Skip to main content
  Cornell University

Steinschneider Research Group

Department of Biological and Environmental Engineering


Publications can also be found here: Google Scholar Citations


Worland, S. C., Steinschneider, S., Farmer, W., Asquith, W., & Knight, R. ( 2019). Copula theory as a generalized framework for flow‐duration curve based streamflow estimates in ungaged and partially gaged catchments. Water Resources Research, 55.

Steinschneider, S., Ray, P., Rahat, S.H., and Kucharski, J. (2019), A weather-regime based stochastic weather generator for climate vulnerability assessments of water systems in the Western United States, Water Resources Research, 55.

Worland, S., Steinschneider, S., Asquith, W., Knight, R., Wieczorek, M. (2019), Prediction and inference of flow-duration curves using multi-output neural networks, Water Resources Research, 55.

Doss‐Gollin, J., Farnham, D. J., Steinschneider, S., & Lall, U. (2019). Robust Adaptation to Multi‐Scale Climate Variability. Earth’s Future, 7.

Ahn, K-H, Steinschneider, S. (2019), Seasonal predictability and change of large-scale summer precipitation patterns over the Northeast United States, Journal of Hydrometeorology, 0,

Knighton, J., Pleiss, G. Carter, E., Lyon, S., Walter, M. T., and Steinschneider, S. (2019), Potential Predictability of Regional Precipitation and Discharge Extremes using Synoptic-Scale Climate Information via Machine Learning: An Evaluation for the Eastern Continental United States, Journal of Hydrometeorology, 20, 883–900,

Ahn, K‐H, Steinschneider, S. (2019), Time‐varying, nonlinear suspended sediment rating curves to characterize trends in water quality: An application to the Upper Hudson and Mohawk Rivers, New York, Hydrological Processes, 33, 1865– 1882.

Steinschneider, S., Styler, A., Stedman, R., and Austerman, M. (2019), A Rapid Response Survey to Characterize the Impacts of the 2017 High Water Event on Lake Ontario. Journal of the American Water Resources Association 1065– 1079.

Ling, Y., Klemes, M., Steinschneider, S., Dichtel W., and D. Helbling (2019), QSARs to predict adsorption affinity of organic micropollutants for activated carbon and ß-cyclodextrin polymer adsorbents, Water Research, 154, 217-226,

Ahn, K-H, Steinschneider, S. (2019), A hierarchical Bayesian model for streamflow estimation at ungauged sites via spatial scaling in the Great Lakes basin, Journal of Water Resources Planning and Management, 145 (8),


Fu, W., and Steinschneider, S. (2018), A diagnostic-predictive assessment of winter precipitation over the Laurentian Great Lakes: effects of ENSO and other teleconnections, Journal of Hydrometeorology,

Doering, K., and Steinschneider, S. (2018), Summer co-variability of surface climate for renewable energy across the contiguous United States: role of the North Atlantic subtropical high, Journal of Applied Meteorology and Climatology, doi: 10.1175/JAMC-D-18-0088.1

Carter, E., Riha, S., Melkonian, J., and Steinschneider, S. (2018), Yield response to climate, management, and genotype: a large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems, Environmental Research Letters, in press

González-Zeas, D., Erazo, B., Lloret, P., De Bièvre, B., Steinschneider, S., and Dangles, O. (2018), Linking global climate change to local water management: limitations and prospects for a tropical mountain watershed, Science of the Total Environment, 650(Pt 2):2577-2586. doi: 10.1016/j.scitotenv.2018.09.309.

Nayak, M., Herman, J., and Steinschneider, S. (2018), Balancing flood risk and water supply in California: Policy search integrating short-term forecast ensembles with conjunctive use, Water Resources Research, 54.

Carter, E., & Steinschneider, S. (2018). Hydroclimatological drivers of extreme floods on Lake Ontario. Water Resources Research, 54, 4461 -4478.

Steinschneider, S., Ho, M., Williams. A.P., Cook, E.R., Lall, U. (2018), A 500-year tree-ring based reconstruction of extreme cold-season precipitation and number of atmospheric river landfalls across the Southwestern U.S., Geophysical Research Letters, 45, 5672–5680.

Carter, E.K., Hain, C.R., Anderson, M.C., and Steinschneider, S. (2018), A water balance based, spatiotemporal evaluation of terrestrial evapotranspiration products across the contiguous United States, Journal of Hydrometeorology, accepted,

Carter, E.K., Melkonian, J., Steinschneider, S., Riha, S.J. (2018), Rainfed maize yield response to management and climate covariaiblity at large spatial scales, Agricultural and Forest Meteorology, 256-257, 242-252,

Worland, S., Steinschneider, S., Hornberger, G.M. (2018), Drivers of variability in public-supply water use across the contiguous United States, Water Resources Research, 54(3),

Wu, X., Gomes-Selman, J., Shi, Q., Xue, Y., García-Villacorta, R., Anderson, E., Sethi, S., Steinschneider, S., Flecker, A., Gomes, G.P. (2018), Efficiently approximating the Pareto FrontierL hydropower dam placement in the Amazon Basin, Association for the Advancement of Artificial Intelligence, accepted.

Ahn, K-H, Steinschneider, S. (2018), Time-varying suspended sediment-discharge rating curves to estimate climate impacts on fluvial sediment transport. Hydrological Processes, 32 (1), 102-117, doi:10.1002/hyp.11402.


Farnham, D. J., Steinschneider, S., and Lall, U. (2017), Zonal wind indices to reconstruct CONUS winter precipitation, Geophysical Research Letters, 44 (24),

Knighton, J., Steinschneider, S., & Todd Walter, M. (2017). A vulnerability-based, bottom-up assessment of future riverine flood risk using a modified peaks-over-threshold approach and a physically based hydrologic model. Water Resources Research, 53,

Wi, S., Ray, P., Demaria, M.C., Steinschneider, S., and Brown, C. (2017), A user-friendly software package for VIC hydrologic model development, Environmental Modelling and Software, 98, 35-53,

Schlef, K.E., Steinschneider, S. Brown, C.M. (2017), Spatiotemporal impacts of climate and demand on water supply in the Apalachicola-Chattahoochee-Flint Basin, Journal of Water Resources Planning and Management, 144 (2),

Steinschneider, S., Cook, E.R., Briffa, K.R., and Lall, U. (2017), Hierarchical regression models for dendroclimatic standardization and climate reconstruction, Dendrochronologia, 44, 174-186,

Ahn, K.-H., Yellen, B., and S. Steinschneider (2017), Dynamic linear models to explore time-varying suspended sediment-discharge rating curves, Water Resour. Res., 53, 4802–4820, doi:10.1002/2017WR020381.

Ahn, K.-H., R. Palmer, and S. Steinschneider (2017), A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States, Water Resour. Res., 53, 503–521, doi:10.1002/2016WR019605.


Steinschneider, S., and U. Lall (2016), El Niño and the U.S. precipitation and floods: What was expected for the January-March 2016 winter hydroclimate that is now unfolding?, Water Resources Research, doi: 10.1002/2015WR018470.

Steinschneider, S., M. Ho, E. R. Cook, and U. Lall (2016), Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S., Water Resour. Res., 52,3866–3880, doi:1002/2016WR018712.

Steinschneider, S., and U. Lall (2016), Spatiotemporal structure of precipitation related to tropical moisture exports over the eastern United States and its relation to climate teleconnections, Journal of Hydrometeorology, doi:

Whateley, S., Steinschneider, S., and Brown, C. (2016), Selecting Stochastic Climate Realizations to Efficiently Explore a Wide Range of Climate Risk to Water Resource Systems, J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000631, 06016002.


Wi, S., J.B. Valdes, S. Steinschneider, T.W Kim (2015), Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima, Stochastic Environmental Research and Risk Analysis, doi: 10.1007/s00477-015-1180-8.

Steinschneider, S. and U. Lall (2015), Daily Precipitation and Tropical Moisture Exports across the Eastern United States: An Application of Archetypal Analysis to Identify Spatiotemporal Structure. J. Climate, 28, 8585–8602. doi:

Steinschneider, S., R. McCrary, L. O. Mearns, and C. Brown (2015), The effects of climate model similarity on probabilistic climate projections and the implications for local, risk-based adaptation planning. Geophys. Res. Lett., 42, 5014–5044. doi: 10.1002/2015GL064529.

Yu, Y., Steinschneider, S., and Reckhow, D. (2015), Evaluation of Environmental Degradation Kinetics Using Hierarchical Bayesian Modeling, J. Environ. Eng. , 10.1061/(ASCE)EE.1943-7870.0000997 , 06015008.

Rossi, N., L. DeCristofaro, S. Steinschneider, C. Brown, and R.N. Palmer (2015), Potential impacts of changes in climate on turbidity in New York City’s Ashokan Reservoir, Water Resources Planning and Management, accepted.

Steinschneider, S., and U. Lall (2015), A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports, Water Resour. Res., 51, 1472–1492, doi:10.1002/2014WR016664.

Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L., and Brown, C. (2015). Expanded Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under Hydroclimatic Uncertainties. J. Water Resour. Plann. Manage. ,10.1061/(ASCE)WR.1943-5452.0000536 , 04015023.

Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown (2015), Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrol. Earth Syst. Sci., 19, 857-876, doi:10.5194/hess-19-857-2015.

Steinschneider, S., Wi, S., and Brown, C. (2015), The integrated effects of climate and hydrologic uncertainty on future flood risk assessments. Hydrol. Process., 29, 2823–2839. doi:10.1002/hyp.10409.


Whateley, S., S. Steinschneider, and C. Brown (2014), A climate change range-based method for estimating robustness for water resources supply, Water Resour. Res., 50, 8944–8961, doi:10.1002/2014WR015956.

Steinschneider, S., Y.C. Yang, and C. Brown (2014), Combining regression and spatial proximity for catchment model regionalization: a comparative study, Hydrologic Sciences Journal, doi: 10.1080/02626667.2014.899701.


Steinschneider, S., Y.C. Yang, and C. Brown (2013), Panel Regression Techniques for Identifying Impacts of Anthropogenic Landscape Change on Hydrologic Response, Water Resources Research, 49, 7874-7886, doi: 10.1002/2013WR013818.

Steinschneider, S., and C. Brown (2013), A semiparametric multivariate, multi-site weather generator with low-frequency variability for use in climate risk assessments, Water Resour. Res., 49, 7205-7220, doi: 10.1002/wrcr.20528.

Steinschneider, S., A. Bernstein, R.N. Palmer, and A. Polebitski (2013), Reservoir management optimization for basin-wide ecological restoration in the Connecticut River, Journal of Water Resources Planning and Management, 10.1061/(ASCE)WR.1943-5452.0000399.


Steinschneider, S., A. Polebitski, C. Brown, and B. H. Letcher (2012), Toward a statistical framework to quantify the uncertainties of hydrologic response under climate change, Water Resour. Res., 48, W11525, doi:10.1029/2011WR011318.

Steinschneider, S., and C. Brown (2012), Forecast-informed low-flow frequency analysis in a Bayesian framework for the northeastern United States, Water Resour. Res., 48, W10545, doi:10.1029/2012WR011860.

Steinschneider, S., and C. Brown (2012), Dynamic reservoir management with real-option risk hedging as a robust adaptation to nonstationary climate, Water Resour. Res., 48, W05524, doi:10.1029/2011WR011540.


Steinschneider, S., and C. Brown (2011), Influences of North Atlantic climate variability on low-flows in the Connecticut River Basin, Journal of Hydrology, 409 (1-2), 212-224.


Skip to toolbar