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Abstract

Without strong assumptions about how noise manifests in choices, we can infer little from

existing empirical observations of the common ratio effect (CRE) about whether there exists

an underlying common ratio preference (CRP). We propose to solve this inferential challenge

using paired valuations, which yield valid inference under common assumptions. Using this

approach in an online experiment with 900 participants, we find no evidence of a systematic

CRP. To reconcile our findings with existing evidence, we present the same participants with

paired choice tasks and demonstrate how noise can generate a CRE even for individuals without

an associated CRP.

∗McGranaghan: Department of Applied Economics and Statistics, University of Delaware, email: cmc-
gran@udel.edu; Nielsen: Division of the Humanities and Social Sciences, California Institute of Technology, email:
kirby@caltech.edu; O’Donoghue: Department of Economics, Cornell University, email: edo1@cornell.edu; Somerville:
Federal Reserve Bank of New York, email: jason.somerville@ny.frb.org; Sprenger: Division of the Humanities and So-
cial Sciences, California Institute of Technology, email: sprenger@caltech.edu. For helpful comments and suggestions,
we thank Ori Heffetz and Alex Rees-Jones, and seminar participants at the University of Michigan, Brown University,
Loyola Marymount University, Claremont Graduate University, the University of California at Berkeley, MidExLab,
briq, New York University, the University of California at Santa Cruz, Purdue University, University of Chicago,
Penn State University, the 2022 Behavioral Economics Annual Meeting, the 2022 Stanford Institute for Theoretical
Economics (Experiment Economics) Conference, and the 2023 East Coast Behavioral and Experimental Workshop.
The views expressed in this paper are those of the authors alone and do not necessarily reflect the views Federal
Reserve Bank of New York or the Federal Reserve System. The experiment reported in this paper was preregistered
in the AEA RCT Registry in August 2021, under the ID AEARCTR-0008058. The experiment was reviewed and
granted an exemption by the Institutional Review Board at the California Institute of Technology under protocol
number 21-1073.

1



1 Introduction

The common ratio effect (CRE) refers to an empirical observation that, when choosing between

a smaller amount that is more likely and a larger amount that is less likely, scaling down the

probabilities by a common ratio makes people more prone to choose the riskier option. Allais (1953)

first proposed the CRE as a plausible hypothetical counterexample to expected utility (EU). Later,

Kahneman and Tversky (1979) provided experimental evidence of the CRE and used it to motivate

one of the key features of their probability weighting function: “subproportionality.” An extensive

subsequent experimental literature has provided further empirical evidence of the CRE. Based on

this evidence, the CRE is now commonly invoked as a violation of EU, and being able to explain it

is a frequent litmus test for new models of choice under risk (for instance, see Loomes and Sugden,

1982; Gul, 1991; Bordalo et al., 2012; Cerreia-Vioglio et al., 2015).

There is an important challenge, however, to the standard interpretation of the CRE as a

manifestation of non-EU preferences: If choices are stochastic rather than deterministic, then

inference from paired choice tasks becomes problematic. Prior researchers have noted that EU

with i.i.d. additive utility noise can naturally generate a CRE in paired choice tasks (Ballinger and

Wilcox, 1997; Loomes, 2005; Hey, 2005; Wilcox, 2008; Blavatskyy, 2007, 2010; Bhatia and Loomes,

2017). Building on this literature, we demonstrate that, without strong assumptions about how

noise manifests in choices, we can infer little from the existence or absence of a CRE in paired

choice tasks about whether there exists an underlying common ratio preference (CRP).1

This paper proposes a solution to this inference challenge using paired valuation tasks instead of

paired choice tasks. We first demonstrate theoretically that, under the same common assumptions

about the structure of noise, paired choice tasks can yield a biased test of the EU null, whereas

paired valuation tasks can yield unbiased tests. We then implement this paired-valuation approach

in an experiment with 900 participants. We find no evidence of a systematic CRP at the aggregate

level, although we observe substantial heterogeneity. To reconcile our findings with existing CRE

evidence that uses paired choice tasks, we present the same participants with standard paired choice

tasks. Individual heterogeneity in CRP, as measured by paired valuations, is highly predictive

of whether an individual exhibits a CRE in paired choices. In addition, we demonstrate how

appropriately chosen experimental parameters can generate a CRE in paired choice tasks even for

individuals without an associated CRP (the same is true for reverse common ratio effects (RCRE)

and preferences (RCRP)).

In Section 2, we develop theoretical results for testing the EU null—or, more generally, the

null of no CRP—using paired choice tasks and paired valuation tasks when both are subject to

noise. Importantly, we assume that behavior results from the same underlying preference and noise

1Throughout, we reserve the term “CRE” for empirical observations in experimental data, and we introduce the
term “CRP” to refer to the underlying preference that these empirical observations are often taken to reveal. Our
focus is whether one can empirically identify the existence of a CRP without making any assumptions about its
source.
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structure across both types of tasks, so different assumptions do not drive the results. We focus

on commonly used assumptions about the noise structure—specifically, we highlight two cases, one

where the noise is a simple disturbance to an underlying value and one where the noise reflects

additive utility noise in the spirit of McFadden (1974, 1981).

To illustrate how noise can affect inference, consider the two choices below, which together form

a paired choice task :

AB Choice: Lottery A: 100 percent chance of $12 vs. Lottery B: 50 percent chance of $30

CD Choice: Lottery C: 20 percent chance of $12 vs. Lottery D: 10 percent chance of $30

In the absence of noise, EU makes a strong prediction that individuals should prefer either lotteries

A and C or lotteries B and D, since lotteries C and D are just lotteries A and B, respectively,

scaled down by a common ratio of 0.2. Counter to this prediction, the CRE describes a systematic

empirical pattern of people appearing more risk-tolerant in the scaled-down problem, resulting in

aggregate choice frequencies where the share choosing A over B is larger than the share choosing

C over D. Blavatskyy et al. (2023) provide a recent meta-study and document that out of 143

paired-choice experiments, 78 percent find that the share choosing A is greater than the share

choosing C. The average difference in the shares across all 143 experiments is 22.0 percent.

Many researchers have interpreted the empirical finding of a CRE in paired choice tasks as a

rejection of EU; most notably, Kahneman and Tversky (1979) use it to justify their assumption of

subproportionality, one of the key properties of their probability weighting function. However, this

interpretation may be invalid in the presence of noise. To illustrate, consider first the case of EU

with i.i.d. additive utility noise that prior work has explored (Ballinger and Wilcox, 1997; Loomes,

2005; Hey, 2005; Wilcox, 2008; Blavatskyy, 2007, 2010; Bhatia and Loomes, 2017). Suppose the

person’s underlying EU preferences favor A and C. Despite this underlying preference, the person

might sometimes choose B over A or D over C due to noise. The probability of choosing their

preferred alternative depends on the strength of their preference. Under EU, when the probabilities

of the initial choice are scaled down by a common ratio, the strength of the preference is scaled

down by precisely the same ratio—that is, for a person who prefers A and C, their preference

for A over B will be stronger than their preference for C over D. As a result, noise that is i.i.d.

across the two choice tasks will be more impactful for the latter choice and will drive that choice

probability further from one. Such noise thus implies that the probability of choosing A over B

should be larger than the probability of choosing C over D—i.e., the person would exhibit a CRE

even though they have underlying EU preferences and thus no CRP. An analogous intuition applies

for a person whose EU preferences favor B and D, for whom additive i.i.d. noise implies that the

probability of choosing A over B should be smaller than that for choosing C over D, indicating that

they would exhibit an RCRE. In Section 2, we generalize this logic to other noise structures besides

i.i.d. additive utility noise and to permit heterogeneity both in preferences and in the impact of

noise.

3



While in principle the bias in paired choice tasks due to noise could go in either direction, there

is evidence that, in practice, the prior literature’s choice of experimental parameters has led to

a systematic bias in the direction of finding a CRE. Of the 143 CRE paired-choice experiments

reviewed by Blavatskyy et al. (2023), more than 75 percent exhibit a share of A choices greater

than or equal to 50 percent, consistent with the case in which underlying preferences favor A and

C and in which noise could thus yield a CRE even if there were no underlying CRP. In Section 2.4,

we further detail the use of selected parameter values in the prior literature.

As an alternative to the paired choice tasks above, consider instead the two valuations below,

which together form a paired valuation task :

AB Valuation: state an mAB such that

100 percent chance of mAB „ 50 percent chance of $30

CD Valuation: state an mCD such that

20 percent chance of mCD „ 10 percent chance of $30

EU again makes a strong prediction that, in the absence of noise, individuals should state valuations

that satisfy mAB “ mCD or, equivalently, ∆m ” mCD´mAB “ 0. In contrast, the logic of the CRE

implies that individuals are more risk-tolerant for the CD comparison than for the AB comparison,

and thus we would see mCD ą mAB or ∆m ” mCD ´mAB ą 0.

Although valuation tasks are common in experiments, researchers have rarely used them in the

context of the CRE. We demonstrate, however, that under the same commonly used assumptions

about noise where paired choice tasks can yield biased tests of the null of no CRP, paired valuation

tasks can yield unbiased tests. Specifically, if elicited valuations are unbiased measures of the

underlying values, then we can test whether the mean of ∆m equals 0. Alternatively, even if

elicited valuations are biased measures of underlying values—e.g., due to utility curvature—then as

long as the noise is symmetric around its median, we can instead use a sign test to assess whether

there are equal proportions of positive and negative instances of ∆m. Notably, both tests are robust

to noise having a differential impact across the AB and CD tasks.

In Section 3, we describe the details of our experimental design. We recruit 900 participants

from Prolific for an online experiment. In stage 1 of the experiment, we elicit paired valuations. For

each participant, we elicit the value of mAB that makes them indifferent between p$mAB, 1q and

p$30, pq, and we separately elicit the value of mCD that makes them indifferent between p$mCD, rq

and p$30, rpq. Each participant reports these paired valuations for five values of p, and between

subjects we consider three different values of r; hence, in stage 1, we elicit paired valuations for 15

combinations of pp, rq. In stage 2 of the experiment, we present the same participants with paired

choice tasks, with one paired choice task linked to each paired valuation task from stage 1. We use
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this connection between stages to validate the stage 1 valuations and to reconcile our findings with

the prior literature.2

Section 4 describes our main results using data from the paired valuation tasks. We conduct

our two tests for each of the 15 paired valuation tasks in stage 1. Out of the 15 means tests, we

reject the null that the mean of ∆m is zero in eight comparisons at the 5 percent level. All eight

rejections indicate an RCRP rather than the standard CRP, and the means are small in magnitude.

Out of the 15 sign tests, we find seven significant deviations from the null of equal proportions at

the 5 percent level. Six of these are consistent with an RCRP, and there is only one test in which

the deviation from equal proportions is in the direction of a CRP. Beyond the formal tests, we also

find that in 14 of 15 cases, the median value of ∆m is zero. Thus, our paired valuation tasks yield

no evidence of a systematic CRP.

Our failure to find a systematic CRP in the aggregate does not imply that our data are consistent

with EU. While the data indicate an aggregate central tendency of no CRP, we document substantial

CRP heterogeneity—specifically, we find significant within-individual correlations of ∆m across

different pp, rq combinations, so some individuals appear to have a stable CRP while others seem to

have a stable RCRP. Moreover, our mAB valuations yield data consistent with probability weighting

models and thus inconsistent with EU. Specifically, our mAB elicitations are equivalent to the tasks

researchers commonly use to estimate probability weighting functions, and they yield an inverse-S-

shaped probability weighting function that matches those typically found in the literature. However,

the probability weighting function implied by our mAB valuations is wholly inconsistent with our

elicited mCD valuations—indeed, it would predict mCD valuations consistent with a large CRP.

In Section 5, we analyze the connections between the valuations elicited in stage 1 and the

corresponding choices made in stage 2. For each paired valuation task from stage 1 (i.e., for each

of a participant’s five pp, rq combinations), we choose a random value of M in stage 2 and then

offer the participant a binary AB choice between p$M, 1q and p$30, pq, and a binary CD choice

between p$M, rq and p$30, rpq. The connection between these linked valuations and choices allows

us to assess whether there is differential noise across the AB and CD choices and to reconcile our

main finding of no systematic CRP in paired valuation tasks with the vast literature that finds a

CRE in paired choice tasks.

Two key predictions link a person’s stage 1 valuations to their stage 2 choices. First, reflecting

the impact of preferences, the stage 1 value difference ∆m should predict whether an individual

exhibits a CRE or an RCRE at stage 2. That is, individuals who have a CRP as measured through

their stage 1 valuations should be more likely to exhibit a CRE in their stage 2 choices. Second,

the impact of differential noise depends on the difference between the randomly chosen amount M

and the stage 1 average indifference point; we refer to this measure as the distance to indifference.

A sufficiently large positive distance to indifference means M is large enough that preferences favor

2Each participant sees five paired valuation tasks and five paired choice tasks of the form described here. For
robustness, we also present each participant with another five paired valuation tasks and another five paired choice
tasks that use a different structure, as we describe in Sections 2 and 3.

5



A and C. If, in addition, the choice noise is more impactful for the CD choice, then pattern AD

will be more likely than pattern BC; that is, we would observe a CRE. Analogously, a sufficiently

large negative distance to indifference means M is small enough that preferences favor B and D; in

this case, if the choice noise is more impactful for the CD choice, then we would observe an RCRE.

When we take these two predictions to the data, we find strong support for them at both the

individual and experiment level—where an “experiment” refers to the aggregate behavior of a subset

of participants who faced the same paired choice task at stage 2.3 Our finding that stage 1 value

differences strongly predict stage 2 choices provides validation that our valuations are capturing

underlying preferences. Our finding that the distance to indifference predicts stage 2 choices reveals

the existence of differential noise. The latter finding further demonstrates how specific parameter

combinations—in particular, those which induce a positive distance to indifference—can generate a

CRE in paired choice tasks even if there is no underlying CRP. Indeed, in Section 5.4, we describe

how our use of a broader and more balanced set of parameter combinations (relative to the prior

literature) leads to little evidence of a CRE in our stage 2 paired choices.

Our analysis has several connections to the prior literature. First, a small number of papers do

use paired valuation tasks in the context of the CRE (see, e.g., Castillo and Eil, 2014; Dean and

Ortoleva, 2019; Schneider and Shor, 2017; Freeman et al., 2019). These papers address different re-

search questions relative to ours, and none of them address the differential noise problem associated

with paired choice tasks nor the fact that paired valuation tasks are robust to this problem.

Our paper also connects to research highlighting how systematic behaviors that appear to

contradict standard models can emerge from standard models combined with noise. Even within

our context, prior work has demonstrated how an observed CRE in paired choice tasks could

be due to EU with additive utility noise (Ballinger and Wilcox, 1997; Loomes, 2005; Hey, 2005;

Wilcox, 2008; Blavatskyy, 2007, 2010; Bhatia and Loomes, 2017). In recent years, this theme has

re-emerged in other domains. For instance, apparent nonlinear probability weighting can emerge

from underlying expected value preferences combined with cognitive imprecision in the perception

of probabilities (Khaw et al., 2021; Frydman and Jin, 2023) or cognitive uncertainty about the

optimal action choice (Enke and Graeber, forthcoming); an apparent preference for commitment

could reflect the impact of noise on a binary choice whether to commit (Carrera et al., 2022); and

recent work by Oprea (2022) and Enke et al. (2023) suggests that probability weighting and present

bias might reflect heuristic reactions to the inherent complexity of the choice problems.

Our work also relates more generally to literature that explicitly accounts for noise in experi-

mental design and the analysis of risky choice data (Harless and Camerer, 1994; Hey and Orme,

1994; Ballinger and Wilcox, 1997; Loomes and Sugden, 1998; Stott, 2006). More recently, a seri-

ous evaluation of noise in canonical experimental designs has led to a preference for new types of

data collection, such as valuations (Bernheim and Sprenger, 2020; Carrera et al., 2022), repeated

3In other words, each combination of pM,p, rq used at stage 2 generates a different “experiment.” Overall, we
have 120 different experiments, with an average of 75 participants in each.
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choices (Gillen et al., 2019), decision times (Alós-Ferrer et al., 2021), or measures of individual

uncertainty and confidence (Butler and Loomes, 2011; Enke and Graeber, forthcoming). This sort

of work connecting theory and data collection efforts with an encompassing view of noise carries

promise for improving the reliability of the inference drawn from experimental observations and

our understanding of the forces driving behavioral anomalies.

Our paper has two broad implications for future research that we expand on in our concluding

Section 6. First, our methodological contribution applies far beyond the domain of the CRE.

Canonical tests for many behavioral-economic phenomena use reduced-form comparisons of pairs

of choice probabilities, with examples ranging from risk preferences to time preferences to context

dependence. Our theoretical results readily extend to these settings, and valuations may be similarly

suited to overcome the underlying inference problem.4

Second, our core empirical findings present an important challenge for the literature that seeks

to understand risk attitudes. Like prior research, we find clear evidence against EU as an accurate

descriptive model of behavior. However, unlike prior research, our core empirical finding contradicts

the received wisdom that most people exhibit a systematic underlying CRP. If this finding turns

out to be robust, then it calls for a reassessment of non-EU models built around the CRP as a

motivating feature of preferences. First and foremost are models of probability weighting in the

tradition of prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), where

a CRP (or subproportionality) is the central motivating concept behind the structure of probability

weighting. Other models also use the CRE as a key motivating fact and thus build in a systematic

CRP; these include disappointment aversion (Bell, 1985; Gul, 1991) and cautious expected utility

(Cerreia-Vioglio et al., 2015), among others.

2 Underlying Theory and Proposed Tests

2.1 Paired Choices and Paired Valuations

The standard common-ratio test presents participants with paired choice tasks that take the fol-

lowing form:

AB Choice Task: choose Lottery A ” pM, 1q or Lottery B ” pH, pq

CD Choice Task: choose Lottery C ” pM, rq or Lottery D ” pH, rpq,

where H ąM ą 0 and p, r P p0, 1q. The key feature is that the CD choice task is derived from the

AB choice task by scaling down the probabilities for the non-zero outcomes by a common ratio r.5

4For a recent example, see Bernheim and Sprenger (2020), who use valuations to test the assumption of rank
dependence (Quiggin, 1982). While not a central part of their analysis, they discuss how choice noise presents a
challenge to research that tests axioms using pairs of choice tasks.

5To simplify notation, we adopt the convention of omitting the zero outcomes from lotteries. For example, Lottery
B yields H with probability p and zero with the remaining probability of 1´ p. Most experimental implementations
of paired choice tasks set the low outcome equal to zero as we do; however, the key theoretical points also hold for a
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As highlighted by Allais (1953), paired choice tasks of this type are interesting because EU

makes a sharp prediction. Normalizing up0q “ 0:

EUpAq ´ EUpBq ą 0 ô upMq ´ pupHq ą 0 and (1)

EUpCq ´ EUpDq ą 0 ô r rupMq ´ pupHqs ą 0. (2)

Hence, EU predicts that a person should prefer either lotteries A and C or lotteries B and D. In

contrast to this prediction, the empirical finding of a common ratio effect (CRE) involves deviations

systematically in the direction of choosing lotteries A and D—in other words, people appear more

risk-tolerant in the scaled-down choice. More precisely, letting xPrpXq be the proportion of partici-

pants who choose X, the common finding is xPrpADq ą xPrpBCq or, equivalently, xPrpAq ą xPrpCq.6,7

We use the label reverse common ratio effect (RCRE) for the less common finding of deviations in

the direction of choosing lotteries B and C, or a finding of xPrpAq ă xPrpCq.

An alternative common-ratio test that researchers have used much less often presents partici-

pants with paired valuation tasks. Our main analysis will focus on m-valuation tasks in which we

fix pH, p, rq and present participants with the following tasks:

AB Valuation Task: state an mAB P r0, Hs such that pmAB, 1q „ pH, pq

CD Valuation Task: state an mCD P r0, Hs such that pmCD, rq „ pH, rpq.

For paired valuation tasks, a finding of ∆m ” mCD ´mAB ą 0 reflects a CRE. Again, a CRE

involves people acting more risk-tolerant in the scaled-down task. Thus, an individual will demand

a higher premium to accept the safer option in the CD task relative to what they demand in the

AB task, or mCD ą mAB. Analogously, a finding of ∆m ă 0 reflects an RCRE, and a finding of

∆m “ 0 would be consistent with EU (among other models).

A CRE, in choices or valuations, is an empirical finding; when interpreting this empirical finding

in terms of underlying preferences, it is essential to account for noise. The following two subsections

do so, first for the special case of EU and i.i.d. additive utility noise, and then for the more general

case.

2.2 EU and i.i.d. Additive Utility Noise

Prior work has noted that EU with i.i.d. additive utility noise can naturally generate a CRE in

paired choice tasks (Ballinger and Wilcox, 1997; Loomes, 2005; Hey, 2005; Wilcox, 2008; Blavatskyy,

non-zero low outcome.
6From here onward, we use xPr to denote empirically observed proportions, and Pr to denote model-predicted

proportions. To ease notation, we suppress the choice set because it is typically self-explanatory; for example, xPrpAq

is the proportion who choose A from the choice set tA,Bu, and xPrpADq is the proportion who choose combination
AD from the choice set tAC,AD,BC,BDu.

7Note that xPrpAq “ xPrpADq`xPrpACq and xPrpCq “ xPrpBCq`xPrpACq, and thus xPrpADq ą xPrpBCq is equivalent

to xPrpAq ą xPrpCq.
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2007, 2010; Bhatia and Loomes, 2017). In this subsection, we illustrate the intuition behind this

result.

Suppose there exist i.i.d. distributed noise draws εAB and εCD such that a person chooses

lottery A over lottery B when EUpAq´EUpBq ą εAB, and chooses lottery C over lottery D when

EUpCq´EUpDq ą εCD. Applying equations (1) and (2), EUpCq´EUpDq “ rrEUpAq´EUpBqs.

Hence, if F is the shared CDF for εAB and εCD, then the likelihoods of choosing lottery A over

lottery B and of choosing lottery C over lottery D are, respectively,

PrpAq “ F pEUpAq ´ EUpBqq and PrpCq “ F pr rEUpAq ´ EUpBqsq .

Figure 1 illustrates the implications for the case when F is a standard normal distribution. Panel

A presents the choice probabilities. The solid line depicts PrpAq as a function of EUpAq´EUpBq. If

EUpAq´EUpBq “ 0, in which case the person’s underlying EU preferences are indifferent between

lotteries A and B, then PrpAq “ 1{2. As the person’s underlying preference for lottery A gets

stronger—i.e., as EUpAq ´ EUpBq gets more positive—PrpAq grows toward 1. As the person’s

underlying preference for lottery B gets stronger—i.e., as EUpAq ´ EUpBq gets more negative—

PrpAq shrinks toward 0. The dashed and dotted lines in Panel A depict PrpCq as a function of

EUpAq ´EUpBq for the cases of r “ 0.5 and r “ 0.25. Each line has the same qualitative pattern

as PrpAq. However, when we scale down the probabilities by a common ratio r, we also scale down

the strength of preference by the same factor. As a result, the i.i.d. noise will be more impactful

for the CD choice than for the AB choice. Therefore, for any specific value of EUpAq ´ EUpBq,

PrpCq is closer to 1{2 than PrpAq is.

Panel B of Figure 1 converts the choice probabilities from Panel A into a predicted difference

CRE´RCRE ” PrpAq´PrpCq. Panel B illustrates that a person whose underlying EU preferences

favor A and C will exhibit a CRE. Conversely, a person whose underlying EU preferences favor B

and D will exhibit an RCRE. Panel B further highlights how the predicted magnitude of CRE ´

RCRE depends on (i) the magnitude of the common ratio r and (ii) the strength of the person’s

underlying preference EUpAq ´ EUpBq. Finally, note that at extreme levels of EUpAq ´ EUpBq,

CRE ´RCRE goes to zero as the preference component becomes so strong that it dominates the

noise.

Figure 1 illustrates a fundamental problem in using paired choice tasks to test for an underlying

CRP. In the following subsection, we develop a more general model of underlying preferences and

noise that permits us to expand on this problem and illustrate how paired valuation tasks can be

a solution.

2.3 More General Model of Underlying Preferences and Noise

We develop a framework to interpret data from both paired choice tasks and paired valuation

tasks. Specifically, we assume a person has a realized indifference value that is determined from a
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Figure 1: Predicted choice probabilities (panel A) and predicted CRE ´ RCRE (panel B) as a
function of EUpAq ´ EUpBq under expected utility with additive i.i.d. noise. In both panels, the
dashed red line reflects the case r1 “ 0.5 and the dotted green line reflects the case r2 “ 0.25. Both
panels assume that the noise follows a standard normal distribution.

combination of their underlying preferences and noise. The person then makes a choice or states

a valuation implied by this realized indifference value. The case of EU with i.i.d. additive utility

noise studied in Section 2.2 is a special case of this framework.

Importantly, we impose the same structure of preferences and noise across both types of tasks.

Hence, the different results we document are not due to different assumptions across the two types

of tasks. Moreover, this framework implies a strong connection between paired valuation tasks

and paired choice tasks. Motivated by this connection, our experiment collects data from the

same participants on paired valuation tasks and linked paired choice tasks. We show in Section

5 that participants’ valuations are predictive of their choices in a way that is consistent with this

framework.8

Without loss of generality, we fix pH, p, rq and focus on behavior as a function of M . Assuming

preferences are monotonic and continuous, for each pH, p, rq a person will have a pair of underlying

indifference points pm˚AB,m
˚
CDq such that their (noise-free) preferences satisfy:

• Prefer A ” pM, 1q over B ” pH, pq if and only if M ě m˚AB, and

8Some researchers have debated whether valuations or choices provide better insight into people’s underlying
preferences. For instance, based on discrepancies between behavior in valuations versus binary choices, combined with
an assumption that binary choices reflect true preferences, some have argued that valuations are unreliable (Brown and
Healy, 2018; Freeman et al., 2019). Others have argued that binary choices, themselves, may be unreliable (Freeman
and Mayraz, 2019). The systematic connections that we document in Section 5 suggest that neither conclusion is
warranted.
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• Prefer C ” pM, rq over D ” pH, rpq if and only if M ě m˚CD.9

Given these underlying indifference points, we assume that noise impacts choices and valuations as

follows:

Assumption 1: Impact of Noise on Choices and Valuations

A person’s realized indifference points pmAB,mCDq are mAB ” Γpm˚AB, εABq and mCD ”

Γpm˚CD, εCDq, where pεAB, εCDq are noise draws from a continuous joint distribution with

convex support, and Γ is increasing in both arguments and has Γpm, 0q “ m for all m. Then:

• In an AB choice task, the person chooses A ” pM, 1q over B ” pH, pq if and only if

M ě mAB ” Γpm˚AB, εABq,

• In a CD choice task, the person chooses C ” pM, rq over D ” pH, rpq if and only if

M ě mCD ” Γpm˚CD, εCDq,

• In an AB valuation task, the person states valuation mAB ” Γpm˚AB, εABq, and

• In a CD valuation task, the person states valuation mCD ” Γpm˚CD, εCDq.

The distinction between underlying preferences and observed behaviors is integral to our anal-

ysis. To highlight this distinction, we say that a person has a common ratio preference (CRP) if

they have ∆m˚ ” m˚CD ´m˚AB ą 0, and a reverse common ratio preference (RCRP) if they have

∆m˚ ă 0. Assessing whether an observed CRE in choices or valuations is evidence of an underlying

CRP is the key inferential challenge that we focus on in the remainder of this section.10

In Assumption 1, the function Γ permits a variety of models for how a person’s underlying

indifference points combine with choice noise to generate their realized indifference points. We

highlight two special cases of Assumption 1:

Assumption 2a: Γpm, εq “ m` ε, εCD
d
“ kεAB for some k ą 0, and EpεABq “ EpεCDq “ 0.

Assumption 2b: Γpm, εq is potentially nonlinear in m and ε, but εCD
d
“ kεAB for some

k ą 0, and εAB is symmetric about 0.

Assumption 2a is consistent with assumptions researchers frequently use when analyzing valua-

tions data, where they model noise as an additive disturbance to an underlying value. Assumption

9To simplify the exposition, the text assumes that the person prefers and chooses the safer option when indifferent,
but given we also assume continuous noise, this assumption is immaterial.

10We use the term “preference” to capture all stable drivers of behavior (as opposed to transient confusion or noise);
in addition to reflecting “true” tastes, these drivers might also include stable heuristics. We also note that, by CRP
and RCRP, we do not mean that people care directly about common-ratio transformations of probabilities. Instead,
we use these terms to capture the idea that underlying risk attitudes react systematically to these transformations.
Based on the existing CRE evidence, many theories—most notably, models of probability weighting—assume that
underlying preferences have a systematic CRP.
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2b is consistent with assumptions researchers frequently use when analyzing choice data, where

they instead model noise as a symmetric additive perturbation of utility in the spirit of McFad-

den (1974, 1981). To illustrate, we describe when Assumptions 2a and 2b would hold under two

prominent models of underlying preferences.

Example 1: Expected Utility and Prospect Theory

Suppose that a person evaluates a lottery px, qq with x ą 0 as πpqqupxq. This formulation

corresponds to both original prospect theory as in Kahneman and Tversky (1979) and cu-

mulative prospect theory as in Tversky and Kahneman (1992), where πp¨q is a probability

weighting function and up¨q is a value function defined over gains and losses. This formulation

also reduces to EU when πpqq “ q for all q and up¨q is a Bernoulli utility function. Under this

formulation, the underlying indifference points satisfy

upm˚ABq “ πppqupHq ô m˚AB “ u´1 pπppqupHqq

πprqupm˚CDq “ πprpqupHq ô m˚CD “ u´1

ˆ

πprpq

πprq
upHq

˙

.

When working with valuations data, one might incorporate noise by assuming that observed

valuations satisfy mAB “ m˚AB ` εAB and mCD “ m˚CD ` εCD. This formulation satisfies

Assumption 2a as long as εCD
d
“ kεAB for some k ą 0 and EpεABq “ EpεCDq “ 0—e.g.,

if εAB and εCD are both mean-zero normal or logistic distributions with possibly different

variances.11

Alternatively, for either valuations or choice data, one might incorporate additive utility noise

by instead assuming that the realized indifference points satisfy

upmABq “ πppqupHq ` εAB ô mAB “ u´1 pupm˚ABq ` εABq

πprqupmCDq “ πprpqupHq ` εCD ô mCD “ u´1 pupm˚CDq ` εCD{πprqq

where εAB and εCD reflect additive utility noise.12 This formulation fits Assumption 1 with

Γpm, εq “ u´1pupmq` εq, εAB “ εAB, and εCD “ εCD{πprq. This formulation further satisfies

Assumption 2b as long as εAB is symmetric about 0 and εCD
d
“ k1εAB for some k1 ą 0—

e.g., if the additive utility noise terms εAB and εCD are both mean-zero normal or logistic

distributions.13 Finally, note that the case of EU with i.i.d. additive utility noise that we

described in Section 2.2 fits Assumption 2b with εCD “ εAB{r, and so k “ 1{r.

11For instance, this approach is used by Tversky and Kahneman (1992) and Bruhin et al. (2010).
12To help clarify our exposition, we use ε to denote additive perturbations to utility, and ε to denote the noise

described in Assumption 1. The latter equations use πppqupHq “ upm˚ABq and πprpqupHq “ πprqupm˚CDq.
13For instance, this approach is used by Camerer and Ho (1994), Hey and Orme (1994), and Wu and Gonzalez

(1996).
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The framework of Assumption 1, with Assumptions 2a and 2b as special cases, allows us to

demonstrate the problems with using paired choice tasks, and when paired valuation tasks might

be robust to those problems. Proposition 1 establishes conditions under which paired choice tasks

yield a biased test of the null of ∆m˚ “ 0. All proofs appear in Online Appendix A.

Proposition 1 (Paired Choice Tasks Can Yield Biased Tests of ∆m˚ “ 0): Consider a person

who has m˚AB “ m˚CD ” m˚ and thus ∆m˚ “ 0, and suppose that εCD
d
“ kεAB for some k ą 0, and

define Z ” PrpεAB ă 0q “ PrpεCD ă 0q.

(1) If M ´m˚ ą 0 and thus the person prefers A and C, then:

(a) k ą 1 implies PrpAq ą PrpCq ą Z (CRE);

(b) k ă 1 implies PrpCq ą PrpAq ą Z (RCRE); and

(c) k “ 1 implies PrpAq “ PrpCq ą Z.

(2) If M ´m˚ ă 0 and thus the person prefers B and D, then:

(a) k ą 1 implies PrpAq ă PrpCq ă Z (RCRE);

(b) k ă 1 implies PrpCq ă PrpAq ă Z (CRE); and

(c) k “ 1 implies PrpAq “ PrpCq ă Z.

(3) If M ´m˚ “ 0, then PrpAq “ PrpCq “ Z for all k.

Proposition 1 captures and then generalizes the conclusions from Section 2.2. In our general

framework, the case of EU with i.i.d. additive utility noise has k “ 1{r ą 1 (see Example 1).

Moreover, under EU, M ´ m˚ ą 0 implies EUpAq ´ EUpBq ą 0 whereas M ´ m˚ ă 0 implies

EUpAq´EUpBq ă 0. Parts (1)(a) and (2)(a) of Proposition 1 therefore imply the same predictions

as illustrated in Figure 1, reiterating the core intuition that the AB preference is stronger than

the CD preference under EU, and thus i.i.d. noise will have a larger impact on the CD choice.

Hence, if EU preferences favor A and C, then the prediction is PrpAq ą PrpCq. In contrast, if EU

preferences favor B and D, then the prediction is PrpAq ă PrpCq.14

Proposition 1 generalizes these conclusions in several ways. For the case of EU, Proposition

1 characterizes predictions under different noise structures besides i.i.d. additive noise, including

when the noise is a disturbance to the underlying indifference values and when there is additive

utility noise but with different variances across the two choices. Our framework and Proposition

1 also apply to any non-EU model that exhibits ∆m˚ “ 0. The key feature that determines

predictions is whether the noise is more impactful for the CD choices (i.e., k ą 1), in which case

the predictions are as in Section 2.2. The predictions flip if the noise is more impactful for the

AB choices (i.e., k ă 1). The implication is that, when using paired choice tasks, a person with

∆m˚ “ 0 could exhibit either a CRE or an RCRE depending on the combination of whether (i)

14By assuming a standard normal distribution, Figure 1 also has the feature that either PrpAq ą PrpCq ą 1{2 or
PrpAq ă PrpCq ă 1{2. Proposition 1 establishes that the 1{2 threshold is replaced by Z ” PrpεAB ă 0q for more
general noise distributions.
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the offered M leads to an underlying preference for A and C versus B and D, and (ii) choice noise

has a larger impact on the AB choice versus the CD choice.

When using data from paired choice tasks to test the null of ∆m˚ “ 0, researchers typically

assess whether xPrpAq “ xPrpCq. Proposition 1 implies that the theoretical prediction of PrpAq “

PrpCq holds only when k “ 1. This knife-edge case seems unlikely to hold in practice, and thus

paired choice tasks are likely to yield a biased test.

Whereas paired choice tasks yield a biased test in all but this knife-edge case, Proposition 2

shows that unbiased tests are possible using paired valuation tasks under a much broader set of

conditions.

Proposition 2 (Paired Valuation Tasks Can Yield Unbiased Tests of ∆m˚ “ 0): Consider a

person who faces a paired valuation task, and let mAB and mCD be their stated valuations.

(1) If Γpm, εq “ m` ε and EpεABq “ EpεCDq, then Ep∆mq “ ∆m˚.

(2) If a person has m˚AB “ m˚CD ” m˚, and if the joint distribution pεAB, εCDq is symmetric

around some median vector pε1, ε1q,15 then Prp∆m ą 0q “ Prp∆m ă 0q “ 1{2.

Part (1) of Proposition 2 describes conditions under which we can test the null of ∆m˚ “ 0

using a means test, specifically, testing whether pEp∆mq “ 0.16 When EpεABq “ EpεCDq “ 0, as

under Assumption 2a, mAB and mCD are unbiased measures of the underlying indifference points,

and thus their difference is an unbiased measure of ∆m˚. Furthermore, even if the errors have

non-zero means, in which case mAB and mCD are biased measures of the underlying indifference

points, their difference remains an unbiased measure of ∆m˚ as long as the errors have the same

mean.17

A test based on pEp∆mq becomes biased if Γ is a nonlinear function of m, which can arise when

the noise is modeled as additive utility noise (see Example 1). Indeed, in Online Appendix B.1 we

show that, for the case of EU with additive i.i.d. utility noise, concave utility implies Ep∆mq ą 0.

Thus a test based on pEp∆mq would be biased towards rejecting the null of ∆m˚ “ 0 in favor of a

CRP.

Given this potential concern, part (2) of Proposition 2 describes conditions under which we can

test the null of ∆m˚ “ 0 using a sign test. This test compares whether the observed proportions of

∆m ą 0 and ∆m ă 0 are the same. The intuition behind why this approach provides an unbiased

test of ∆m˚ “ 0 is easiest to see when noise is symmetric around zero (i.e., ε1 “ 0). For this case,

15Formally, if pεAB , εCDq has joint distribution F with PDF f , then symmetry around pε1, ε1q implies fpε1 `
zAB , ε

1
` zCDq “ fpε1 ´ zAB , ε

1
´ zCDq for all pzAB , zCDq. This property holds, for instance, for a bivariate normal

with mean pε1, ε1q and any correlation.
16Analogous to our use of xPr to denote empirically observed proportions and Pr to denote model-predicted pro-

portions, we use pE to denote empirically observed averages and E to denote model-predicted averages.
17Some researchers have raised concerns that certain methods for eliciting valuations, such as price lists, may lead

to systematic errors of over- or under-valuation. Our results imply that a test based on Êp∆mq “ 0 remains valid
provided these systematic errors have the same mean across the pair of valuations.
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a person with m˚AB “ m˚CD will exhibit ∆m ą 0 if and only if εCD ą εAB. The symmetry of the

noise then implies that, for any ε̄, it is equally likely to get ∆m ă 0 due to εAB “ ε̄ and εCD ă ε̄

as it is to get ∆m ą 0 due to εAB “ ´ε̄ and εCD ą ´ε̄. Averaging over all ε̄, it is equally likely to

get ∆m ą 0 and ∆m ă 0.18

Proposition 1 outlines scenarios under which paired choice tasks yield a biased test of the null of

∆m˚ “ 0. In contrast, Proposition 2 outlines scenarios under which paired valuation tasks can yield

an unbiased test. Corollary 1 highlights how Assumptions 2a and 2b, which reflect assumptions

commonly made in the literature, satisfy both scenarios.

Corollary 1: Under Assumption 2a, paired choice tasks can yield a biased test of ∆m˚ “ 0,

whereas paired valuations can yield an unbiased test based on the mean of ∆m. Under Assumption

2b, paired choice tasks can yield a biased test of ∆m˚ “ 0, whereas paired valuations can yield an

unbiased test based on the sign of ∆m.

2.4 Evaluating Prior Experimental Tests

Figure 2 depicts the set of theoretical predictions for a population with ∆m˚ “ 0 under Assumption

2a together with data from existing experimental tests of the CRE. The theoretical predictions,

which we formally derive in Online Appendix B.2, permit heterogeneity in preferences and in the

impact of noise.

Panel A focuses on data from paired-choice experiments, where observed behavior in a pop-

ulation is xPrpAq and xPrpCq. If, for everyone, the impact of noise were the same for both the

AB and the CD choices (i.e., k “ 1 in Proposition 1), then the set of predicted pPrpAq,PrpCqq

combinations consistent with a population in which everyone has ∆m˚ “ 0 would be represented

by the 45-degree line. Once we allow for the possibility of differential noise, the set of predicted

pPrpAq,PrpCqq combinations consistent with ∆m˚ “ 0 expands considerably to become the gray

shaded region.19

Panel B focuses on data from paired-valuation experiments, where observed behavior in a pop-

ulation is pEpmABq and pEpmCDq. Under Assumption 2a, the set of predicted pEpmABq, EpmCDqq

18Our formal test uses the following logic. If Prp∆m ą 0q “ Prp∆m ă 0q “ 1{2 for every observation, the
likelihood of observing at most n instances of ∆m ą 0 out of N observations is equal to Gpn,Nq, where G denotes
the cumulative distribution function for a binomial distribution with a 50 percent success rate. Hence, if we observe
n` instances of ∆m ą 0 and n´ instances of ∆m ă 0, the p-value for a two-sided sign test under the null of ∆m˚ “ 0
is 2 ˚Gpmintn`, n´u, n` ` n´q.

19The gray shaded region reflects the set of possible pPrpAq,PrpCqq predictions that one can construct when one
permits any distribution of preferences for A versus B and imposes no restrictions on noise other than it being
median zero. The area below (above) the 45-degree line and above (below) PrpCq “ 1{2 can be constructed using
homogeneous preferences that favor A and C (B and D) and noise that is more impactful for the CD choice. The
mirror images of these regions can be constructed using noise that is more impactful for the AB choice. The remaining
shaded area can be constructed using heterogeneity in the preferences for A versus B, effectively permitting convex
combinations of the above areas. Prior researchers (Ballinger and Wilcox, 1997; Wilcox, 2008) have provided examples
that combine heterogeneity and noise to generate a population outcome with PrpAq ą 1{2 ą PrpCq; our analysis in
Online Appendix B.2 characterizes the complete set.
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Figure 2: Predictions and observations for paired-choice experiments (panel A) and paired-valuation
experiments (panel B). In each panel, points below the 45-degree line are combinations that indicate
a CRE, while points above the 45-degree line are combinations that indicate an RCRE. The shaded
grey region in panel A denotes predicted pPrpAq,PrpCqq combinations consistent with ∆m˚ “ 0
under Assumption 2a; the solid grey line in panel B denotes predicted pEpmABq, EpmCDqq combi-
nations consistent with ∆m˚ “ 0 under Assumption 2a (see Online Appendix B.2 for derivations).
The black circles denote empirical observations from previous experiments. Panel A depicts 143
CRE paired-choice experiments surveyed by Blavatskyy et al. (2023) scaled by the number of ob-
servations; panel B depicts six similarly scaled CRE paired-valuation experiments identified by us
(see Online Appendix B.3 for details).

combinations that are consistent with a population in which everyone has ∆m˚ “ 0 is represented

by the grey bold-faced 45-degree line, even with differential noise.

The black circles in Panel A depict observed pxPrpAq,xPrpCqq combinations from 143 CRE paired-

choice experiments across 39 studies identified in the meta-study by Blavatskyy et al. (2023). The

typical test for a CRE in paired choice tasks is to assess whether xPrpAq ą xPrpCq, and panel

A reveals that the vast majority of experiments (112 experiments, or 78 percent) exhibit this

pattern—hence, the widespread perception that there exists a systematic CRE. At the same time,

panel A also reveals that almost all experiments (129 experiments, or 90 percent) fall within the

gray area and thus are consistent with ∆m˚ “ 0, i.e., no CRP or RCRP, once one permits the

possibility of differential noise.20

The black circles in panel B of Figure 2 depict observed p pEpmABq, pEpmCDqq combinations from

20While the existence of a CRE is typically assessed by testing whether xPrpAq ´xPrpCq ą 0, a more stringent test

is whether xPrpADq ą 1{2. Such a finding would be inconsistent with Proposition 1 if the noise has a median of zero

and thus Z “ 1{2. Among the 143 experiments in panel A, there are 20 experiments with xPrpADq ě 1{2. While this
provides some evidence against the no-CRP null, one would probably not conclude from this evidence that there is
a systematic CRP.
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six CRE paired-valuation experiments across two studies that we identified (see Online Appendix

B.3 for details about the data). Panel B demonstrates that the data from paired valuation tasks

do not fall far from the 45-degree line. Moreover, comparing panel B to panel A reveals that the

literature has tested for a CRE using almost exclusively paired choice tasks.

Another notable feature of Figure 2(A) is that more than 75 percent of prior paired-choice

experiments found xPrpAq ě 1{2. Interpreted in terms of Proposition 1, if the noise is indeed more

impactful for the CD choices, then the vast majority of prior studies reflect instances where noise

would yield a CRE even if there were no underlying CRP. Of course, whether xPrpAq ą 1{2 in any

particular study depends largely on the experimenter’s choice of parameters M , H, and p. In other

words, prior studies have focused on parameters that predominantly yield xPrpAq ą 1{2.

A closer look at the data from Blavatskyy et al. (2023) reveals that there has been relatively

little variation in experimental parameters in the prior literature. Indeed, 33.6 percent of the

experiments in Figure 2(A) use exactly the same combination pp “ 0.8, r “ 0.25q that was used in

Problems 3 and 4 in Kahneman and Tversky (1979). More notably, the ratio M{ppHq is a natural

measure of the likely preference for A versus B: The larger this ratio, the more likely it is that

participants prefer A over B. 115 of the 143 experiments in Figure 2(A) have M{ppHq ě 0.75;

among these, the average (sample-weighted) CRE ´RCRE is 23.9 percent, compared to only 8.8

percent among the other 28 experiments.

Unlike the prior literature, when we collect data on paired choice tasks in stage 2 of our study,

we use a broader and more balanced set of experimental parameters. In Section 5.4, we investigate

the impact of doing so on what one might conclude from paired choice tasks.

2.5 Robustness: h-Valuation Tasks

Our primary analysis focuses on the m-valuation tasks described in Sections 2.1 and 2.3 in which

we fix pH, p, rq and elicit the m that makes people indifferent. We prefer these tasks for two reasons.

First, they have a natural bounded domain of m P r0, Hs that is the same for all p and r. Second,

the AB variants of the m-valuation tasks are equivalent to the valuation tasks that researchers

typically use to estimate probability weighting functions; thus, one way to validate our approach is

to compare our observed AB valuations to what the prior literature has found.

However, as a robustness check, we also consider h-valuation tasks in which we fix pM,p, rq and

elicit an hAB ěM and an hCD ěM such that

pM, 1q „ phAB, pq

and pM, rq „ phCD, rpq.

Online Appendix B.4 provides a full development of the theory underlying h-valuation tasks

that is analogous to the theory developed in Section 2.3 for m-valuation tasks. Here, we highlight

two important points that we use in our analysis. First, in terms of the underlying indifference
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values ph˚AB, h
˚
CDq, a CRP implies h˚AB ą h˚CD. We therefore define ∆h˚ ” h˚AB ´ h˚CD so that,

analogous to ∆m˚ ą 0, a CRP is reflected by ∆h˚ ą 0. Our empirical object of interest is thus

∆h ” hAB ´ hCD. Second, for a fixed pp, rq, the m- and h-valuation tasks measure approximately

the same preference. Hence, for any given pp, rq, there should be a positive correlation between

mz{H in an m-valuation task and M{hz in the corresponding h-valuation task as both measure a

proportional risk premium.21 We assess this correlation empirically in Section 4.2 as one way to

validate our valuation-task data.

3 Experimental Methodology

Our experimental design closely mirrors our theoretical framework and consists of two main stages.22

At the beginning of the experiment, each participant is randomly assigned a common-ratio factor

r P t0.2, 0.4, 0.6u. This value remains constant throughout the experiment. In stage 1, participants

complete ten paired valuation tasks for a total of 20 valuations. In stage 2, participants complete

ten paired choice tasks for a total of 20 binary choices. Each paired choice task corresponds to

one of the paired valuation tasks from stage 1. Participants complete all 20 valuations before

proceeding to the 20 binary choices, and we randomize the order of questions within each stage.

Figure 3 provides a high-level overview of the experiment timeline.

Stage 1
10 Paired Valuation Tasks

five probabilities p ˆ
pmAB,mCD, hAB, hCDq

in random order

Stage 2
10 Paired Choice Tasks

five probabilities p ˆ
pABpmq, CDpmq, ABphq, CDphqq

in random order

Comprehension
Checks

Figure 3: Experiment Timeline

3.1 Stage 1: Paired Valuation Tasks

Table 1 provides an example of one paired m-valuation task. Each valuation in the pair consists of

a series of choices in a multiple-price-list format. For all m-valuations, we fix the larger outcome

at H “ $30, and we elicit an indifference value m by varying M in $1 increments from $0 to $30.

In the AB variant, the left-hand option remains fixed at a p chance of $30, while the right-hand

option is a 100 percent chance of M that starts with M “ $0 and increases by $1 per row. The

21For instance, under EU with upxq “ xα, mz{H “ M{hz “ p1{α for both z “ AB and z “ CD. More generally,
there need not be an exact equivalence, but there should be a positive correlation.

22Our experiment was preregistered in the AEA RCT Registry in August 2021, under the ID AEARCTR-0008058.
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paired CD variant has the same structure, except we reduce both probabilities by the participant’s

common ratio r. For each variant, we take the average value of M at the switching rows to be our

measure of the realized indifference point, which we denote by mAB or mCD.

Table 1: Paired m-Valuation Tasks

Panel A: AB Variant

Option B Option A

1´ p CHANCE OF $0,
p CHANCE OF $30

OR 100% CHANCE OF $0

1´ p CHANCE OF $0,
p CHANCE OF $30

OR 100% CHANCE OF $1

... ... ...

1´ p CHANCE OF $0,
p CHANCE OF $30

OR 100% CHANCE OF $30

Panel B: CD Variant

Option D Option C

1´ rp CHANCE OF $0,
rp CHANCE OF $30

OR
1´ r CHANCE OF $0
r CHANCE OF $0

1´ rp CHANCE OF $0,
rp CHANCE OF $30

OR
1´ r CHANCE OF $0
r CHANCE OF $1

... ... ...

1´ rp CHANCE OF $0,
rp CHANCE OF $30

OR
1´ r CHANCE OF $0
r CHANCE OF $30

Note: Structure of multiple-price lists for the AB and CD variants of a paired m-valuation task. Each participant
faces five such pairs, all with the same r, but with five different values for p.

For the h-valuations, we fix the smaller outcome and elicit the larger outcome as the indifference

point. Specifically, we fix the value of the smaller outcome at M “ $pp ¨ 30q, and we elicit an

indifference value h by varying H in $1 increments from $pp ¨ 30q to $pp ¨ 30` 30q. For instance, for

p “ 0.2, we fix M “ $6 and vary H from $6 to $36. The left-hand option is again fixed: It offers

$pp ¨ 30q for sure in the AB variant and an r chance of $pp ¨ 30q in the CD variant. The right-hand

option starts with an outcome of $pp ¨ 30q and increases by $1 per row. For each variant, we take

the average value of H at the switching rows to be our measure of the realized indifference point,

which we denote by hAB or hCD.

For each price list, we enforce a unique switching point—which naturally corresponds to our

theoretical framework in which individuals reveal a unique indifference point. For convenience,

when participants click a row in the left panel, it highlights the left-hand option in that row and

all rows above. Analogously, when they click a row in the right panel, it highlights the right-hand

option in that row and all rows below. They can adjust their choices as much as they want before

submitting their final choices for that valuation. Online Appendix Figures C.1 to C.5 provide
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example screenshots of the m- and h-valuations for both the AB and CD variants.

We elicit valuations for five different probabilities, p P t0.1, 0.2, 0.5, 0.8, 0.9u. For each p, par-

ticipants complete the AB and CD variants for both the m- and h-valuation tasks. Participants

therefore complete a total of 20 valuations in stage 1: five probabilities p0.1, 0.2, 0.5, 0.8, 0.9q ˆ two

variants (AB and CD) ˆ two types of valuation tasks (m and h). Thus, for each participant, we

elicit the realized indifference points pmAB,mCD, hAB, hCDq for the five different levels of p. We

randomize the order in which participants complete these 20 valuations. Hence, while the valua-

tions are paired from our perspective, there is no obvious sense in which they are paired from the

participants’ perspective.23

3.2 Stage 2: Paired Choice Tasks

For each of the ten paired valuation tasks from stage 1, each participant faces a corresponding

paired choice task that isolates one specific row from stage 1. Table 2 provides an overview of the

ten AB binary choices that participants see in stage 2. For the m-choices (in panel A), the larger

outcome is always H “ $30 as in the corresponding price list, and we randomly draw a value for M

corresponding to a randomly selected row of the price list. Each participant sees one AB variant

for each value of p; and, for each value of p, we randomly draw a value of M from the values listed

in the table. For the h-choices, the smaller outcome is always M “ $pp ¨ 30q, and we randomly

draw a value for H. Again, each participant sees one AB variant for each value of p, and for each,

we randomly draw a value of H from the values listed in the table. We chose the possible values

for M and H based on pilot data, with the aim that one extreme would yield a majority choosing

lottery A while the other extreme would yield a majority choosing lottery B.24

For each of the ten AB variants shown in Table 2, the participant also sees the paired CD

variant in which we hold fixed the values for M and H but scale down the probabilities by that

participant’s common ratio r. Thus, each participant makes a total of 20 binary choices: five

probabilities p0.1, 0.2, 0.5, 0.8, 0.9q ˆ two variants (AB and CD) ˆ two choice tasks (m and h). We

randomize the order in which participants see the 20 binary choices and the relative position on the

screen (left or right) of the two options within each binary choice. Online Appendix Figures C.6 to

C.10 provide example screenshots of the m- and h-choices for both the AB and CD variants.25

23Given our use of multiple-price lists, a possible concern is that, for each list, participants are not providing an
(effective) indifference point as our model assumes, but rather are choosing their switching rows based on the resulting
overall compound lottery for the full list. Moreover, given our use of many tasks with only one chosen for payment,
a second possible concern is that participants are not treating each task in isolation, but rather are assembling their
preferred compound lottery for all tasks combined. Like most of the prior experimental literature—including the
literature that estimates probability weighting from within-subject measures of certainty equivalents—we proceed
assuming that neither of these is an issue.

24Our pre-analysis plan specified five values of M and H, but our implementation code had a small error and only
implemented four of the five values in each case.

25Online Appendix B.5 provides an alternative way to visualize, within the context of our specific experimental
tasks, the bias in paired choice tasks and how paired valuation tasks are immune to that bias.

20



Table 2: Summary of Binary Choices

p (i) (ii)

Panel A. m-Choices
0.1 100% chance of M P t$1, $3, $5, $8u or 10% chance of $30
0.2 100% chance of M P t$1, $4, $7, $10u or 20% chance of $30
0.5 100% chance of M P t$5, $8, $11, $14u or 50% chance of $30
0.8 100% chance of M P t$8, $12, $16, $20u or 80% chance of $30
0.9 100% chance of M P t$10, $14, $18, $22u or 90% chance of $30

Panel B. h-Choices
0.1 100% chance of $3 or 10% chance of H P t$30, $25, $20, $13u
0.2 100% chance of $6 or 20% chance of H P t$35, $30, $25, $20u
0.5 100% chance of $15 or 50% chance of H P t$45, $40, $35, $30u
0.8 100% chance of $24 or 80% chance of H P t$52, $45, $38, $33u
0.9 100% chance of $27 or 90% chance of H P t$54, $47, $40, $35u

Note: Summary of all possible AB variants of the m- and h-choices. A participant faces one binary choice from
each row, where we randomly draw a value of M for each row in panel A and a value of H for each row in panel B.
The CD variant of each row keeps the same M and H values but scales all probabilities down by the participant’s
common ratio r.

3.3 Additional Design Details

Before beginning stage 1 of the experiment, participants complete an unincentivized attention check

and quiz about the payment mechanism. After stages 1 and 2 of the experiment, participants com-

plete two incentivized comprehension checks to gauge their understanding of the multiple-price-list

format and the binary-choice tasks. The first comprehension check tests whether individuals can

correctly fill out a price list given a specified indifference value. The second comprehension check

tests whether participants can correctly answer a binary-choice question when given another per-

son’s responses to a price list. Online Appendix Figures C.11 and C.12 provide example screenshots

of these comprehension checks.26

To break up the tasks and reduce fatigue, we present participants with an unincentivized visual

puzzle after every fifth question in both stages of the experiment. Online Appendix Figure C.13

provides an example.

3.4 Recruiting

We recruited 900 participants through Prolific who had at least a high school education, were

between the ages of 18 and 30, were living in the United States or Western Europe, and had

a high approval rating on Prolific (see Online Appendix Table D.1 for summary statistics about

26For each comprehension check, roughly 85 percent of participants answer correctly. While our analysis uses the
full sample, restricting the sample to those who answer both comprehension checks correctly does not materially
change our results.

21



participants). We focused on this sample for comparison to prior common-ratio studies, the bulk

of which have used undergraduate samples in the United States and Western Europe. We recruited

an equal number of male and female participants.27 The experiment took place in August 2021.

Participants received a $5 payment upon completion. We also randomly selected one in five

participants to receive an additional bonus payment based on their decisions in the study. Each of

the 42 questions (20 valuations, 20 binary choices, and two incentivized comprehension checks) was

equally likely to determine the bonus payment amount. If we randomly selected a valuation, then

we randomly selected one row of the price list and paid the participant based on the option they

selected in that row. If we randomly selected a binary choice, then we paid the participant based

on the option they selected. If we randomly selected a comprehension check, then we paid the

participant $5 if they answered correctly. The experiment took 27 minutes to complete on average,

and participants earned an average total payment of $6.51.28

4 Analysis of Paired Valuation Tasks

Stage 1 of the experiment implements the paired valuation tasks needed to conduct our proposed

valuations-based tests for a CRP. Our primary focus is an analysis of the m-valuations; however,

we also use the h-valuations as a robustness check and to validate our approach.

4.1 Main Results

Figure 4 provides an initial visualization of our data for both m-valuations (in panel A) and h-

valuations (in panel B). This figure is analogous to panel B of Figure 2; each dot denotes the mean

valuations for the AB task and the CD task for a fixed pp, rq. For paired m-valuation tasks, a CRE

corresponds to mCD ą mAB, and is therefore consistent with observations below the 45-degree line.

For paired h-valuation tasks, a CRE corresponds to hAB ą hCD, and thus, given the change in

axes, is again consistent with observations below the 45-degree line. Figure 4 reveals little evidence

of a systematic CRE.

More formally, we focus on m-valuations and conduct the two tests developed in Section 2.3

based on Proposition 2. For both, we focus on ∆m ” mCD ´ mAB at the individual level, and

test the null of ∆m˚ “ 0. Consider first the test based on the mean of ∆m, which is valid under

Assumption 2a. Columns (2) and (3) of Table 3 present the mean value of ∆m along with the p-

value for the corresponding means test. Out of the 15 means tests, we reject the null hypothesis of

∆m˚ “ 0 in eight comparisons at the 5 percent level. All eight rejections indicate an RCRP rather

than a CRP. Moreover, even the statistically significant means are relatively small in magnitude.

(See Online Appendix Table D.2 for complete summary statistics on the m-valuations.)

27We did not preregister a gender-balanced sample. After preregistering, we learned that Prolific had very recently
experienced a large increase in young female participants due to a social media trend. To better approximate the
typical college population, we recruited 450 men and 450 women.

28This was double the $6.50/hour minimum wage on Prolific.
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Panel A. Paired m-valuations
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Figure 4: Mean valuations for each of the 15 pp, rq combinations for the paired m-valuation task
(panel A) and the paired h-valuation task (panel B). In each panel, points below the 45-degree line
are combinations that indicate a CRE, while points above the 45-degree line are combinations that
indicate an RCRE.

As discussed in Section 2.3, the means test may be biased if the function Γ in Assumption 1

is nonlinear; hence, we also consider a test based on the sign of ∆m, which is appropriate under

Assumption 2b. Columns (4)–(6) report the raw frequency data: For each combination of r and p,

the table reports the number of participants who exhibit ∆m ą 0 (consistent with CRP), ∆m ă 0

(consistent with RCRP), and ∆m “ 0. Column (7) reports the p-value from the two-sided sign test

that we proposed in Section 2.3 (see footnote 18). Out of the 15 sign tests, we find seven significant

deviations from the null of equal proportions at the 5 percent level. Six of these are consistent

with an RCRP, and there is only one test in which the deviation from equal proportions is in the

direction consistent with a CRP. Beyond the formal sign test, we also note that in 14 of 15 cases,

the median value of ∆m shown in column (8) is zero, indicating a strong central tendency toward

∆m “ 0.

That the sign test sometimes rejects the null of equal proportions even though the median of

∆m is zero is partly because there are many observations of ∆m “ 0. In conducting the sign

tests in Table 3, we adopt the conventional approach of ignoring these ties—that is, we exclude

all ∆m “ 0 observations from our calculations. Including these ties can lead to changes in the

p-values; however, there are multiple ways to incorporate ties, and there is no agreement in the

literature about which is best (for discussions, see Coakley and Heise, 1996 and Randles, 2001).

Here, we discuss two approaches that offer some bounds on our results. First, we could split the ties

evenly between ∆m ą 0 and ∆m ă 0. This approach would increase all p-values and thus make

it less likely that we reject the null of equal proportions. Second, we could split the ties between
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Table 3: Testing the Null Hypothesis of ∆m˚ “ 0

(1) (2) (3) (4) (5) (6) (7) (8)
Number of Cases

Probability
∆m Means Test ∆m ą 0

∆m “ 0
∆m ă 0 Sign Test ∆m

(Mean) (p-value) pCRP q pRCRP q (p-value) (Median)

Panel A. r “ 0.2
0.1 ´1.55 0.000 79 75 144: 0.000 0
0.2 ´1.29 0.003 80 73 145: 0.000 0
0.5 0.04 0.932 123 60 115 0.650 0
0.8 1.00 0.052 140: 54 104 0.025 0
0.9 ´1.47 0.014 127 42 129 0.950 0

Panel B. r “ 0.4
0.1 ´0.63 0.152 103 71 129 0.101 0
0.2 ´1.14 0.003 97 65 141: 0.005 0
0.5 ´1.22 0.007 104 62 137: 0.039 0
0.8 ´0.60 0.262 127 41 135 0.665 0
0.9 ´0.16 0.782 124 52 127 0.900 0

Panel C. r “ 0.6
0.1 ´0.49 0.158 94 90 115 0.166 0
0.2 0.14 0.692 111 84 104 0.682 0
0.5 ´2.05 0.000 89 65 145: 0.000 0
0.8 ´1.26 0.008 113 57 129 0.335 0
0.9 ´2.03 0.000 79 60 160: 0.000 ´1

Note: Means test and sign test for paired m-valuations for all 15 combinations of pp, rq. ∆m denotes the difference
between the CD and AB m-valuations. We conduct a two-sided t-test for the difference in means. We also conduct
a two-sided sign test, where we exclude all ties (instances of ∆m “ 0). A : indicates the larger group when the
sign test rejects the null of equal proportions at the 5 percent level.

∆m ą 0 and ∆m ă 0 using the same proportions we observe in the non-ties. This approach would

decrease all the p-values and thus make it more likely that we reject the null of equal proportions.

In Online Appendix Table D.3, we present the sign-test results using both approaches and show

that the overall message is almost identical.

Result 1 We find no evidence of systematic common ratio preferences.

A possible challenge to Result 1 is that a price-list effect might mask an underlying CRP.

Indeed, one of the most common criticisms of using multiple-price lists to elicit valuations is that

valuations may get pulled to the center of the list. In principle, asymmetric pull-to-the-center

effects could obfuscate an underlying CRP. For instance, let mo denote the row to which these

effects pull valuations. If m˚AB ă m˚CD ă mo (e.g., for low values of p) but the pull effect is stronger
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for the elicited mAB than the mCD, then we might observe mAB “ mCD despite there being an

underlying CRP.

There are several reasons to believe such list effects do not drive Result 1. First and foremost,

we document in Section 5.4 that we do not observe a systematic CRE in our paired choice tasks

when we use a broader and more balanced set of parameters relative to the prior literature. In other

words, our stage 2 choice data generate a conclusion akin to Result 1, although the impact of noise

on paired choice tasks complicates inference. Second, there is no apparent reason for the pull-to-

the-center effect to take the asymmetric form necessary to generate Result 1 despite an underlying

CRP. In addition, for such asymmetric pull-to-the-center effects to mask an underlying CRP, the

asymmetry would need to be in the opposite direction—i.e., stronger for the elicited mCD—for

high p, where an underlying CRP would manifest as mo ă m˚AB ă m˚CD. There is no apparent

reason to assume that this is the case. More generally, the strong link between participants’ stage

1 valuations and their stage 2 choices that we document in Section 5 is further evidence against

this (or some other) list effect obfuscating an underlying CRP.

A second possible challenge to Result 1 is whether the absence of a CRE in our valuation data

is due to our choosing experimental parameter values for which models featuring a CRP would

predict very small magnitudes for ∆m. To assess this issue, we interpret our data within the

prospect theory (PT) structure from Example 1. Figure 5 presents the mean m-valuations in a

different way from Figure 4(A): For each of the five values of p, blue dots denote the mean mAB

valuations and red diamonds denote the mean mCD valuations. The three panels separate results

by the three different values for r. We then use the fact that our AB valuation tasks are identical

to those that researchers frequently use to estimate a PT probability weighting function. Following

that literature, we use participants’ five mAB values to estimate a probability weighting function

for each value of r. Online Appendix E.1 provides the details of this structural estimation and

reports the parameter estimates; the AB valuations that these estimates predict are depicted in

Figure 5 by the dashed blue lines. In each case, the estimated probability weighting function takes

the familiar inverse-S shape that the prior literature has typically found—e.g., the dashed blue lines

all look quite similar to Figure 2 in the Barberis (2013) review of the prospect-theory literature.29

We next use the probability weighting functions estimated from the AB valuations to predict

the CD valuations. The red dashed-and-dotted lines in Figure 5 depict these predictions. The

difference between the two lines reflects the predicted magnitude of CRP, ∆m, given the observed

AB valuations. Figure 5 reveals that, under PT, we should see substantial positive values of ∆m;

across the 15 combinations of p and r, the predicted ∆m ranges from 3.15 to 8.63, with an average

of 6.30.30 Hence, we observe small ∆m values in the data despite the fact that PT predicts much

29In Online Appendix E.1, we use the functional forms from (Tversky and Kahneman, 1992) and corresponding
parameter labels, and the typical non-linear least-squares approach to estimate those parameters. The specific
estimates for utility curvature (α) and probability weighting (γ) are: α “ 1.351 and γ “ 0.580 for r “ 0.2; α “ 1.179
and γ “ 0.587 for r “ 0.4; and α “ 1.112 and γ “ 0.636 for r “ 0.6.

30Online Appendix Table D.4 reports the complete range of predicted ∆m values and confidence intervals for each
pp, rq combination.
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Figure 5: Mean valuations by probability p and common ratio r. The blue dots denote mean
AB valuations, and the red diamonds denote mean CD valuations. The dashed blue lines repre-
sent the AB valuations predicted by PT with parameters estimated from the AB-valuation data.
The dashed-and-dotted red lines denote the CD valuations predicted by PT given the parameter
estimates represented by the blue lines.

larger differences.

A further implication of Figure 5 is that our data are inconsistent with models of probability

weighting in the tradition of Kahneman and Tversky’s (1979, 1992) prospect theory. In such

models, a CRP (or subproportionality) is perhaps the central motivating fact behind the structure

of probability weighting. Our failure to find a systematic CRP is thus problematic for such models.

Indeed, our discussion above highlights how a model in which individuals apply a single probability

weighting function to both types of comparisons cannot explain our combined mAB and mCD

data.31

4.2 Validation and Robustness

Result 1 stands in stark contrast to the widely accepted belief that there exists a systematic CRP.

Hence, it is important to validate that our valuation measures reflect underlying preferences, and

that our finding of ∆m « 0 is not an artifact of our experimental task. We outline several features

of our data that alleviate this concern.

First, we reiterate that our mAB valuation tasks are identical to the valuation tasks used in the

extensive literature that estimates probability weighting functions, and our data yield probability

weighting functions that look very similar to those estimated in the literature (as seen in Figure 5

and discussed in footnote 29). It is therefore reassuring that part of our task aligns so closely with

the broader literature on probability weighting, and supports our use of valuation data to test for

CRP.

31For a more formal test, see Online Appendix E.1, where we estimate a structural model that permits separate
probability weighting functions for the AB and CD valuations, and strongly reject the null of there being no difference.
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Second, participants’ valuations respond sensibly to changes in p and hence the expected value

of the lottery: Increases in p lead participants to report higher valuations. We see this pattern

even though we present 20 tasks in random order that differ along multiple dimensions: an m- or

h-valuation, an AB or CD variant, and the value of p.

Third, we designed our h-valuation tasks for both validation and robustness. In terms of

robustness, the h-valuation tasks present a different choice structure to participants, yet permit

analogous means and sign tests. Table 4 reports the results for the h-valuation tasks, and they

are similar to the results for the m-valuation tasks in Table 3 (see Online Appendix Table D.5

for complete summary statistics on the h-valuations). While the mean ∆h is often significantly

different from zero, and the magnitudes are slightly larger than those for the m-valuation tasks,

there are roughly equal numbers of positive and negative instances of ∆h. Out of the 15 sign tests,

we find nine significant deviations from the null of equal proportions at the 5 percent level: Five

are consistent with an RCRP, and four are consistent with a CRP.32 Finally, the median ∆h is zero

in 12 of the 15 cases. Hence, Table 4 reaffirms Result 1: There is no evidence of a systematic CRP

in valuations.33

We also use the h-valuation data to validate the m-valuation data. As described in Section

2.5, the two valuations approximately measure the same preference, and thus the proportional

risk premium mz{H for an m-valuation should be strongly correlated with the proportional risk

premium M{hz for the corresponding h-valuation. In Online Appendix Table D.7, we report the

rank correlations between mAB{H and M{hAB and the rank correlations between mCD{H and

M{hCD for each of the 15 combinations of pp, rq. All 30 rank correlations are significantly positive

at the 5 percent level, and the average is 0.28. Overall, these positive correlations confirm that our

valuations capture meaningful information about underlying preferences and are not merely driven

by some artifact of our experimental task.34

4.3 Heterogeneous Preferences and Noise in Stage 1 Data

Our aggregate tests provide no evidence of a systematic CRP. However, we also observe significant

variation in participants’ stage 1 responses. This variation could merely reflect the impact of choice

noise; indeed, the premise of our analysis is that choice noise can generate idiosyncratic variation in

responses around underlying values. However, this variation could also be due to heterogeneity in

participants’ underlying preferences. There are two relevant forms of heterogeneity in preferences

32Online Appendix Table D.6 shows that the message is almost identical no matter how we treat observations of
∆h “ 0.

33Castillo and Eil (2014) propose and test a theory of status quo bias in which holding fixed the safe option in
a paired valuation task (as in our h valuations) leads to an RCRP, while holding fixed the risky option (as in our
m-valuations) yields a CRP. While they find limited support in their data, the consistent pattern that we find across
our m- and h-valuations runs counter to their theory.

34Here and in subsequent sections, we provide interpretations of correlations in behavior across different tasks.
These interpretations implicitly assume that any correlation in noise draws across tasks is limited; the interpretations
would be different if there were sizeable correlations in noise draws across tasks.
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Table 4: Testing the Null Hypothesis of ∆h˚ “ 0

(1) (2) (3) (4) (5) (6) (7) (8)
Number of Cases

Probability
∆h Mean Test ∆h ą 0

∆h “ 0
∆h ă 0 Sign Test ∆h

(Mean) (p-value) pCRP q pRCRP q (p-value) (Median)

Panel A. r “ 0.2
0.1 ´1.67 0.006 100 60 138: 0.016 0
0.2 ´1.94 0.001 94 53 151: 0.000 ´1
0.5 1.64 0.001 136: 81 81 0.000 0
0.8 4.31 0.000 174: 45 79 0.000 3
0.9 2.11 0.000 143: 64 91 0.001 0

Panel B. r “ 0.4
0.1 ´2.53 0.000 82 59 162: 0.000 ´1
0.2 ´1.59 0.002 92 65 146: 0.001 0
0.5 ´1.05 0.036 101 70 132: 0.049 0
0.8 1.84 0.002 148: 47 108 0.015 0
0.9 1.13 0.055 138 47 118 0.235 0

Panel C. r “ 0.6
0.1 ´0.73 0.192 100 71 128 0.074 0
0.2 0.83 0.108 131 65 103 0.077 0
0.5 ´0.72 0.130 93 85 121 0.065 0
0.8 0.84 0.146 136 47 116 0.231 0
0.9 0.76 0.173 126 54 119 0.702 0

Note: Means test and sign test for paired h-valuations for all 15 combinations of pp, rq. ∆h denotes the difference
between the AB and CD h-valuations. We conduct a two-sided t-test for the difference in means. We also conduct
a two-sided sign test, where we exclude all ties (instances of ∆h “ 0). A : indicates the larger group when the sign
test rejects the null of equal proportions at the 5 percent level.

that we investigate. First, there is heterogeneity in the degree of risk aversion, as reflected in the

levels of participants’ m˚AB and m˚CD. Second, there is heterogeneity in the degree to which people

have an underlying CRP or RCRP, as reflected by heterogeneity in ∆m˚.

We begin by assessing the degree of heterogeneity in risk aversion. For each value of p, our

stage 1 data contain two valuations that reflect an individual’s risk aversion: mAB and mCD. As

a benchmark, risk neutrality would lead a person to state mAB “ mCD “ pH. Hence, we define

m̄ ” pmAB `mCDq{2 and then use pH ´ m̄ as a measure of a person’s risk aversion. With this

measure, positive values reflect risk aversion and negative values reflect risk seeking.

Panel A of Figure 6 presents the distribution of the observed pH´m̄ across all 15 combinations

of pp, rq. There is substantial variation in the magnitude of pH ´ m̄. While some of this variation

is surely due to noise, there is also evidence that some of it is due to heterogeneity in partici-

pants’ underlying m̄˚. First, in Section 4.2, we highlighted the strong rank correlations between
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participants’ mx{H and M{hx for the same pp, rq, which indicate the existence of heterogeneity

in underlying preferences. Second, panel A of Online Appendix Table D.8 documents substantial

rank correlations of pH ´ m̄ across different values of p: Across the 30 possible combinations of

pp, p1, rq, all rank correlations are positive, ranging from 0.06 to 0.61, with an average of 0.31.35
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Figure 6: Distributions of risk premia (panel A) and value differences (panel B) in m-valuations.
The risk premium is pH ´ m̄ where m̄ “ pmAB ` mCDq{2 and H “ 30. Positive risk premia
indicate risk aversion, and negative risk premia indicate risk seeking. The value difference is
∆m “ mCD´mAB. Positive value differences indicate CRP, and negative value differences indicate
RCRP. For each panel, the data include all 15 combinations of pp, rq.

We next assess the degree of heterogeneity in underlying CRP versus RCRP. Panel B of Figure

6 presents the distribution of the observed ∆m across all 15 combinations of pp, rq. Again, there

is substantial variation, and while some of it is undoubtedly due to noise, there is also evidence

that some of it is due to heterogeneity in participants’ underlying ∆m˚. First, analogous to our

assessment of the rank correlations between mx{H and M{hx for the same pp, rq, we study rank

correlations between the differences mCD{H ´mAB{H and M{hCD ´M{hAB. Online Appendix

Table D.9 reports this rank correlation for all 15 combinations of pp, rq. Twelve are significantly

positive at the 5 percent level, and the average across all 15 rank correlations is 0.15. Second, panel

B of Online Appendix Table D.8 documents substantial rank correlations of ∆m across different

values of p: Across the 30 possible combinations of pp, p1, rq, ten are significantly positive at the

5 percent level, and none are significantly negative. The average across all 30 rank correlations is

0.11.36

35These correlations are weakest when comparing pH ´ m̄ for a high p (0.8 or 0.9) with that for a low p (0.1 or
0.2), which is perhaps not surprising given that some models can predict a negative correlation for such comparisons.
For instance, under PT with heterogeneity in the extent of probability weighting, people with more pronounced
probability weighting (smaller γ) would have a smaller (more negative) pH´ m̄ for low p and a larger (more positive)
pH ´ m̄ for high p.

36Dean and Ortoleva (2019) use paired valuation tasks to obtain a continuous measure of the CRE. They find that
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Hence, while we fail to find a systematic CRP in the aggregate, the variation in participants’

stage 1 valuations reflects a combination of idiosyncratic noise and systematic heterogeneity in

underlying preferences. Heterogeneity in both the levels of risk attitudes and underlying CRP or

RCRP drives the positive correlations observed between measures. Choice noise attenuates these

correlations toward zero, even for values that should measure the same construct. Recognizing

both heterogeneity in preferences and a substantial role for noise will have important implications

for our stage 2 paired choice tasks. We turn to these connections next.

5 Analysis of Paired Choice Tasks

This section analyzes empirical results from our paired choice tasks, making explicit the connections

between the valuations elicited in stage 1 and the corresponding choices made in stage 2. Doing so

allows us to assess whether there is differential noise across the AB and CD choices and to reconcile

our main finding of no systematic CRP in paired valuation tasks with the vast literature that finds

a CRE in paired choice tasks.

5.1 Connections Between Paired Valuations and Paired Choices

Under Assumption 1 from Section 2.3, the same underlying preferences drive behavior for both

paired valuation tasks and paired choice tasks, and thus there should be a strong connection

between the two. To illustrate, consider the special case of Assumption 2a where a person with

underlying indifference values pm˚AB,m
˚
CDq would choose A over B when M ě m˚AB ` εAB and

would choose C over D when M ě m˚CD ` εCD, where εCD
d
“ kεAB. For this case, the probability

of making CRE choices (A and D) minus the probability of making RCRE choices (B and C) is

CRE ´RCRE ” PrpAq ´ PrpCq “ Pr pεAB ă pM ´m˚ABqq ´ Pr pεCD ă pM ´m˚CDqq

“ Pr pεAB ă pM ´m˚ABqq ´ Pr

ˆ

εAB ă
1

k
pM ´m˚CDq

˙

.

Defining Ψ ” pM ´m˚CDq{k, and substituting m̄˚ ” pm˚AB `m
˚
CDq{2 and ∆m˚ ” m˚CD´m

˚
AB, we

can rewrite this as:

CRE´RCRE “ Pr

ˆ

εAB ă Ψ` 0.5

ˆ

1`
1

k

˙

∆m˚ `

ˆ

1´
1

k

˙

pM ´ m̄˚q

˙

´Pr pεAB ă Ψq . (3)

This formulation links the extent of CRE ´ RCRE in a paired choice task to two terms: (i)

a scaled value difference term 0.5p1 ` 1{kq∆m˚, and (ii) a scaled distance to indifference term

p1´ 1{kqpM ´ m̄˚q. To illustrate the implications of equation (3), Figure 7 presents the predicted

CRE´RCRE as a function of the value difference term (panel A) and the distance to indifference

their valuations-based measure of the CRE is strongly correlated with other risk-preference-related behaviors, which
parallels our finding of reliable heterogeneity in underlying CRP versus RCRP.
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Figure 7: Predicted CRE´RCRE as a function of the value difference 0.5p1`1{kq∆m˚ (panel A)
or distance to indifference p1´1{kqpM´m̄˚q (panel B). Panel A depicts predicted CRE´RCRE as
a function of value difference for three cases: (i) a positive distance to indifference (green dashed),
(ii) a negative distance to indifference (red dotted), and (iii) a zero distance to indifference (black
solid). Panel B depicts predicted CRE ´RCRE as a function of distance to indifference for three
cases: (i) a positive (CRP ) value difference (green dashed), (ii) a negative (RCRP ) value difference
(red dotted), and (iii) a zero value difference (black solid). Both panels assume εAB „ Np0, 72q and
k “ 2.5.

term (panel B) when εAB is distributed Np0, 72q and k “ 2.5, so that the noise is more impactful

for the CD choice.

The value difference captures the strength of a person’s underlying CRP (when ∆m˚ ą 0) or

RCRP (when ∆m˚ ă 0). The impact of the value difference on CRE ´ RCRE seen in panel

A therefore reflects the impact of underlying preferences on choice-based measures of the CRE.

Indeed, in taking empirically observed instances of CRE ´ RCRE ą 0 in paired choice tasks as

evidence of an underlying CRP, the prior literature has effectively assumed that this effect is the

dominant effect. Panel A highlights that the relationship between CRE ´ RCRE and the value

difference is straightforward: The larger the value difference, the larger CRE ´RCRE.

The distance to indifference has its most natural interpretation under EU, when m˚AB “ m˚CD ”

m˚ and thus m̄˚ “ m˚. Under EU, the magnitude of the distance to indifference captures the

strength of a person’s underlying EU preference for A and C (when M ´m˚ ą 0) or for B and D

(when M ´m˚ ă 0). The solid line in panel B illustrates the predictions highlighted in Section 2.2:

When EU preferences favor A and C, noise generates a prediction of CRE´RCRE ą 0, and when

EU preferences favor B and D, noise generates a prediction of CRE´RCRE ă 0. The dashed and

dotted lines in panel B illustrate that the same pattern holds even for people with ∆m˚ ‰ 0, where
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equation 3 establishes that M ´ m̄˚ is the natural analogue for M ´m˚. Hence, an individual with

an underlying RCRP may exhibit a CRE if the offered M implies a large and positive distance to

indifference, and an individual with an underlying CRP may exhibit an RCRE if the offered M

implies a large and negative distance to indifference.37

The scaling factors in equation (3) depend on k, which captures the extent of differential noise

across AB versus CD choices. When k “ 1, there is no differential noise impact, and the scaled

distance to indifference term disappears—that is, the person will exhibit a CRE if and only if

they have an underlying CRP. In contrast, when there is differential noise across the AB and CD

choices (k ‰ 1), the scaled distance to indifference will impact whether people exhibit a CRE or an

RCRE. Our empirical analysis in Sections 5.2 and 5.3 will provide clear evidence that the distance

to indifference has a positive impact on CRE´RCRE, implying that k ą 1 (as depicted in Figure

7). In other words, we find evidence that noise has a larger impact on the CD choices than on the

AB choices.

In the following subsections, we test these predictions relating the value difference and the

distance to indifference to CRE ´ RCRE. We emphasize three points as we transition from

theoretical predictions to empirical results. First, we have framed the predictions above in terms

of a person’s underlying value difference ∆m˚ and distance to indifference m̄˚, both of which are

unobserved. In our empirical analysis, we replace these quantities with their empirical counterparts

∆m and m̄, recognizing that there is measurement error and attempting to correct for it when

possible.

Second, our empirical analysis combines data for the three different values of r to increase the

power of our statistical tests. However, r may impact the extent of differential noise (i.e., k)—e.g.,

EU with additive utility noise implies k “ 1{r. Moreover, a change in k would change the slopes

in Figure 7, where a k closer to one would yield that Figure 7(A) is steeper while Figure 7(B) is

flatter (in the range around M ´ m̄˚ “ 0). To account for this, and motivated by the EU case, our

empirical analysis uses 0.5p1 ` rq∆m for the scaled value difference and p1 ´ rqpM ´ m̄q for the

scaled distance to indifference.38

Finally, when we connect people’s stage 1 valuations to their stage 2 choices, we assume that

both reflect the same underlying preferences as stated in Assumption 1. However, we do not impose

that the error distributions for valuations are the same as those for choices. Our analysis considers

stage 1 valuations as noisy measures of underlying preferences, which motivates an instrumental

variables approach. However, this approach does not require consistency between the noise in

37Online Appendix B.6 explores the impact of distance to indifference in the absence of choice noise, that is, when all
variation in the data is due to heterogeneity in preferences. Two key predictions are: (i) If the population distribution
of ∆m˚ is symmetric, then the distance to indifference has no impact on CRE ´ RCRE; and (ii) otherwise, the
distance to indifference can have an impact on CRE ´ RCRE, but that impact must be symmetric around a zero
distance to indifference. Both of these predictions are inconsistent with our data.

38Online Appendix B.4 derives analogous corrected regressors for h-tasks. Basing these corrections on the EU case
is not perfect, as we have already documented that our data are inconsistent with that case. However, using that
case as motivation, instead of choosing a correction in a more ad hoc way, imposes some discipline on our analysis.
In Online Appendix B.7, we assess this approach and show that it works as intended.
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Figure 8: Stage 2 individual-level CRE´RCRE as a function of individual-level stage 1 value differ-
ence (panel A) and distance to indifference (panel B). For each, we divide the stage 1 individual-level
data into 20 equally sized bins, and the dots in each graph denote the average CRE´RCRE for a
given bin (we join four value difference bins together at zero due to the large number of observations
at this point). The solid lines represent the best-fitting linear prediction for CRE ´ RCRE as a
function of the value difference (panel A) or the distance to indifference (panel B).

valuations and noise in the choices.

5.2 Individual-Level Stage 2 Data

We first analyze stage 2 data at the individual level. As in Section 4, we focus on the paired m-

choice tasks and use the paired h-choice tasks as a robustness check. There are 60 different paired

m-choice tasks, which reflect different combinations of p, r, and M . Each participant faces five of

these, one for each value of p.

Consider a graphical analysis of stage 2 behavior analogous to the theoretical predictions in

Figure 7. Figure 8 plots the relationship between observed CRE ´ RCRE and the scaled value

difference (panel A) and the scaled distance to indifference (panel B). We create 20 equally sized

bins of the value difference and the distance to indifference, respectively, and report the average

CRE ´RCRE within each bin.

Panel A of Figure 8 shows a tight connection between individuals’ stage 1 value differences

and their stage 2 choices: Consistent with value differences capturing people’s underlying CRP or

RCRP, individuals with more positive value differences are more likely to exhibit a CRE, and those

with more negative value differences are more likely to exhibit an RCRE. Panel B shows that there

is also a clear relationship between an individual’s distance to indifference and whether we observe

a CRE or an RCRE. As predicted by models with noise that is more impactful for the CD choice,
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individuals with greater distances to indifference are more likely to exhibit a CRE relative to an

RCRE.

To provide a quantitative assessment of these relationships, Table 5 reports the results from

linear regressions using the outcome variable CRE ´ RCRE P t´1, 0, 1u at the individual level.

The regressions control for the values of p and r associated with the stage 2 paired choice task and

individual characteristics. The regressors of interest are the scaled value difference and the scaled

distance to indifference. Columns (1) and (2) include each regressor by itself, while column (3)

includes both together. The coefficient estimates are quite stable across columns. They imply that a

$10 increase in the scaled value difference implies an 11 percentage-point increase in CRE´RCRE.

At the same time, a $10 increase in the scaled distance to indifference implies an eight percentage-

point increase in CRE´RCRE. Moreover, these numbers imply that a person with a scaled value

difference of ´$7 (i.e., a strong RCRP) would exhibit a CRE if their scaled distance to indifference

were larger than $10. These results show that distance to indifference, through its interaction with

choice noise, plays an important role in whether people exhibit a CRE or an RCRE in their stage

2 behavior.39

Table 5: Predicting Individual-Level CRE ´RCRE

(1) (2) (3) (4)
Outcome: CRE ´RCRE P t´1, 0, 1u

OLS OLS OLS 2SLS

Scaled Value Difference:
1`r

2 ∆m 1.12 1.14 6.98
(0.14) (0.14) (1.07)

Scaled Distance to Indifference:
p1 ´ r)(M ´ smq 0.78 0.82 0.83

(0.19) (0.19) (0.40)

Outcome Mean 2.64 2.64 2.64 2.64
Individuals 900 900 900 900
Observations 4,500 4,500 4,500 4,500

Note: OLS regressions using individual-level m-task data with dependent variable CRE´RCRE P t´1, 0, 1u.
Specifications include p and r fixed effects, as well as controls for gender, education, age, language, student
status, employment, and the number of previous Prolific approvals. All numbers reported in percentage
points; individual-cluster-robust standard errors in parentheses. For column (4), instruments are p1 ´ rqpsh,
0.5p1` rqp∆h, and p1´ rqM .

Since our stage 1 values for mAB, mCD, and ∆m reflect a combination of preference and noise,

the coefficients in Table 5 might be attenuated by measurement error. To account for this, column

(4) of Table 5 pursues an instrumental-variables approach using the h-valuation tasks and the

39The magnitude of distance to indifference also predicts stage 2 decision timing. When measured distance to
indifference |M ´ mXY | “ 0, participants take around 7 seconds to complete their stage 2 choice. For every $10
increase in |M ´mXY |, stage 2 choices occur around 1.4 seconds (« 20 percent) faster. These results are consistent
with the interpretation that easier choices occur faster, as suggested by some neuroscience models.
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exogenous value p1 ´ rqM as instruments. The coefficient on the scaled distance to indifference

is unaffected, which is not surprising given that a large share of the variation in this variable

is due to our random variation in M . In contrast, the coefficient on the scaled value difference

is substantially larger, which again is not surprising given that the variation in this variable is

entirely endogenous and thus strongly influenced by choice noise. While it is difficult to compare

the magnitudes of the two effects under the IV specification, the latter result provides further

support for our conclusion that the stage 1 valuations include a substantial preference component,

especially when using information across both the m- and h-valuation tasks.40

5.3 Experiment-Level Stage 2 Data

We next analyze stage 2 data at the experiment level—that is, we analyze the share of CRE choices

minus the share of RCRE choices among participants who saw the same pair of choice tasks. As

described in Section 5.2, there are 60 combinations of pM,p, rq linked to stage 1 m-valuations, which

yields 60 experiments. To expand the number of experiment-level observations, we also include the

60 analogous experiments linked to stage 1 h-valuations—that is, for 60 combinations of pH, p, rq.

Each participant completed ten of these 120 experiments, and each experiment had between 57 and

101 observations with an average sample size across experiments of 75. We present the summary

data for all 120 experiments in Online Appendix Tables D.11 and D.12.

Our goal is to demonstrate that we can predict which experiments will likely yield a CRE or

an RCRE in choices based on our linked stage 1 data on valuations. Specifically, we calculate

for each experiment (i) the average scaled value difference (0.5p1 ` rq∆m for m-choice tasks or

0.5p1`rqp∆h for h-choice tasks) and (ii) the average scaled distance to indifference (p1´rqpM´m̄q

or p1 ´ rqpph̄ ´Hq).41 We then investigate whether these averages predict CRE ´ RCRE at the

experiment level.

Figure 9 provides visual evidence and is the experiment-level analogue to the individual-level

analysis in Figure 8. Panel A presents the relationship between CRE ´ RCRE and the scaled

value difference, where the variables on both axes are residualized by the distance to indifference.

Panel B presents the relationship between CRE ´ RCRE and the scaled distance to indifference,

where the variables on both axes are residualized by the value difference. In both cases, each point

is one experiment, and the size of each point is proportional to the sample size of each experiment.

Similar to the individual-level data, we see that both variables predict whether we observe a CRE

or an RCRE.

In Table 6, we re-conduct the analysis of Table 5 at the experiment level. The dependent

variable is now the continuous variable CRE ´ RCRE for each experiment, and the regressions

all control for the values of p and r along with whether the experiment involves m or h choices.

40As a robustness check, we can perform an analogous individual-level analysis of the links between the stage 1
h-valuations and the stage 2 h-choices. Online Appendix Table D.10 is the h-task analogue to Table 5 and yields
similar conclusions.

41See Online Appendix B.4 for a discussion the terms we use for h-choice tasks.
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Figure 9: Stage 2 experiment-level CRE ´ RCRE as a function of experiment-level stage 1 value
differences (panel A) and distance to indifference (panel B). Each dot denotes an experiment, and
the size is proportional to the number of observations in that experiment. Panel A observations are
residualized by the average distance to indifference; panel B observations are residualized by the
average value difference. The solid and dashed lines represent the best fitting OLS estimates from
columns (3) and (4) of Table 6; the latter excludes experiments with values in the bottom quintile
of the distance to indifference variable.

The regressors of interest are the average scaled value difference and the average scaled distance

to indifference. Columns (1) and (2) include each by themselves, while column (3) includes both

together; once again, the coefficients are quite stable across columns.

Table 6: Predicting Experiment-Level CRE ´RCRE

(1) (2) (3) (4)
Outcome: CRE ´RCRE P r´100, 100s

Scaled Value Difference:
1`r

2 ∆m or p1`r
2 ∆h 3.94 4.22 4.13

(1.06) (1.02) (1.15)
Scaled Distance to Indifference:
p1 ´ rqpM ´ smq or pp1 ´ rqpsh ´ Hq 0.80 0.90 1.96

(0.30) (0.28) (0.53)

Mean CRE ´ RCRE 2.69 2.69 2.69 1.92

Data Exclusion: Distance to Indifference No No No
Bottom
Quintile

Number of Experiments 120 120 120 96

Note: OLS regressions using experiment-level data with dependent variable CRE´RCRE P r´100, 100s. Specifi-
cations include p and r fixed effects, as well as task (m versus h) fixed effects. All numbers reported in percentage
points. For column (4), data restricted to experiments with an average distance-to-indifference value in the top
four quintiles.
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Across the 120 experiments, the average value difference has a range of about $4. The estimates

suggest that this range corresponds to a roughly 16 percentage-point change in the aggregate

CRE ´ RCRE. Across the 120 experiments, the average distance to indifference has a range of

about $15. This range corresponds to a roughly 14 percentage-point change in CRE ´ RCRE.

Hence, as in our individual-level analysis, we see that, in practice, the distance to indifference has

an impact similar in magnitude to that of the value difference. Thus the distance to indifference—

which is largely determined by the experimenter’s choice of parameter values—plays an essential

role in determining whether an experiment will have a CRE or an RCRE.

Panel B of Figure 9 reveals that our experimental variation in M and H leads to some large

negative values of the average distance to indifference. Given that Figure 7 implies that the re-

lationship between CRE ´ RCRE and distance to indifference could invert for sufficiently large

magnitudes, it is natural to exclude observations with extreme magnitudes. In column (4) of Table

6, we re-run the regression after dropping the bottom 20 percent of observations in terms of dis-

tance to indifference. The effect of distance to indifference on CRE´RCRE within this sub-sample

more than doubles. Hence, our numbers above perhaps understate the importance of distance to

indifference in generating observed CRE or an RCRE.

Result 2 Both value difference and distance to indifference significantly predict whether standard

paired choice tasks will reveal a common ratio effect.

5.4 Stage 2 Paired Choices Relative to the Prior Literature

In Section 2.4, we highlighted how the prior literature has used a limited set of experimental

parameters. In contrast, we use a broader and more balanced set of experimental parameters in

our stage 2 paired-choice experiments. We now investigate the implications of doing so, further

highlighting the inferential challenges inherent to paired-choice data.

In fact, our stage 2 paired-choice data yield the same broad conclusion as our stage 1 paired-

valuations data: There is little evidence of a systematic CRP. Looking across all 9000 observations

in our data at the individual level, we observe xPrpAq “ 49.14 percent and xPrpCq “ 46.46 percent.42

Hence, we observe that CRE ´ RCRE “ 2.7 percent, which is substantially smaller than the

(sample-weighted) 22.0 percent observed across all prior studies. At the experiment level, if we

follow Blavatskyy et al. (2023) and use a Conlisk z-test with a 5 percent significance level, then,

among our 120 experiments, 16.7 percent find a CRE while 9.2 percent find an RCRE, which is

substantially more balanced than the 57.3 percent and 9.1 percent among prior experiments. Online

Appendix Figure D.1 provides a visualization of the latter point by depicting the analogue of Figure

2(A) for our 120 experiments. Hence, based on our stage 2 paired-choice data, at best one might

conclude that there is evidence for a mild underlying CRP.43

42The observed proportions of the four combinations are xPrpBDq “ 38.0 percent, xPrpACq “ 33.6 percent, xPrpADq “

15.6 percent, and xPrpBCq “ 12.9 percent.
43Our stage 2 choice data also yield the same broad conclusion as our stage 1 valuations data when interpreted
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Moreover, we can document that the different patterns in our experiments relative to prior

experiments derive from our use of a broader and more balanced set of experimental parameters (see

Online Appendix B.8 for full details). Specifically, we develop a measure of whether an experiment is

more representative of prior studies or more representative of our study based on the experimenter-

chosen values for p, r, and M{ppHq. To do so, we first create a combined data set of 263 observations

consisting of our own and prior experiments. We then regress an indicator for an experiment

coming from a prior study on p, r, and M{ppHq. Finally, we use the estimated coefficients from

this regression to generate for each experiment a predicted likelihood that it comes from a prior

study. Importantly, this predicted likelihood depends on only an experiment’s experimenter-chosen

values for p, r, and M{ppHq, and is independent of the experiment’s observed realization for

CRE ´RCRE.

We next compare experiments based on whether they are more representative of prior studies

(predicted likelihood larger than 0.50) or more representative of our study (predicted likelihood

smaller than 0.50). Among the 143 prior experiments, 112 are more representative of prior studies

and have a (sample-weighted) average CRE ´ RCRE of 24.7 percent, while the other 31 have an

average of 4.5 percent. Among our 120 experiments, 40 are more representative of prior studies

and have an average CRE ´ RCRE of 8.4 percent, while the other 80 have an average of ´0.1

percent. In other words, when we (or prior studies) use experimental parameters that are more

representative of prior studies, we find more CRE; in contrast, when we (or prior studies) use

experimental parameters that are less representative of prior studies, we find much less CRE.

While our stage 2 paired-choice data are suggestive that, at best, there might be a mild under-

lying CRP, it is not obvious how to turn this into a rigorous test. This point highlights the key

limitation of using paired-choice data to test for an underlying CRP: The underlying null hypothesis

of no CRP implies that we should see a CRE for some parameters, an RCRE for other parameters,

and neither for yet other parameters. Given these predictions for paired-choice data, it is difficult

to create a test for an underlying CRP without making structural assumptions about both prefer-

ences and noise. In contrast, with paired valuations, our two simple tests rely on relatively weak

assumptions only about the nature of the noise.

6 Discussion

Our paper has two main contributions. First, methodologically, we demonstrate the limitations of

using paired choice tasks to make inferences about preferences and illustrate how paired valuations

can overcome these limitations. Second, empirically, our paired valuation data yield no evidence of

a systematic CRP but are also inconsistent with EU. We conclude by discussing the implications

of our paper for future research.

in terms of probability weighting: The probability weighting function estimated from the AB choice data takes
the familiar inverse-S shape, but our combined AB and CD choice data are inconsistent with a stable probability
weighting function. See Online Appendix E.2 for details.
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Methodologically, our paper argues that valuation data may be better suited than choice data

to reveal features of underlying preferences in the presence of noise. We do not claim valuations

are always superior, even when working with paired decisions. For example, when estimating a

fully specified structural model of underlying preferences and noise, there is no inherent advantage

to using valuation versus choice data (beyond the fact that observing one valuation is effectively

equivalent to observing many choices). The benefits of valuation data emerge in model-free tests

of features of preferences that are akin to axiom testing.

Our methodological point relates to, but is distinct from, contemporary work that highlights the

usefulness of valuation data. Carrera et al. (2022) point out how noise can bias choice data when

studying single decisions and how valuations may be immune to that bias. Specifically, they inves-

tigate whether people exhibit a preference for commitment in the context of intertemporal choice.

For a binary choice of whether to take up a commitment contract, they note how mean-zero error

on underlying valuations can distort the take-up rate relative to what noise-free valuations would

imply. They then point out that if one instead elicits valuations directly, the same mean-zero error

does not create a bias. Our contribution is distinct in that it revolves around how noise creates

bias when comparing pairs of decisions. Proposition 1 establishes that, if there is differential noise

across the two decisions, then a systematic bias emerges even in populations with homogeneous

preferences. Moreover, unobserved heterogeneity in underlying preferences exacerbates the infer-

ence problem. At the same time, Proposition 2 establishes that using valuations can be a useful

solution under both mean-zero valuation error as in Carrera et al. (2022) (i.e., under Assumption

2a) and mean-zero utility error (i.e., under Assumption 2b).

We further highlight that our methodological contribution applies to many other domains.

Canonical tests for a large number of behavioral-economic phenomena use paired choice tasks: dy-

namic inconsistency and present bias (comparing choices with different time stamps), loss aversion

(comparing choices between mixed and non-mixed gambles), endowment effects (comparing choices

of owners and non-owners), decoy effects and compromise effects (comparing choices for two-option

versus three-option choice sets), ambiguity attitudes, rank dependence, and common consequence

effects (comparing choices between particular sets of acts or lotteries). All of these paradigms are

potentially subject to the central critique embodied in our main theoretical result and are similarly

suited to the use of paired valuations to overcome the underlying inference problem.

Our core empirical contribution presents an important challenge for the literature that seeks

to understand risk attitudes. Like prior research, we find clear evidence against EU as an ac-

curate descriptive model of behavior, thus supporting the need for alternative models. However,

many prominent non-EU models are built around a systematic CRP as a motivating feature of

preferences—indeed, admission of a CRP is often axiomatic. Perhaps most prominent are models

of probability weighting in the tradition of prospect theory. Based on their evidence, Kahneman

and Tversky (1979) take a global CRP to be a property of preferences and design their model

of probability weighting to accommodate this property. Later, Prelec (1998) takes an axiomatic
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approach to probability weighting; his key axiom of “subproportionality” is equivalent to assuming

a global CRP.44 The models of disappointment aversion in Bell (1985) and Gul (1991) are also

motivated by evidence on the CRE, as is the model of cautious expected utility in Cerreia-Vioglio

et al. (2015). The latter two papers pursue axiomatic approaches that modify the standard EU

axioms to permit a CRP.

Our core empirical finding of no aggregate CRP calls for a reassessment of these models. Because

our mAB valuations are consistent with the standard S-shaped probability weighting function found

in the literature, it might be fruitful for future work to understand how to retain the appealing

psychology of probability-weighting models without requiring a built-in systematic CRP. Moreover,

while we find no systematic CRP on average, we do find that some individuals seem to exhibit a

reliable CRP while others seem to exhibit a reliable RCRP. Hence, it may be important to develop

models that permit heterogeneity in whether people exhibit a CRP versus an RCRP.

More generally, our paper calls for more data to develop a solid empirical foundation upon

which to build descriptively accurate models of risk attitudes. It is critical to assess the robustness

of the findings obtained here (while still being responsive to the central identification problems

discussed in this manuscript), and to further explore the space of parameters for common-ratio

problems. Moreover, future work should investigate a richer space of decision problems. For

instance, in ongoing work (McGranaghan et al., 2023), we use a valuations approach to gather

data on both common-ratio problems and common-consequence problems over a much wider range

of parameters than previously studied for either problem. Interestingly, in some circumstances,

a CRP emerges. More importantly, we highlight the natural connection that exists between the

two types of problems, and studying connected common-ratio and common-consequence problems

reveals novel information on the shape of risk preferences. As more studies of this type emerge, the

literature will be better positioned to develop more descriptively accurate models of risk attitudes.
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