Weed-Crop Competition

Why study weeds?
Organic farmers have indicated that weed competition is a major concern. Although spraying and tillage are two methods of managing weeds, we wanted to explore reducing weeds’ competitive ability through an ecological framework. Previous research suggests that crops are more competitive against weeds (ie. more able to “tolerate” weeds) in organically managed compared with conventional growing systems. Many factors may contribute to this pattern, including plant resource-partitioning abilities, plant-microbe associations, and other ecological relationships.

Experiment: Understanding the long-term effects of contasting organic cropping systemd on weed seedbank communities
Case Study: Weed Seedbanks on Organic Farms

Experiment: Soil-mediated cropping diversity effects on weed-crop competition

Does system diversity influence weed pressure?
Diversity in a cropping system (meaning, more different kinds of plants growing together) can influence soil resources, and systems with more diverse resources may have reduced plant-to-plant competition because of niche partitioning. Niche partitioning refers to how competing species use different resources and thus are better able to coexist. Can agricultural practices that increase diversity decrease weed competition on the crop?

The soil came from a field experiment planted with an annual cropping system and a perennial cropping system based on species local dairy farmers would typically plant for forage. There were four levels of diversity: “Low” (1 variety of 1 species), “Conspecific” (4 varieties of 1 species), “Heterospecific” (4 species with 1 variety of each), and “High” (4 varieties of each of 4 species).

Pots were filled with soil from the annual and perennial systems under the four levels of diversity. Some of the pots had field soil, some had sterilized potting mix that was inoculated with biota from the field soil, and some had sterilized soil that was not inoculated (the control). Then we planted one crop plant seed (sorghum sudangrass) and different densities of weed seeds (common lambsquarters). After eleven weeks in the greenhouse, we harvested the crop and the weeds and weighed them.

The pots with field soil had the nutrient and microbe footprints of the crop diversity treatments, while the inoculated pots maintained constant fertility and mostly differed in their soil microbe communities. These two potting treatments allowed us to study the relative importance of soil microbes in defining weed-crop competition.

Results
We learned that most differences in crop tolerance to weeds were due to diversity. In pots that had soil from a more diverse cropping legacy, weed-crop competition was higher. Across all diversity levels and sources of soil, competition trends were the same in all but one instance. This means that the microbe-inoculated sterilized soil showed the same trends as the field soil, which suggests that microbe communities can replicate weed-crop competition trends.

poster
Check out Uriel Menalled’s poster about this weed-crop competition project.