006-27142/project accession no. 1014000, from the USDA National Institute of Food and Agriculture.
  • The Towards Sustainability Foundation