Economics of An Integrated Bio-Energy System

Northeast Sun Grant Regional Feedstock Summit By Brent Gloy Applied Economics and Management Cornell University November 13, 2007

- Background the current situation
- Integrated bio-energy concept
- An economic case study: integrating corn ethanol and livestock production

Background

Why the Interest in Bio-Energy

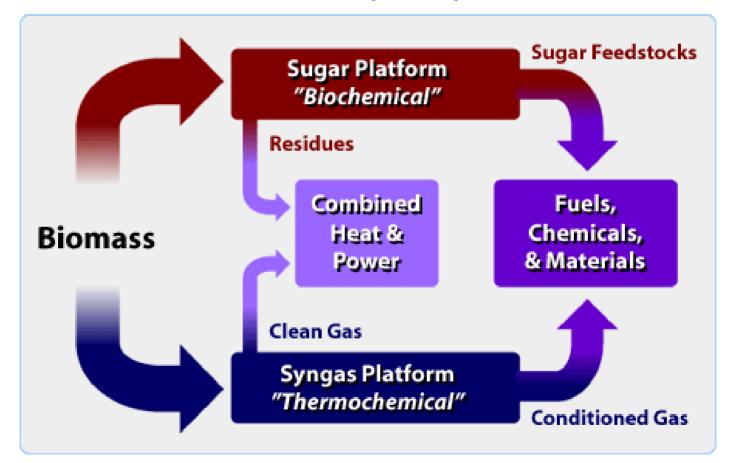
- + (1) Rising energy prices
- + (2) Increasing concern over the environment
- + (3) Development of government incentives to jump start the industry
- + (4) Proven technology and willing capital markets
- = Economic Opportunity

Supply Chain Challenges

Current system results in substantial transportation costs for ethanol, DDGs, and nutrients

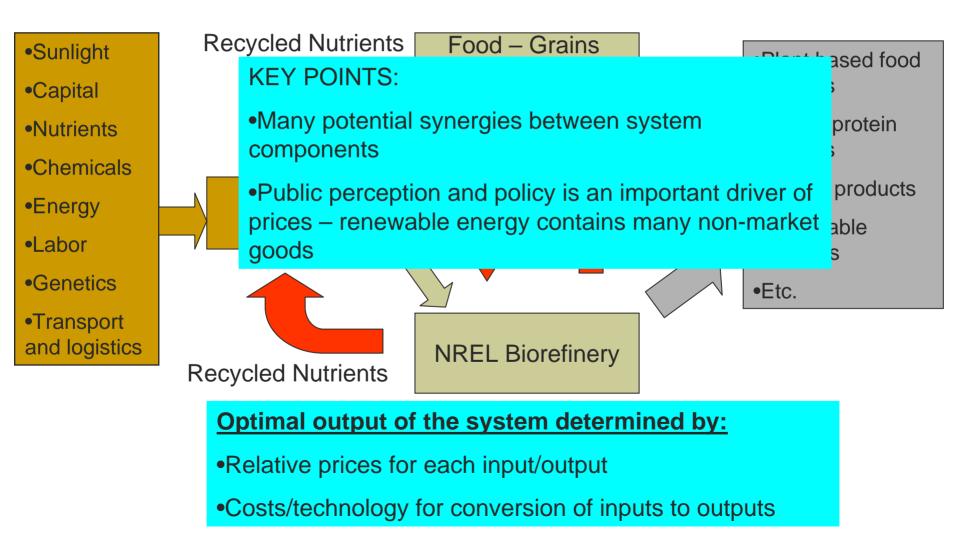
Source: The ProExporter Network

Food, Fuel, or Both?


Your view of the system will likely influence the way it is designed Is the system?

- 1. an energy system with feed byproducts
- 2. a food production system with energy by-products
- 3. an integrated food and energy system

The Biorefinery Concept

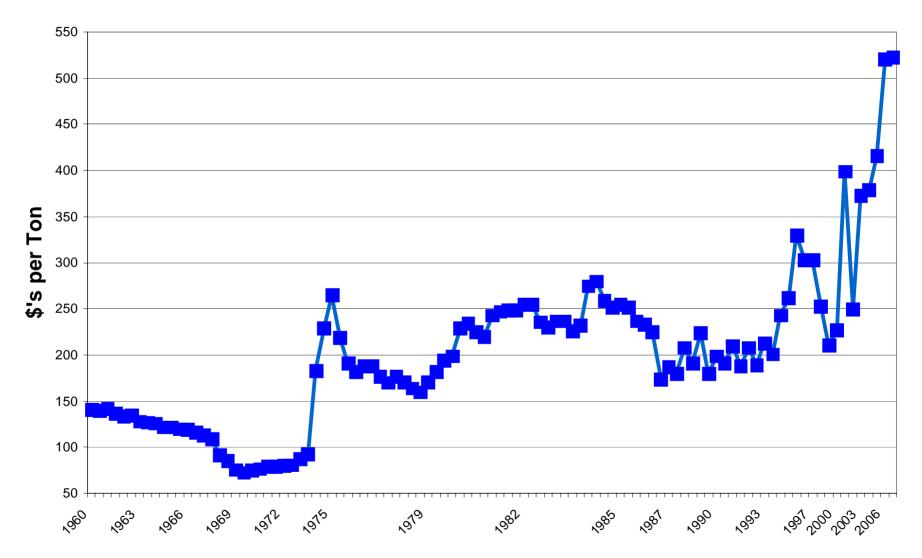

NREL's Biorefinery Concept

Biorefinery Concept

Source: National Renewable Energy Laboratory http://www.nrel.gov/biomass/biorefinery.html

Another Biorefinery Concept

Factors Influencing the Components of the Biorefinery


Energy prices

- Government policy
 - Energy security
 - Environmental attitudes
- Technology development
 - Energy conversion
 - Nutrient recovery/waste processing
- Structural change in the livestock sector

Consider Manure

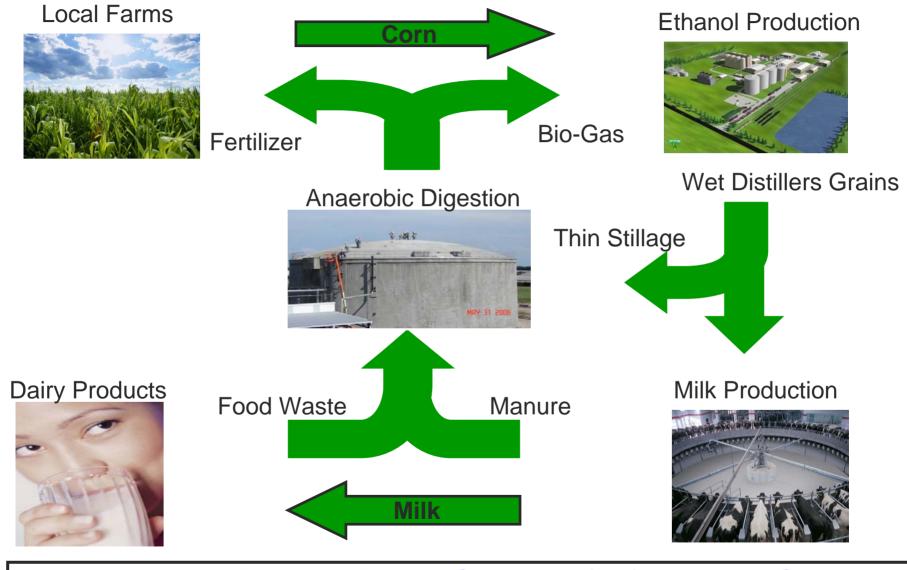
- On most farms manure is currently treated as a waste with a negative economic value
- This may soon change
 - Rising energy prices
 - Rising fertilizer prices
 - Improved technology for nutrient and energy recovery
 - Increasing scale of livestock operations
 - Increasing negative public attitudes toward livestock wastes

Anhydrous Ammonia Prices 1960-2007

Source: ERS, USDA

The Potential Value of Manure

WARNING: SUBSTANTIAL COSTS ARE REQUIRED TO COLLECT THESE REVENUES


- A 10,000 cow dairy operation produces
 - o 259,077 tons of waste per year
 - 35,529 tons of dry waste per year
 - 1,699 tons of N = \$1.02M @ \$600/ton
 - 287 tons of P = \$115k @ \$400/ton
 - 442 tons of K = \$115k @ \$260/ton
 - 176k MMBTU's of renewable energy = \$1.4M @ \$8/MMBTU

Total Potential Revenue = \$2.7 M

Ethanol and Livestock Production

A Case Study of Integrated Bio-Energy/Food Production

The Integrated Food and Energy System

Anaerobic Digester Drives Sustainable, Integrated System

The Benefits of Integration

- 1. Ability to market wet vs. dried distillers grains
- 2. Transportation cost savings on distillers grains
- 3. Anaerobic digestion of dairy manure
- 4. Carbon credits from manure
- 5. Anaerobic digestion of thin stillage

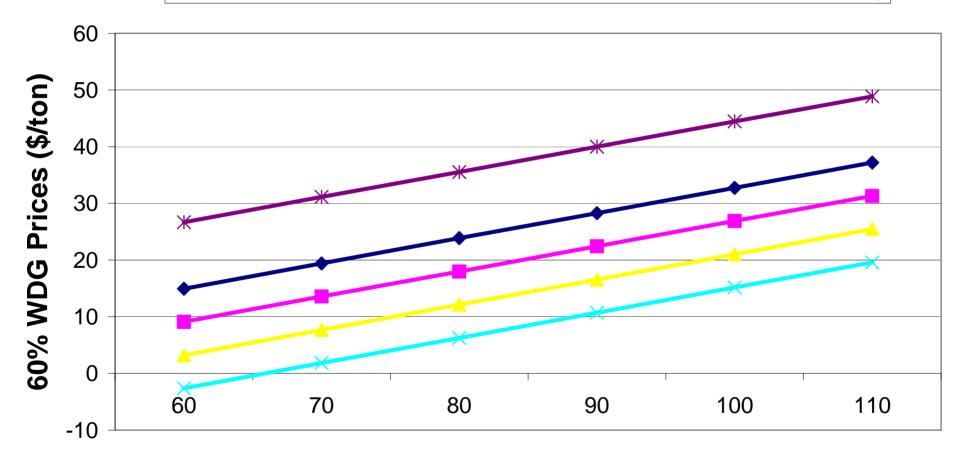
Increased Costs of Co-Location

- Corn basis tightening increased feed costs
- 8. Additional capital costs required for integration and coordination

Total Benefits of Integration

Typeof Banefit	Arrud Benefit	Capitalized Value
Wet Detillers Gans as Opposed to Dy	\$360000	\$1800,000
Transportation Cost Savings	\$922,098	\$4,610,491
Arearchic Digestion of Dairy Manue	\$2,745,944	\$13,729,722
CatonCreditsfromVarure	\$511,597	\$2,557,987
Averdic Digestion of Thin Sillage	\$1,342,520	\$6712,601
Total Benefits of Colocation	\$9,122,160	\$45,610,801

Benefits for a 30 million gallon ethanol system and 18,000 cow dairy operation


1. Ability to market wet vs. dried distillers grains

Natural Gas Price (\$/MMBTU)	4.00	6.00	8.00	10.00
BTU's Required to Dry	20,000	20,000	20,000	20,000
\$/gal	0.080	0.120	0.160	0.200
\$/bu	0.22	0.34	0.45	0.56
\$/ton WDG (60% moisture)	11.71	17.57	23.42	29.28
\$/ton DDG (10% moisture)	26.35	39.53	52.71	65.88
\$/million gal eth	80,000	120,000	160,000	200,000
\$/30 million gal ethanol	2,400,000	3,600,000	4,800,000	6,000,000

Benefit increases as natural gas price increases

Relationship Between DDG and WDG Prices at Different Natural Gas Prices

← \$4/MMBTU ─ \$6/MMBTU ─ \$8/MMBTU ─ \$10/MMBTU ─ No Drying

DDG Prices (\$/ton)

3. Anaerobic digestion of dairy manure

Key assumptions:

- 51,000 btu's/cow
- Heifers and beef 21,600 btu's/hd
- 30% conversion of solids to methane
- 625 btu's per cf of bio-gas
- Operating costs of \$178,000 per year

3. Anaerobic digestion of dairy manure

\$4	\$6	\$8	\$10
\$204	\$306	\$408	\$510
\$93	\$139	\$185	\$232
\$297	\$445	\$593	\$742
\$74,460	\$111,690	\$148,920	\$186,150
\$33,834	\$50,751	\$67,668	\$84,586
\$108,294	\$162,441	\$216,588	\$270,736
\$1,340,280	\$2,010,420	\$2,680,560	\$3,350,700
\$1,949,296	\$2,923,944	\$3,898,592	\$4,873,241
	\$204 \$93 \$297 \$74,460 \$33,834 \$108,294 \$1,340,280	\$204\$306\$93\$139\$297\$445\$74,460\$111,690\$33,834\$50,751\$108,294\$162,441\$1,340,280\$2,010,420	\$204\$306\$408\$93\$139\$185\$297\$445\$593\$74,460\$111,690\$148,920\$33,834\$50,751\$67,668\$108,294\$162,441\$216,588\$1,340,280\$2,010,420\$2,680,560

- Off-spring produce 45% of the methane of a lactating dairy cow
- 1/2 of operating costs reduce benefit by \$178k/yr

5. Anaerobic digestion of thin stillage

Key assumptions:

- Value of heat from T.S. reduces parasitic heating needs
- 6.12 pounds of DM from T.S.
- 9 cubic feet of 1,000 btu methane per pound of T.S. sent to digester
- Benefit = heat provided by T.S.
 - + revenue gained from gas
 - revenue forgone

5. Heat provided by thin stillage

Value of Heat Provided by Thin Stillage

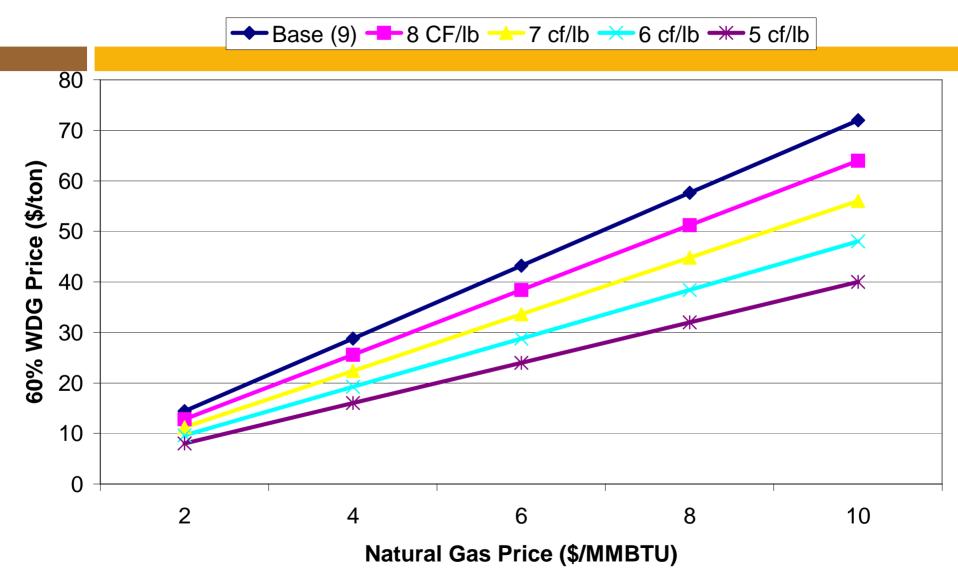
	Natural Gas Price (\$'s/MMBTU)			
	4	6	8	10
10% of BTU's Produced by Manure	194,930	292,394	389,859	487,324
15% of BTU's Produced by Manure	292,394	438,592	584,789	730,986
20% of BTU's Produced by Manure	389,859	584,789	779,718	974,648
25% of BTU's Produced by Manure	487,324	730,986	974,648	1,218,310
30% of BTU's Produced by Manure	584,789	877,183	1,169,578	1,461,972

 Benefit is variable depending on system – many will utilize heat from electrical generation in a similar fashion

5. Anaerobic digestion of thin stillage – WDG Revenue Foregone

WDG Revenue Foregone

Table 8. Revenue Lost by Sending Thin Stillage to Digester.				
Price of 60% Moisture WDG (\$/ton)	20	30	40	45
Equivalent 10% Moisture DDG price (\$/ton)	45	67.5	90	101.25
Price of DM (\$/lb)	0.0250	0.0375	0.0500	0.0563
Revenue lost per bushel ground (\$/bu)	0.153	0.2295	0.306	0.34425
Revenue lost per gallon of ethanol (\$/gal)	0.05	0.08	0.11	0.12
Revenue lost per 1 million gallons of ethanol	54,643	81,964	109,286	122,946
(\$)				
Revenue lost on a 30 million gallon plant (\$)	1,639,286	2,458,929	3,278,571	3,688,393


 Revenue lost through digestion depends on price of DDG/WDG

5. Net value of solids in digester

Table 9. Revenue and Break-Even Analysis of Anaerobic Digestion of Thin-Stillage.					
Natural Gas Price (\$/MMBTU)	4	6	8	10	
Value of TS in Digester (\$/lb)	0.0360	0.0540	0.0720	0.0900	
Value per 1 million gal of ethanol (\$)	78,686	118,029	157,371	196,714	
Value per 30 million gal of ethanol (\$)	2,360,571	3,540,857	4,721,143	5,901,429	
Net Revenue Gain from Digestion for a 30 Million Gallon Plant @ \$30 WDG	(98,357)	1,081,929	2,262,214	3,442,500	
Break-Even 60% WDG Price (\$/ton)	28.80	43.20	57.60	72.00	

- As gas price increases value in digester increases
- As WDG price rises net value falls
- Gas yield is the wildcard
- 1/2 of operating costs reduce benefit by \$178k/yr

WDG Price Needed to Equal Value In Digester

Conclusion

- There are substantial benefits to developing a more integrated bioenergy system
- Relative prices are key to determining the economic opportunity
- System thinking about food and fuel is required to maximize economic efficiency