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Importance of the field: Pharmacokinetic--pharmacodynamic (PK-PD) model-

ing enables quantitative prediction of the dose--response relationship. Recent

advances in microscale technology enabled researchers to create in vitro sys-

tems that mimic biological systems more closely. Combination of mathemati-

cal modeling and microscale technology offers the possibility of faster,

cheaper and more accurate prediction of the drug’s effect with a reduced

need for animal or human subjects.

Areas covered in this review: This article discusses combining in vitro micro-

scale systems and PK-PD models for improved prediction of drug’s efficacy

and toxicity. First, we describe the concept of PK-PD modeling and its applica-

tions. Different classes of PK-PD models are described. Microscale technology

offers an opportunity for building physical systems that mimic PK-PD models.

Recent progress in this approach during the last decade is summarized.

What the reader will gain: This article is intended to review how microscale

technology combined with cell cultures, also known as ‘cells-on-a-chip’, can

confer a novel aspect to current PK-PD modeling. Readers will gain a compre-

hensive knowledge of PK-PD modeling and ‘cells-on-a-chip’ technology, with

the prospect of how they may be combined for synergistic effect.

Take home message: The combination of microscale technology and PK-PD

modeling should contribute to the development of a novel in vitro/in silico

platform for more physiologically-realistic drug screening.
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1. Introduction

After administration, drugs go through complex, dynamic processes involving
absorption, distribution, metabolism and elimination, collectively known as
ADME [1,2]. Changes in ADME, that is, pharmacokinetics (PK), may lead to
changes in drug effect and response, often resulting in unwanted toxic side effects
or reduced efficacy. In fact, unforeseen toxicity and the lack of efficacy have been
cited as the primary reasons behind the high attrition rate in the drug development
process, accounting for ~ 60% of failures [3]. Current in vitro, cell-based assays are
far from a complete model of the human body, as these assays only mimic steady-
state conditions. In the human body, on the other hand, target cells are exposed
to a time-dependent concentration profile of a drug and its metabolites as a result
of the complex ADME occurring in multiple organs. While many in vitro methods
have been developed in an attempt to predict the ADME properties of drug candi-
dates [1,2], these in vitro methods are often incomplete models of PK in vivo, and
animal or human studies are indispensible steps in the drug development process
before final approval.
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A mathematical modeling approach, often known as an
integrated pharmacokinetic--pharmacodynamic (PK-PD)
modeling, strives to predict the relationship between the
drug dose and the final pharmacological effect, and its role
in drug development has been well recognized [4,5]. There
has been a significant amount of improvement in this model-
ing approach, especially in terms of the transition from an
empirical approach towards mechanism-based mathematical
models [6]. However, PK-PD modeling can benefit from fur-
ther improvement to gain even broader acceptance by phar-
maceutical industry than now. To this end, several obstacles
need to be overcome, such as lack of human data and the
improvement of translational research across species [7].
The recent development of microfabrication technology

and its integration with cell culture techniques have allowed
development of novel microscale devices that are capable of
performing experiments in a manner that has not been possi-
ble with conventional, macroscale systems [8,9]. Although not
realized widely yet, these advances are beginning to show a
potential for complementing and enhancing the PK-PD
modeling approach. Among the possibilities, the ability to
fabricate and operate devices with complex, microscale struc-
tures offers the possibility of creating an experimental plat-
form that can reproduce multi-organ interactions in vitro.
A microfluidic device can be fabricated with multiple cham-
bers, representing different organs, which are then connected
with fluidic conduits representing the blood flow. Such a
device can work as a physical realization of a mathematical,
PK-PD model, which we have termed a ‘microscale cell cul-
ture analog (µCCA)’ [10]. Being a physical realization of a
PK-PD model, the µCCA can be designed and fabricated
based on the mathematical model, and then can be used to
test a hypothesis of the model. A mathematical model can
further be used to analyze and interpret the experimental

observations, and extrapolated to predictions of human
response (Figure 1).

In this article, we explore the potential of microscale
systems in working in a combination with mathematical
PK-PD models, and ultimately improve the predictability of
in vitro toxicity assay systems. First, we briefly describe the
concept of physiologically-based pharmacokinetic (PBPK)
and pharmacodynamic (PD) modeling, and how these
methods can link a drug dosage to a pharmacological effect.
Second, we discuss the recent research efforts in the develop-
ment of microscale/microfluidic systems that can test the
drug’s effect in a PK-PD-based way. Although there is still
much to be done, we are beginning to see several interesting
examples of microscale systems that examine the effect of
drugs arising from multi-organ interactions. The µCCA that
has been developed at Cornell is described as well as other
microscale devices based on similar concepts. The essential
prerequisite for such an approach to be successful is the ability
to reproduce normal physiological functions of key organs. In
the last section, we summarize the research effort towards
‘artificial organs’, with a special emphasis on the contribution
of microfabrication technology to achieving this goal.

2. PK-PD modeling

We briefly discuss the concept of PK-PD modeling, its appli-
cations and limitations. This is intended to be an informative,
rather than a comprehensive review of the field. Here, we
cover the aspect of PK-PD modeling that is particularly perti-
nent to the concept of experimental platform that is discussed
later. For a more in-depth review, we recommend articles that
focus specifically on PK-PD modeling [4-6,11-15].

2.1 Empirical PK models
PK refers to the science of drug absorption, distribution and
elimination, or more specifically the quantification of those
processes, leading to the understanding, interpretation and
prediction of concentration--time profiles in blood and vari-
ous organs [7]. Pharmacokinetic models strive to predict the
concentration--time profiles in blood or various organs
from a given drug dose. Depending on the complexity of
models, PK models can be divided into several categories,
with two main categories being empirical models and
mechanistic models.

The simplest form of an empirical PK model is a one-
compartment model, which assumes that a rapid equilibrium
throughout the body is achieved quickly after drug adminis-
tration (Figure 2A). In this model, the PK can be described
by a single exponential term, and the semilog plot of drug
concentration versus time results in a straight line. However,
many drugs do not reach equilibrium rapidly, and require
time for distribution before they reach equilibrium. Such
drugs can be modeled using a two-compartment model,
which consists of a central compartment and a peripheral
compartment (Figure 2B). The drug is administered to a

Article highlights.

. Recent development in combining microfabrication and
cell culture technology has brought a novel in vitro
platform that can reproduce the pharmacokinetics (PK)
of drugs.

. Various forms of PK and pharmacodynamic (PD) models
are available, with different levels of complexity. An
integration of pharmacokinetic--pharmacodynamic
(PK-PD) model allows prediction of pharmacological
effect from a given dose.

. PK-dependent effects of drugs have been observed
using microscale cell culture systems.

. Authentic reproduction of organ functions is essential
for developing a realistic in vitro model of a drug’s
PK-PD. The recent development in microscale
technologies has resulted in novel devices that can
reproduce the organ functions more faithfully than
conventional devices.

This box summarizes key points contained in the article.
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central compartment, which is a lumped, hypothetical sum of
blood and well-perfused organs such as the liver and kidney.
A peripheral compartment is generally a sum of poorly-
perfused organs, such as muscle, skin and fat. The two-
compartment model is described by a sum of two exponential
terms, and the semilog plot of drug concentration versus time
is a biphasic straight line. Although these empirical models are
mathematically simple and do not have a mechanistic basis,
they are still widely used to analyze the PK of drugs due to
their simplicity [16-18].

2.2 PBPK model
In a PBPK model, separate compartments are assumed for
different organs, which are connected with hypothetical blood
flows mimicking the blood circulation in the body
(Figure 2C). This model is based on physiological considera-
tions, because physiological parameters such as organ sizes
and blood flow rates, and tissue--plasma partition coefficients

are used to construct the model. Mass balance equations are
set up to describe the flow in, flow out and reactions in the
compartment (Figure 2D). A set of ordinary differential equa-
tions can then be solved numerically with mathematical soft-
ware such as MATLAB and MATHEMATICA, as well as
specialized PK modeling software packages [19].

A PBPK model has advantages over an empirical model in
that it has more mechanistic basis, because it is based on the
anatomic structure of the organism. Therefore, each compart-
ment has a physiological context, which makes it possible to
identify a specific mechanism of action related to certain
organs. However, it should be noted that a PBPK model can
be ‘predominantly’ mechanistic only, because there will always
be an empirical aspect in the model to some extent. For exam-
ple, it is quite common to lump organs with similar kinetics
into one compartment; the kidney, brain and liver can be cate-
gorized as well-perfused organs, whereas muscle, skin, bone and
fat are usually summed as poorly-perfused organs. Lumping of

Human body
(in vivo)

PBPK-PD model
(in silico)

Microscale cell culture analog
(in vitro)

Medium
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Figure 1. The concept of PK-PD modeling and a mCCA as a physical realization of a PK-PD model. A PK-PD model is

constructed based on the physiology of the human body. In a µCCA, separate chambers representing organs are fabricated

and connected with fluidic conduits mimicking the blood circulation.
PK-PD: Pharmacokinetic--pharmacodynamic; µCCA: Microscale cell culture analog.
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Figure 2. A. One-compartment PK model. B. Two-compartment PK model, which describes the PK with a sum of two

exponential terms. C. A schematic diagram of a PBPK model. The whole body is segregated into compartments and connected

with blood flow. D. Ordinary differential equations are used to describe the mass balance of a drug in each compartment.
PBPK: Physiologically-based pharmacokinetic; PK: Pharmacokinetics.
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organs, which is often necessary and useful, will inevitably
introduce empiricism into the model.

An important challenge in PBPK model development is
finding accurate parameters. Physiologic parameters, such as
physical volumes and blood flow rates, are generally
compound-independent and can be found in the literature,
although theses parameters are subject to inter-individual
variations. Compound-specific parameters such as tissue-to-
blood partition coefficients or enzyme kinetic parameters are
generally more difficult to find. In the case where a well-
mixed condition is assumed, the tissue-to-blood partition
coefficient is used to account for the distribution of chemicals
in tissues. These parameters can be found from tissue incuba-
tion experiments [20], or theoretical values can be extrapolated
from the n-octanol:water partition coefficient, which requires
the assumption of steady-state conditions [21]. For enzyme
kinetic parameters, methods for predicting in vivo kinetic
parameters from in vitro data have been proposed [22]. How-
ever, it is more common to have at least some of the parame-
ters optimized by fitting the PBPK model to a drug
concentration data [23]. Another important issue in PBPK
modeling is that often differences of in vivo physiology
between species is not considered. Also, PK can be affected
by disease conditions, which are often not considered. Intro-
duction of statistical approaches, such as population (nonlin-
ear mixed effects) modeling and Bayesian hierarchical models,
has allowed researchers to develop improved models in spite
of the limited availability of experimental data, and also to
account for variability (inter- and intra-individual and subject
covariates) in such systems [24,25].

2.3 PD model
PD refers to the time course of a pharmacological effect at a
given drug concentration. The basis of PD is that the pharma-
cological effect of a drug is a function of drug concentration.
Depending on the drug’s mechanism of action, PD models
can be roughly divided into several subgroups, some of which
are briefly introduced here. Comprehensive and exhaustive
classification of PD models is beyond the scope of this article,
and we recommend readers to other excellent reviews [26]. The
simplest form of a PD model assumes a direct, linear
relationship:

(1)
E E S C0= + ⋅

where E is the drug effect, S is the slope and C is the drug
concentration. Obviously, this model unrealistically predicts
that the drug effect will increase indefinitely with an increase
of drug concentration. However, it has been applied to several
types of drugs [27,28]. Another well-known form of a PD
model is an Emax model (Figure 3A), which is expressed
as follows.

(2)

E
E C

EC C
Emax

50
0=

⋅
+

+

Emax is the maximum drug effect and EC50 is a concentration
at which 50% of the maximum drug effect is seen. This model
can define the maximum effect and, therefore, is more likely
to be valid in all concentration ranges. It has been used to
describe the effect of antimicrobial drugs [29] and the neutro-
penia resulting from a chemotherapeutic agent, paclitaxel [30].
Although the Emax model is widely used and useful, it can
only describe the reversible effect of a drug, and does not
assume any time-dependent processes. In other words, a
drug effect will immediately decrease with a decrease in drug
concentration. However, many drugs, for example oncology
drugs, irreversibly affect cells, and the effect is often shown
in time-delayed manner [31]. The first attempt to model the
irreversible, time-dependent effect of a chemotherapeutic
agent by using the indirect response model was done by Jusko,
who modeled the effect of phase-nonspecific drug on tumor
cells [31]. In this model, the irreversible effect of a drug can
be modeled with a cell proliferation model, where the rate
of cell death is a function of drug concentration (Figure 3B):

(3)
dn

dt
g(n) f(c) n= − ⋅

(4)

f(c)
E C

EC C
max

50

=
⋅
+

where n is a cell number, g(n) is a proliferation rate of cells in
the absence of the drugs and f(c) describes the effect of the
drugs as a function of drug concentration. This concept has
evolved into several different PD models with more complex
functions [32].

2.4 Integrated PK-PD modeling
A PBPK model yields predicted concentration--time profiles
at specific sites, so it can be coupled with a PD model, which
can predict the drug’s effect at the site of exposure [4,14]. By
combining a PK model and a PD model, the time-dependent
pharmacological effect can be predicted from a given dose
(Figure 3C). The integrated PK-PD model is a dynamic
model, because a concentration profile from the PK model
is fed into the PD model as a time-dependent variable.

There are several review articles summarizing the concept
of integrated PK-PD modeling approach [4,11,12,14,15,33-35].
Here, we introduce a few examples of integrating a PBPK
model with a PD model. Recently, a PBPK/PD model was
developed to simulate the effect of carbaryl, an N-methyl-
carbamate, where a Bayesian approach was used for estima-
tion of parameters of the PBPK and PD models [36]. In a series
of study by Timchalk et al., PBPK/PD models for organo-
phosphorus insecticides chlorpyrifos (CPF) and diazinon
(DZN) have been developed [37-39]. PBPK/PD models for
each insecticide were constructed; metabolic interactions
(CYP450, carboxylesterase, butyrylcholinesterase and acetyl-
cholinesterase) between the two were evaluated by using a
binary model for CPF, DZN and their metabolites. In a
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previous study by the authors of this paper, a PK-PD model
was developed to predict the tumor growth kinetics after
administration of chemotherapeutic agents in rats [40].
A PBPK model describing the fate of UFT (tegafur in combi-
nation with uracil) in rats was developed and fitted to litera-
ture data. A PD model was developed to simulate the
growth of tumor in the presence of 5-fluorouracil (5-FU),
which is the active metabolite of tegafur. The two models
were combined to describe the growth of tumor in rats
following UFT administration.
The integrated PK-PD model is believed to have an impor-

tant role in expediting the drug discovery process [11].
However, as mentioned earlier, identification of mechanism-
based parameters can be challenging. In fact, this limitation
is thought to be a primary obstacle to a wider application of
PK-PD models [7]. The parameterization of mechanism-
based models should take into account drug- and system-
specific properties to warrant predictive performance across
species. In addition, sufficient amount of human data should
be available to ensure model validity. Another limitation of a
PK-PD modeling approach is that it is not possible to predict
any outcome that results from a mechanism that is not
included in the model. While a PK-PD modeling approach
can be used to gain an important insight into the action of a
drug in the human body, an experimental platform is always
desirable. The in vivo counterpart of a PK-PD model is
a human clinical test or an animal study, which can be
expensive, time consuming and pose ethical issues.

Conventional in vitro platforms cannot reproduce multi-
organ interactions and feedback mechanisms that are present
in in vivo situations. If an in vitro counterpart of a PK-PD
model can be developed, it would be able to serve as a link
between an in silico PK-PD model and in vivo animal and
human tests. A hypothesis in a PK-PD model can be tested
in vitro, which will ultimately reduce the need for animal or
human tests.

3. Microscale devices for an in vitro
PK-PD model

The use of microfabrication technology, which was originally
developed in the semiconductor industry, has been extended
to other research areas, such as microelectromechanical
systems or microfluidics technology. In particular, integration
of microfabrication and cell culture techniques in biology has
resulted in a novel ‘cells-on-a-chip’ technology [9,41,42]. Com-
bining cell culture and microfabrication technology confers
new advantages to the previous (macroscale) cell culture sys-
tem. First, structures with a micrometer resolution can be pre-
cisely fabricated, mimicking the typical length scale in
biological systems. Cells that are cultured in an environment
closely mimicking their native environment are more likely
to exhibit their authentic functions than cells cultured in
flasks or 96-well plates due to more realistic environmental
parameters, such as flow rates, shear and liquid:cell ratio.
For example, the flow around the cells and the resulting shear
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Figure 3. A. An Emax PD model describes the effect of a drug based on the drug concentration. B. An irreversible, cell death PD

model describes the cell death kinetics. C. Integration of a PBPK model and a PD model.
PBPK: Physiologically-based pharmacokinetic; PD: Pharmacodynamic.
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are known to affect cell function [43]. In microscale devices,
those parameters can be tuned precisely to match the fluidic
environment of the native tissue. Furthermore, microscale
devices allow the transport of nutrients and oxygen to be con-
trolled for optimal cell function. For example, some cell types
exhibit better cell function when oxygen tension is low rather
than in an oxygen-saturated environment [44]. Second, minia-
turization enables high-throughput implementation, which
can save novel reagents and scarce tissue samples. In particu-
lar, microfluidics can dramatically enhance efficiency by creat-
ing multiple conditions simultaneously. For example, a
concentration gradient can be easily formed by utilizing a
laminar flow in a microchannel, exposing cells to a series of
conditions in ‘one shot’, rather than preparing different con-
ditions separately [45]. Last, microfabrication technology
allows researchers to create multiple components and inter-
connect them. This feature has an important implication in
that several components (representing different organs) can
be interconnected to form an ‘artificial body’, also known as
a ‘body-on-a-chip’, providing an in vitro platform for a
PK-PD model [46,47].

A microfluidic device developed by Ma et al. illustrates an
interesting example of these advantages, where a sol-gel
human liver microsome (HLM) bioreactor was coupled with
a cell culture chamber array (Figure 4) [48]. This device has a
three-layer structure, a top layer for fluidic channels, a middle
quartz layer with microwells for HLM and a bottom polydi-
methylsiloxane (PDMS) layer for cell culture chambers.
A drug is introduced into the top layer and diffuses into the
HLM. Metabolites generated from the HLM then diffuse
down to the cell culture chamber, where the response of cells
is monitored. In another study, a hepatocyte-bioreactor cou-
pled with a microscale cell culture device was used to assess
the hepato-activated transformation of cyclophosphamide [49].
Primary hepatocytes were cultured in a perfusion bioreactor,
connected to a cell culture chamber. Lee et al. developed an
array of sol-gel encapsulated P450 enzymes (denoted by the
authors as MetaChip) [50]. A prodrug is added onto the Meta-
Chip, generating metabolites, and cytotoxicity is assessed by
overlapping with another layer of target cells (DataChip).
Drugs showed toxicity profiles similar to a solution control,
which verified that the sol-gel arrays could produce compara-
ble toxicity assay results in a high-throughput manner. These
examples demonstrate the effort to observe metabolism-
dependent toxicity profiles of drugs in vitro, but one short-
coming is that these approaches fail to address the quantitative
relationship between different organ compartments and the
dynamics of drug exposure.

In an effort to conserve the quantitative relationship
between different organs, Vozzi et al. developed a multicom-
partment bioreactor, where multiple cell types are cultured
in separate chambers [51]. In this study, an effort to conserve
the ratios of kinetic, metabolic and volumetric parameters
between compartments was made by using an allometric
scaling law to scale down the human body to the microscale

device. The crosstalk between murine hepatocytes and
HUVEC was investigated. An interesting observation was
made that albumin and urea synthesis was enhanced when
the two cell lines were co-cultured in the same device without
direct, physical contact. A multi-channel 3D microfluidic cell
culture system was developed by Zhang et al. for the purpose
of building a ‘human-on-a-chip’, with four different cell types
cultured in a single device [52]. An interesting approach was
made by the authors to maintain ‘organ-specificity’, while
still allowing communication between the compartments, by
utilizing gelatin microspheres to entrap and release
TGF-b1 locally. TGF-b1 enhances lung cell function, but
adversely affects liver cells, and so the release of TGF-b1
was confined within the lung compartment.

A µCCA was originally developed as a physical representa-
tion of a PBPK model. Multiple compartments are fabricated
on a silicon chip (30 � 30 mm), which are interconnected
with fluidic circuits mimicking blood circulation [10]. Differ-
ent cell types representing organs are cultured in the corre-
sponding compartments (liver, lung, tumor, etc.). Taking
advantage of microfluidics, the flow rates and residence times
in each compartment are set at values specific to the corre-
sponding organs, mimicking the dynamics of drug exposure
to the organs. As a proof-of-concept study, a four-chamber
µCCA to probe naphthalene toxicity was designed and fabri-
cated containing the lung, liver, fat and other tissue cham-
bers [53]. Naphthalene was added to the re-circulating
medium, and the response of cell lines was observed by mon-
itoring glutathione (GSH) levels. While being re-circulated in
a µCCA, naphthalene is converted to active metabolites by the
liver cells in the liver chamber, which then circulate to the
lung chamber, depleting GSH in the lung cells. This study
demonstrated for the first time that a µCCA can be used to
test metabolism-dependent toxicity of a drug, by mimicking
organ interactions in the body. In a subsequent paper, addi-
tional differentiated 3T3-L1 adipocytes were cultured in a
fat chamber, mimicking bioaccumulation [54].

In a more recent study, a µCCA was fabricated to study
multidrug resistant (MDR) cancer [55]. In a four-chamber
µCCA, the liver, bone marrow, uterine cancer and an MDR
variant of uterine cancer were cultured, and treated with
various combinations of a chemotherapeutic agent and mod-
ulators. A significant improvement was made in device oper-
ation, which made it possible to operate the device for up to
72 h with medium re-circulation. A PBPK model of the
µCCA was developed and compared with a PBPK model of
human body, which would allow a direct extrapolation of
drug doses and AUC values from the µCCA to the
human body.

Although these studies successfully demonstrated the con-
cept of a ‘PBPK model on a chip’, cell lines cultured in the
µCCA are far from the authentic representation of real organs,
as these are immortalized cell lines, which can be significantly
different from primary cell cultures. Recently, cryopreserved
human hepatocytes were cultured in a liver chamber of a
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µCCA device, and the hepatic clearance rates of six marketed
model compounds were compared with clearance rates in vivo
and from static cultures [56]. In this study, clearance data
obtained from the device were scaled-up directly to predict
human hepatic clearance. Another limitation of a µCCA was
that cells were cultured in 2D monolayer, whereas real organs
are made of many different cell types, with complex 3D struc-
tures. To overcome this shortcoming, we have incorporated
hydrogel-encapsulated cells in a µCCA [57]. In this study, a
three-chamber µCCA was used to culture colon tumor, liver
and myeloblast cell line. The three cell lines were encapsulated
in MatrigelTM or alginate, and cultured in separate chambers
of a µCCA. Tegafur, a drug for colon cancer, was chosen as a
model drug, which is not toxic to cells itself but becomes toxic
after being converted to 5-FU, mainly in the liver. Consistent
with the known mechanisms of action, the toxicity of tegafur
was observed, but only in the presence of liver cells. In a more
recent study, microfluidic 3-D hydrogel cell culture was com-
bined with a mathematical PK-PD model to test the effect of
a chemotherapeutic agent, 5-FU, combined with a modula-
tor, uracil [58]. Model-based analysis allowed improved insight
into the drug’s action. Interestingly, cells cultured under the

microfluidic environment showed different responses to the
drugs compared to the same cells under static conditions,
implying that current in vitro tests may not adequately
reflect the in vivo situation where cells are exposed to
continuous flow.

4. Microfabricated in vitro systems for
reproducing PK (artificial organs)

In conventional cell culture techniques, cells are cultured in a
flask or a culture dish, and such a macroscale environment
does not provide a milieu similar to the native organ. Conse-
quently, in many cases, cells that are cultured in vitro would
not be fully functional and do not provide an adequate plat-
form for an examination of specific organ functions. Recently,
advances in microfabrication technology have enabled crea-
tion of experimental conditions for cultured cells that mimic
physiological, in vivo environment, which is not possible in
conventional systems [42]. Ultimately, such devices will be use-
ful in an approach to develop an in vitro platform of a PK-PD
model, because the faithful reproduction of an organ’s
function is essential for this purpose.

C.

A.

D.

B.

Figure 4. A. A three-layer microfluidic device for examining the metabolism-dependent toxicity of drugs [48]. B. An MCB cell

culture chamber [51]. C. A four-chamber, silicon µCCA encapsulated in a plastic housing with a bubble trapping chamber.

D. A three-chamber PDMS µCCA for hydrogel-encapsulated cell cultures. Hydrogel-encapsulated cells are cultured inside

round-shaped chambers and cell culture medium is provided through fluidic channels, covering the hydrogel matrix on top.
Figure 4A was reproduced with permission from the Royal Society of Chemistry and Figure 4B was reproduced with permission from Mary Ann Liebert, Inc.

MCB: Multicompartmental bioreactor; PDMS: Polydimethylsiloxane; µCCA: Microscale cell culture analog.

Integration of in silico and in vitro platforms for PK-PD modeling
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4.1 Liver (biotransformation)
The liver is the most important organ in terms of biotransfor-
mation responsible for the majority of detoxification and bio-
activation reactions that drugs undergo. It is thought that the
liver is strategically located between the digestive organs and
the other parts of the body [59]. The metabolism in the liver
is responsible not only for detoxification or bioactivation,
but also for drug--drug interaction. Given the importance of
the liver, there have been many efforts to develop in vitro plat-
forms that can reproduce the metabolic profile of the human
liver [59,60]. Furthermore, integration of diverse areas such as
microfabrication, cell culture, microfluidics and reactor
design is believed to present great opportunities for achieving
new systems that are able to reproduce the hepatic function
more closely [61,62].

An interesting aspect about the liver is that a gradient of
oxygen concentration exists, and it has been known that the
liver function is modulated on the basis of local oxygen con-
centration [63]. For example, the inlet and outlet sides of a
functional liver subunit, acinus, perform different metabolic
functions. At the oxygen-rich periportal side, near the inlet,
biosynthesis of substances such as urea, albumin and glucose,
and detoxification by GSH conjugation are predominant. On
the other hand, in perivenous side, near the outlet, storage of
glycogen and detoxification by CYP enzymes are more active.
This observation has an important implication that current
in vitro culture methods, which usually try to maximize oxy-
gen transport, may not be optimal for certain metabolic activ-
ities of the liver [64]. The laminar flow inside a microfluidic
device allows one to create a defined concentration gradient
of molecules, by controlling the flow rate and the geometry
of channels [45]. Taking advantage of this feature, a microflui-
dic flat-bed bioreactor was developed where rat hepatocytes
were cultured with supporting non-parenchymal cells [65].
A gradient of oxygen concentration was created across the
reactor. A differential CYP activity along the gradient was
observed, similar to the liver.

There have been many attempts to culture hepatocytes in
microfluidic devices. One of the earliest attempts was reported
in a series of papers by Leclerc et al. who cultured cells in 3D
by stacking multiple PDMS layers, where cells showed
enhanced metabolic profiles [66-68]. Another notable approach
was taken by Griffith and co-workers who developed a micro-
fluidic bioreactor with perfused 3D liver cell culture. Hepato-
cytes were cultured inside through holes in a silicon wafer,
with the flow providing nutrients to the cell matrix [69]. Inter-
estingly, pre-aggregation of cells into a spheroid-like form
prior to seeding into the device improved the liver-specific
cell behavior, such as albumin secretion and urea synthesis [70].
Gene expression profiles and biochemical activity of the
hepatocytes in the device were shown to have superior meta-
bolic profiles than the same cells cultured as collagen
sandwich or with Matrigel in a static environment [71].
With a combination of a mathematical model, appropriate
operating parameters were predicted for culturing primary

hepatocytes, which remained healthy after seven days of
culture [72].

One method widely used to enhance the metabolic profile
of cultured liver cells is to co-culture with supporting cells,
such as epithelial, Kupffer and fibroblasts [73]. This has an
obvious biological implication, because hepatocytes in the
liver are surrounded by other cell types and the extracellular
matrix. Micropatterning technology allows one to organize
cells in a defined geometry with a micrometer resolution,
rather than culturing multiple cell types in a random mixture.
Utilizing this technique, it was possible to seed hepatocytes
and fibroblasts with a control over the size and the spacing
of ‘cell islands’, and find optimal geometric parameters [74].

4.2 Kidney (excretion)
One of the most promising areas that microfabrication tech-
nology can contribute to is the kidney, or renal assist devices.
Patients with renal failure have been treated with ex vivo
device utilizing hemodialysis membranes [75]. The traditional
method has been the use of hollow-fiber dialyzers, using cellu-
lose as the membrane material [76]. The periodic dialysis treat-
ment causes sudden changes in their blood chemistry and
fluid volume due to the non-physiological flow rate in the
artificial renal devices [77]. The ability of microfabricated sys-
tems to create a controlled laminar flow offers a great oppor-
tunity for more physiologically-realistic renal devices. An
interesting example was demonstrated by Leonard et al. who
utilized microfluidics to achieve membraneless dialysis [78,79].
At a low Reynolds number, two miscible flows can be intro-
duced in parallel without significant convective mixing, with
diffusion being the dominant transport phenomenon.
Because small molecules diffuse faster than larger molecules,
it is possible to separate small size solutes from macromole-
cules in the blood, mimicking the dialysis process. In another
example by Nissenson et al., an artificial renal device, termed
as a ‘human nephron filter’ was developed [80]. In another
approach, microfabrication was utilized to improve the trans-
port process by tweaking the geometry at nanometer length
scale [81].

The hemodialysis approach suffers from eventual decrease
in the filtration rate due to protein deposition on the
membrane. Furthermore, this approach does not reproduce
the full function of kidney, for example, metabolic or endo-
crine function. The development of a renal device utilizing
cells will be a promising solution for such shortcomings [82,83].
Another practical limitation of the conventional hemo-
dialysis approach is the requirement of intermittent, thrice-
weekly hemodialysis at the treatment center, which impacts
the patient’s quality of life due to travel time and dietary
restrictions. This limitation, with the advent of microtechnol-
ogy, has motivated the development of a wearable artificial
kidney device, which has been under human pilot studies
recently [84].

While the dialysis approach to artificial kidney only
replicates the function of glomerulus, the human kidney and
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its subunit nephron consist of a glomerulus, proximal tube
and the loop of Henle, which perform together the function
of removing the waste while maintain body homeostasis.
Recently, Weinberg et al. proposed the concept of a bio-
artificial ‘nephron-on-a-chip’, which is a microscale device
mimicking the function of the three units comprising the
nephron (Table 1) [85].

4.3 Lung (gas exchange)
The lung, the respiratory organ, is responsible for the
exchange of oxygen and carbon dioxide between atmosphere
and bloodstream. The actual gas exchange occurs in the
extremely thin-walled subunits of the lung called alveoli,
which are surrounded by pulmonary capillaries. Efficient gas
exchange is ensured by the highly branched structure of the
lung and the organization of alveoli, maximizing the surface
area:volume ratio, which is the amount of surface area per
unit volume of an object [86]. A conventional artificial lung
consists of hollow fiber membranes for gas exchange, which
is far from mimicking the complex geometry of a natural
lung [87]. This structural organization of the lung presents
an interesting challenge and opportunity in engineering,
micro/nanotechnology in particular.
In the papers by Mockros and co-workers, the possibility of

a microchannel artificial lung was explored. Circular or rect-
angular channels with various sizes and designs were analyzed
mathematically [88]. An attempt was made to mimic the
length scale of real capillary blood vessels (5 ~ 10 µm), while
maximizing the gas transfer with a low pressure drop [89,90].
3D arrays of blood microchannels and gas pathways were fab-
ricated in PDMS, with the blood microchannels lined with
endothelial cells to reduce coagulation [91]. These layers were
stacked to create modules with up to six layers, with a large
surface area:volume ratio. This result seems to be a promising
achievement towards an artificial lung module. However,
another challenge with an artificial lung device using micro-
scale channels is that a large number of uniform channels
need to be fabricated and operated in a reliable manner.
From the measured gas permeance values in the device, it
was calculated that about 5 � 105 ~ 1 � 106 channels are
required to achieve the gas exchange level comparable to the
lung. Even with the recent development in microfabrication
technology, further improvement is still needed to
achieve this.

4.4 Gastrointestinal tract (absorption)
Oral drug uptake is one of the preferred routes of drug admin-
istration because it is simple and patient compliance is high.
Drugs suited for oral administration possess physicochemical
properties that allow them to withstand microorganisms,
degrading enzymes and bile salts, while passing across the
digestive barrier. Several in vitro models for intestinal drug
absorption studies have been developed [92]. Among these,
the Caco-2 cell model is one of the best characterized and
utilized [93]. It is well suited to simulate the physical barrier

of the lumen gastrointestinal tract. After differentiation for
2 weeks, the Caco-2 cells form polar, enterocyte-like epithelial
cell layers with tight junctions and microvilli.

Epithelial cell layers composed of differentiated Caco-2 cells
facilitate several routes of molecular transport. Lipophilic
molecules enter the cell’s membranes and diffuse to the baso-
lateral side (paracellular transport) [94]. Relatively small,
hydrophilic molecules enter the cells from the apical side
and diffuse through them to the basolateral side (transcellular
transport) [95]. Both transport processes depend on the con-
centration gradient of the drug across the cell layer as well as
its ability to diffuse through the unstirred water layer present
at the apical cell layer surface and the ability to diffuse
through the cells and membranes. Other possible transport
processes facilitated by Caco-2 cell layers are transcytosis via
vesicles, active carrier-mediated transport and efflux transport
through which the drug is returned to the intestinal
lumen but causes another ion or molecule to move against
its electrochemical gradient [96].

To represent the intestinal lumen more realistically, other
cell types have been included with the Caco-2 cell model [97].
For example, HT-29MTX cells produce mucous that charac-
terizes the human intestine, and in vivo, mucous producing
cells make up about 10 -- 25% of the cell layer. Co-culturing
the two cell types at this ratio is thought to result in mucous
production that plays a role in the bioavailability of iron [97].
µCCAs of Caco-2 cell models can be combined with hepato-
cyte models and provide a platform that can be used to simu-
late first pass metabolism. Static Caco-2 cell models have been
used in co-culture with hepatocytes [98,99], but the amount
of medium needed was rather large and could not be re-
circulated without a fluidic system. Incorporating the model
into a µCCA system with a downstream liver compartment
provides the opportunity to re-circulate medium and to achieve
realistic residence times [100,101]. A practical challenge in such
systems is the need to balance apical and basolateral fluid flow
so that no significant mechanical forces are exerted on the
Caco-2 cell layer that is typically cultured on a porous mem-
brane. When designed with drug residence times close to those
observed in vivo, such cell culture analog systems simulated
realistically the absorption of acetaminophen through the intes-
tinal epithelium and to the liver; Liver toxicity was observed in
a dose-dependent manner similar to animal studies [101].

Even though advances have been made in the development
of in vitro systems of the digestive tract, no single system
developed so far is capable of simulating the complex digestive
process in its entirety. For example, the Caco-2 cell’s expres-
sion of uptake transporters is lower than that of in vivo. The
system also lacks the biochemical barrier function due to the
microflora present in the intestinal lumen, the whole range
of metabolic enzymes and other constituents such as bile salts.
Nevertheless, data obtained with Caco-2 in vitro models
together with data obtained with PBPK models may be useful
in determining more realistic starting doses for in vivo tests of
newly developed drugs.

Integration of in silico and in vitro platforms for PK-PD modeling
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4.5 Vascular network (gas and nutrient transport)
The endothelial lining of the microvasculature is another bar-
rier tissue for which efforts have been made to develop in vitro
µCCAs. In conventional models of the microvascular endo-
thelium, HUVECs or human dermal microvascular endothe-
lial cells are cultured on porous membranes in stationary
chambers (Boyden chambers) or in parallel plate flow cham-
bers that provide medium flow [102-104]. These systems can
be used to assess the permeability of the endothelial lining
towards drugs and cancer cells as well as to record changes
in permeability in response to vasoactive agents.

Several groups have developed µCCAs of the endothelial
lining. Collagen tubes that are crosslinked around needles
that were subsequently removed provide a round, concave
lumen ranging in size from 100 to 200 µm in diameter. These
tubes have been used to form hollow endothelial vessels [105].
While this fabrication method is capable of replicating the
in vivo geometry of the surface on which endothelial cells
grow, it is limited to relatively large lumen diameters and sin-
gle un-branched tube geometries. To achieve smaller lumen
diameters, microfabrication methods have been adapted to
fabricate tubes with rectangular, trapezoidal or circular
cross-sectional profiles with diameters as small as 50 µm in
biocompatible, polymeric materials [106,107].

The most important criterion for a successfully engineered
in vitro microvasculature is the presence of the endothelial
barrier function. HUVECs establish a barrier function
within days when seeded at a sufficiently high density. The
establishment of the barrier function in 3D models
(100 -- 200 µm) can be promoted by rotating the tubes dur-
ing cell culture [105]. If the scaffold matrix consists of a mate-
rial into which molecules can diffuse, such as collagen, the
barrier function can be measured by introducing fluores-
cently labeled proteins of various sizes into the endothelial
tube and measuring the amount of protein that diffuses
into the matrix [106]. Microfabricated tubes with small diam-
eters bear the challenge of seeding endothelial cells at a den-
sity high enough to establish adherence junctions, because
their surface area:volume ratio becomes very high. Hence,
very concentrated cell solutions must be used. Microscale
cell culture models of the microvasculature can be used to
study circulatory diseases such as cancer metastasis,
immune-mediated diseases and inflammation.

5. Conclusion

In this review article, we introduced briefly the concept of PK-
PD modeling and explored the experimental research efforts
directed towards reproducing the PK-PD of drugs by mimick-
ing the physiology of human body or specific organs. Recent,
rapid developments in combining microfabrication technol-
ogy with cell culture techniques have yielded novel devices
with functions that closely mimic natural organs. In particu-
lar, a µCCA enables characterization of drug effects in a
quantitative manner, which has not been possible in

conventional multi-well plate systems. Although there are
several remaining challenges in achieving a true, ‘human-
body-on-a-chip’, recent progress shows a great promise for
devices that can complement animal and human studies.

6. Expert opinion

PK-PD modeling is an established, but still developing field
since its emergence several decades ago. This technique has
diverse applications including toxicity assessment, dose opti-
mization, cross-species extrapolation and characterization of
drug--drug interactions [14,108]. Further development in
mechanism-based PK-PD modeling is required to enhance
its predictive performance in drug development and overcome
current limitations in the extrapolation from in vitro to in vivo
drug properties, within and across species. Some of these
limitations can be addressed by integration of microscale
technology concepts to PK-PD models.

The area of microscale technology has been growing
rapidly, offering researchers a new ability to investigate bio-
logical problems with an unprecedented ability to control cel-
lular environment. It has had a significant impact in various
areas, including tissue engineering, systems biology and
high-throughput drug screening [8,109,110]. We believe that
another area with a great potential is PK-PD modeling.
Microscale technology enables the development of a physical
realization of a mathematical model, and allows one to
make direct comparisons between the in vitro and in silico
platforms. By having a physical, in vitro counterpart of a
mathematical model, various hypotheses can be tested
directly, which are difficult to be tested in animals or humans.
For example, various drug combinations ratios and dosing
schedules can be easily tested, while exploring the whole
parameter space in a large combinatorial trial in animals or
humans would be a daunting task. Furthermore, the combi-
nation of a µCCA and PK-PD modeling can provide an
improved basis for animal to human extrapolation, with
improvements in culturing animal-originated cells or
human-originated cells. Such advantages will allow shifting
the assessment of drug effects in humans to an early stage of
drug development. In addition, it enables the identification
of potentially toxic compounds as well as of mechanisms
underlying toxicity.

Although this possibility has been recognized only recently,
several novel examples of utilizing microscale technology to
reproduce the complex action of drugs in the human body
are emerging [111]. The µCCA devices first developed at
Cornell and adapted by others have demonstrated that the
effect of drugs arising from multi-organ interaction can be
observed experimentally [53,55,57]. Several microscale or micro-
fluidic systems have been developed to examine the
metabolism-dependent effect of drugs [48,50]. Significant
amount of progress has been achieved in terms of reproducing
the functions of specific organs in vitro, such as the liver, lung
and kidney [62,75,77,81]. Obviously, the examples illustrated in
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this review article are still far from a complete reproduction of
PK-PD model, and only are a partial representation of what
happens in the human body. Nevertheless, even modest
improvements (for example, from 10 to 20% success rate in
clinical trials) would have a significant impact on the cost of
drug development.
Microscale/microfluidic devices have their own limitations,

and many issues remain to be solved before they can be more
widely accepted [112]. For example, various new materials have
been used in microfluidic devices, but the biocompatibility of
these materials needs to be characterized better. The exact effect
of a microfluidic environment on a cell’s behavior needs a
deeper investigation. Furthermore, fabrication, assembly and
operation of microfluidic devices need to be standardized and
made more ‘user-friendly’ for high-impact applications [113,114].
For example, air bubble formation in a microfluidic system is
an important issue that needs to be characterized better [115,116].
Another important issue in microscale systems is detection
and analysis, as miniaturization renders assays more difficult
than macroscale systems where a larger volume of fluid is
available. Typical sample volumes in microfluidic systems (in
nanoliter range) make it difficult to analyze samples with
conventional analytical equipments. Moreover, often the

closed nature of such systems requires non-invasive detection.
Improving or modifying current analytical techniques to
adapt to new microfluidic devices has been an active research
area [117-121]. Although fluorescence optical detection has
been the main technique for non-invasive detection, utilizing
electrical signals or cellular impedance has also been pro-
posed, which might be more suitable for high-throughput
applications [122-124].

In conclusion, although still at an infant stage, combining
microfluidic systems and the mathematical modeling
approach holds a great promise, both from the fundamental
scientific and practical viewpoints for improved methods of
drug development and determination of chemical toxicity.
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