

Genetic Improvement of Shrub Willow as a Bioenergy Crop Larry Smart, Associate Professor SUNY College of Environmental Science & Forestry Syracuse, New York

© 2007 The Research Foundation of State University of New York

VP Cheney next to F-16 in Qatar (White House Photo)

New York State Energy Facts - 2005

- Of New York's primary energy consumption by Btu:
 - 77% petroleum, natural gas, coal
 - 10% nuclear power
 - 5% hydro
 - 3% bioenergy (wood residues and municipal waste)
 - 5% imported electricity
- ... costing \$2,984 and releasing 12.5 tons of CO₂ per person
- Only 10% of that was supplied by in-state sources
- 90% of petroleum used in NY is from *foreign* sources

Annual Ethanol Production in the U.S.

Data source: Renewable Fuels Association (http://www.ethanolrfa.org/)

Annual Ethanol Production in the U.S. "20 in 10" = 20% of petroleum replaced by 2017

Data source: Renewable Fuels Association (http://www.ethanolrfa.org/)

Perennial Energy Crops Will be Grown on 55 M acres by 2030

- to replace 30% of U.S. petroleum consumption

Perlack et al. (2005) U.S. D.O.E./U.S.D.A.

Regional Perennial Energy Crops

Willow Shrubs

Hybrid Poplar

The center of the basket willow industry (ca. 1892) is now a center for growth of shrub willow energy crops

Harvest of willow stems for basketry Photo: Liverpool Willow Museum

Harvesting wood chips using a New Holland forage harvester and specialized head.

Genetic Improvement of Shrub Willow as a Bioenergy Crop

Intro to short-rotation willow culture

Breeding and selection for high yield

- Establish a diverse willow collection
- Controlled pollination & hybridization
- Selection and field testing for yield
- Tech transfer and commercialization

Willow Biomass Production Cycle

Site preparation

First-year growth

Willow Biomass Production Cycle

Site preparation

First-year growth

Regrowth after coppice

Willow Biomass Production Cycle

Heat/Power from Willow Wood Chips

- Burn in wood-fired heat/power plants
- Co-fire with coal in existing power plants
- Gasify to generate heat and power

Wood-fired boiler at Lyonsdale Biomass, Lyons Falls, NY

(Mann and Spath 1997, Heller et al. 2003, 2004)

Genetic Improvement of Shrub Willow as a Bioenergy Crop

Intro to short-rotation willow culture

Breeding and selection for high yield

- Establish a diverse willow collection
- Controlled pollination & hybridization
- Selection and field testing for yield
- Tech transfer and commercialization

Breeding is Likely to Improve Productivity of Willows

A 20% increase in yield reduces cost by 13%

- High genetic diversity
- Little domestication
- Short generation time
- Clonal propagation
- Many species can hybridize

More than 600 Accessions Collected: 1994 - 2006

Since 1998, more than 600 crosses attempted

26 families of *S. purpurea*

101 families of *S. eriocephala*

91 other families, mainly S. sachalinensis, S. miyabeana

1999 Family Screening Trial - Syracuse

Two years post-coppice measurements

2002 Genetic Selection Trial

First year post-coppice measurements Four-plant plots; eight reps; Tully, NY

2002 Genetic Selection Trial Biomass harvest - Two years post-coppice

- 15 varieties with greater yield than 'SV1'
- top variety had 40% greater yield than 'SV1'

Yield Trials Planted in 2005, 2006, 2007

2006: 1 year post-coppice, Belleville, NY

- 78 plants per plot
- 4 replicate blocks
- 18-30 varieties
- double-row spacing
- hand planted/harvested

Yield Trials Planted on 12 Sites

10 40°F through 30°F

Establishing a Commercial Willow Nursery in New York

Double A Vineyards dba Double A Willow (Fredonia, NY) will produce and sell whips for commercial scale-up

Clone ID #	Variety epithet (PP, plant patent)
99207-018	'Owasco' (PP 17,845)
9980-005	'Oneida' (PP 17,682)
99201-007	'Otisco' (PP 17,997)
99113-012	'Onondaga'
99202-011	'Tully Champion' (PP 17,946)
9970-036	'Canastota' (PP 17,724)
9871-031	'Sherburne'
9882-034	'Fish Creek' (PP 17,710)
99239-015	'Allegany'
99217-015	'Millbrook' (PP 17,646)
SX61	
SX64	
SX67	
S25	
S365	
SV1	

Nursery beds doubled each of last three years to >300,000 plants in 2007

(www.doubleawillow.com)

Genetic Improvement of Shrub Willow as a Bioenergy Crop

Summary

- Shrub willow is a viable perennial bioenergy crop with established systems for planting, harvesting, transport, and use of willow biomass
- New varieties produced through traditional breeding generate higher yields than existing varieties
- Trials have been planted on 12 sites to estimate regional yield potentials
- New willow bioenergy crop varieties are being deployed commercially in the U.S.

Collaborators and Funding

Dr. Tim Volk Research Associate

Dr. Larry Abrahamson Sr. Research Associate

Dr. Kim Cameron **Research Scientist**

Dennis Rak (Double A Willow) Ed Priepke (CNH America)

Rich Kopp, Juan Lin, Ingrid Phillips, Michelle Serapiglia, Jason Purdy, Ken Burns, Mark Appleby, many undergraduates...

NYSERD/

New York State Energy Research and **Development Authoritu**

Case New Holland

