Huang published in Biomicrofluidics, began postdoctoral appointment at Lawrence Livermore National Laboratory
My paper entitled “Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis” was recently published in the journal Biomicrofluidics. This paper describes my work on characterizing shear-dependent EpCAM immunocapture of pancreatic cancer cells enhanced by positive dielectrophoresis (DEP) and nonspecific adhesion of blood cells reduced by negative DEP. We evaluated capture probability as a function of shear stress, cell surface chemistry, and normal force using a capture probability model, and demonstrated that DEP can enhance immunocapture of cancer cells with lower EpCAM expression and that immunocapture purity can potentially be improved by repelling blood cells with negative DEP. This work informs the design of future hybrid DEP-immunocapture devices with increased CTC capture purity, which will facilitate subsequent functional and genetic analyses to elucidate cancer progression and develop more effective treatment options.
Huang C, Smith JP, Saha TM, Rhim AD, Kirby BJ. “Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis,” Biomicrofluidics, 8(4): 044107, 2014. DOI
I also recently started as a Postdoctoral Research Staff Member at Lawrence Livermore National Laboratory in Livermore, CA in the Center for Bioengineering, Micro and Nano Technology Section of the Materials Engineering Division. I will be working on an acoustofluidics cell/particle separation project as well as a microfluidic nanoparticle synthesis project. I am very much enjoying NorCal weather and having weekends free!