Soil Health in New York State: Effects of Soil Texture and Cropping System

Joseph Amsili, Harold van Es, Robert Schindelbeck, Kirsten Kurtz, David Wolfe, and Galia Barshad
Soil and Crop Sciences and Horticulture Sections, Cornell University

Soil health concepts, practices, and testing have generated a growing awareness of the soil’s central role and highlights that sustainable soil management requires an understanding of biological, physical, and chemical processes and their interrelationships. Furthermore, it is recognized that human management can significantly degrade or improve the quality of the soil.

New York State (NYS), through Cornell University, has been a global leader in the development of soil health programs, including the development of testing methodologies. NYS land managers are becoming increasingly excited about improving the health of their soils. As progress is made in characterizing the health of soils nationwide, researchers will be able to develop regionally specific interpretive metrics that are shaped by the interplay of soil management with soil types and climate.

As part of that effort, we have summarized results from 1,456 soil samples from across New York State from a variety of soil types and cropping systems (Figure 1). Each composite soil sample went through the Standard Comprehensive Assessment of Soil Health (CASH) package at the Cornell Soil Health Laboratory.

Figure 1. Distribution of soil health samples by county across New York State.

The report demonstrated the important effects of soil texture and cropping system on soil health parameters (Figure 2). For many biological soil health indicators, soils with higher amounts of silt and clay showed higher values, which needs to be accounted for when interpreting test results. Overall, human management through cropping system had a big impact on soil health status, and cropping system differences often reflected the cycling and flows of carbon and nutrients. Pasture systems maintained the best overall soil health because these fields are seldom disturbed by tillage and receive year-round root and shoot inputs. Mixed Vegetable systems typically involve certified organic practices with diverse rotations, cover cropping, and significant quantities of organic nutrient amendments such as compost. Dairy Crop systems can maintain soil health due to cycling of carbon and nutrients through manure inputs and rotations with perennial legume and grass sods. In contrast, Annual Grain and Processing Vegetable systems are intensively managed, and typically don’t apply enough organic amendments to replace the organic matter that is lost each year. Typically, 40-80% of the carbon and nutrients in the aboveground biomass are exported off the farm in the form of crop harvests, which is generally not counterbalanced with regenerative soil management practices like cover cropping and organic amendment application. The results of this study (available in the Reports below) will enable New York State policy makers, agricultural professionals, and farmers to interpret soil health data within the context of soil type and cropping system (Figure 3).

Figure 2. Mean soil organic matter across soil texture groups (left, A). And mean soil organic matter across cropping systems on loam textured soils (right, B).
Figure 3. The Characterization of Soil Health in New York State Summary (left) and Technical Report (right) are now available.

For more information, please visit our website: newyorksoilhealth.org

Print Friendly, PDF & Email