Publications

To download a PDF of the publication of interest, click on the article’s title, and your browser will direct you to the journal website, where you can freely access a copy.

2023

  1. Cheng J, Kolba N, Tako E. (2023) The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. DOI: 10.1080/10408398.2023.2169857  
  2. Cheng J, Kolba N, Garcia-Rodriguez A, Marques CNH, Maher GJ, Tako E. (2023) Food-grade metal oxide nanoparticles exposure alters internal microbial populations, brush border membrame functionality and morphology, in vivo (Gallus gallus). DOI: 10.3390/antiox12020431  
  3. Mishima MDV, Martino HSD, Kolba N, Shah DD, Grancieri M, Santos KMOD, Lima JP, Silva BPD, Mejia EG, Tako E. (2023) Effects of intra-amniotic administration of the hydrolyzed protein of chia (Salvia hispanica L.) and Lacticaseribacillus paracasei on intestinal functionality, morphology, and bacteria populations, in vivo (Gallus gallus). DOI: 10.3390/nu15081831

2022

  1. Agarwal N, Kolba N, Jung Y, Cheng J, Tako E. (2022) Saffron (Crocus sativus L.) flower water extract disrupts the cecal microbiome, brush border membrane functionality, and morphology in vivo (Gallus gallus). DOI: 10.3390/nu14010220 
  2. Agarwal N, Kolba N, Khen N, Even Carmel, Turjeman S, Koren O, Tako E. (2022) Quinoa soluble fiber and quercetin alter the composition of the gut microbiome and improve brush border membrane morphology in vivo (Gallus gallus). DOI: 10.3390/nu14030448
  3. Verediano TA, Martino HSD, Kolba N, Fu Y, Paes MCD, Tako E. (2022) Black Corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). DOI: 10.1016/j.foodres.2022.111227 
  4. Verediano TA, Agarwal N, Gomes MJC, Martino HSD, Tako E. (2022) Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. DOI: 10.1080/10408398.2022.2060933
  5. Gomes MJC, Martino HSD, Kolba N, Cheng J, Agarwal N, de Moura Rocha M, Tako E. (2022) Zinc biofortified cowpea (Vigna unguiculata L. Walp.) soluble extracts modulate assessed cecal bacterial populations and gut morphology in vivo (Gallus gallus). DOI: 10.31083/j.fbl2705140
  6. Knez M, Pantovic A, Tako E, Boy E. (2022) FADS1 and FADS as biomarkers of Zn status- a systematic review and meta-analysis. DOI: 10.1080/10408398.2022.2103790
  7. Kolba N, Zarei A, Cheng J, Agarwal N, Dadmohammadi Y, Khazdooz L, Abbaspourrad A, Tako E. (2022) Alterations in intestinal brush border membrane functionality and bacterial populations following intra-amniotic administration (Gallus gallus) of nicotinamide riboside and its derivatives. DOI: 10.3390/nu14153130
  8. Cheng J, Kolba N, Sisser P, Turjeman S, Even C, Koren O, Tako E. (2022) Intraamniotic administration (Gallus gallus) of genistein alters mineral transport, intestinal morphology, and gut microbiota. DOI: 10.3390/nu14173473
  9. Agarwal N, Shukla V, Kolba N, Jackson C, Cheng J, Padilla-Zakour OI, Tako E. (2022) Comparing the effects of concord grape (Vitis labrusca L.) puree, juice, and pomace on intestinal morphology, functionality, and bacterial populations in vivo (Gallus gallus). DOI: 10.3390/nu14173539
  10. Kolba N, Zarei A, Cheng J, Agarwal N, Dadmohammadi Y, Khazdooz L, Abbaspourrad A, Tako E. (2022). Alterations in intestinal brush border membrane functionality and bacterial populations following intra-amniotic administration (Gallus gallus) of catechin and its derivatives. DOI: 10.3390/nu14193924 
  11. Agrizzi Verediano T, Martino HSD, Kolba N, Grancieri, Dias Paes MC, Tako E.(2022). “Black Corn extract (Zea mays L.) improves cecal microbial populations, in vivo (Gallus gallus) model”. Journal of Agricultural Food Chemistry. DOI: 10.1016/j.foodres.2022.111227 
  12. Agrizzi Verediano T, Agarwal N, Martino HSD, Kolba N, Grancieri M, Paes MCD, Tako E. (2022)” Effect of black corn anthrocyanin-rich extract (Zea mays L.) on cecal microbial pipulations in vivo (Gallus gallus).” Nutrients. Doi:10.3390/nu14214679
  13. Kolba N, Cheng J, Jackson C, Tako E. (2022)”Intra-amniotic administrations- an emerging method to investigate necrotizing enterocolitis, in vivo (Gallus gallus).” Nutrients. Doi:10.3390/nu14224795
  14. Garcia-Rodriguez A, Stillwell A, Tochilovski B, Tansman JV, Limage R, Kolba N, Tako E, Marques CNH, Mahler G. (2022)” The mechanistic effects of human digestion on magnesium oxide nanoparticles: implications on probiotics Lactobacillus rhamnosus GG and Bifidobacterium VPI 1124.Environmental Science: Nano.  Doi:10.1039/D2EN00150K
  15. Jackson C, Shukla V, Kolba N, Agarwal N, Pafilla Zakour OI, Tako E. (2022) “Empire apple (Malus domestica) juice, pomace, and pulp modulate intestinal functionality, morphology, and bacterial populations in vivo (Gallus gallus).” Nutrients. Doi:10.3390/nu14234955
  16. Aparecida Dias K, Rosignoli da Conceição A, Santana Pereira SM, Oliveira LA, Vitor da Silva Rodrigues K, Sousa Dias R, Oliveira de Paula S, Jose Natali A, Pinto da Matta SL, Vilela Gonçalves R, Tako E, Martino HSD, Mattos Della Lucia C. (2022) “Curcumin-added whey protein positively modulates skeletal muscle inflammation and oxidative damage after exhaustive exercise.” Nutrients. Doi:10.3390/nu14224905

2021

  1. Juste Contin Gomes M, Martino HSD, Tako E. (2021) Effects of iron and zinc biofortified foods on gut microbiota in vivo (Gallus gallus): A systematic review. DOI: 10.3390/nu13010189
  2. Pereira Silva B, Martino HS, Tako E. (2021) Plant origin prebiotics affect duodenal brush border membrane functionality and morphology, in vivo (Gallus gallus). DOI: 1039/D1DO01159F
  3. Verediano TA, Martino HS, Dias Paes MC,  Tako E. (2021) Effects of anthocyanin on intestinal health: a systemic review.  DOI: 10.3390/nu13041331
  4. Juste Contin Gomes M, Kolba N, Agarwal N, Kim D, Eshel A, Koren O, Tako E. (2021) Modifications in the intestinal functionality, morphology and microbiome following intra-amniotic administration (Gallus gallus) of grape (Vitis vinifera) stilbenes (resveratrol and pterostilbene).  DOI: 10.3390/nu13093247

2020

  1. Beasley JT, Johnson AAT, Kolba N, Bonneau JP, Glahn RP, Ozeri L, Koren O,Tako E. (2020) Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus). Scientific Reports. DOI: 10.1038/s41598-020-57598-3
  2. Limage R, Tako E, Kolba N, Guo Z, Garcia-Rodriguez A, Marques CNH, Mahler GJ. (2020) TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small. DOI: 10.1002/smll.202000601
  3. Warkentin T, Kolba N, Tako E. (2020) Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane Functionality In Vivo (Gallus Gallus)Nutrients. DOI: 10.3390/nu12092563
  4. Martino HSD, Kolba N, Tako E. (2020) Yacon (Smallanthus sonchifolus) flour soluble extract improve intestinal bacterial populations, brush border membrane functionality and morphology in vivo (Gallus gallus)Food Research International. DOI: 10.1016/j.foodres.2020.109705
  5. Carboni J, Reed S, Kolba N, Eshel A, Koren O, Tako E. (2020) Alterations in the Intestinal Morphology, Gut Microbiota, and Trace Mineral Status Following Intra-Amniotic Administration (Gallus gallus) of Teff (Eragrostis tef) Seed ExtractsNutrients. DOI: 10.3390/nu12103020
  6. Garcia-Rodriguez A, Moreno-Olivas F, Marcos R, Tako E, Marques, CNH, Mahler GJ. (2020) The role of metal oxide nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on small intestinal enzyme activity. RSC Environmental Science Nano. DOI: 10.1039/d0en01001d 
  7. Broad RC, Bonneau JP, Beasley JT, Roden S, Sadowski P, Jewell N, Brien C, Berger B, Tako E, Glahn RP, Hellens RP, Johnson AAT. (2020) Effect of rice GDP-L-Galactose phosphorylase constitutive overexpression on ascorbate concentration, stress tolerance, and iron bioavailability in rice. Frontiers in Plant Science. DOI: 10.3389/fpls.2020.595439

2019

  1. Beasley JT, Bonneau JP, Sanchez-Palacios JT, Moreno-Moyano LT, Callahan DL, Tako E, Glahn RP, Lombi E, Johnson AAT. (2019) Metabolic engineering of bread wheat improves grain iron concentration and bioavailabilityPlant Biotechnology Journal. DOI: 10.1111/pbi.13074
  2. Glahn RP, Tako E, Gore MA. (2019) The Germ Fraction Inhibits Iron Bioavailability of Maize: Identification of an Approach to Enhance Maize Nutritional Quality via Processing and Breeding. Nutrients. 11 (4),833; DOI: 10.3390/nu11040833
  3. Morais-Dias D, Kolba N, Hart JJ, Ma M, Sha ST, Lakshmanan N, Regini Nutti M, Duarte Martino HS, Glahn RP, Tako E. (2019) Soluble extracts from carioca beans (Phaseolus vulgaris L.)- affect the gut microbiota and iron related brush border membrane protein expression in vivo (Gallus gallus). Food Research International. DOI: 10.1016/j.foodres.2019.04.060
  4. Beasley JT, Hart JJ, Tako E, Glahn RP, Johnson AAT. (2019) Investigation of Nicotianamine and 2′ Deoxymugineic Acid as Enhancers of iron Bioavailability in Caco-2 Cells. Nutrients. 11(7), 1502. DOI: 10.3390/nu11071502
  5. Wang X, Kolba N, Morais-Dias D, Tako E. (2019) Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extractsFood & Function. DOI: 10.1039/C9FO00836E
  6. Wiesinger JA, Glahn RP, Cichy KA, Kolba N, Hart JJ, Tako E. (2019) An in vivo (Gallus gallus) feeding trial demonstrating the enhanced iron bioavailability properties of the fast cooking Manteca yellow bean (Phaseolus vulgaris L.). Nutrients. DOI: 10.3390/nu11081768
  7. da Silva BP, Kolba N, Martino HSD, Hart JJ, Tako E (2019) Soluble Extracts from Chia Seed (Salvia hispanica L.) Affect Brush Border Membrane Functionality, Morphology and Intestinal Bacterial Populations In Vivo (Gallus gallus)Nutrients. DOI: 10.3390/nu11102457
  8. Kolba N, Guo Z, Olivas FM, Mahler GJ, Tako E (2019) Intra-amniotic administration (Gallus gallus) of TiO2, SiO2, and ZnO nanparticles affect brush border membrane functionality and alters gut microflora population. Food and Chemical Toxicology. DOI: 10.1016/j.fct.2019.110896
  9. Elad Tako (2019). Dietary Trace Minerals. DOI: 10.3390/nu11112823. 
  10. Hart JJ, Tako E, Wiesinger J, Glahn RP (2019) Polyphenolic Profiles of Yellow Bean Seed Coats and Their Relationship with Iron BioavailabilityJournal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.9b05663

2018

  1. Knez M, Tako E, Glahn RP, Kolba N, de Courcy Ireland E, Stangoulis JCR.(2018) The dihomo-γ-linolenic acid ratio predicts the efficacy of Zn biofortified wheat in chicken (Gallus gallus). Journal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.7b04905
  2. Moreno-Olivas F, Mahler G, Tako E. (2018) The ZnO nanoparticles affect intestinal function in an In Vitro ModelFood and Function. DOI: 10.1039/C7FO02038D
  3. Hou T., Tako E. (2018) The In Ovo feeding administration (Gallus gallus)- an emerging In Vivo approach to assess bioactive compounds with potential nutritional benefits. Nutrients. DOI:10.3390/nu10040418
  4. Reed S, Knez M, Uzan A., Stangoulis J, Glahn RP, Koren O, Tako E.  (2018) Alterations in the gut (Gallus gallus) microbiota following the consumption of zinc biofortified wheat (Triticum aestivum)- based dietJournal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.8b01481
  5. Printed Edition of the Special Issue Published in Nutrients: (2018) Dietary Zn and Human Health. Nutrients. DOI: 10.3390/books978-3-03897-020-0
  6. Printed Edition of the Special Issue Published in Nutrients: (2018) Fe Deficiency, Dietary Bioavailability and Absoption. Nutrients. ISBN: 978-3-03897-230-31-0
  7. Wiesinger J, Cichy K, Tako E, Glahn RP.  (2018) The Fast Cooking and Enhanced Iron Bioavailability Properties of the Manteca Yellow Bean (Phaseolus vulgaris L.)Nutrients. DOI: 10.3390/nu10111609
  8. Moreno-Olivas F, Tako E, Mahler GJ.  (2018) ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestineFood and Chemical Toxicology. DOI: 10.1016/j.fct.2018.11.048
  9. Morais-Dias D, Kolba N, Binyamin D, Ziv O, Regini Nutti M, Duarte Martino HS, Glahn RP, Koren O, Tako E.  (2018) Iron Biofortified Carioca Bean (Phaseolus vulgaris L.)- Based Brazilian Diet Delivers More Absorbable Iron and Affects the Gut Microbiota In Vivo (Gallus gallus)Nutrients. DOI: 10.3390/nu10121970
  10.  Special Editor: Elad Tako (2018). Special Issue: Dietary Zn & Human Health. ISSN: 2072-6643.
  11. Special Editor: Elad Tako (2018). Special issue: Fe Deficiency, Dietary Bioavailability and Absorption. ISSN: 2072-6643.

2017

  1. Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestineNanoImpactDOI: 10.1016/j.impact.2017.01.002
  2. Pacifici S, Song J, Zhang C, Wang Q, Glahn RP, Kolba N, Tako E. Intra Amniotic Administration of Raffinose and Stachyose Affects the Intestinal Brush Border Functionality and Alters Gut Microflora PopulationsNutrients 9 (3); 304-314.
  3. Hart J,  Tako E, Glahn RP. Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 CellsJournal of Agriculture and Food Chemistry DOI: 10.1021/acs.jafc.6b05755
  4. Morais Dias D, Brunoro Costa NM, Nutti MR, Tako E, Duarte Martino HS. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness.  Critical Reviews in Food Science and Nutrition DOI: 10.1080/10408398.2017.1306484
  5. de Figueirdo MA, Boldrin PF, Hart JJ, de Andrade MJB, Guilherme LRG, Glahn RP, Li L. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seedsPlant Physiology and Biochemistry 111; 193-202.
  6. Hou T, Liu Y, Kolba N, Guo D, He H. Desalted duck egg white peptides promote calcium uptake and modulate bone formation in the retinoic acid-induced bone loss rat and Caco-2 cell model. Nutrients, 219 (5): 428-435.
  7. Hou T, Kolba N, Glahn RP, Tako E. Intra-amniotic administration (Gallus gallus) of Cicer arietinum and Lens culinaris prebiotics extracts and duck egg white peptides affects calcium status and intestinal functionalityNutrients, 9(7): 785-803.
  8. Glahn R, Tako E, Hart J, Haas J, Lung’aho M, Beebe S. Iron bioavailability studies of the first generation of iron-biofortified beans released in RwandaNutrients DOI: doi:10.3390/nu9070787.
  9. Knez M, Strangoulis JCR, Gilbetic M, Tako E. The linoleic acid: dihomo-γ-linolenic acid ratio (LA:DGLA)- an emerging biomarker of Zn statusNutrients 9(8): 825-836. doi:10.3390/nu9080825.
  10. Reed S, Neuman H, Glahn RP, Koren O, Tako E. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based dietPLoS ONE 12(8): e0182431. https://doi.org/10.1371/journal.pone.0182431.

2016

  1. Trijatmiko KR, Duenas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH. Biofortified indica rice attains iron and zinc nutrition dietary targets in the fieldScience Reports 6; 1-18.
  2. Glahn RP, Tako E, Cichy K, Wiesinger J. The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vularis)Food & Function 7; 3193-3200.
  3. Pacifici S, Song J, Zhang CK, Tako EEvaluating the effect of plant origin prebiotics (Raffinose and Stachyose) on iron status, intestinal functionality and intestinal bacterial populations in vivoThe FASEB Journal 30(1 Supplement); 692.17.
  4. Tako E, Koren OChronic Zinc deficiency alters chick (Gallus gallus) gut microbiota structure and function. The FASEB Journal30(1 Supplement); 148.3.
  5.  Seim GL, Tako E, Ahn C, Glahn RP, Young SL. A novel in vivo model for assessing the impact of geophagic earth on iron status. Nutrients 8(6); 362.
  6. Wiesinger JA, Cichy KA, Glahn RP, Grusak MA, Brick MA, Thompson HJ, Tako E. Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.)Journal of Agricultural and Food Chemistry 64 (45); 8592-8603.
  7. Tako E, Bar H, Glahn RP. The Combined Application of the Caco-2 Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represens an Effective Approach to Predicting Fe Bioavailability in HumansNutrients 8(11), 732.

2015

  1. Hartono K, Reed S, Ayikarkor N, Glahn RP, Tako E. Alterations in gut microflora populations and brush border functionality following intra-amniotic daidzein administrationRSC Advances 5;6407-6412.
  2. Tako E, Reed S, Budiman J, Hart JJ, Glahn RP. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic contentNutr J 14:11.
  3. Hart JJ, Tako E, Kochian LV, Glahn RPIdentification of Black Bean (Phaseolus vulgaris L.) Polyphenols that Inhibit and Promote Iron Uptake by Caco-2 CellsJ Agric Food Chem 63(25):5950-5956.
  4. Tako E, Reed S, Anandaraman A, Beebe SE, Hart JJ, Glahn RP.Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans. PLoS ONE 10(9):e0138479.
  5. Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and FunctionNutrients 7(12);9768-9784.
  6. Reed S, Glahn RP, Brenna T, Tako E. Dietary Zinc Deficiency affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA: DGLA) Ratio; A Sensitive Physiological Marker of Zinc Status In vivo (Gallus gallus)Nutrients 6; 1164-1180.
  7. Glahn RP, Tako E. Assessment of Iron Bioavailability and Iron Biofortification of Staple Food Crops: Guiding the Breeding Approach with in vitro and in vivo Screening ToolsEuropean Journal of Food Research & Review 5; 477-478.
  8. Tako E, Cherian B, Glahn RPBiofortified Pearl Millet (Pennisetum glaucum L.) Provides More Bioavailable Iron than Standard Pearl Millet: Studies In vivo (Gallus gallus) and an In vitro Digestion/Caco-2 ModelEuropean Journal of Food Research & Review 5; 518-519.
  9. Tako E, Hoekenga O, Kochian L, Glahn RP. Retraction Note: High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Journal of Nutrition 1 (14); 1.

2014

  1. Tako E, Glahn RP, Knez M, Stangoulis JCR. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickensNutr J 13(1);58.
  2. Tako E, Beebe SE, Reed S, Hart JJ, Glahn RP. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.)Nutr J 5(9);19.
  3. Reed S, Qin X, Ran-Ressler R, Brenna JT, Glahn RP, Tako E. Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA: DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus). Nutrients 6(3);1164-1180.

2013

  1. Pebsworth PA, Seim GL, Huffman MA, Glahn RP, Tako E, Young SL. Soil consumed by chacma baboons is low in bioavailable iron and high in clayJ Chem Ecol 39(3);447-449.
  2. Tako E, Hoekenga OA, Kochian LV, Glahn RPHigh bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr J 12(3).
  3. Seim GL, Ahn CI, Bodis MS, Luwedde F, Miller DD, Hillier S, Tako E, Glahn RP, Young SLBioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. Food Funct 4(8);1263-1270.
  4. DellaValle DM, Vandenberg A, Glahn RPSeed coat removal improves iron bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model. J Agric Food Chem 61(34);8084-8089.
  5. Ran-Ressler RR, Glahn RP, Bae S, Brenna JTBranched-chain fatty acids in the neonatal gut and estimated dietary intake in infancy and adulthood. Nestle Nutr Inst Workshop Ser 77;133-143.

2012

  1. Cheng Z, Tako E, Yeung A, Welch RM, Glahn RP. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/Caco-2 cell culture modelFood Funct 3(7);732-736.
  2. Tako E, Glahn RP. Intra-amniotic administration and dietary inulin affect the iron status and intestinal functionality of iron-deficient broiler chickensPoult Sci 91(6);1361-1370.
  3. Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, Shuler ML. Oral exposure to polystyrene nanoparticles affects iron absorptionNat Nanotechnol 7(4);264-271.

2011

  1. Tako E, Blair MW, Glahn RP. Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model.Nutr J 14;10:113.
  2. Hoekenga OA, Lung’aho MG, Tako E, Kochian LV, Glahn RPIron biofortification of maize grainPlant Gen Res 9 (02);327-329
  3. Tako E, Glahn RP. Iron status of the late term broiler (Gallus gallus) embryo and hatchling. Int J Poul Sci 10(1);42-48

2010

  1. Tako E, Glahn RPWhite beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitrodigestion/Caco-2 model. Int J Vitam Nutr Res 80(6);416-429.
  2. Tako E, Rutzke MA, Glahn RPUsing the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailabilityPoult Sci89(3);514-521.
  3. Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG, Shou HNicotianamine, a novel enhancer of rice iron bioavailability to humansPLoS One 5(4):e10190.
  4. Lung’aho MG, Glahn RP. Use of white beans instead of red beans may improve iron bioavailability from a Tanzanian complementary food mixtureInt J Vitam Nutr Res 80(1);24-31.