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Abstract

This paper describes and estimates a “neural autopilot” model of habit formation. The estima-

tion uses individual-level data on posting behavior from a Chinese social media platform before,

during, and after the 2020 pandemic lockdown. The model produces interpretable parameter

estimates about autopilot habit formation. It shows that once habit is neuroscientifically for-

malized, changes in preferences are no longer required to explain observed behavior change.

Moreover, the neural autopilot model fits the data better than a traditional model of habit that

uses changing preferences to explain choice persistence. We also find that forced experimenta-

tion alone does not lead to persistent habitual postings after the lockdown ends. Counterfactual

forecasts, which are derived from simulating behavior using the structural model, show that

reducing the volatility in posting rewards, in conjunction with forced experimentation, would

significantly increase habitual postings. This finding suggests that higher moments of the reward

process may play an important role in creating habits.
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1 Introduction

People form habits. Habit formation interests psychologists, doctors, and neuroscientists who seek

to understand how habit formation works. Finding ways to create more good habits and fewer

bad habits also preoccupies areas of applied psychology and public health. All social sciences

are interested in habits of some kind—for example, organizational routines, rituals and norms in

sociology and anthropology.

We present one of the first empirical analyses of a model that closely matches how some neuro-

scientists and cognitive psychologists think about habits. The motivating principle is that people

form habits to economize on mental effort: they repeat previous choices when they expect those

choices to deliver similar rewards as they have experienced in the past.1

Our approach conceptualizes habit as a particular decision process which is intimately related

to learning about what is rewarding, rather than about choosing given stable preferences. People

repeat a previous choice either because the choice is utility-maximizing, or because they are in a

habit mode, whereby the habitual choice can be suboptimal as it neglects consideration of other

options. In the latter case, forcing people to experiment with new choices may lead to higher

utility.2 Indeed, Verplanken and Orbell (2022) note that empirically, substantial changes in the

choice environment often lead to changes in habits.

What factors create and sustain habits? Can forced experimentation break old habits and gen-

erate new habits and persistent behavior change? These remain fundamental questions in social

sciences. Our paper addresses these questions by structurally estimating a novel neuroeconomic

model of habit formation. The model is a “neural autopilot” model, in which people toggle between

previous, reliably rewarded choices, and goal-directed maximization once the habitual choice led to

large reward prediction errors (Landry et al., 2021).3 It is a particular kind of dual-process model,

out of many that have been studied in psychology research (Stanovich, 1999; Evans, 2008; Kah-

neman, 2011; Evans and Stanovich, 2013; Cerigioni, 2021). More precisely, the neural autopilot

1Choice repetition can also depend on contextual states, especially in the case of addictive substances for which
cues can trigger craving and drug use (Laibson, 2001; Bernheim and Rangel, 2009; Wellsjo, 2021).

2Larcom et al. (2017) study forced experimentation in the context of local transit. The authors find that a strike
on the London Underground leads to behavior change.

3The word “neural” is used because the model’s central dual-process mathematical form is closely related to the
neuroscientific mechanisms developed in Daw et al. (2005) and subsequent studies. We further discuss this relation
in Section 2.1.

1



model is a “default interventionist” model, in the sense that people are assumed to act on low-cost

habits unless large reward prediction errors motivate them to engage in more effortful goal-directed

choices.

Most analyses of apparent habits report a “reduced-form” persistence of choice over time. Our

structural approach hypothesizes a particular way in which choices are governed by past experience

and a set of parameter values. This approach is aimed at explaining when choice persistence arises

and when it does not; moreover, the structural model allows us to quantitatively measure the long-

term effects of forced experimentation on behavior change. To the best of our knowledge, our paper

is among the first studies that use large-scale field data to estimate and test a neuroscientific model

of habit formation.

The neural autopilot model works as follows. In every time period, an economic agent chooses

from multiple options and is in one of two possible modes of decision making: a “goal-directed”

mode and a habit mode. In the goal-directed mode, the agent actively predicts the reward value

for each option in her choice set. Then, she chooses an option probabilistically, according to a

“softmax” function, where the probability of choosing a given option is an increasing function of

the option’s predicted reward value. In the habit mode, however, the agent simply repeats her

choice from the previous period, without actively predicting each option’s reward value.

In this model, the agent’s choice always leads to a realized reward—for example, the “likes”

received from a social media post. The agent then computes a “reward prediction error,” which

is the difference between the realized reward and her predicted reward, and uses it to update her

reward prediction for the corresponding choice. If an option’s realized reward has been close to its

reward prediction for many periods—that is, if the reward prediction errors have been small—the

reward prediction becomes sufficiently reliable. In this case, the agent is likely in the habit mode.

We apply this autopilot model to a large sample of individual-level activity data on posting

behavior from Weibo, one of the biggest social media platforms in China. We focus on the time

period around the 2020 lockdown in response to the COVID-19 pandemic.4 This setting is well-

suited to applying our autopilot model, for at least two reasons. First, the lockdown was strictly

4Wuhan and some surrounding cities went into lockdown on January 23, 2020. Many other counties of the Hubei
province entered lockdown on the following day. More information on the lockdown can be found at https://

apnews.com/article/pandemics-wuhan-china-coronavirus-pandemic-e6147ec0ff88affb99c811149424239d (ac-
cessed March 2024).
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enforced, and it caused an unexpected interruption in social activities, especially outdoor activities.

The restriction on people’s choice set led them to explore new activities such as posting on Weibo—

this is evidenced by the large increase in new users observed at the beginning of the lockdown. And

such a big change likely disrupts habits, as demonstrated in many other domains by Verplanken

and Orbell (2022). Second, our data allow us to directly measure rewards from posting using the

number of likes received from each post. By contrast, alternative settings typically used in studying

habit formation, such as gym visits, often do not provide a good empirical proxy for rewards, hence

preventing a direct test of the neural autopilot model.

We estimate the neural autopilot model using daily posting and reward data for a group of

randomly sampled users who had used Weibo prior to the pandemic lockdown. In the data, we

observe a decrease in posting probability after the lockdown ends. Our model explains this post-

lockdown drop in the posting probability through users’ reactions to changes in posting rewards,

rather than through changes in their preferences toward non-social media activities during and after

the lockdown. Our model suggests that people are likely to be in the goal-directed mode during

the lockdown when many of their outside options become unavailable; once the lockdown is lifted,

the rewards received from posting decrease, and people form habits for non-social media activities.

Compared with a set of alternative models of choice behavior, the neural autopilot model offers

higher explanatory power for changes in observed behavior.

Using the estimated model parameters, we investigate the key factors in creating and sustaining

habits. We conduct two counterfactual “thought experiments”: What does the model say would

happen if we increase the average level of posting rewards during the lockdown? And what does

the model say would happen if we reduce the volatility of posting rewards—the volatility of likes

received from posting—during the lockdown? Overall, we find that forced experimentation does

not lead to new habit that persists after the lockdown is lifted.

However, reducing the volatility of posting rewards during the lockdown leads to a temporary

but significant increase in habitual postings, particularly for users who can quickly learn about

their perceived reliability of predicted rewards; this learning rate is a behavioral parameter in our

model and it is likely to be heterogeneous across users. Our finding suggests that higher moments

of the reward process may play an important role in creating habits.

Our paper contributes to the literature on habit formation in many ways. Economic and mar-
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keting models of habit often assume that the utility of current goods depends on past consumption,

without any direct biological motivation for this reduced-form assumption (Pollak, 1970; Becker

and Murphy, 1988; Constantinides, 1990; Campbell and Cochrane, 1999; Allcott et al., 2022). By

contrast, our model draws directly from neuroscientific evidence (Daw et al., 2005; Dolan and

Dayan, 2013; Lee et al., 2014) and makes specific predictions about how and when people form or

break a habit. Our paper also relates to the literature on choice persistence and structural state

dependence in economics and marketing (Keane, 1997; Seetharaman et al., 1999; Dubé et al.,

2010). For example, Dubé et al. (2010) find that structural state dependence can be explained by

preference changes due to past consumption, rather than search costs or learning. We contribute

to this literature by considering neuroscientific habit formation as an alternative explanation for

structural state dependence. We show that our neural autopilot model better explains observed

behavior change compared to the traditional approach.

Our paper also contributes to the literature on reward learning and social media. Social media

has been called a “Skinner Box for the modern human” (Lindström et al., 2021, page 2). However,

it is important to note that distinct challenges exist when inferring behavioral processes—especially,

causality—from social media data (Burton et al., 2021).

Several studies have estimated reinforcement learning models with field data, assuming that

positive social media feedback serves as a reinforcer. Das and Lavoie (2014) estimate a reinforcement

learning model using data from Reddit and demonstrate that this model outperforms alternative

models in predicting posting behavior. Lindström et al. (2021) examine both lab and field data,

and they document that choice behavior on social media is consistent with reinforcement learning

theory. Brady et al. (2021) find that positive social feedback is correlated with an increase in

posting on Twitter. Moreover, the effects of reinforcement on subsequent behavior are stronger

when people have more followers (Lindström et al., 2021) and longer posting histories (Brady

et al., 2021; Anderson and Wood, 2023). Anderson and Wood (2023) show that choice behavior of

Facebook users who post more frequently and have stronger self-reported habits is less sensitive to

changes in social rewards; this is consistent with the idea that habits create insensitivity to changes

in valuation. Our paper contributes to this literature by estimating a structural reinforcement

learning model which incorporates a specific transition in and out of habit, one that can be estimated

using observable data. None of the previous analyses extend reinforcement learning models to
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include explicit habit formation.

More broadly, our paper adds to a growing literature that uses models from psychology and

neuroscience to understand human behavior in economic and financial settings (Landry et al.,

2021; Khaw et al., 2021; Webb et al., 2022; Frydman and Jin, 2022, 2023; Barberis and Jin,

2023; Wachter and Kahana, 2023).5 Most related here is Webb et al. (2022), who estimate the

neural autopilot model using data from canned tuna purchases; in their setting, a change in the

size of the tuna cans shifts consumers from the habit mode to the goal-directed mode. An impor-

tant difference between the two papers is that their paper focuses on the extent to which habits

can explain choice persistence, while our paper focuses on the role of reward schemes in creating

habits.

2 The Neural Autopilot Model

Our model builds on the general framework of Landry et al. (2021). We first describe the basic

structure in mathematical terms. We then give the intuition behind our modelling choices and

provide further evidence and motivation.

We study an economic agent who chooses one action from a set of actions a = {a1, a2, ...aJ} in

every discrete period. The agent’s choice at time t is denoted by ct. Each action a ∈ a is associated

with a predicted reward, which is the agent’s prediction of the reward she will receive from choosing

a. The predicted reward for a at time t is denoted by rt(a). We assume that the agent learns and

updates the reward prediction rt(a) as follows

rt(a) =


rt−1(a) + λr · [ut−1(a)− rt−1(a)] if a = ct−1

rt−1(a) if a 6= ct−1

. (1)

Equation (1) says that at time t, the agent updates only the predicted reward for the previous

action ct−1 she took at time t − 1. Specifically, the agent updates rt(ct−1) by the amount of

λr · [ut−1(ct−1)− rt−1(ct−1)], where λr is a learning rate and the term in square brackets is the

reward prediction error (RPE). The RPE is the difference between the realized reward of taking

5Allcott et al. (2022) also study habit formation in the context of social media, but their paper does not adopt a
neuroscientific approach.
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the action ct−1, denoted by ut−1(ct−1), and the previously predicted value rt−1(ct−1). The updating

rule in Equation (1) is based directly on neural evidence accumulated over the past 25 years. For

example, studies of human decision making by O’Doherty et al. (2003) and Rangel et al. (2008)

find that neural activity in the ventral striatum correlates strongly with the RPE computed in

Equation (1). Overall, the neural circuitry of RPE is one of the most well-established regularities

in decision neuroscience (see Rangel et al., 2008 and Dolan and Dayan, 2013 for reviews).

The agent also tracks the reliability of each action’s predicted reward. The reward reliability

for action a at time t is denoted by dt(a) and is often called the “unsigned prediction error.” We

assume that the agent updates dt(a) as follows

dt(a) =


(1− λd)dt−1(a) + λd · |ut−1(a)− rt−1(a)| if a = ct−1

(1− λd)dt−1(a) + λd if a 6= ct−1

. (2)

Equation (2) says that at time t, the agent updates dt(ct−1), the reward reliability for the previous

action she took at time t− 1, based on λd · |ut−1(ct−1)− rt−1(ct−1)|, where 0 < λd < 1 is a learning

rate for reward reliability d. When the realized reward ut−1(ct−1) is very close to the previously

predicted reward rt−1(ct−1), the agent believes that her reward prediction becomes more reliable;

the absolute value of the RPE is close to zero, leading to dt(ct−1) < dt−1(ct−1). Lee et al. (2014)

present neural evidence that numerical reliability signals in Equation (2) are encoded in identifiable

brain regions.

How does the agent actually choose an action ct at any time t? If the agent is in the habit mode,

she simply repeats her previous action; ct = ct−1. In this case, the agent’s choice is not sensitive to

rewards; she chooses the same action regardless of its expected reward. This is consistent with the

finding of Anderson and Wood (2023) that the posting rates of habitual social media users are less

sensitive to changes in social rewards, compared to the posting rates of non-habitual social media

users. If the agent is in the goal-directed mode, the agent is then assumed to choose an action

probabilistically, where the probability of choosing a given action a is increasing in the action’s

predicted reward rt(a):

Prt(ct = a) =
exp [α · rt(a)]∑
j exp [α · rt(aj)]

. (3)
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This type of probabilistic choice, known as a “softmax” specification in the reinforcement learning

literature, encourages the agent to “explore,” in other words, to try an action other than the one

that currently has the highest predicted reward (Cesa-Bianchi et al., 2017). The parameter α

controls the degree of this directed exploration.6

Finally, our model specifies the following rule for the switches between the goal-directed mode

and the habit mode:

Prt(goal-directed) =
1

1 + exp(−κ · (dt(ct−1)− φ))
. (4)

Equation (4) says that when the agent finds her predicted reward rt(ct−1) sufficiently reliable—that

is, when dt(ct−1) is low—the agent will likely enter the habit mode; here, the parameter φ can be

interpreted as a “threshold” of dt(ct−1) that affects the switches between the goal-directed mode

and the habit mode. In Section 3.1, we provide empirical evidence that more reliable rewards are

associated with more habitual behavior.

2.1 Relation of Neural Autopilot to Dual-Process and Reinforcement Evidence

We have now described the mathematical details of the neural autopilot model. Next, we turn

to three important questions regarding the relation between our model and previous theory and

evidence. The first question is concerned about why our model is viewed as a “neural” autopilot

model. The second question is about how our model incorporates the cost-benefit tradeoff between

fast, low-cost habitual choice and slower, higher-cost model-based choice. And the third and final

question is about whether we have modelled reward predictability in a way that is consistent with

the large amount of evidence from animal learning (and some human data) under fixed or variable

reward “schedules.”

We start with the first question: What makes our model “neural”? The updating rule for

reward prediction, as expressed in Equation (1), is a form of model-free reinforcement learning and

is certainly similar to a long line of associational-strength updating rules originating in Thorndike

(1932)’s “Law of Effect” and Rescorla and Wagner (1972) (see Pearce and Bouton, 2001 for history).

Neuroscientific data played no role in the early development of these learning rules. However,

6Alternatively, probabilistic choice could represent imprecision in encoding or in response; see Daw et al. (2006)
and Zajkowski et al. (2017).
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starting around the year 2000, neuroscientists began to focus on measuring neural activity and

understanding neural implementation of decision modes. In an influential study, Jog et al. (1999)

used the term “habit” to describe fast decisions in which, with learning, animal T-maze decisions

became faster and better, and neural signals of reward (from recordings of neural spikes) propagated

upstream from the time of receipt of the reward to the onset of a goal state which, with learning,

predicted reward.

Following Jog et al. (1999), there was progress in understanding habits from many areas such as

applied psychology, animal learning, computer science, and neuroscience. The scientific genealogy

for our concept of neural autopilot can be traced to multiple-model “mixture of experts.” They

were suggested in computer science as methods that could perform well in complex domains where

simpler single-model reinforcement learning did not (Jacobs et al., 1991). The idea of using reward

prediction error to weight different models was suggested in Narendra et al. (1995) and elaborated

in Doya et al. (2002) using the term “responsibility signal,” a Bayesian posterior similar to that

later used by Lee et al. (2014). The next important step was taken by Daw et al. (2005). These

authors suggested an “arbitration” between model-free and model-based controllers, drawing on a

large amount of imaging and causal evidence of model-free and model-directed systems and their

dissociation.7 They wrote (page 1704):

“Here we suggest how the brain might estimate this accuracy for the purpose of arbi-

tration by tracking the relative uncertainty of the predictions made by each controller.”

Specifically, they hypothesized that the variance of a Bayesian posterior distribution over the learned

probability of an action being optimal, could be used to determine whether a tree-directed model-

based value or a “cached” model-free value is chosen to drive action. If the posterior variance

is high for the model-free recommended choice, a person assigns control to the opposite, model-

based system; conversely, if the posterior variance is high for the model-based recommended choice,

the person assigns control to the opposite, model-free system. This notion of posterior variance

is a precursor of the doubt stock dt(a) in our autopilot model; the absolute value of the reward

prediction error in Equation (2) is akin to the posterior variance in Daw et al. (2005). Both papers

study a dual-process model in which the system that currently has lower uncertainty in predicting

7Dolan and Dayan (2013) call this “Generation 3” of understanding goals and habits.
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future reward is more likely to guide choice. It is important to note that, like our paper, Daw et al.

(2005) also did not report new neural data; however, they did make the case that the arbitration

process they hypothesized was consistent with various kinds of neural evidence. Following the Daw

et al. (2005) emphasis on the reliability of estimating predicted reward, progress has been made

in discovering neural circuitry that corresponds to the model-free and model-based choices, their

reliability, and the neural “arbitration” that combines both choice tendencies (Lee et al., 2014).

In summary, our model is called “neural” because it came from considerations of a mathemat-

ical way of measuring differential predictability of dual-process models and these considerations

originated from computer science and theoretical neuroscience.

We now turn to the second question: How does our model incorporate the cost-benefit tradeoff

between fast, low-cost habitual choice and slower, higher-cost model-based choice? Attention is

scarce. Therefore, it is obviously useful to offload choices to a low-cost mode of decision making

when it is safe (reliably rewarding) to do so. However, our neural autopilot model does not explicitly

account for mental costs, complexity, and stress. Further improvement of the model should include

these factors.

The third and final question is: Have we modelled reward predictability in a way that is con-

sistent with the large amount of evidence from animal and human learning about habitization

under fixed or variable reward “schedules”? Many studies have examined how animals and humans

learn in an environment where rewards are delivered stochastically or at different time intervals.

A clear finding is that when rewards are stochastic and independent in each period (a “variable-

ratio” schedule), habits do not form as strongly as when there is a random time interval between

rewards (a “variable-interval” schedule). Is this finding consistent with the way we model reward

predictability and habit formation in Equations (1) to (4)? The answer is unclear—figuring this

out conclusively is not simple and lies beyond the scope and ambition of this paper. However,

this question is certainly interesting and important, so we include a more detailed discussion in

Appendix A.
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3 Details of the Weibo Data and User Behavior

We now use our neural autopilot model to analyze posting behavior on Sina Weibo (Weibo), a

Chinese microblogging platform. Launched in 2009, Weibo is one of the biggest social media

platforms in China with over 500 million users in 2020. Commonly referred to as the “Twitter

of China,” Weibo allows its users to post original messages of up to 2,000 Chinese characters (or

roughly 1,200 to 1,400 English words), repost messages from other users, and “like” posts.

We focus on users’ posting behavior on Weibo around the mass lockdown China imposed be-

tween January and April 2020 in response to the COVID-19 pandemic. Note that the lockdown

serves as a shock to both the outside option—non-social media activities—and the inside option—

social media activities; for example, social media may become more valuable when face-to-face

interactions are not possible. Regardless of whether the lockdown impacted the outside or inside

option, it generated a shock that impacted behavior.

We collect data on users’ posting behavior by randomly sampling a set of user accounts; more

details on how we sample and clean the data can be found in Appendix B. For each post, we observe

its content and timing as well as whether it is an original post or a repost from other users; we

also observe the number of likes, the number of reposts, and the comments received by the post.

Moreover, we collect a set of user and account characteristics, including the user’s gender, age, and

location, the number of followers the account has, the number of users the account follows, the date

when the account was created, and whether or not the account is verified by Weibo.

In our empirical analysis, we focus on users who created an account before the lockdown; these

are users who first posted on Weibo between 2015 and 2019.8 We exclude users with private

accounts and those whose maximum number of likes received in a single day is greater than the

95th percentile cutoff. This leads to a final sample of 1,848 users for whom we observe their entire

posting history. On average, we observe each user for about 3 years; the average probability that a

user creates at least one post on a given day is 0.094 and the average number of postings per day

is 0.321. Conditional on posting, the users receive an average of 0.993 likes per day. Figure 1 plots

8The start date, February 16, 2015, is selected to exclude users who joined Weibo at an early stage: early users
may behave differently from those who joined the platform when it had become more established. Specifically, this
date corresponds to day 2,000 since August 27, 2009, the first observed date in our data set. Appendix Table D.3
shows that our main findings are robust to alternative start dates. We also exclude users who created an account
only after January 23, 2020, the beginning of the lockdown; these more recent users may be significantly different
from users who joined before the lockdown.
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the average probability that a user makes at least one post per day around the lockdown period.

One notable pattern is that, after the lockdown, posting probability gradually declines.

Figure 1: Posting Probability

Notes. The two dashed lines mark the beginning and end of the lockdown.

3.1 Empirical Evidence

We now provide empirical evidence for a key implication of the neural autopilot model, namely

that more reliable rewards lead to more habitual postings. To measure habitual postings for user i

and date t, we use the number of consecutive posts in the next seven days (NConsecutivePostsi,t).
9

Here “consecutive posts” refers to the number of posts made by user i within a continuous sequence

of days after posting on date t. For example, if a user posts on dates t, t + 1 and t + 3, then

NConsecutivePostsi,t = 1.10 To measure reward reliability for user i and date t, we compute the

variance of the number of likes received per day by the user over the last seven days in which the

9Our measure of habitual postings focuses on the habit of posting every day, as opposed to posting every other
day or every weekend. This is to follow the literature that studies habit in social media; for example, Anderson and
Wood (2021) also focus on daily postings when they measure habitual postings.

10Note that when users post in the habit mode, by definition they post on consecutive days. Also note that when
computing NConsecutivePostsi,t, we use consecutive posts over the next seven days—not over the remainder of the
observed time period—to avoid right censoring the data.
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user posted (LikesVari,t). We then estimate the following regression:

NConsecutivePostsi,t = αi + δt + β1 log(LikesVari,t) + β2 log(LikesMeani,t)

+ β3 log(LikesVari,t)× log(LikesMeani,t) + β4PostTodayi,t + εi,t. (5)

We control for the average number of likes (LikesMeani,t) and its interaction with LikesVari,t to

capture the fact that consistently receiving zero likes may have a different effect on habitual postings

than consistently receiving a high number of likes. We also control for whether user i posts on date

t (PostTodayi,t).

Table 1: Number of Consecutive Posts Regressed on Reward Variables

(1) (2) (3) (4)

log(LikesVar) –0.015 –0.048* –0.035* –0.065**

(0.012) (0.021) (0.017) (0.024)

log(LikesMean) 0.143** 0.128** 0.205*** 0.185***

(0.045) (0.043) (0.054) (0.054)

log(LikesVar)× log(LikesMean) 0.029* 0.029+

(0.013) (0.015)

PostToday 1.378*** 1.378*** 1.397*** 1.396***

(0.054) (0.054) (0.054) (0.054)

Last X posting days 7 7 10 10

Observations 1,082,076 1,082,076 969,090 969,090

R-squared 0.522 0.522 0.525 0.525

RMSE 0.86 0.86 0.90 0.90

Notes. This table reports the OLS estimates of Equation (5). For all columns, the dependent variable for user i on
date t is the number of consecutive posts after date t until date t+7. In Columns 1 and 2, the main regressors are the
mean and variance of the number of likes received per day by the user over the last 7 posting days. Columns 3 and 4
report robustness checks, in which the main regressors are the mean and variance of the number of likes received per
day by the user over the last 10 posting days. All specifications include individual and date fixed effects. Standard
errors are clustered by individuals and reported in parentheses. +, *, **, and *** indicate significance at the 10%,
5%, 1%, and 0.1% level, respectively.

Table 1 reports the estimates of Equation (5). It shows that β1, the regression coefficient on

log(LikesVar), is negative and statistically significant when controlling for the interaction term

log(LikesVar) × log(LikesMean); moreover, β3, the regression coefficient on the interaction term,

is positive. This finding suggests that a reduction in the variance of likes increases the number of

12



consecutive posts in subsequent days, especially when the average number of likes is low. Despite

the positive interaction effect, the marginal effect of log(LikesVar) is negative for the vast majority

of the support of log(LikesMean) in our data.11 The observed negative effect of log(LikesVar) on

habitual postings (NConsecutivePosts) supports our model’s implication that users receiving more

reliable rewards are associated with more habitual postings.12

4 Structural Estimation

We estimate the neural autopilot model using maximum likelihood. Our estimation uses data on

users’ daily posting decisions.13 For each user i and date t, we observe the user’s posting decision

ci,t. If user i chooses to post, then ci,t = 1. In this case, we observe the number of likes received,

which serves as the empirical measure of the realized reward associated with ci,t, and is denoted

by ui,t.
14 We note that users may derive different amounts of “value” from a like. In our model,

we assume homogeneity in the value of a like. That is, one “like” is equally rewarding for all users.

If user i chooses not to post, then ci,t = 0. In this case, user i receives a reward from non-social

media activities, denoted by u0, but we, the econometricians, do not observe this reward. The

interpretations of ui,t and u0 are worth some discussions. We think of ui,t as a stimulus; it is

transitory, and it triggers brain activities from user i. We think of u0 as capturing users’ intrinsic

preferences toward non-social media activities, so it is interpreted as a utility level.

We form the likelihood of users’ daily posting decisions according to the model described in

Section 2. At each time t, the probability that user i posts depends on (1) the probability that

the user is in the habit or goal-directed mode, and (2) the choice rules in these two modes. The

model-implied probabilities are functions of the parameters specified in the neural autopilot model;

moreover, they depend on ri,t = (ri,t(1), ri,t(0)) and di,t = (di,t(1), di,t(0)), which represent the

predicted reward and reward reliability for action a ∈ {0, 1}, respectively. Note that we do not

directly observe (ri,t,di,t) in the data. Instead, we compute them using choice and rewards data

11Appendix Figure D.1 plots the marginal effect of log(LikesVar) on habitual postings (NConsecutivePosts) from
the 10th to 90th percentile value of log(LikesMean).

12The patterns in our data are also consistent with the findings of Anderson and Wood (2023) and Perez and
Dickinson (2020) that choice behavior of habitual users is less sensitive to changes in rewards, compared to that of
non-habitual users. We present our evidence in Appendix Table D.1.

13We use the term “choice” and “decision” interchangeably.
14Our model estimates are robust to using the average likes per post per day as the measure for the realized reward,

as opposed to the total likes per day. We report these estimates in Appendix Table D.2.
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(ci,t, ui,t) as well as the updating rules specified in Equations (1) and (2). Our estimation strategy

is to search for the model parameters such that the observed posting behavior is most probable.

The set of model parameters we estimate includes: λr, the learning rate for reward prediction

r; λd, the learning rate for reward reliability d; κ, a parameter in Equation (4) that captures the

stochasticity in the switches between the habit mode and the goal-directed mode; φ, the threshold

of reward reliability as shown in Equation (4); and finally, u0, which represents the realized reward

for the outside option—any activities other than posting on Weibo.15 Given our focus on behavior

change around the pandemic lockdown, we estimate ubefore0 , uduring0 , and uafter0 separately for the

reward value of the outside option before, during, and after the lockdown. Moreover, for each user

i, we allow the reward reliability threshold φ to depend on user characteristics Xi (for example,

the proportion of original posts); we assume φi = φ0 + β′Xi and estimate φ0 and β.16 We

use θ ≡ (λr, λd, κ, φ0,β, u
before
0 , uduring0 , uafter0 ) to denote the vector of model parameters that we

estimate. The estimation procedure is detailed in Appendix C.

4.1 Estimation Results

Table 2 presents the parameter estimates and their standard errors for our neural autopilot model.

We find that λd, the learning rate for reward reliability, is significantly higher than λr, the learning

rate for the predicted reward; that is, users learn reward reliability more quickly than they learn the

predicted reward. We also find that φ, the threshold of reward reliability that drives the switches

between the habit mode and the goal-directed mode, is higher for users with a higher proportion of

original posts. This implies that users with a higher proportion of original posts are more likely to

be in habit mode. More important, uduring0 is approximately equal to uafter0 . This suggests that our

model explains the drop in posting probability post-lockdown through changes in posting rewards,

not through changes in users’ preferences toward non-social media activities. In other words, in a

model where habit is neuroscientifically formalized, observed behavior change may be simply due

to changes in reward prediction and reward reliability; changes in preferences are not required. In

other words, our model can explain behavior change even when the estimated utility levels uduring0

15When estimating the model, we fix the exploration parameter α in Equation (3) at one. This parameter cannot
be jointly identified with u0, the reward value for the outside option.

16For simplicity, Xi only includes the proportion of original posts in the main text. In Appendix Table D.4, Xi

includes additional user characteristics, such as gender, whether user i is in a developed city, whether the user has a
high credit score, and whether he or she has a verified account.
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and uafter0 are basically the same.

Table 2: Parameter Estimates: Neural Autopilot Model

Autopilot

Parameters Est. Std. Err.

λr 0.009 (0.000)

λd 0.121 (0.001)

κ 7.291 (0.033)

φ0 0.327 (0.001)

β 0.070 (0.002)

ubefore0 1.216 (0.001)

uduring0 1.072 (0.005)

uafter0 1.054 (0.004)

Log-likelihood –389,048

Number of users 1,848

AIC 778,111

BIC 778,211

Our main estimates from Table 2 do not vary significantly when we allow additional individual

heterogeneities to drive φ, the threshold parameter in Equation (4). In particular, Appendix Table

D.4 presents the estimation results in which φ for each user is influenced not only by the user’s

proportion of original posts, but also by additional attributes that include the user’s gender, whether

the user has a verified account, is in a developed city, and has high Sesame Credit.17 By comparing

Table 2 and Table D.4, we find that the estimates for λr, λd, κ, ubefore0 , uduring0 , and uafter0 are

quite similar. Moreover, Table D.4 shows that for male, verified users who have low credit scores

and post more original content, the threshold parameter φ tends to be higher, indicating that these

users, compared to the other users, are more likely to be in the habit mode.

4.2 Comparison with Alternative Models

We compare the neural autopilot model with four alternative models of choice behavior. The first

alternative model is an “autopilot + lagged choice” model. Although lagged choice is already part

of the baseline neural autopilot model as it affects the updating rule for reward reliability and

17Sesame Credit is a private credit scoring system developed by Ant Group, an affiliate company of the Chinese
conglomerate Alibaba Group.
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reward prediction, this alternative model generalizes the neural autopilot model by allowing users’

choice probabilities in the goal-directed mode to depend directly on their lagged choice. Specifically,

when user i is in the goal-directed mode, the choice rule is now

Pr(ci,t = 1|ci,t−1, ri,t) =
exp(ri,t(1) + γ · ci,t−1)

exp(ri,t(1) + γ · ci,t−1) + exp(ri,t(0))
, (6)

where the coefficient γ on the lagged choice ci,t−1 is an additional parameter we estimate.

Why is it sensible to include the lagged choice on the right hand side of Equation (6)? A low-level

interpretation is that animals often exhibit “perseveration”—repetition of previous choices—that is

seemingly independent of values and learning; see, for example, Miller et al. (2019) for evidence and

a recent analysis. A higher-level interpretation is that dependence of current choice probabilities on

lagged choice allows us to perform reduced-form estimations of adjacent complementarity between

past choices and current utility of the same choices.

The second alternative model is a simple Q-learning model from the reinforcement learning

literature (see Sutton and Barto, 2019 for a review). In this model, rt(a), the predicted reward for

action a at time t, again evolves according to Equation (1). Moreover, action selection is governed

by Equation (3); that is, users are always in the goal-directed mode. This Q-learning model can

be viewed as a special case of our baseline neural autopilot model, with the threshold parameter φ

in Equation (4) set to −∞.

The third alternative model is a standard “epsilon-greedy” multi-armed bandits framework. As

before, rt(a) evolves according to Equation (1). With probability 1− ε, action selection is given by

at = arg max
a
{rt(a)}. (7)

With the remaining probability ε, action at is randomly selected across all possible choices. Here,

the parameter ε controls the degree of exploration, and we estimate it using data.

The final alternative model we examine is a traditional “lagged choice” logit model. This model

does not have a neuroscientific foundation. It captures choice persistence purely from the reduced-

form association between lagged and current choices. In this model, the choice of user i at time t
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is given by

ci,t = 1δ0ci,t−1+δ
′
1Zi,t+εi,t≥0, (8)

where Zi,t is a vector of control variables that include the lagged posting reward from time t− 1,

user characteristics, and a dummy variable that indicates whether time t is before or during the

lockdown. The coefficient δ0 in Equation (8) captures the direct impact of the lagged choice

ci,t−1 on the utility from posting. The latent utility of the outside option after the lockdown is

normalized to zero. This model is similar to those commonly used in the structural state dependence

literature, in which the last period choice directly impacts the current period utility; recent examples

include Dubé et al. (2010) and Allcott et al. (2022).

Table 3 presents the parameter estimates and their standard errors for the four alternative

models described above. Columns 2 and 3 present the estimation results for the “autopilot +

lagged choice” model. Compared to the baseline estimation results reported in Table 2, further

including lagged choice in the model does not significantly change the estimates of many parameters.

This suggests that the neural autopilot model captures habitization above and beyond structural

state dependence. At the same time, there are some notable differences. First, adding lagged

choice to the model shrinks λr toward zero. Note that λr captures the persistence of predicted

reward across periods and hence contributes to choice dependency. As such, its estimation could

be confounded by γ, the coefficient on the lagged choice ci,t−1 from Equation (6). Second, adding

lagged choice to the model leads to a larger κ and hence makes users more likely to switch between

the habit mode and the goal-directed mode upon a given change in reward reliability. This in part

offsets the choice persistence introduced by the lagged choice term γ ·ci,t−1 in Equation (6). Finally,

adding lagged choice to the model leads to a smaller φ0, indicating that for identical levels of reward

reliability, users in the “autopilot + lagged choice” model are more likely to be in the goal-directed

mode, compared to users in the baseline neural autopilot model. In the baseline model, choosing

repeated actions that yield lower expected rewards is primarily explained by the user being in the

habit mode. However, in the “autopilot + lagged choice” model, this behavior is also in part driven

by the user deriving utility directly from repeating the last period’s choice. As such, a smaller

proportion of repeated choices are attributed to the habit mode in the “autopilot + lagged choice”

17



model, leading to a lower φ0.

Table 3: Parameter Estimates: Alternative Models

Autopilot+Lagged Choice Q-learning Epsilon-Greedy Logit

Parameters Est. Std. Err. Est. Std. Err. Est. Std. Err. Est. Std. Err.

λr 0.001 (0.000) 0.004 (0.000) 0.009 (0.000)

λd 0.093 (0.001)

κ 23.627 (0.041)

φ0 0.127 (0.002)

β 0.012 (0.003)

ubefore0 1.527 (0.002) 2.864 (0.073) 2.232 (0.058)

uduring0 1.492 (0.003) –3.631 (0.028) 0.110 (0.999)

uafter0 1.577 (0.008) 4.862 (0.100) 0.070 (1.000)

ε 0.194 (0.333)

ct−1 1.334 (0.007) 2.822 (0.011)

Likest−1 0.012 (0.021)

Prop orig posts –0.868 (0.009)

Before lockdown –0.666 (0.008)

During lockdown 0.043 (0.002)

Constant –1.957 (0.009)

Log-likelihood –376,201 –547,961 –593,489 –448,485

Number of users 1,848 1,848 1,848 1,848

AIC 752,420 1,095,931 1,186,988 896,981

BIC 752,532 1,095,981 1,187,050 897,056

Columns 4 to 7 present the estimation results for the Q-learning model and the “epsilon-greedy”

model. Compared to the baseline neural autopilot model, these two alternative models’ fits to the

data are significantly worse; their AIC and BIC are about 40% higher. These model comparisons

highlight the importance of reward reliability and the switches between the habit mode and the

goal-directed mode in driving users’ decision making.18

Columns 8 and 9 present the estimation results for the “logged choice” logit model. This model

generates a coefficient on the lagged choice ci,t−1 that is positive and significant, indicating that

current choice depends strongly on lagged choice. Moreover, the estimated differences between the

18For the “epsilon-greedy” model, the parameter estimates imply that with 19.4% probability, users fully randomize
between posting and not posting. With the remaining 80.6% probability, users follow Equation (7) to choose the
action that is associated with the highest reward prediction; in this case, users most likely choose not to post. Taken
together, the model generates a posting probability of about 10%, matching the 9.4% posting probability observed
in the data.
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utility levels during and after the lockdown are sizeable and significant. This suggests that the logit

model relies heavily on changes in preferences to explain the drop in the posting probability after

the lockdown. In contrast, our neural autopilot model shows that once habit is neuroscientifically

formalized, changes in preferences are no longer required to explain the observed behavior change.

4.3 Comparison between Model-Implied Choice Patterns and Data

With the parameter estimates at hand, we now study the model’s implications for users’ posting

behavior in the time series. We compare the choice probabilities implied by each model—the

neural autopilot model, the “autopilot + lagged choice” model, the Q-learning model, the “epsilon-

greedy” model, and the logit model—with the observed data. For each user and each day, we use

the simulated rewards and the respective model’s parameter estimates to predict whether the user

posts on that day. We then aggregate, for each event day, the model-implied posting behavior

across all available users. For example, for event day 2 (i.e., one day after the day of the user’s

first post), we compute the model-implied posting probability as the total number of users who

post on the next day following their first post, divided by the total number of such users. Figure 2

plots, for each event day since a user’s first post, the posting probability implied by each of the five

models; as a comparison, it also plots the actual posting probability observed in the data.

The actual posting probability observed in the data (blue line) exhibits two notable features.

First, the posting probability drops significantly almost immediately after the first day; only 17%

of users post on the second day. Second, over subsequent periods, the posting probability gradually

decreases and eventually converges to 10%. The posting probability implied by the neural autopilot

model (red line) captures these features well: the posting probability on the second day is about

18%, very close to the empirically observed level; and over subsequent periods, the posting proba-

bility decreases gradually. In contrast, the posting probability implied by the “autopilot + lagged

choice” model (yellow line) does not fit well with the data; on the second day, it is significantly

higher than the empirically observed posting probability. It also takes more days to converge to

the steady state, compared to the autopilot simulation and the observed data. This occurs because

the “autopilot + lagged choice” model imposes an additional layer of “state-dependence” through

the lagged choice term γ · ci,t−1 in Equation (6). As such, the model-implied posting probability

on the second day depends heavily on the users’ behavior on the first day, where by construction
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Figure 2: Users’ Posting Behavior in the Time Series: Data versus Model Simulations

Notes. This figure plots, for each event day since a user’s first post, the posting probability implied by the neural
autopilot model, the “autopilot + lagged choice” model, the Q-learning model, the “epsilon-greedy” model, and the
logit model, respectively. As a comparison, it also plots the actual posting probability observed in the data.

every user posts.

Moreover, the posting probability implied by the logit model (magenta line) also does not fit

well with the data: on the second day, it is significantly lower than the empirically observed posting

probability; and over subsequent periods, it quickly converges to the steady state level of about

10%. The logit model does not allow the dynamic evolutions of predicted reward and reward

reliability to directly affect users’ behavior. Finally, the posting probabilities implied by the Q-

learning model (purple line) and the “epsilon-greedy” model (green line) fail to capture the key

features observed from the actual posting probability. The Q-learning model tends to overpredict

the posting probability because it assumes that users are always in a goal-directed mode. The

“epsilon-greedy” model generates posting probabilities that are too high and too persistent. From

the first day of posting, users might receive likes and hence update positively their predicted reward

from posting; the action selection rule in Equation (7) then implies that these users have a high

probability of posting again on the second day.

In summary, Figure 2 suggests that the neural autopilot model offers significant explanatory

power of changes in observed behavior above and beyond traditional models of state dependence.

Moreover, the autopilot model also outperforms widely-used reinforcement learning models such as
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Q-learning and the “epsilon-greedy” model.

5 Counterfactual Analysis

Our empirical analysis adopts a structural estimation approach, rather than a “reduced-form re-

gression” approach. Our structural model hypothesizes decision rules that are followed by purposive

agents who face a choice set, a set of environmental states, and some policy-invariant parameters

that allow for natural interpretations.19 Note that many cognitive science studies, such as the Lind-

ström et al. (2021) paper on reinforcement learning from social media, use the term “generative”

model, which is synonymous with our use of “structural” model.20

By fitting the structural model with our data, we estimate parameters that govern the neu-

roscientific process of habit formation. Then, with the parameter estimates, we conduct thought

experiments—in other words, counterfactual analysis—to investigate what factors create and sus-

tain habits. This structural estimation approach is particularly useful for our case in which the

decision making process is complex involving multi-layered stochasticity and individual heterogene-

ity and conducting lab or field experiments is costly.

In this section, we evaluate two counterfactual policies relating to the reward schedules: in-

creasing the average level of posting rewards during the lockdown, and reducing the volatility of

posting rewards during the lockdown. These two counterfactual policies allow us to assess the

importance of reward levels and reward reliability in creating and sustaining habitual postings. We

also evaluate counterfactual policies relating to users’ learning rates. More specifically, we explore

the role of the learning rates in promoting habits.

Evaluating these counterfactual policies requires a baseline scenario. We simulate posting deci-

sions for 5,000 users over a total of 2,000 time periods. For all users, we assume that the lockdown

starts at day 500 and ends at day 600. Conditional on posting, we assume that the number of likes

is drawn from a lognormal distribution, denoted by Lognormal(µ, σ2), and is i.i.d. over time. We

set µ = 1 and σ2 = 8 such that the mean and variance of the simulated likes are similar to those

19Policy-invariant parameters refer to parameters that remain unchanged across different policy regimes or inter-
ventions. These parameters are an essential component of the structural model and are unaffected by variations in
external conditions. For example, learning rates are assumed to remain constant, regardless of the reward schedule.

20However, to our knowledge, the extension of structural models to forecast behavior in counterfactual scenarios is
not standard in cognitive science generative modelling. For example, this is not done in Lindström et al. (2021).
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of actual likes observed in the data. Finally, conditional on not posting, we set u0, the utility from

the outside option, to the estimated levels reported in Table 2.

We compare each counterfactual policy with this baseline scenario.21 In the first counterfactual

policy, we increase the average level of simulated rewards during the lockdown by changing µ from

1 to 2; outside the lockdown, µ remains at 1. In the second counterfactual policy, we reduce the

volatility of simulated rewards during the lockdown by changing σ2 to zero; outside the lockdown,

σ2 remains at eight.

Figures 3 plots the average posting probability, the average probability that users are in the

goal-directed mode, the average probability that users are in the habit mode of posting, and the

average probability that users are in the habit mode of not posting. The baseline scenario and

the counterfactual policies confirm the rationale for using the lockdown as a shock that interrupts

habitual behavior: when the utility level of the outside option changes, users are likely to switch

from the habit mode to the goal-directed mode.

The first counterfactual policy shows that an increase in the level of rewards leads to a significant

increase in the posting probability, and this effect lasts for many periods after the lockdown ends.

Moreover, the increase in rewards leads to an increase in the probability that users are in the

goal-directed mode. Through the lens of our model, these findings suggest that behavior change

associated with an increase in rewards is unlikely due to habit formation; rather, users adjust the

predicted rewards and actively choose the option that has the highest predicted reward.

The second counterfactual policy shows that a reduction in reward volatility also leads to a

significant increase in the posting probability, although the effect disappears soon after the lockdown

ends. Importantly, this increase in the posting probability is due to habit: Figure 3c shows a notable

uptick in the probability that users are in the habit mode of posting. In our neural autopilot model,

lower reward volatility makes the reward prediction more reliable. As such, the agent is more likely

to engage in habitual postings. The comparison between the two counterfactual policies suggests

that the second moment of the reward process can be more important than the first moment in

creating habits.

21When simulating posting decisions for the baseline scenario and the counterfactual policies, we calibrate ri,1(1),
the initial value of the predicted reward from posting, to the average number of likes we observe from a post. Moreover,
we calibrate ri,1(0), the initial value of the predicted reward from not posting, to ubefore

0 , the estimated utility level
of the outside option during the pre-lockdown period.
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Figure 3: Counterfactual Policies

(a) Posting Probability (b) Pr(goal-directed)

(c) Pr(habit mode of posting) (d) Pr(habit mode of not posting)
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Given the importance of learning rates in driving users’ posting behavior, we further evaluate

counterfactual policies for users with different values of λr and λd. Figure 4 plots, for users with

different values of λr, the average posting probability and the average probability that users post in

the habit mode. We find that users with a lower λr have a more persistent response to the increase

in posting rewards: when λr is low, the predicted reward for posting decreases slowly after the

drop in rewards that happens at the end of the lockdown period; as such, the posting probability

remains elevated for many periods after the lockdown (see Figure 4a). Interestingly, users with a

lower λr also have a stronger response to the reduction in reward volatility: for these users, the

probability of posting in the habit mode increases more rapidly during the lockdown.

Figure 4: Counterfactuals: Users with Different λr

(a) Cntf 1: Posting Probability (b) Cntf 1: Pr(habit mode of posting)

(c) Cntf 2: Posting Probability (d) Cntf 2: Pr(habit mode of posting)
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Figure 5: Counterfactuals: Users with Different λd

(a) Cntf 1: Posting Probability (b) Cntf 1: Pr(habit mode of posting)

(c) Cntf 2: Posting Probability (d) Cntf 2: Pr(habit mode of posting)
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Figure 5 plots, for users with different values of λd, the average posting probability and the

average probability that users post in the habit mode. We find that users with a higher λd have

a stronger response to the reduction in reward volatility. For instance, reducing reward volatility

during the lockdown—changing σ2 from 8 to 0— causes a 40% increase in the probability of posting

in the habit mode for users with a λd of 0.4, as compared to a 20% increase for those with a λd

of 0.1. Moreover, when reward volatility returns to the baseline level after the lockdown, users

with a high λd will soon find the predicted reward for posting unreliable. Therefore, their posting

probability drops precipitously (see Figures 5c and 5d).

In summary, our counterfactual analysis shows that reducing reward volatility is more effective

than increasing the level of rewards in creating habits; reducing reward volatility is particularly

effective in promoting habit formation for users with a high λd, the learning rate for reward reli-

ability. Moreover, the counterfactual policies we consider have direct implications for how social

media platforms should design recommendation algorithms (e.g, how Facebook should select and

display posts via Feed). If a platform’s objective is to increase social media engagement, our find-

ings suggest that maintaining a steady level of likes can be important for creating and sustaining

habitual postings.

6 Conclusion

In the neural autopilot model, agents learn the value of choices through reinforcement, updating

the predicted reward using the reward prediction error (RPE). The absolute value of the RPE is

also used to compute the reliability of the predicted reward. If a choice has consistently yielded

low absolute RPEs, then it is safe to repeat the same choice—this is what constitutes a habit.

We use large-scale, individual-level field data to estimate and test the neural autopilot model.

Note that these types of neuroeconomics models were created and honed on much simpler, stylized

paradigms, typically with animals that make hundreds of regular simple choices such as tapping a

lever for food pellets. In this paper, we test whether the same basic model can fit more complicated

human choices.

The structural estimation yields interpretable parameter estimates that are consistent with

intuitions about habit and with prior research. For example, the learning rates we estimate from
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field data are in the ballpark of values derived in human decision neuroscience for abstract reward

learning. Moreover, our counterfactual simulation shows that reducing the volatility in posting

rewards leads to a significant increase in habitual postings; this is due to the importance of reward

reliability—not just rewards—in creating habit.

We compare our model with alternative models of choice behavior. If the apparent habitization

captured by the neural autopilot model was just a complicated way of approximating choice persis-

tence, then including lagged choice in the model should erase the influence of parameters associated

neural autopilot. This does not happen: Table 3 shows that these parameters remain significant.

At the same time, the added term on lagged choice significantly predicts current choice, and it

leads to an incremental improvement in the model’s fit. This means that there is some residual

effect of previous choice on current choice, on top of all the learning and autopilot structure. Taken

together, our results suggest that the neural autopilot model offers significant explanatory power

of actual choices above and beyond traditional models of state dependence. We also compare the

neural autopilot model with widely-used reinforcement learning models such as Q-learning and the

“epsilon-greedy” model. We find that the neural autopilot model significantly outperforms these

alternative reinforcement learning models.

There are many opportunities for future research about the neural autopilot model. The amount

of information processing required in the habit mode is significantly lower than in the goal-directed

mode. In the habit mode, agents only need to recall their previous choice ct−1, the reward reliability

of that choice dt(ct−1), and then compare dt(ct−1) to a threshold φ, which is a simple computation.22

In the goal-directed mode, however, agents need to evaluate all choices, and this is much more

effortful. In principle then, attention measures, response times, and other mental effort measures

could be used along with choice data to identify the habit and goal-directed modes. Moreover,

theorists studying rational inattention and resource rationality may be interested in figuring out

whether the neural autopilot model is an optimized response to an environment with nonstationarity

and costs of mental effort or attention. Lastly, some important features of habit, such as context

dependence, are not incorporated by our neural autopilot model. Extending the model to include

such features can make it more broadly useful.

22A habitized person does not even need to recall the predicted reward value; the fact that a choice was made
previously is like a proxy for the choice having high predicted reward.
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A Reinforcement Schedules and the Autopilot Model

There is a lot of evidence from animal and human learning about how motivation and habit are

affected by various reinforcement “schedules.” The stylized facts from this long line of research

may present a challenge to the idea, originating in Daw et al. (2005) and at the core of the role

of dt(a), that more predictable reward creates habit. The goal of this section is to briefly describe

the stylized facts and speculate about the relation between these facts and the hypothesized role

of reward predictability in neural autopilot.

To fix terminology, a reinforcement schedule is a specification of when rewarding reinforcers are

delivered. Schedules can be based on real clock time, previous behavioral history, or randomness.

In lab experiments of animal and human learning, participants are usually not explicitly instructed

about the reinforcement schedule; they have to learn the schedule from trial and error. However, in

most field experiments on behavior change, including the two experiments described below, human

participants are instructed about the reinforcement schedule.

There are two distinct types of reinforcement schedules: continuous reinforcement and partial

reinforcement. Continuous reinforcement refers to a reinforcement schedule in which every response

is followed by the rewarding reinforcer. By contrast, partial reinforcement refers to a reinforcement

schedule in which response is reinforced only a fraction of the time. Partial reinforcement schedules

can be classified into two main categories: “ratio” schedules and “interval” schedules. And within

each of these two categories, there are two types of reinforcement patterns: fixed patterns and

variable patterns.

A “fixed-ratio” schedule delivers the rewarding reinforcer after a fixed number of responses; one

example is a coupon for a free coffee offered after every tenth purchase. A “variable-ratio” schedule

delivers the rewarding reinforcer after a random number of responses, but with a fixed average

ratio of rewards to responses; one example is that after each response, a reward is offered with a

p = 10% probability, independent of the reward history (this is also called an R10 schedule, because

on average, a reward is delivered every r = 1/p = 10 trials). Note that in both the fixed-ratio and

variable-ratio examples, the long-run average is to receive reward on 10% of the trials; however,

the timing of the reward is different across the two examples.

In contrast to ratio schedules, interval schedules deliver rewards after elapsed time intervals. In
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a “fixed-interval” schedule, the time interval is kept at a constant. In a “variable-interval” schedule,

the amount of time or behavior that triggers reward is random; for example, the rewarding device

might become “baited” after some time interval that is between 3 and 6 seconds (this is to mimic

ecological processes such as consuming fruit that ripen after some random period of time).

In domains such as animal training, where the sequence of behavior is controlled by a trainer,

continuous reinforcement clearly works best to create habits (e.g., Mowrer and Jones, 1945). This

is consistent with the mathematics of the autopilot model, in which habitization arises from a

reduction in reward reliability dt(a). A fixed amount of continuous reinforcement reduces reward

prediction errors (RPE) as quickly as possible and hence reduces dt(a) toward zero as quickly as

possible. In this kind of animal training, there is often interest in eventually “thinning” the rein-

forcement schedule—transitioning to partial reinforcement—slowly enough to maintain an animal’s

habits.

One well-accepted stylized fact is that variable-ratio schedules are less effective in creating

habits, compared to variable-interval schedules. An influential theory, due to Perez and Dickin-

son (2020) and precursors (Baum, 1973), posits that a crucial feature for forming habits is the

correlation between the rates of reinforcement and behavior, as aggregated in temporal memory

windows; this is called “rate correlation” theory. Consider a variable-ratio schedule in which the

rewarding reinforcer is delivered with a p = 1/r probability on each trial. Suppose the memory

windows are of T -period long. If r is not too large relative to T , then the percentage of rewards

and the percentage of responses observed in these memory windows tend to be correlated. In these

variable-ratio schedules, Perez and Dickinson (2020) show, using animal data, that rate-correlated

behavior does not lead to habitization. However, in variable-interval schedules with low empirical

rate correlation, habits are more strongly formed.

Moreover, studies in consumer behavior present evidence consistent with the notion that low

rate correlation sustains habits. As Wood and Neal (2009) wrote (page 586):

“Early in habit learning, rewards promote repetition. Rewards also facilitate the tran-

sition from outcome-oriented to context-cued responding when they are presented in

ways that minimize the experience of the contingency between the behavior and the

rewarding outcome (i.e, low rate correlation).”

34



Two questions arise regarding how the animal learning data from continuous and partial re-

inforcement schedules are linked to the crucial role of the reward reliability variable dt(a) in the

neural autopilot model. The first question is concerned about whether learning with variable-

interval schedules implies higher predictability—that is, lower dt(a)—and stronger habit forma-

tion, given the evidence that variable-interval schedules are better at creating habits, compared to

variable-ratio schedules. The second question is about whether consistency exists between data and

the autopilot model’s implication that continuous reinforcement, rather than partial reinforcement,

leads to the fastest reduction in dt(a) and hence the quickest formation of habits. Figuring out clear

answers to these two questions is beyond the scope of the paper; it likely requires the introduction

of a new model of habit formation, and it likely requires structurally estimating and testing this

new model using field data. Nonetheless, we provide some preliminary thoughts below.

We start with the first question: Does learning with variable-interval schedules imply lower

dt(a) and stronger habit formation, given the evidence that variable-interval schedules are better

at creating habits, compared to variable-ratio schedules? We first examine the evolution of dt(a)

under a variable-ratio schedule. Recall that Equation (2), the updating rule for dt(a) in the neural

autopilot model, does not contain the memory-smoothing windows that Perez and Dickinson (2020)

study. As such, a variable-ratio schedule will likely generate a large positive prediction error once

the reward is dispensed. Then, over the next few periods, in absence of another reward, the reward

prediction error will tend to be substantial and negative; and gradually, it will become less negative,

until the occurrence of the next reward. Overall, variable-ratio schedules might generate high time-

series variability in RPEs in the autopilot model, such that dt(a) never becomes sufficiently low

to induce habit formation. It is also conceivable that with a higher reward probability p = 1/r

or with a lower learning rate λd, variable-ratio schedules will induce higher variability in RPEs,

making it less likely for the autopilot model to create habits. These results—which are conjectured

rather than proven—are consistent with the prediction of rate correlation theory that variable-ratio

schedules are not conducive to habit formation.

We now examine the evolution of dt(a) under a variable-interval schedule. Recall the stylized

fact that variable-interval schedules are more likely to create habits, compared to variable-ratio

schedules. Empirically, animal learning under interval reward schedules typically shows a pattern

of “scalloping”: there is a low rate of response until the earliest time at which the next reward
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is likely to arrive. And this is especially true for animals who can more quickly learn when the

interval time has passed and respond accordingly. Consider a fixed-interval schedule with a reward

of either one or zero. In this case, a scalloping animal will wait until the interval length has passed,

respond with a predicted reward of rt(a) = 1, earn the reward, and experience a reward prediction

error of zero. Intuitively, a scalloping animal in free operant conditioning will essentially transform

the fixed-interval schedule into a sequence of continuous reinforcements. According to the neural

autopilot model, this animal will have a low dt(a) and hence form strong habits.23

Let us now consider a variable-interval schedule. Suppose the random interval ranges from 3

to 5 seconds. In this case, a semi-scalloping animal will likely wait three seconds and then begin

to respond.24 If the range of the random intervals is narrow, the reward prediction errors will

likely be small in magnitude; as such, dt(a) will be close to zero, and the autopilot model implies

that the animal is likely to form habits. Conversely, if the range of the random intervals is wide,

then soon after the random interval onset begins, the reward prediction errors will likely be high

in magnitude; as such, dt(a) will likely be large, and according to the model, habits are less likely

to form.

Together, our conjectures can be summarized as follows: (1) with a continuous reinforcement

schedule, the reward reliability variable dt(a) in the neural autopilot model will likely be low, hence

predicting strong habitization, (2) with a variable-ratio schedule, dt(a) will likely be high, hence

predicting a lack of habitization, and (3) with a variable-interval schedule, the magnitude of dt(a)

will likely depend on the range of the random intervals.

We now turn to the second question: Are the data consistent with the autopilot model’s implica-

tion that continuous reinforcement, rather than partial reinforcement, leads to the fastest reduction

in dt(a) and hence the quickest formation of habits? In our understanding, there is not much direct,

replicated evidence in human field data that partial reinforcement produces stronger and more per-

sistent habit-like choice than continuous reinforcement. However, a prominent laboratory finding,

23The only complication here is the added assumption that the animal decides which period is optimal for it to
respond. The neural autopilot model, in its current form, does not have this feature; however, the model can be
easily extended to allow for it.

24How animals actually behave under random intervals will depend on whether reward predictions are simply
backward-looking—as modelled in Equation (1)—or use information about the expected arrival of future reward. For
example, when the animals are prepared to respond after 3 seconds, they may predict a reward of 1/3. This idea
of injecting an element of model-based thinking into the autopilot structure can be a sensible direction for future
adaptations of the model.
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the “partial reinforcement extinction effect” (PREE), is worth noting. The PREE effect refers to

the fact that during extinction (trials with no reinforcement), animals tend to lever-press more

frequently and more persistently if they had been partially reinforced rather than continuously

reinforced. This effect is essentially the same as insensitivity to outcome devaluation, which is

thought to be a hallmark of habit.25

While the PREE effect is well-established in lab experiments, it is not clearly established in

human field data. Below, we briefly discuss two field studies that we view as representative. The

first field study compares the causal effect on gym attendance from three different types of reward

schedules—a continuous per-visit payment, an intermittent incentive schedule of monetary rewards

at increasing intervals, and an intermittent schedule of monetary rewards with unpredictable timing

(Arad et al., 2023). During the two-month treatment period, all three reward schedules led to more

gym visits, compared to a no-incentive control group. Moreover, the continuous payment schedule

actually led to slightly more gym visits, and more participants visiting at least once, than the

intermittent schedule of monetary rewards with unpredictable timing.

The second field study is a meta-analysis of 30 effect sizes from environmentally-friendly incen-

tives (Maki et al., 2016). The effects in changing behaviors were generally positive and substantial;

the effect size d-value ranges from 0.30 to 0.45. When incentives were applied, variable reinforce-

ment was more effective than fixed reinforcement (d = 0.45 vs. d = 0.30). However, after incentives

were removed, the effects were similar and not significantly different (d = 0.35 vs. d = 0.44); the

comparison of post-incentive effects is hampered by the small sample size of reported post-incentive

behaviors.

The discussion of this section leads us to draw two conclusions. First, any autopilot-type model

based on reward predictability needs to explain animal and human evidence from continuous and

partial reinforcement; the model needs to be modified if it cannot explain well-accepted evidence.

Second, there is a big leap from cued and free operant conditioning of animals in lab environments

to human choice in field settings. As we have discussed in the main text, it does seem evident that

humans are reinforced by social media rewards in ways that often conform to simple reinforcement

learning models; so there is promise for unified principles that govern animal and human choice.

25Also note that the PREE effect can be rationalized as Bayesian learning in which animals take more trials to
learn that reward has ended after partial reinforcement than after continuous reinforcement. Bayesian learning is an
input to goal-directed or model-based choice, rather than to habitual choice.
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At the same time, it is also possible that the ideal mathematical descriptions applied to humans

in field settings are not quite the same as the mathematical descriptions applied to animals in

lab environments. Figuring out the differences and similarities of these mathematical descriptions

should be a priority for future research.

B Data Collection and Cleaning

We randomly sampled a set of Weibo users using their 10-digit account number; this number is

unique to each account and allows us to access the user’s profile and activity pages. For example,

“https://m.weibo.cn/u/1669879400” is linked to the profile and activity pages of user “1669879400.”

For each user, we obtain a complete timeline of posts and platform activities that are publicly

available online.

Weibo allows users to set their accounts to a private mode. When this happens, only posts

within the last six months are publicly available. Because we cannot capture the entire timeline of

posting behavior for users whose accounts are in private mode at the time of data collection, we

exclude these users by dropping all users whose first observed post is within six months of the time

when we access their profile.

C Estimation Procedure

We estimate the neural autopilot model using maximum likelihood. Users are indexed by i =

1, 2, . . . , N . For user i, we observe her actions on t = 1, 2, . . . , Ti, where t = 1 is the date when she

first posts on Weibo, and Ti is the last date that her posting decision is observed in our data. Xi

denotes a vector of user characteristics. For each user i and date t, we observe the user’s posting

decision ci,t, which is treated as a binary choice: ci,t = 1 refers to the case where user i chooses to

post at least once on date t; and ci,t = 0 refers to the case where user i chooses not to post on date t.

Moreover, we observe the realized reward associated with ci,t, which we denote by ui,t. We measure

ui,t by the number of likes that user i receives from her posts on date t. Taken together, the data set

we use for model estimation is {(Xi, ci,t, ui,t) for t = 1, 2, . . . , Ti}Ni=1. Also recall from the main text

that the set of model parameters that we estimate is θ = (λr, λd, κ, φ0,β, u
before
0 , uduring0 , uafter0 ).
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We maximize the following log-likelihood function

LL(θ) =

N∑
i=1

log

 Ti∏
t=2

 ∏
a∈{0,1}

Pr(ci,t = a|ci,t−1, ri,t,di,t,Xi;θ)1{ci,t=a}

 (C.1)

over θ, where ri,t = (ri,t(1), ri,t(0)) represents the predicted rewards for a ∈ {0, 1} for user i on

date t, and similarly, di,t = (di,t(1), di,t(0)) represents the reward predictability for a ∈ {0, 1}. Note

that we do not directly observe {(ri,t,di,t) for t = 1, 2, . . . , Ti}Ni=1. Instead, we compute them using

choice and rewards data {(ci,t, ui,t) for t = 1, 2, . . . , Ti}Ni=1, the estimated learning rates λr and

λd, the estimated utility levels ubefore0 , uduring0 , and uafter0 , and the update rules in Equations (1)

and (2) of the main text.26 When computing ri,t and di,t, we set the following initial values: for

each user i, we set ri,1(1) = 0; we calibrate ri,1(0) based on the observed second-date (t = 2) posting

probability averaged across all users; and we set di,1(1) = di,1(0) = 1.27

At each date t, user i is either in the habit mode or in the goal-directed mode; over time, the

user can switch between these two modes. We define a latent state variable hi,t: hi,t = 1 means user

i is in the habit mode on date t; and hi,t = 0 means user i is in the goal-directed mode on date t.28

Then, according to the neural autopilot model described in Section 2 of the main text, we write the

model-implied probability that user i posts on date t—namely, Pr(ci,t = 1|ci,t−1, ri,t,di,t,Xi;θ) in

Equation (C.1)—as

Pr(ci,t = 1|ci,t−1, ri,t,di,t,Xi;θ)

=


Pr(hi,t = 1|di,t(ci,t−1),Xi)

+Pr(ci,t = 1|ri,t, hi,t = 0) · Pr(hi,t = 0|di,t(ci,t−1),Xi)
if ci,t−1 = 1

Pr(ci,t = 1|ri,t, hi,t = 0) · Pr(hi,t = 0|di,t(ci,t−1),Xi) if ci,t−1 = 0

. (C.2)

26One potential concern about our data set is that the number of likes ui,t observed by researchers may not be
the same as the actual number of likes received by user i on date t. This happens if likes for a post published
on date t trickle in slowly over the next few days. Although we are unable to rule out such a possibility, we note
that on Twitter, 50% of all retweets happen within the first 10 minutes after the tweet has been published (see
https://tinyurl.com/2r4f8j22). This suggests that most social media activities take place soon after the post is
published.

27The users are likely to be in the goal-directed mode when they first start to post on Weibo. We make this
assumption because when a user first posts on Weibo on date t, they are making a different choice than the choice on
t−1, and therefore by definition is not in habit mode. As such, Equation (3) of the main text suggests that the model-
implied second-date (t = 2) posting probability can be approximated by exp(ri,1(1))/(exp(ri,1(1)) + exp(ri,1(0))). To
solve for ri,1(0), we equate this model-implied probability to the observed second-date posting probability averaged
across all users.

28Note that the econometricians do not directly observe hi,t.
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In Equation (C.2), the probability that user i is in the goal-directed mode on date t, Pr(hi,t =

0|di,t(ci,t−1),Xi), is given by Equation (4) of the main text

Pr(hi,t = 0|di,t(ci,t−1),Xi) =
1

1 + exp(−κ · (di,t(ci,t−1)− (φ0 + β′Xi)))
. (C.3)

The probability that the user is in the habit mode on date t is: Pr(hi,t = 1|di,t(ci,t−1),Xi) =

1−Pr(hi,t = 0|di,t(ci,t−1),Xi). Lastly, the probability that i chooses to post on date t, conditional

on being in the goal-directed mode, is given by Equation (3) of the main text

Pr(ci,t = 1|ri,t, hi,t = 0) =
exp(ri,t(1))

exp(ri,t(1)) + exp(ri,t(0))
, (C.4)

with α set to 1.29 In summary, we estimate

θ = (λr, λd, κ, φ0,β, u
before
0 , uduring0 , uafter0 )

for users observed in the sample using the maximum likelihood approach described in Equa-

tions (C.1) to (C.4). To ensure that the parameter values are not sensitive to the estimation

procedure, we have also tried the Metropolis-Hastings algorithm with uninformative priors as well

as the maximum likelihood estimation with multiple initial values. All three procedures converge

to similar parameter values.

In Section 4.2 of the main text, we compare our baseline model with an alternative “autopilot

+ lagged choice” model. This model generalizes the neural autopilot model by allowing the users’

choice probabilities in the goal-directed mode to depend directly on their lagged choice. Specifically,

we replace Equation (C.4) with

Pr(ci,t = 1|ri,t, ci,t−1, hi,t = 0) =
exp(ri,t(1) + γ · ci,t−1)

exp(ri,t(1) + γ · ci,t−1) + exp(ri,t(0))
, (C.5)

where the coefficient γ on the lagged choice ci,t−1 is an additional parameter we estimate.

29One microfoundation of Equation (C.4) is as follows. Suppose a user actively compares the reward predictions of
two alternative options, (ri,t(1)+εi,t(1), ri,t(0)+εi,t(0)), and chooses the larger one. Further suppose (εi,t(1), εi,t(0))
are idiosyncratic shocks that follow the type I extreme value distribution. Then, the probability that the user chooses
a = 1 (“posting online”) is given by Equation (C.4).
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D Additional Tables and Figures

Table D.1: Posting Behavior Regressed on Reward Variables and Previous Posting History

(1) (2)

log(TotalLikes) 0.367***

(0.024)

log(TotalLikes) × log(NPrevConsecutivePosts) –0.132***

(0.012)

log(TotalLikesPerDayPosting) 0.351***

(0.099)

log(TotalLikesPerDayPosting) × log(NPrevConsecutivePosts) –0.112*

(0.046)

log(NPrevConsecutivePosts) 1.289*** 0.893***

(0.044) (0.031)

PostToday 0.984*** 1.060***

(0.025) (0.026)

Observations 1,802,377 1,802,377

R-squared 0.368 0.362

RMSE 0.24 0.24

Notes. Column 1 reports the logit estimates of the following regression:

PostTomorrowi,t = αi + δt + β1 log(TotalLikesi,t) + β2 log(NPrevConsecutivePostsi,t)

+β3 log(TotalLikesi,t) × log(NPrevConsecutivePostsi,t) + β4PostTodayi,t + εi,t.

The dependent variable PostTomorrowi,t is an indicator that equals one if user i posts on date t+ 1 and equals zero
otherwise. The independent variable TotalLikesi,t is the cumulative number of likes user i has received up until and
including date t; the independent variable NPrevConsecutivePostsi,t is the number of days that user i has posted
consecutively before date t. For example, if user i has posted on dates t − 2, t − 1, and t (but not on date t − 3),
then NPrevConsecutivePostsi,t = 2. Column 2 reports the logit estimates of a regression that is similar to the one in
Column 1; instead of TotalLikesi,t, this regression uses TotalLikesPerDayPostingi,t, which is the cumulative number
of likes divided by the total number of days when the user has created at least one post, up until and including date
t. Standard errors are clustered by individuals and reported in parentheses. *, **, and *** indicate significance at
the 5%, 1%, and 0.1% level, respectively.
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Table D.2: Autopilot Estimates: Comparing Average Likes and Total Likes Per Day

Average Likes Total Likes

Parameters Est. Std. Err. Est. Std. Err.

λr 0.008 (0.000) 0.009 (0.000)

λd 0.126 (0.001) 0.121 (0.001)

κ 7.599 (0.034) 7.291 (0.033)

φ0 0.315 (0.002) 0.327 (0.001)

β 0.071 (0.004) 0.070 (0.002)

ubefore0 1.242 (0.011) 1.072 (0.005)

uduring0 1.095 (0.013) 1.216 (0.001)

uafter0 1.078 (0.011) 1.054 (0.004)

Log-likelihood –380,473 –389,048

Number of users 1,848 1,848

AIC 760,962 778,111

BIC 761,061 778,211

Notes: This table reports the parameter estimates for the autopilot model. Columns 1 and 2 use the average likes
per post per day as the measure for the realized reward; Columns 3 and 4 follow the main text by using the total
likes per day as the measure for the realized reward.
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Table D.3: Autopilot Estimates: Users with Different Start Dates

Cohort 1 Cohort 2 Cohort 3

Parameters Est. Std. Err. Est. Std. Err. Est. Std. Err.

λr 0.007 (0.000) 0.008 (0.000) 0.010 (0.000)

λd 0.113 (0.001) 0.120 (0.001) 0.126 (0.001)

κ 7.371 (0.029) 7.247 (0.027) 6.902 (0.037)

φ0 0.318 (0.034) 0.329 (0.001) 0.351 (0.002)

β 0.073 (0.023) 0.069 (0.001) 0.071 (0.003)

ubefore0 1.215 (0.003) 1.222 (0.001) 1.176 (0.001)

uduring0 1.087 (0.008) 1.078 (0.000) 1.010 (0.004)

uafter0 1.082 (0.018) 1.062 (0.001) 0.983 (0.005)

Log-likelihood –594,110 –413,222 –257,967

Number of users 2,293 1,906 1,462

AIC 1,188,236 826,460 515,950

BIC 1,188,339 826,560 516,045

Start date January 1, 2014 January 1, 2015 January 1, 2016

Notes. Our analysis in the main text uses a sample of users who created a Weibo account prior to January 23, 2020
and first posted on Weibo between February 16, 2015 and January 1, 2020. We selected the start date of February
16, 2015 as it corresponds to day 2,000 since August 27, 2009, the first observed date in our data set. This table
reports the parameter estimates with alternative start dates: Cohorts 1, 2, and 3 include users who first posted on
Weibo after January 1, 2014, January 1, 2015, and January 1, 2016, respectively.
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Table D.4: Autopilot Estimates: Allowing for Additional Individual Heterogeneities

Autopilot

Parameters Est. Std. Err.

λr 0.008 (0.000)

λd 0.120 (0.001)

κ 7.213 (0.040)

φ0 0.482 (0.006)

βmale 0.030 (0.003)

βverified 0.020 (0.007)

βdeveloped 0.001 (0.006)

βhighCS –0.168 (0.008)

βorig 0.071 (0.010)

ubefore0 1.210 (0.032)

uduring0 1.060 (0.029)

uafter0 1.044 (0.009)

Log-likelihood –387,656

Number of users 1,848

AIC 775,337

BIC 775,486

Note: This table reports the parameter estimates for the neural autopilot model when we allow additional individual
heterogeneities to drive φ, the threshold parameter in Equation (4) of the main text. Specifically, φ for each user is
affected not only by the user’s proportion of original posts, but also by additional attributes that include the user’s
gender, whether the user has a verified account, is in a developed city, and has high Sesame Credit. We assume

φi = φ0 + βmale
1malei=1 + βverified

1verifiedi=1 + βdeveloped
1developedi=1

+ βhighCS
1highCSi=1 + βorigOrigPostRatioi,

where OrigPostRatioi is the proportion of original posts for user i.
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Figure D.1: Marginal Effect of log(LikesVar) on Habitual Postings

Notes. This figure plots the marginal effect of log(LikesVar) on habitual postings (NConsecutivePosts) as a function
of log(LikesMean). The left panel computes “LikesMean” and “LikesVar” as the mean and variance of the number of
likes received per day by the user over the last 7 posting days. The right panel computes “LikesMean” and “LikesVar”
as the mean and variance of the number of likes received per day by the user over the last 10 posting days. The
shaded regions represent the 95% confidence intervals. The range of log(LikesMean) is from its 10th percentile value
to its 90th percentile value.
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