Syllabus

Digital Food Physics and Engineering

(Short title: Digital Food Engineering) BEE 4630/6630 (3 credits) Cornell University, Ithaca, New York

Author

Ashim K. Datta, Professor, Dept. of Biological and Environmental Engineering Revision date: 11/10/22

Credits

3 hours (letter only)

Description

BEE 4630 and 6630: Mechanistic, model-based understanding and digital tools critically innovate in the design cycle for products and processes, food manufacturing is no exception. The course will introduce tools such as computational modeling, digital twins, and predictive knowledge bases, exploring deeper into the underlying universal physics-based frameworks describing transformations in food during processing. We will develop the framework that treats food as porous media with multiphase/multicomponent transport due to diffusion, capillary pressure, swelling pressure, and gas pressure, with shrinkage/expansion driven by moisture change and internal pressure. Mechanistic frameworks for food quality and food safety will complement the porous media approach. Case studies will include complex multiphysics applications such as meat cooking with shrinkage, case hardening during drying, puffing with a massive expansion, and microwave drying with shrinkage. Learning outcomes will include building the frameworks, understanding food processes using the frameworks, and creating a computational model through a learner-selected project.

BEE 6630: The graduate version of the course will require the project to be substantially more challenging computationally or in physical detail. In addition, in several places throughout the syllabus, graduate version of the course will have more advanced content (there will be separate web modules for undergraduates and graduates).

Prerequisites: Fluid mechanics, heat transfer, and mass transfer, or permission of instructor. The graduate version of the course (BEE 6630) will require prior coursework in at least fluid mechanics and heat transfer.

Corequisites:

None

Preparation Summary:

- Understand the basics of undergraduate fluid mechanics, heat transfer and mass transfer.
- Have interest in applying physical and engineering principles to food processes
- Comfortable with web-based self-learning modules for a user-friendly computational software
- Excited about building a food process model and its simulation
- Look forward to working in a group with members having varied background

Textbook(s) and/or Other Required Materials:

Datta, A.K. 2022. Digital Food Physics: Copies of PowerPoint notes provided by the instructor. Available at Campus Store.

Datta, A.K. 2022. Food Physics. Textbook under preparation. Available at Campus Store.

Class and Laboratory Schedule:

See details below under Topics Covered. This hybrid (online/in-person) course will have carefully recorded video lectures with active-learning enabled quizzes and online activities (such as concept mapping), a student-selected computational project, readings, and online discussion boards (all asynchronous). In-person meeting will be one in-class session every week devoted to the challenging concepts and helping with the computational project.

Instructional contact	Schedule	Which ones (see under Topics Covered below)	# Of class periods
Recorded video lectures on Canvas (25)	Mondays and Wednesdays, 50 min each day, on Canvas	All items with the first column in blue	27 [50 min]
In-person lectures and project discussions (17)	Fridays at 2:45-4:00 PM; Room to be announced	All items with the first column in red	15 [75 min]
Work outside video or in- person lectures above	6-9 hours each week, on your own schedule	1 semester-long project, 13 homework No exams	

Recitations: None

Labs: Computational, already included above

Assignments, Exams and Projects:

	Percent of total grade	Details			
Computational project	50%	Each deadline carries weight of approximately 8% each.			
Web lecture- embedded quiz and activities two days a week	15%	Quizzes follow the lecture topics on Canvas and are designed for instant feedback. Other online activities will include concept mapping and discussion board.			
In-class quiz and activities once a week	15%	1) Every Friday, when we meet in-person, there will be a 10-minute quiz on the immediately preceding topic. 2) Individual student will upload on Canvas a picture of a portion of classwork done during each lecture			
Homework once a week	15%	Homework (due every Friday) includes 1) web-based case studies for learning the computational software, 2) reading activities assigned, 3) short computational activity			
Participation	5%	They are based on 1) response to questions asked in class and 2) attendance			
Exams	None				
Graduate	Within the	Within the same percent of the total grade, BEE 6630 will require the project to be substantially			
version of the	more cha	ore challenging in the physical complexity of the food process studied or in the computational			
course	<mark>complexit</mark>	xity. In addition, sprinkled throughout the syllabus, BEE 6630 will substitute for more			
	advanced of difficult	dvanced content, typically using more rigorous engineering analysis (web modules at two levels of difficulty will be available for most of the topics, for undergraduates and graduates).			

Course learning outcomes

At the conclusion of the course, the learner will be able to

- 1. Explain a food physics framework in terms of its basic building blocks that can describe many food processes
- 2. Compare and contrast between simpler and more comprehensive physics frameworks for understanding food processes
- 3. Apply a food physics framework to complex food processes for their understanding and optimization
- 4. Create framework-based computational model of a food process that speeds up the design cycle

- [BEE 6630] Analyze the transport phenomena, solid mechanics, and multiphysics (such as when microwave heating is added) at research level.
- [BEE 6630] Build computational models for food processes with additional physical and/or computational complexity

CALS learning outcomes

At the conclusion of the course, the learner will be able to

- 1. Explain, evaluate, and effectively interpret factual claims, theories and assumptions in the physics of food processing.
- 2. Integrate quantitative and qualitative information to reach defensible and creative conclusions.
- 3. Communicate effectively through writing, speech, and visual information.
- 4. Demonstrate the capability to work both independently and in cooperation with others.

Topics covered

Abbreviations

- P: Class time periods, 50-minute duration (Fridays are in-person; M and W are web-based), numbered consecutively 1-42 for a semester (project needs to move together, so it can be completed within the semester)
- WL: Web-based asynchronous video lecture
- IL: In-class lecture and discussion
- IA: In-class activity such as groupwork as part of IL
- OA: Out of class activity such as pre-class reading (PR), homework (HW), project meeting with professor, and project execution (PD)

P	TOPICS COVERED	WL	IL	IA	ΟΑ	
1	Course introduction (20 min)					
	FOOD PHYSICS AND DIGITAL FOOD					
	 Overview of digital tools and computer-aided food engineering (30 min) Computer-aided food engineering and its roadblocks Modeling and simulation: mechanistic approaches Digital twins Smart appliances 		IL	IA		
2	 Databases: Example from properties prediction How do topics relate to your interest? Class discussion Locate and study a digital twin or another digital tool from literature [web-based] Basis of scientific understanding: Theory, Modeling, and Experimentation 	WL				
	MODELING AND SIMULATION: PRINCIPLES, STEPS, AND APPLYING TO YOUR PROJECT [GOES CONCURRENTLY WITH THE FOLLOWING SECTIONS]					
3	 Why Model? PROJECT TOPIC SELECTION: GROUP DISCUSSION [PROJECT DEADLINE 1] Preliminary project topic (student selected) 		IL	IA	PR PD1	
6	 General Principles of Modeling [40 min] APPLYING TO YOUR PROJECT: GROUP DISCUSSION 		IL	IA	PR	
9	 Steps in Developing a Model Step 1-Problem Formulation APPLYING TO YOUR PROJECT: GROUP DISCUSSION 		IL	IA	PR	
12	 Step 1-Problem Formulation-continued APPLYING TO YOUR PROJECT: GROUP DISCUSSION 		IL	IA	PR	

	Concept mapping of your project				PD2
	[PROJECT DEADLINE 2] Detailed problem formulation for your project				
18	Step 2-Model Implementation in a Software (web-based)		IL		PR
	Peer-review of your problem formulation			IA	
	APPLYING TO YOUR PROJECT: GROUP DISCUSSION				PD3
	[PROJECT DEADLINE 3] Working model with initial solution				
24	Step 3-Model Validation and Sensitivity Analysis				
	Relating your project to building a digital tool Deer review of the interim report		IL	IA	PR
	APPLYING TO YOUR PROJECT: GROUP DISCUSSION [Deputer Descussion] [Deputer Descussion] [Report Descussion]				PD4
20	Stop 4. Model Communication for your project			1.0	DD
50	$\Box Step 4- Model communication for your project$		IL	IA	
36			п	IΔ	PR
30			16	17	PD6
42	\Box [Project Deadline 7] Written Report with feedback incorporated		IL		PD7
	PRINCIPLES: ENGINEERING FRAMEWORKS FOR FOOD PROCESSES				
4	Overview of modeling frameworks for food processing [20 min]	WL			
	Applying to your project: Which framework will best suit your purpose?				НW
	Lumped models [Review, pdf files]				
	Single-phase models [Review, pdf files]				
	Fluid flow (Navier-Stokes) for single phase				
	Fluid flow in porous media: large and small pore-based approximations				
5	 Heat equation for single phase 	WL			
	 Mass transfer equation for single phase 				
	Sharp boundary models				
7	Multiphase, porous media-based models	WL			НW
	Reading Assignment: Find three hard questions not answered in the Datta paper				
	Qualitative introduction	NA /1			
8	Iransport of heat and mass Transport of heat and mass	VVL			11147
10	Iransport of neat and mass—continued Applied tenies for undergraduates	VVL			HVV
	\Box Advanced tenics for graduates				
11	Fvanoration	\٨/١			
**	Applied tonics for undergraduates	VVL			
	\square Advanced topics for graduate students				
13	□ Boundary conditions	WL			нw
14	□ Deformation	WL			
	Applied topics for undergraduates				
	Advanced topics for graduate students				
15	Deformationcontinued		IL	IA	
	Applied topics for undergraduates				
	Advanced topics for graduate students				
16	Properties and coupling of physics through properties	WL			HW
17	Simplifications	WL			
19	Challenges and Limitations	WL			HW
	Prepare a concept map for the porous media section of the framework that includes all of				
	the topics in this section, showing clear connections.				
21	Untinished/additional items	14/1	IL	IA	1.11.6.6
22	Untinished/additional items	WL			HW

	PRINCIPLES: ENGINEERING FRAMEWORKS FOR FOOD QUALITY AND SAFETY				
23	23				
25	Accounting for spatial and time variations				HW
26	Engineering framework for chemical safety, microbiological safety, and possibly	WL			
	risk				
	PRINCIPLES: ENGINEERING FRAMEWORKS FOR MULTIPHYSICS				
27	Microwave heating (electromagnetics)	WL	IL	IA	
	Microwaves as electromagnetic waves				
	Simple heating: A slab in plane waves				
	Microwave absorption and food dielectric properties				
28	Microwaves in an oven	WL			HW
	Food factors in microwave absorption				
	 Oven factors in microwave absorption 				
29	 Microwave heating (heat transfer) 	WL			
	Simple volumetric heating, without and with diffusion				
	Cycled and combination heating				
31	Simultaneous heating of multiple items	WL			HW
	Electromagnetics pattern as the dominant mode				
	Coupling of electromagnetics and heat and mass transfer				
	PRINCIPLES: ENGINEERING FRAMEWORKS FOR FOOD PROPERTY ESTIMATION				
32	Material properties definitions and basics	WL			
22	Properties paper reviewea			1.0	
33	Framework for prediction of material properties Apply to a property of your choice		IL	IA	
24	Apply to a property of your choice Digital access to material properties: Introduction	14/1			
54	Digital access to material properties: Introduction Application to thermal properties: Module	VVL			пуу
	ΔΡΡΙΙCATIONS				
35	\Box Sterilization	W/I			
	\square Applied topic for undergraduates				
	Fundamental physics of heat transfer, safety, and quality kinetics				
	 Optimization of sterilization: Effect of process and product parameters 				
	Advanced topics for graduate students				
	Mathematical model description				
	Thermal time distributions in microwave and conventional sterilization				
	Optimization and extension to other heating modes				
37		WL			HW
	Applied topic for undergraduates				
	Fundamental physics of puffing				
	Optimization of puffing				
	Concept mapping				
	Advanced topics for graduate students				
	Mathematical model description				
	Spatial and time variations in temperature, moisture, pressure, and deformation (nonceive)				
	Gerormation (poroSity)				
	Distributer analysis: Effect of putting temperature, initial moisture, and gun				
	Concept mapping				
20		\\/			
30	Applied topic for undergraduates	VVL			

	 Fundamental physics of puffing Optimization of puffing Concept mapping Advanced topics for graduate students Mathematical model description Spatial and time variations in temperature, moisture, pressure, and deformation (porosity) Concept mapping 				
	Sensitivity analysis: Effect of puffing temperature, initial moisture, and gun puffing				
3 9	Unfinished/Additional items	WL	IL	IA	
40	Applying to a new process: Concept mapping	WL			HW
41	Project-related help		IL		
42	Course summary and concluding remarks		IL	IA	
42	TOTAL TIME COMMITMENT for the SEMESTER	25	17	**	##
	25 web lectures plus 17 in-class lectures				
	15 in-class activities				
	##13 homework, 1 semester-long project				
	No exams				