Agustin J. Olivo1, Kirsten Workman1,2, Quirine M. Ketterings1
1 Department of Animal Science, Cornell University, Ithaca, NY, United States; 2PRO-DAIRY, Department of Animal Science, Cornell University, Ithaca, NY, United States
Introduction
Optimizing nitrogen (N) management in corn silage production can help improve farm profitability while reducing potential environmental impacts derived from N losses in dairy farms. One strategy to monitor and improve nutrient management at the field level is the calculation of end-of-season field balances, the difference between nutrients supplied to the crop, and what is removed with harvest. Ideal field-level N balances are positive, but not excessively large.
To assess the use of field N balances as an evaluation tool, field-level N balances (N supply – N uptake) and associated N use indicators were derived for 994 field observations from eight NY dairy farms across NY. Available and total N balances per acre, which differed only in the fraction of manure N accounted for (plant-available N or total N), yield-scaled N balances, and N uptake/N supply were calculated (Fig. 1).
Key findings
Nitrogen use indicators varied widely
The median balance across all fields was 99 lbs/acre for available N and 219 lbs/acre for total N. Excluding soil N contributions reduced these medians to 26 lbs/acre for available N and 145 lbs/acre for total N. Median N uptake/N supply were 0.60 (available N) and 0.41 (total N). Balances varied by farm, ranging from 41 to 145 lbs/acre for available N and from 126 to 338 lbs/acre for total N (Fig. 2).
Nitrogen supply considerably affected N use indicators
Nitrogen supply was a bigger driver for N use indicators than N uptake (Fig. 3), suggesting that decisions on N inputs influence N use indicators more than yield itself. Larger balances were associated with high N supply and low-yielding fields, indicating that for those fields factors other than N supply limited yield. These could be in-season factors that prevent a field from achieving its yield potential (such as extreme weather events and pest problems), or (semi) permanent limitations (such as shallow depth to bedrock, subsurface compaction, and drainage issues) not acknowledged in N application planning.
Manure-N availability impacted N use efficiency
The database showed a wide range of manure and fertilizer N supply to fields. Available manure organic and inorganic N played the largest roles in explaining the variability of N use indicators, with available N balances increasing with an increase in manure N supply. The study showed a 0.2 unit decrease in fertilizer N application on average in corn fields, with a 1 unit increase in available N from manure. This suggests that manure is valued as an N source, but its N content is not credited to the full extent possible, resulting in larger N balances at the end of the season.
Sod-N crediting impacted N use efficiency
First year corn fields showed reduced fertilizer and manure N applications than 2nd through 4th year fields (Fig. 4). Average available N balances (black dots in Fig. 4) for 1st year corn were, however, slightly larger than for fields with no sod N credits, suggesting opportunities for further reductions in nutrient allocation to 1st year corn.
Farm animal density was associated with N use indicators
At the whole-farm level, N balances per acre were positively related to animal density (animal units per acre) and impacted by farm crop rotations and within-farm allocation of manure N (Fig. 5).
Conclusions
Nitrogen supply impacted N balance indicators more than N uptake (yield) and N balances tended to increase with larger farm animal density. Adjusting N supply based on realistically attainable yield, fully crediting manure and sod N contributions, improving manure inorganic N utilization efficiency, optimizing animal density, and/or exporting manure can aid in improving field N use indicators over time.
Full citation
This article is summarized from our peer-reviewed publication: Olivo A.J., K. Workman, and Q.M. Ketterings (2024). Enhancing nitrogen management in corn silage: insights from field-level nutrient use indicators. Frontiers in Sustainable Food Systems 8. https://doi.org/10.3389/fsufs.2024.1385745.
Acknowledgements
We thank farmers and their certified crop advisors who shared farm data. This research was funded by a USDA-NIFA grant, funding from the Northern New York Agricultural Development Program (NNYADP), and contributions from the New York Corn Growers Association (NYCGA) managed by the New York Farm Viability Institute (NYFVI), and the Department of Animal Science, Cornell University. For questions about these results, contact Quirine M. Ketterings at qmk2@cornell.edu, and/or visit the Cornell Nutrient Management Spear Program website at: http://nmsp.cals.cornell.edu/.