Aidan Villanueva1, Carlos Irias1, Juan Carlos Ramos Tanchez1, Kirsten Workman1,2, Quirine Ketterings1
1 Department of Animal Science, Cornell University, Ithaca, NY, United States; 2PRO-DAIRY, Department of Animal Science, Cornell University, Ithaca, NY, United States
Introduction
Dairy manure is a rich source of essential plant nutrients, making it an excellent natural fertilizer. When applied correctly, it can enhance soil health, boost crop yields, and reduce reliance on synthetic fertilizers, thereby increasing agriculture’s sustainability and contributing to a more circular economy. Unlike inorganic fertilizers that have a guaranteed analysis, manure dry matter and nutrient content can vary, influenced by numerous factors such as dairy rations, type and amount of bedding, rainfall and wash water, manure storage systems and handling. Manure sampling and analyses will be essential in determining the potential value of the manure as a nutrient source. Our objectives were to assess the variability in manure dry matter (DM), nitrogen (N), phosphorus (P), and potassium (K) content across farms, across different storage units within a farm, and across time (hourly versus daily sampling), and to document the impact of agitation on DM and manure nutrient content.
How was the data collected?
Four New York dairy farms participated in this study. Manure samples were collected during land application in the spring of 2023 for all four farms and repeated in the spring of 2024 for one of the farms. Manure management and storage practices (Table 1) varied from farm to farm. Storages were sampled in the spring across days (“daily sampling”), and for the 2023 sampling we also took samples every two hours on selected days (“intense sampling”) to compare variability across hours and across days.
Manure samples were collected by filling a five-gallon bucket directly at the pump or the manure spreader (Figure 1). For each sampling round, three subsamples were taken and submitted for nutrient analyses to ensure outliers could be captured. Samples were analyzed for DM, total N, inorganic N, organic N, P, and K. Means, standard deviation, and coefficient of variation (CV) were determined to assess variability in the results across farms, storages, spreading events, and sampling intensity.
What was found?
Storages varied greatly from farm to farm (results not shown) and within a farm (Figure 2). This highlights the importance of sampling each storage unit individually and maintaining accurate storage-to-field application records.
Composition varied as the manure storage was emptied (results not shown). In general, across storages and farms, K content showed lower variability compared to P and N. In general, variability in N (total, organic, and inorganic) and P among hours within a day was much smaller than the variability from day to day (Figure 3). Hourly sampling often resulted in CVs below 13% while daily sampling showed CVs up to 34%. Because of the much lower CVs for hourly sampling, sampling over multiple days is recommended instead of sampling within a day.
Manure agitation completed the day before and on the day of application resulted in higher nutrient content, specifically for total N and P (Figure 3), reflecting settling of manure solids without agitation. Dry matter content was correlated with total N and P with lower N and P content for the more liquid upper layers in the storage. Potassium did not show much variability reflecting that K is predominantly found in the liquid fraction of the manure. These results show the benefits of consistent agitation to ensure a greater homogeneity over time as manure is land applied.
Conclusions
Manure nutrient composition and variability differed across farms and across storage units on the same farm. Variability was also present over time as storages were emptied, although there was little variability between samples taken just a few hours apart (same day sampling). Agitation helped reduce variability. We recommend sampling each storage unit separately, keeping storage-to-field application records, agitating storages where feasible prior to and during land application, sampling manure from pumps or spreaders during land application, and sampling every time a significant change in manure dry matter content is seen.
Additional Resources
- The NMSP Value of Manure Project website and on farm field protocols are accessible at: http://nmsp.cals.cornell.edu/NYOnFarmResearchPartnership/Value_of_Manure.html
- Agronomy Fact Sheets related to manure: #4 Nitrogen Credits from Manure; #38 Manure Sampling, Handling, and Analysis; #122 Reading, and Interpreting Dairy Manure Analysis. All NMSP agronomy fact sheets are accessible at: http://nmsp.cals.cornell.edu/guidelines/factsheets.html.
Acknowledgements
We thank Dairy Support Services as well as farmers and their certified crop advisors who worked with us to collect manure samples. This research was funded by a USDA-NIFA grant, funding from the Northern New York Agricultural Development Program (NNYADP), the New York Farm Viability Institute (NYFVI), New York State Department of Agriculture and Markets (NYSAGM) and Environmental Conservation (NYSDEC). For questions, contact Quirine M. Ketterings at qmk2@cornell.edu, and/or visit the Cornell Nutrient Management Spear Program website at: http://nmsp.cals.cornell.edu/.