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I. Introduction

Consider the prospect of winning $25 with 5% probability and winning $0 otherwise. Under

expected utility theory, valuation of the lottery should be linear in the probability of winning the $25

outcome. For decades, however, experimental evidence points to decision-making that is nonlinear

in probability. For example, subjects report a larger increase in valuation as the experimenter

increases the probability of winning the $25 from 5% to 10%, compared to when she increases

it from 30% to 35% (Tversky and Kahneman, 1992; Camerer and Ho, 1994; Gonzalez and Wu,

1999; Bernheim and Sprenger, 2020). This nonlinearity gives rise to probability distortions, which

in turn, have been used to explain fundamental puzzles in risky choice such as the simultaneous

demand for gambling and insurance. Probability distortions have also been invoked to explain a

wide array of anomalies in financial markets (Barberis, 2018).

In this paper, we ask a basic question: why do humans distort probabilities? We explore

whether the distortion can be traced to fundamental properties about how the brain processes

information. Our hypothesis is that valuation is linear in perceived probability, which differs from

objective probability due to information processing constraints. Furthermore, we propose that this

hypothesis can microfound the probability weighting function from prospect theory—which is the

leading behavioral theory of choice under risk (Kahneman and Tversky, 1979). We are by no means

the first to investigate the psychological underpinning of probability weighting (Gonzalez and Wu,

1999; Bordalo, Gennaioli, and Shleifer, 2012; Khaw, Li, and Woodford, 2021, 2022; Enke and

Graeber, 2023).1 But the mechanism we test—which is called efficient coding—is novel in the sense

that it generates new testable hypotheses about the source and instability of probability weighting.

To assess the empirical validity of our proposed mechanism, we develop a theory and present two

experimental tests. The data largely confirm the idea that probability weighting derives, at least

in part, from the efficient allocation of cognitive resources.

The basic premise of our theory is that, when faced with a risky prospect, the decision maker

(henceforth DM) bases her decision on a noisy perception of state probabilities; in general, the

DM ’s perception does not coincide with the objective probability. This wedge between reality and

1See also important earlier work by Viscusi (1989), Tversky and Kahneman (1992), Rottenstreich and Hsee
(2001), Stewart, Chater, and Brown (2006), Zhang and Maloney (2012), Steiner and Stewart (2016), and Zhang,
Ren, and Maloney (2020).
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perception stems from errors in encoding, retrieving, and subsequent cognitive processing of the

state probability. That is, we assume that the DM does not have the capacity to form a precise

perception of each probability that she could potentially be presented with. While the DM cannot

form a precise perception of every probability, she can efficiently allocate cognitive resources towards

accurately perceiving those probabilities that she expects to encounter in a given class of situations.

For example, consider someone who is often faced with binary lotteries that have probabilities

that fall in the range from say, 45% to 55%. We argue that, when faced with two novel lotteries,

one with 50-50 odds and another with 51-49 odds, this person will be better able to discriminate

between the two lotteries, compared to someone who is often faced with skewed lotteries that have

extreme odds such as 90-10 or 95-5. Our model formalizes how the DM ’s prior belief about the

probabilities she expects to encounter will optimally distort her perception of the probabilities that

she actually encounters.

Our theoretical contribution builds on our own previous work in which we demonstrated that

risk taking depends on the prior distribution of monetary outcomes to which the DM is adapted

(Frydman and Jin, 2022). In that model, we made the simplifying assumption that probabilities

are encoded without noise. Here, we show how noisy and efficient coding can generate signature

patterns of probability distortions. In this regard, our work is closely related to recent theory

by Steiner and Stewart (2016), Zhang et al. (2020), and Khaw et al. (2021, 2022). However, an

important difference is that, in our model, we show how the shape of the prior distribution over

probabilities pins down the degree of probability distortion.

The model works as follows. The DM encodes a single probability p subject to a capacity

constraint. We assume her objective is to choose an encoding function that maximizes the mutual

information between the true probability p and the encoded signal Rp. The model predicts that

the DM will encode with more precision those probabilities that she expects to encounter more

often, according to her prior belief.

Thus, a key input to the model is the DM ’s prior belief about p. We show theoretically that

when the DM holds a U -shaped prior—one that puts more mass on probabilities further from

50%—she will encode these “extreme” probabilities with more precision. In fact, this type of prior,

when coupled with efficient coding, generates the inverse S-shaped probability weighting function

that is often assumed in prospect theory (Gonzalez and Wu, 1996; Prelec, 1998). The endogenous
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weighting function exhibits high sensitivity for extreme probabilities. In contrast, the weighting

function exhibits low sensitivity over intermediate probabilities, where the DM optimally chooses

to encode probabilities with the least precision.

An obvious question is whether the U -shaped prior is a reasonable specification for prior ex-

pectations about probabilities. This is important, because as we show, efficient coding without

a U -shaped prior is insufficient to generate an inverse S-shaped probability weighting function.

Interestingly, Stewart et al. (2006) argue that people’s experiences with probabilities are likely to

be concentrated near the extreme values of 0 and 1; their paper documents that the frequency of

probability phrases in the English language is skewed towards extreme probabilities. Moreover,

experimental subjects report that extreme probabilities occur more frequently than intermediate

probabilities (Brown and Qian, 2004; Zou, Brown, Zhao, and Dong, 2008).

Given the crucial role of the prior in generating the model’s theoretical predictions, we design

our first experiment to provide a joint test of the U -shaped prior and efficient coding. The design is

motivated by the model’s prediction that encoding should be noisier for intermediate probabilities

relative to extreme probabilities. Our test is simple: on each of several trials, we present subjects

with a pair of probabilities that are displayed as two fractions, and we then ask them to classify

which fraction is larger. The crucial aspect of the design is that we fix the numerical distance

between fractions, and vary only the level of the fractions across trials. If intermediate probabilities

are encoded with more noise than extreme probabilities, we should observe a U -shaped accuracy

function.

We recruit 800 subjects from Prolific, an online data collection platform. We find that indeed,

accuracy is substantially higher at extreme probabilities—those below 0.2 or above 0.8. Moreover,

response times are the shortest when the probabilities to be discriminated lie near the extremes. Our

evidence is therefore consistent with the joint hypothesis that (i) human subjects hold a U -shaped

prior about probabilities and (ii) encoding of probabilities is efficient given cognitive constraints.

Interestingly, the encoding function that endogenously arises in our model qualitatively matches

the encoding function assumed in Khaw et al. (2021, 2022). Moreover, the U -shaped accuracy

function that we document is also consistent with the hump-shaped “cognitive uncertainty” function

that Enke and Graeber (2023) document when eliciting certainty equivalents across the unit interval

of probability.
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We then move on to our main experiment in which we test whether biases in perception of

probability feed into subjective valuations of risky lotteries. To investigate the link between efficient

coding of probabilities and valuations, we exogenously manipulate a subject’s prior belief about

probabilities and then elicit certainty equivalents for lotteries of the form: ($25, p; $0, 1−p). Efficient

coding predicts that, when the DM is adapted to a distribution of probabilities that is concentrated

near intermediate probabilities, she should have less difficulty discriminating between probabilities

over this range compared to someone who is adapted to extreme probabilities. Crucially, because

the DM does not have access to the objective probability p, she must rely only on her perceived

value of p when forming a valuation. These observations lead to a testable prediction: given a risky

lottery, valuation depends systematically on the prior distribution to which a subject is adapted.

We find strong evidence in favor of this prediction. The slope of the measured probability weight-

ing function over intermediate probabilities is significantly higher for subjects who are adapted to

intermediate probabilities, compared to those who are adapted to extreme probabilities. Specifi-

cally, for subjects who are adapted to intermediate probabilities, increasing an intermediate prob-

ability of winning $25 by 1% causes a $0.26 increase in their certainty equivalent. In contrast,

for subjects who are adapted to extreme probabilities, the same 1% increase of an intermediate

probability of winning $25 leads to only a $0.17 increase in their certainty equivalent. Thus, the

causal effect of a 1% increase in probability on valuation is about 50% larger for subjects who are

adapted to intermediate probabilities. We find that the effect of the prior on valuation carries a

similar magnitude for lotteries associated with small probabilities of winning $25. Finally, the effect

is of a smaller magnitude, but remains statistically significant, for lotteries associated with high

probabilities of winning $25.

Taken together, the results from our two experiments suggest that probability weighting stems

in part from people’s imprecision in forming a cognitive representation of probability. Our key ex-

perimental finding is that valuation depends not only on objective properties of a given lottery, but

also on the distribution of lottery probabilities from past choice sets. This finding is inconsistent

with a broad class of models that assume a nonlinear but stable probability weighting function

(Quiggin, 1982; Yaari, 1987; Tversky and Kahneman, 1992). The fact that valuation depends

systematically on past choice sets also separates our efficient coding model from other candidate

explanations for probability weighting that may also be active in the decision process. For example,
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the salience theory of Bordalo et al. (2012) proposes that probability weighting arises from limited

attention, where distortions depend on the salience of lottery payoffs.2 Enke and Graeber (2023)

propose that agents are cognitively uncertain about valuations, which leads to a compressed linear

probability weighting function. Although salience theory and cognitive uncertainty both gener-

ate context-dependent weighting functions, neither can deliver the systematic dependence on past

choice sets that we observe in our data.3

Our model also shares similarities with the decision by sampling model proposed by Stewart

et al. (2006). In that model, when the DM is presented with a probability, she draws samples of

previously encountered probabilities from memory and compares the currently presented probability

with these randomly drawn samples. The similarities between the two models are natural given the

insight from Bhui and Gershman (2018) that efficient coding can serve as an optimizing foundation

for the process model of decision by sampling. As such, we interpret our experimental results as

providing novel evidence for both efficient coding and decision by sampling.

Finally, it is worth noting that one of the earliest psychological explanations for the probability

weighting function is tied to the idea that decision makers cannot perfectly discriminate between all

probabilities. Tversky and Kahneman (1992) propose that the inverse S-shaped weighting function

arises from the principle of diminishing sensitivity from two separate reference points, namely 0 and

1. Gonzalez and Wu (1999) point out that the concept of diminishing sensitivity is tied closely to the

psychophysical notion of discriminability—which itself is related to the basic premise of our efficient

coding model. Gonzalez and Wu (1999) propose that the weighting function can be characterized

by a discriminability “slope” parameter and an attractiveness “level” parameter. Our model can

be interpreted as providing a microfoundation both for the lack of perfect discriminability and its

malleability across contexts.

2In our baseline model, probability weighting does not depend on lottery payoffs. Khaw et al. (2022) propose a
model in which the imprecision in representing a monetary amount is tied to the probability of winning that amount.
In their model, fewer resources are devoted to processing payoffs that are less likely to be delivered. In Section VI.1,
we sketch an extension of our model in which we investigate the implications of efficient coding over both payoffs and
probabilities.

3Steiner and Stewart (2016) provide an alternative explanation of probability weighting that is also based on
noisy perception of probability. In particular, they show that a nonlinear probability weighting function can arise as
an optimal response to perceptual noise. Khaw et al. (2021, 2022) also propose a model that derives a probability
weighting function based on an optimal response to noisy coding of probabilities. One difference—which we discuss
further in Section VI.3—is that the encoding (or likelihood) function in our model also arises from an optimization
process; this is crucial in generating the model’s key implications. See also McGranaghan, Nielsen, O’Donoghue,
Somerville, and Sprenger (2022) for recent experimental work that motivates the development of new theories of
context-dependent weighting functions.
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The rest of this paper is organized as follows. Section II presents a theory to show that efficient

coding and a U -shaped prior together lead to an inverse S-shaped weighting function. Section III

presents an experiment that provides a joint test of efficient coding and the U -shaped prior. Sec-

tion IV shows theoretically that the slope of different portions of the weighting function changes

as the DM ’s prior changes. Section V presents an experiment which uses data on lottery valu-

ations to test whether the weighting function is malleable in the manner predicted by efficient

coding. Section VI provides some additional discussion, and Section VII concludes.

II. The Model: Generating the Inverse S-shaped Probability

Weighting Function

In this section, we apply the efficient coding model of Heng, Woodford, and Polańıa (2020) to

study the DM ’s mental representation of probability. The model works as follows. Consider a

probability p that is associated with a given lottery payoff. Before the DM is presented with the

probability p, she holds a prior belief about it, denoted by f(p). Then, upon presentation of p, the

DM generates a noisy cognitive signal Rp; specifically, Rp is randomly drawn from a conditional

distribution—or, in the language of Bayesian inference, a likelihood function—denoted by f(Rp|p).

The likelihood function captures the idea that the DM encodes information about probability with

cognitive noise, even if the probability p is clearly presented to the DM . The likelihood function

can also reflect noise in retrieving information about p from memory and the subsequent cognitive

processing when the DM is asked to make a decision.

Following Heng et al. (2020), we assume that the DM encodes probability p through a finite

number of n “neurons,” where the output state of each neuron takes the value of 0 or 1. The output

states of these n neurons are assumed to be mutually independent, and each neuron takes the value

1 with probability θ(p) and 0 with the remaining probability 1− θ(p).4 The encoded value of p is

therefore represented by an output vector of 0s and 1s, with length n. Given that the neurons are

mutually independent, a sufficient statistic for the output vector is the sum across the n output

4We interpret the neurons in the model as basic information processing units that emit a binary signal, rather
than literally as cells in the brain that have more complex properties.
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values, which is defined as the noisy signal Rp. Taken together, the likelihood function is given by

f(Rp|p) =
(

n

Rp

)
(θ(p))Rp(1− θ(p))n−Rp , (1)

where the noisy signal Rp can take on integer values from 0 to n.

A signature feature of efficient coding is that the DM endogenously chooses the likelihood

function f(Rp|p) as a function of the prior f(p). We assume the DM chooses θ(p) in (1) to

maximize the mutual information between probability p and its noisy signal Rp

max
θ(p)

I(p;Rp), (2)

where the mutual information I(p;Rp) is defined as the difference between the marginal entropy

of Rp and the entropy of Rp conditional on p.5 Intuitively, the objective function in (2) leads

the DM to better discriminate between probability values that she expects to encounter more

frequently given her prior belief. A large literature in sensory perception documents strong support

for this objective function (Laughlin, 1981; Girshick, Landy, and Simoncelli, 2011; Wei and Stocker,

2015). Heng et al. (2020) show that the optimal coding rule that maximizes I(p;Rp) is given by

θ(p) =
(
sin

(π
2
F (p)

))2
, (3)

where F (p) is the cumulative distribution function of the prior belief f(p).

Given the prior belief and the noisy signal, the DM follows Bayes’ rule to generate a posterior

belief about p

f(p|Rp) =
f(Rp|p)f(p)∫ 1

0
f(Rp|p)f(p)dp

. (4)

For a given objective probability value p, the DM draws the noisy signal Rp according to the

likelihood function f(Rp|p) from equation (1). Then, for each noisy signal Rp, the DM forms a

posterior distribution about p given by equation (4). Together, these two steps imply that the

5We discuss an alternative performance objective, namely maximizing expected payoff, in Section VI.4.
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average subjective valuation of p is

v(p) =
∑n

Rp=0
f(Rp|p) · E[p̃|Rp], (5)

where

E[p̃|Rp] ≡
∫ 1

0
f(p|Rp)pdp =

∫ 1

0
f(Rp|p)f(p)pdp∫ 1

0
f(Rp|p)f(p)dp

(6)

is the posterior mean of p conditional on Rp. Note that v(p) in (5) represents the DM ’s subjective

valuation of p averaged across different values of Rp, and in general, v(p) is a nonlinear function

that maps objective probabilities into decision-relevant probabilities—similar to the decision weights

from prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). At the same

time, unlike the deterministic weighting function exogenously assumed in prospect theory, v(p) in

our model is derived from stochastic probability perception. To formally define the stochastic nature

of probability perception, we compute the standard deviation of the DM ’s subjective valuation,

σ(p) =

[∑n

Rp=0
f(Rp|p) · (E[p̃|Rp]− v(p))2

]1/2
. (7)

Equation (7) makes it clear that the randomness in probability perception comes from the fact that

a given objective value of p randomly generates one of the n possible values of Rp; each Rp then

generates a different posterior distribution f(p|Rp) and hence a different valuation E[p̃|Rp].

It is important to note that, in an efficient coding model, the DM ’s subjective valuation of

probability v(p) depends on her prior belief f(p) through two channels. First, the posterior belief

f(p|Rp) is directly affected by the prior belief f(p), as shown in equation (4). Second and more

importantly, f(p) indirectly affects the posterior belief f(p|Rp) through the coding rule θ(p). In

particular, equation (3) shows that the coding rule takes the prior as an input, so that the same

value of p is encoded differently depending on the prior. Thus, the prior continues to play its

traditional and direct role in Bayesian inference, but it also affects information processing through

the endogenously determined likelihood function given by equations (1) and (3).

The above framework demonstrates that the DM ’s prior belief, when combined with efficient

coding, governs the shape of the weighting function v(p). Here we pick a particular shape of the prior
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distribution and illustrate how the various components of the model pin down the nonlinearities in

probability perception. We assume that the DM holds a U -shaped prior of the following form

f(p) =
we−λ1p + (1− w)e−λ2(1−p)

wλ−1
1 (1− e−λ1) + (1− w)λ−1

2 (1− e−λ2)
, (8)

where the parameters w, λ1, and λ2 govern the shape of the function. This prior puts more weight

on extreme probabilities compared to intermediate probabilities. Some motivation for this type of

prior comes from previous work which shows that, in both daily life and economics experiments,

extreme probabilities are encountered more often than intermediate probabilities (Stewart et al.,

2006). The assumption of a U -shaped prior plays a crucial role in our theoretical analysis; in the

next section, we conduct an experiment to test this assumption.

[Place Figure I about here]

We now illustrate the implications of such a U -shaped prior. Recall that the prior influences

the posterior in part through the optimal choice of the likelihood function. Thus, we first examine

the properties of the likelihood function implied by the U -shaped prior. Figure I Panel A plots the

U -shaped prior from equation (8); the parameter values are: λ1 = λ2 = 8, and w = 0.5. Given

this prior, Panel B plots the corresponding coding rule θ(p). It shows that, under the U -shaped

prior, θ(p) is steep for low and high values of p; it is much flatter for intermediate values of p. This

nonlinear pattern is a consequence of the DM ’s objective to maximize the mutual information

between p and Rp; importantly, the nonlinear pattern of the coding function will be passed on to

the weighting function v(p), which will form the basis of our experimental tests.

Panel C plots the implied likelihood function for four different probability values: p = 0.02,

p = 0.04, p = 0.49, and p = 0.51. We note that p = 0.02 and p = 0.04 generate distinctive

likelihood functions; when p is low, the slope of θ(p) is high, and a small change in p leads to a

large shift in the likelihood function. As such, the DM is able to easily discriminate between low

probabilities. By the symmetry of the likelihood function—that is, f(Rp|p) = f(n − Rp|1 − p)—

the DM is also able to easily discriminate between high probabilities. By contrast, p = 0.49 and

p = 0.51 give rise to nearly identical likelihood functions; when p is intermediate, the slope of θ(p)

is low and changes in p cause almost no change in the likelihood function. As such, the DM finds
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it difficult to discriminate between intermediate probabilities.

[Place Figure II about here]

Given the prior and the implied likelihood functions, we next turn to the DM ’s subjective

valuation of probability v(p). We substitute the U -shaped prior from equation (8) into the coding

rule in equation (3) and explicitly compute v(p) according to equation (5). Figure II demonstrates

that, with efficient coding and with the U -shaped prior, the implied weighting function v(p) is

inverse S-shaped, consistent with prospect theory. To understand this shape, we first note from (5)

that v(p) is constructed by combining the likelihood function f(Rp|p) with the posterior mean

E[p̃|Rp]. We also note that the posterior mean E[p̃|Rp] does not depend directly on p. As a result,

when p varies and the prior remains fixed, changes in v(p) depend only on changes in the likelihood

function. As shown in Figure I Panel B, the slope of θ(p) is steep both for high and low values of

p; for these probability values, a small change in p leads to a large shift in the likelihood function

and hence also a large change in v(p); as such, the slope of v(p) is steep. On the other hand, the

slope of θ(p) is shallow for intermediate values of p; in this case, changes in p cause little change

in the likelihood function and hence also little change in v(p), resulting in a shallow slope of v(p).

Taken together, the inverse S-shaped coding function θ(p) in Figure I Panel B, which is implied by

the U -shaped prior, gives rise to an inverse S-shaped probability weighting function v(p).6

It is worth highlighting how efficient coding generates overweighting of small probabilities and

underweighting of large probabilities, even when cognitive resources are largely allocated towards

these extreme probabilities. The intuition works as follows. When p is very small, say, 0.01, the

optimal likelihood function puts almost all of its mass on Rp = 0; as such, there is little noise

for encoding very small probabilities. However, even for larger probabilities such as p = 0.15,

there remains a nontrivial chance that the DM will draw a signal of Rp = 0 according to the

optimal likelihood function. Therefore, when p is very small and hence the DM almost exclusively

observes Rp = 0, she rationally accounts for the possibility that this signal could correspond to

larger probabilities such as p = 0.15. This in turn leads to an upward bias in the perception of small

probabilities. By symmetry, the same intuition generates underweighting of large probabilities.

6We note that both efficient coding and a U -shaped prior are fundamentally important for generating an inverse
S-shaped probability weighting function. We leave a detailed discussion of this observation in Online Appendix A.
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III. Experiment 1: Discrimination task

We have shown how efficient coding and a U -shaped prior can theoretically generate an inverse

S-shaped probability weighting function. A key assumption driving our theoretical result is that

the DM has a prior which puts more mass on extreme probabilities compared to intermediate

probabilities. In this section, we test an important implication of the theory, namely that encoding

of probabilities should be noisier for intermediate probabilities compared to extreme probabilities.

III.1. Background on numerical cognition of fractions and probabilities

The foundation of our experimental design comes from the literature on numerical cognition.

Here, we provide some background on what is known about the particular form of imprecision with

which humans encode numerical stimuli. A vast set of papers document evidence consistent with the

hypothesis that humans have an “approximate number system” for integers (Dehaene, 2011). The

approximate number system facilitates an intuitive but noisy representation of numbers that uses

brain circuits which are distinct from those invoked in exact arithmetic computations using Arabic

numerals. A signature finding from this literature is that larger integers tend to be encoded with

more noise, both at the behavioral and neural level (Moyer and Landauer, 1967; Cai, Hofstetter,

and Dumoulin, 2023).

There is also evidence that the same approximate number system facilitates representation

of ratios and fractions—which in turn could support an intuitive representation of probability

(Clarke and Beck, 2021). For example, Matthews and Chesney (2015) show that humans exhibit

a “distance effect” when comparing two fractions: error rates decrease as the difference between

the two fractions increases. Crucially, their study demonstrates the distance effect even when one

fraction is displayed symbolically (as a ratio of Arabic numerals) and the other is displayed non-

symbolically (as two different clouds of dots). The fact that a distance effect obtains in this “cross-

modal” format suggests that humans convert the clouds of dots into an abstract and intuitive notion

of ratio, which is then compared with the cognitive representation of the symbolically presented

fraction.7

7The cross-modal evidence complements other demonstrations of the distance effect when both stimuli are rep-
resented as symbolic fractions (DeWolf, Grounds, Bassok, and Holyoak, 2014; Jacob and Nieder, 2009; Kallai and
Tzelgov, 2009, 2012; Meerta, Grégoire, and Noël, 2010; Schneider and Siegler, 2010; Siegler, Thompson, and Schneider,
2011; Meerta, Grégoire, Seron, and Noël, 2012).
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While the studies cited above demonstrate that fractions are encoded with noise, they do not

provide clear evidence on the shape of the noise distribution. For example, it is possible that larger

fractions are encoded with more noise, similar to the pattern documented for integers. Another

possibility is that fractions are encoded with a different noise structure, similar to the one suggested

by Panel C of Figure I. In other words, fractions near 0 or 1 may be encoded with more precision

compared to fractions near 1
2 . Our experiment in the next section is designed to distinguish between

these two hypotheses.

Before we move on to our design, a remaining question is whether the ratios and fractions that

have been used in the previous experimental literature are interpreted by subjects as probabilities.

An alternative hypothesis is that subjects instead interpret the ratios in a manner that is detached

from any probabilistic connotation. Some recent evidence from developmental psychology, however,

suggests that ratio perception can indeed be regarded as probability perception. Szkudlarek and

Brannon (2021) give children an experimental task in which they are asked to choose a machine

that will give the highest chance of delivering a specific colored ball. The probability is shown sym-

bolically in one condition, but non-symbolically in the other condition. Interestingly, accuracy in

the non-symbolic version of the probability discrimination task is highly correlated with accuracy in

the symbolic version of the task, where probabilities are displayed with symbolic fractions. This ev-

idence suggests that probabilities can be represented both with symbolic and non-symbolic stimuli,

and the representation of each type may share a common cognitive underpinning. Further evidence

of this effect from adult experimental subjects comes from Eckert, Call, Hermes, Herrmann, and

Rakoczy (2018).

III.2. Design

Our design builds on symbolic numerical discrimination tasks that began with Moyer and Lan-

dauer (1967). Such tasks can be used to elucidate the patterns of imprecision that experimental

subjects display when asked to classify which of two symbolic numbers is larger (e.g., “1” vs. “8”).

A classic result from this literature is that subjects exhibit a “distance effect,” whereby error rates

and response times become larger as the numerical distance between quantities becomes smaller.

Here, we seek to understand how the degree of imprecision varies systematically over the unit

interval. To do so, we incentivize subjects to accurately and quickly classify which of two fractions is
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larger. We elicit responses across multiple trials, and crucially, we fix the distance between fractions

on each trial at 2%. Thus, we control for the distance effect and look for systematic variation in

imprecision depending on the location of the two fractions in the unit interval. This design feature is

important, because the experimental papers that we discuss in the previous subsection demonstrate

that the distance between fractions is a strong predictor of error rates. Guided by our theory from

the previous section, we hypothesize that the degree of imprecision should be largest for fractions

near 50% and smallest for fractions near the extremes (0% or 100%).

Each trial contains a pair of fractions. We build the pairs by applying several restrictions that

follow from the design in Matthews and Chesney (2015). First, we use only reduced fractions to

eliminate any cognitive processing involved with reducing fractions. For simplicity, the numerator

and denominator in each fraction have at most 2 digits. Second, we avoid fraction pairs where

the numerator is the same for each fraction in the pair; we similarly avoid fraction pairs where

the denominator is the same for each fraction in the pair. This is done so that subjects cannot

simply use the heuristic of comparing only the numerators when the denominators are the same,

or of comparing only the denominators when the numerators are the same. These restrictions,

along with our main goal of varying fraction levels across the entire unit interval lead to a set of 28

fraction pairs that are presented in the left panel of Table D.1 in Online Appendix D. We define

the trials on which we show these 28 fraction pairs as “test trials.” We show each subject each

of the 28 fraction pairs twice, as we counterbalance the location of each fraction on the right or

left part of the screen. This generates a total of 56 test trials per subject; Table D.1 shows that,

on each test trial, the denominator for each fraction takes the value of either 25 or 50. Online

Appendix D Figure D.1 provides a screenshot of one sample test trial. On each trial, subjects are

asked to classify which of two fractions is larger, and they choose either the left or right fraction

by pressing the “Q” or “P” key on their keyboard.8

Finally, to reduce the chance that subjects develop a strategy where they simply double the

numerator associated with the denominator of 25 and then just compare numerators, we add a set of

28 “catch trials” to the experiment. These catch trials have random numerators and denominators.

Moreover, the distance between fractions on catch trials is not fixed at 2%. The 28 catch trials are

presented in the right panel of Table D.1.

8The instructions of this experiment are provided in Online Appendix E.
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When constructing our design, we made a conscious choice to use fractions rather than per-

centages. Our justification for this design choice is that the fractional notation is likely to help

foster the perception of a probability. If we were to instead use percentages, subjects may employ

a heuristic where they ignore the percent sign (%) and simply compare integers. Our goal here is

to assess whether imprecision has any features that are unique to the unit interval of probability,

compared to other number systems that have already been well-studied (e.g., integers).

III.3. Procedures

As described above, the experiment consists of 56 test trials and 28 catch trials, for a total of

84 trials. Subjects were paid $2.25 for completing all 84 trials. In addition, 10% of subjects were

randomly selected to receive a bonus payment. The bonus payment follows the incentive scheme

in Frydman and Jin (2022), in which subjects are paid as a function of both accuracy and speed.

Specifically, if a subject is selected to receive a bonus, we pay $0.10 for each correct answer and

we subtract $0.01 for each second it takes the subject to respond. We impose a minimum bonus

amount of $0 and subjects are aware of this minimum. For those subjects who were randomly

selected to receive a bonus, the average total earning was $6.06. We recruit 800 subjects from

Prolific, an online data collection platform. The sample size, main analyses, and data exclusion

criteria are pre-registered on Aspredicted.org.9

III.4. Results

As outlined in the pre-registration document, we exclude trials for which the response time is

less than 0.2 seconds or greater than 10 seconds. After this exclusion, we have 65,511 trials, of which

43,833 are test trials. The average accuracy among test trials is 73.3% and the average response

time is 2.44 seconds. The substantial error rate—in the presence of time pressure—suggests that

the task is not trivial.

[Place Figure III about here]

Figure III shows how accuracy and response times vary across the unit interval. Each point in

the figure summarizes data from one pair of fractions used on test trials; recall that each of the 28

9The pre-registration document for this experiment is at: https://aspredicted.org/blind.php?x=YKS FMK.
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fraction pairs used on a test trial is presented to a subject twice, as we counterbalance the left-right

display of the two fractions. For both panels in Figure III, the “average probability” on the x-axis

denotes the average of the two fractions on a given test trial. One can see, visually, that accuracy is

U -shaped while response times are hump-shaped. This specific pattern of non-uniform imprecision

across the unit interval is a key prediction of efficient coding when the subject’s prior is U -shaped.

To provide a more formal test of the systematic imprecision, we partition the unit interval into

“extreme” and “intermediate” probabilities. As outlined in pre-registration, we define a fraction

to be extreme if it is less than 0.2 or greater than 0.8; all remaining probabilities are defined to be

intermediate. Table I provides results from mixed effects regressions where the dependent variables

of interest are accuracy and response times. The key explanatory variable is a dummy that takes

the value of one if both fractions on the test trial are extreme.10

[Place Table I about here]

Table I Column (1) shows that average accuracy among intermediate test trials is 72.3%, while

accuracy on extreme test trials is significantly higher by 2.6% (p-value < 0.001). Column (2)

shows that response times are significantly shorter by 0.112 seconds when both fractions are ex-

treme compared to intermediate (p-value < 0.001). Thus, subjects not only exhibit higher accuracy

for fractions near the endpoints of the unit interval, but they also implement these decisions sig-

nificantly more quickly. This result is important as it provides novel evidence for a systematic

imprecision across the unit interval in a design that controls for the difference between fractions.

One natural concern with the above results, however, is that smaller fractions in our design tend

to have only one digit in the numerator, whereas larger fractions have two digits in the numerator.11

Thus, it may be that our tests are just picking up the extra difficulty that subjects have with

perceiving a two-digit numerator relative to a one-digit numerator. To address this concern, we re-

run our analyses restricting to trials where both fractions have two digits. This restriction implies

that all extreme fractions are now above 0.8. Our tests therefore rely on comparisons of behavior

among fractions in the intermediate range with those extreme fractions near one.

Columns (3) and (4) of Table I show that the regression results are robust to removing trials with

10Our design precludes the scenario in which, within a test trial, one fraction is extreme and the other is interme-
diate; either both fractions are extreme or both are intermediate.

11All fractions in our design have two-digit denominators.
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one-digit numerators. These subsample results are additionally important because they highlight

that imprecision over the unit interval fails to conform to the pattern of imprecision often found

among integers. Specifically, previous work shows that imprecision grows monotonically in the

level of the integers when the distance between integers is kept constant (Moyer and Landauer,

1967; Buckley and Gillman, 1974; Dehaene, 2011). We instead find evidence that subjects are more

accurate and respond more quickly when discriminating between large fractions compared to when

discriminating between intermediate fractions.

We conclude this section by providing evidence on the distance effect from the 28 catch trials.

These results serve as a replication of previous experimental work on symbolic fraction comparisons,

except that, in our design, subjects are financially incentivized. As outlined in the pre-registration

document, we test whether error rates and response times decrease in the distance between fractions.

We run mixed effects linear regressions where the dependent variable is either error rates or response

times and the explanatory variable is the distance between the two fractions. We also include a

random intercept and a random slope. Consistent with previous work, we find that both error rates

and response times are negatively correlated with the distance between fractions; each negative

correlation is significant at the 0.1% level.

IV. The Model: Instability of Probability Weighting

The experimental data presented in the previous section are consistent with the efficient coding

hypothesis and with human subjects holding a U -shaped prior belief about probability. As we

emphasized in Section II, the prior belief is a key input to the efficient coding model. Thus, in

principle, a change in the DM ’s prior belief should affect her perception through a change in the

likelihood functions. In this section, we formally show how a shift in the prior affects perception

and hence, subjective valuation.

In particular, we highlight how efficient coding generates a probability weighting function that

is malleable. We begin by assuming that the DM ’s prior belief takes the following form

fc(p) = ξ · f1(p)︸ ︷︷ ︸
a stable component

+(1− ξ) · f2(p)︸ ︷︷ ︸
a fast-moving component

. (9)
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We refer to fc(p) as a “mixed” prior, which contains two components. The first component is stable,

and is denoted as f1(p). This component represents the “natural” prior that the DM has formed

based on encountering different probability values with different frequencies over her lifetime. The

second, fast-moving component is denoted as f2(p); it captures transient changes in statistics of the

local environment. For example, f2(p) can correspond to the empirical distribution of probabilities

that we present in the lab experiment in the next section.12 The parameter ξ in equation (9)

represents the weight the DM puts on the stable component; this weight may depend on the rate

at which the statistics of the environment change.

In light of our experimental results from the previous section—as well as the arguments outlined

in Stewart et al. (2006)—it is reasonable to assume that the natural prior f1(p) is U -shaped. We

operationalize this assumption by setting f1(p) equal to the U -shaped prior from equation (8),

f1(p) =
we−λ1p + (1− w)e−λ2(1−p)

wλ−1
1 (1− e−λ1) + (1− w)λ−1

2 (1− e−λ2)
. (10)

For the second, fast-moving component, we consider two specifications. Our main goal is to demon-

strate how shocks to the fast-moving component drive differences in valuation. As such, it is useful

to choose two specifications of the fast-moving component that have very different shapes. We

investigate an “intermediate” prior component, which has density only in the center of the unit in-

terval and thus balances out the U shape of the stable component. Formally, for this “intermediate”

prior component, we assume

f2(p) =


1

ph − pl
pl ≤ p ≤ ph

0 otherwise

, (11)

where pl and ph take intermediate values and 0 < pl < ph < 1.

We also investigate an “extreme” prior component, which has density only near the endpoints of

the unit interval; as such, this prior component accentuates the U -shape of the stable component.

12A growing literature has argued that people adapt, at least in part, towards the local context that changes
over the course of an experimental session (Burke, Baddeley, Tobler, and Schultz, 2016; Zimmermann, Glimcher, and
Louie, 2018; Conen and Padoa-Schioppa, 2019; Payzan-LeNestour and Woodford, 2022).
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For this “extreme” prior component, we assume

f2(p) =



1

(ph,2 − ph,1) + (pl,2 − pl,1)
pl,1 ≤ p ≤ pl,2

1

(ph,2 − ph,1) + (pl,2 − pl,1)
ph,1 ≤ p ≤ ph,2

0 otherwise

, (12)

where pl,1 and pl,2 take low values, ph,1 and ph,2 take high values, and 0 ≤ pl,1 < pl,2 < 0.5 < ph,1 <

ph,2 ≤ 1.

The two different specifications of the fast-moving component give rise to two different mixed

priors, which we refer to as the intermediate prior and the extreme prior. We specify the parameter

values for these two priors as follows. For the stable component f1(p) of each mixed prior, we set

λ1 = λ2 = 8 and w = 0.5. For the fast-moving intermediate prior component, we set pl = 0.38 and

ph = 0.62. For the fast-moving extreme prior component, we set pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,

and ph,2 = 0.9. Finally, we set ξ, the weight on the stable component in the mixed prior, to 0.5.

Armed with two specific mixed priors, we now use them as inputs to our efficient coding model

and assess the differences in perception of probability. For each mixed prior fc(p), we substitute it

into the coding rule in equation (3). The two different coding rules—one for each specification of the

mixed prior—give rise to a distinct set of efficient likelihood functions. Figure IV summarizes these

results: it plots, for both the intermediate prior and the extreme prior, the prior distribution fc(p),

its coding rule θ(p), and the likelihood functions. Figure V then plots the probability weighting

functions v(p) implied by these two mixed priors.

[Place Figures IV and V about here]

Figures IV and V demonstrate the malleability of probability weighting: as the DM ’s prior

beliefs changes (the upper graph of Figure V), the implied probability weighting function v(p)

changes significantly (the lower graph of Figure V). More important, the way in which the weighting

function changes is governed by efficient coding. For intermediate probabilities, the slope of the

weighting function is steeper when the fast-moving prior component “fills in” some density for

intermediate probabilities; however, for extreme probabilities, the slope of the weighting function

is steeper when the fast-moving prior component puts extra mass on the extreme portions of the
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unit interval, near 0 and 1.

To understand these results, we first note that, by construction, intermediate probabilities occur

much more frequently under the intermediate prior, compared to the extreme prior. Thus, under

the intermediate prior, the coding rule θ(p) has a much steeper slope for intermediate probabilities,

causing the likelihood function f(Rp|p) to shift substantially as p varies over the intermediate

range. To see this visually, Figure IV shows a substantial change in the likelihood function as p

increases from 0.49 to 0.51 under the intermediate prior; by contrast, the same increase in p from

0.49 to 0.51 leads to almost no change of the likelihood function under the extreme prior. This

greater separation of likelihood functions for nearby probabilities gives rise to the higher slope of

the probability weighting function under the intermediate prior.

The same intuition holds when examining perception of probabilities closer towards the bound-

aries of the unit interval. By construction, low or high probabilities occur more frequently under the

extreme prior, compared to the intermediate prior. Therefore, as p varies over the low or high range

of probability, the likelihood function shifts to a greater extent under the extreme prior. Figure IV

shows a substantial change in the likelihood function when p increases from 0.12 to 0.14 under the

extreme prior; by contrast, the same increase in p from 0.12 to 0.14 causes a much smaller change

in the likelihood function under the intermediate prior. These patterns of overlap in the likelihood

functions in turn generate a steeper slope of the probability weighting function under the extreme

prior.

In the next section, we design an experiment that exogenously manipulates the fast-moving

component of a subject’s prior. The particular specifications of the fast-moving component follow

closely from the intermediate and extreme priors we have theoretically considered above. Using data

on lottery valuations, the experiment will allow us to test whether the slope of different portions of

the probability weighting function is malleable in the manner predicted by our theory of efficient

coding.
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V. Experiment 2: Manipulating the Probability Weighting

Function

V.1. Design

Our experimental design is intended to test whether subjects’ prior belief about probability

causally affects their valuations of risky lotteries. For simplicity, here we assume that subjects

in our experiment only have noise when encoding probability; their encoding of lottery payoffs is

noiseless. To justify this assumption, we consider only binary lotteries with two possible payoffs,

and crucially, the two possible payoffs are kept constant across all trials. As such, any noise arising

during the encoding of lottery payoffs should be minimal. In Section VI.1, we discuss the more

general case in which subjects encode both probability and lottery payoffs with noise.

Before describing the details of the experimental design, we should make clear that testing for

the causal effect of prior beliefs on valuation is not a new endeavor. For example, in the theory

and subsequent experimental tests of Kőszegi and Rabin (2007), lottery valuations are affected by

the DM ’s reference points, which are equated with her (rational) expectations. The important

distinction with previous literature is that valuation in our setting depends on prior beliefs about a

feature of the choice set that has already been presented to the DM . In particular, it is the DM ’s

prior beliefs about the probability p that optimally shape perception and drive valuation.

We now turn to the details of our design. On each trial, a subject is presented with a risky

lottery of the following form

($25, p; $0, 1− p). (13)

The subject is then asked to provide her certainty equivalent for the lottery by using a slider

bar. Importantly, information about the probability p is displayed to the subject through both a

numerical and a graphical representation; see Online Appendix D Figure D.2 for a screenshot of an

example trial. We choose to use the slider method rather than the commonly used multiple price

list, as it allows us to elicit an exact valuation instead of a switching interval. For similar reasons,

the slider method is also adopted by Khaw et al. (2022).

Each subject in the experiment completes a total of thirty trials, and thus submits a total of

thirty certainty equivalents for various values of probability p. Subjects are incentivized to report
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their certainty equivalents using a Becker-Degroot-Marschak mechanism (Becker, DeGroot, and

Marschak, 1964). We define the first twenty-four trials as “adaptation trials” and the final six

trials as “test trials.” The core of our design is to exogenously manipulate the distribution of p

on the adaptation trials and test the impact on valuation in the test trials. The distribution of p

on adaptation trials plays the role of the fast-moving component of the subject’s mixed prior, as

we previously described in Section IV. Importantly, for different sets of adaptation trials, we hold

constant the set of test trials. In this way, the only feature of the experiment that varies is the

distribution of p that subjects experience before they provide their valuations on the six test trials.

When constructing our design, we face a tradeoff in choosing the number of test trials per

subject. On the one hand, more test trials provide us with a greater number of data points on

which to estimate the treatment effect of the prior. On the other hand, the more test trials we use,

the weaker the treatment effect will be for the final few test trials. This is because early test trials

will begin to contaminate the prior that we attempt to induce with the adaptation trials. Thus,

while we would ideally like to construct a large set of test trials that sample p across the entire unit

interval, we are constrained by the number of test trials that we can use per subject.

Because this design constraint operates only at the subject level, we choose to construct three

separate test trial ranges, and randomly assign subjects to one of the three ranges. In this manner,

we can span a large range of the unit interval while minimizing the number of test trials needed

per subject. Specifically, we define a low range for which p ∈ {0.11, 0.15, 0.19, 0.23, 0.27, 0.31},

an intermediate range for which p ∈ {0.38, 0.42, 0.47, 0.53, 0.58, 0.62}, and a high range for which

p ∈ {0.69, 0.73, 0.77, 0.81, 0.85, 0.89}.

After subjects are randomized into one of the three test trial ranges, we further randomize

them into an adaptation condition. Each test trial range is associated with one of two possible

adaptation conditions. Table D.2 in Online Appendix D provides the exact values of p that we

use in each adaptation condition. For the low test trial range, we adapt subjects to either a low

or intermediate range of adaptation trials. The intuition is that, for a subject who is adapted to

low values of p, she should be able to easily discriminate between low values of probability once

the low range test trials arrive. In contrast, for a subject who is adapted to intermediate values

of p, she should be less able to discriminate between low values of probability. Thus, conditional

on being randomized into the low test trial range, our model predicts that valuation will respond
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more strongly to changes in p among subjects in the low adaptation condition, compared to those

in the intermediate adaptation condition.

A similar intuition applies for the other two test trial ranges. For those subjects randomized

into the high test trial range, we adapt them to either a high or intermediate range of adaptation

trials. For a subject who is adapted to high values of p, she should be better able to discriminate

between probabilities in this high range once the test trials arrive, compared to a subject who is

adapted to intermediate values of p.

Finally, for those subjects randomized into the intermediate test trial range, we adapt them to

either an extreme or intermediate range of adaptation trials. A subject who is adapted to extreme

values of p—closer to the endpoints of the unit interval— should be less able to discriminate between

probabilities in the intermediate range once the test trials arrive, compared to a subject who is

adapted to intermediate values of p.

V.2. Procedures

We recruit 600 subjects from Prolific. Subjects are paid $3.00 for completing the experiment.

In addition, 10% of the subjects are randomly selected to receive a bonus whose amount is based

on their decision in one randomly selected trial. Specifically, the bonus amount is the outcome of a

Becker-Degroot-Marschak mechanism: on the randomly selected trial, we draw a monetary amount

randomly from a uniform distribution between [0, 25]. If the subject’s certainty equivalent is below

or equal to this randomly drawn monetary amount, the subject receives the monetary amount. If,

however, the subject’s certainty equivalent is above the monetary amount, the computer plays the

lottery and pays the subject either $25 or $0 with the trial-specific probabilities.

At the beginning of the experiment, subjects are presented with instructions and then need

to pass a two-question comprehension check; the experimental instructions and the comprehen-

sion check are provided in Online Appendix E. On average, subjects completed the experiment in

11 minutes. Conditional on being chosen to receive a bonus, they received an average total earn-

ing of $19.54. The sample size, main analyses, and data exclusion criteria are pre-registered on

Aspredicted.org.13

13The pre-registration document for this experiment is at: https://aspredicted.org/blind.php?x=W25 48V.
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V.3. Results

Following the pre-registration, we apply two exclusion criteria before analyzing the data. First,

we exclude those subjects who violated a basic monotonicity property in their responses. In par-

ticular, for each subject, we estimate a linear regression of the certainty equivalent on p based on

the first twenty-four adaptation trials. We then record the regression coefficient for each subject,

and drop all subjects for whom the coefficient is negative; this restriction excludes 39 of the 600

subjects. Note that we estimate the regression for each subject only on the first twenty-four trials,

so that we do not select on the dependent variable of interest (certainty equivalents on test trials).

Next, we drop all observations for which the subject reported their certainty equivalent in less than

one second; this restriction further excludes 28 observations. Taken together, we are left with a

data set that contains 16,802 trials, of which 3,362 are test trials.

We now turn to testing our main hypothesis for each of the three different test trial ranges. In

order to arrive at an estimate of the subject’s perceived value of p, here we assume that the subject

has a linear utility function. This implies that the subject’s perception of p can be estimated simply

as CE
25 , where CE represents the certainty equivalent that the subject provides.14

Figure VI shows a graphical depiction of the causal effect the prior has on perception of proba-

bility. The figure has three panels; each panel plots the perceived probability against the objective

probability for two sets of subjects. The left panel involves two sets of subjects who are both ran-

domized into the low test trials; one set is adapted to the low adaptation trials, while the other set

is adapted to the intermediate adaptation trials. The right panel involves two sets of subjects who

are both randomized into the high test trials; one set is adapted to the high adaptation trials, while

the other set is adapted to the intermediate adaptation trials. Finally, the middle panel involves

two sets of subjects who are both randomized into the intermediate test trials; one set is adapted to

the extreme adaptation trials, while the other set is adapted to the intermediate adaptation trials.

[Place Figure VI about here]

Recall from Section IV and Figure V our theoretical prediction: subjects who are adapted to

intermediate probabilities should have greater difficulty discriminating between low probabilities,

14Later in this section, we consider a more general case that allows the subject to have intrinsic risk aversion over
the lottery payoff; for a payoff of X, the utility is u(X) = Xα, where α ≤ 1. We find that, under nonlinear utility
specifications, our experimental data continue to support the theoretical predictions from Section IV and Figure V.
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compared to those who are adapted to low probabilities. In other words, when the perceived prob-

ability is plotted against the objective probability, the slope should be lower for subjects who are

adapted to intermediate probabilities; the left panel of Figure VI confirms this prediction. Sim-

ilarly, subjects who are adapted to intermediate probabilities should also have greater difficulty

discriminating between high probabilities, compared to those who are adapted to high probabili-

ties; the right panel of Figure VI confirms this prediction. Finally, subjects who are adapted to

intermediate probabilities should have less difficulty discriminating between intermediate probabil-

ities, compared to those who are adapted to extreme probabilities; the middle panel of Figure VI

confirms this prediction. In sum, the three panels in Figure VI provide experimental evidence for

the theoretical prediction that the slope of different portions of the probability weighting function

is malleable in the manner predicted by the efficient coding hypothesis.

[Place Table II about here]

To formally test the efficient coding hypothesis, Table II presents results from three mixed effects

linear regressions, one for each test trial range. For these regressions, the dependent variable is our

estimate of the subject’s perceived valuation of p; the independent variables include the objective

value of probability p, a dummy variable labelled intermediate which takes the value of one if the

subject is randomized into the intermediate adaptation condition (and zero otherwise), and the

interaction between p and intermediate. We include only test trials in the regressions, which allows

us to estimate the effect of adaptation trials on valuation.

Column (1) reports the regression results for the low test trial range. The key variable of

interest, p× intermediate, has a significantly negative coefficient. This indicates that subjects who

are adapted to intermediate probabilities form perception of low probability that is less sensitive

to changes in the objective probability, compared to subjects who are adapted to low probabilities.

Column (3) reports the regression results for the high test trial range. Again, the interaction term,

p × intermediate, has a significantly negative coefficient. This indicates that subjects who are

adapted to intermediate probabilities form perception of high probability that is less sensitive to

changes in the objective probability, compared to subjects who are adapted to high probabilities.

Finally, Column (2) reports the regression results for the intermediate test trial range. Here, we

see that the interaction term has a significantly positive coefficient. Consistent with the prediction
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of efficient coding, this result indicates that subjects who are adapted to intermediate probabilities

form perception of intermediate probability that is more sensitive to changes in the objective

probability, compared to subjects who are adapted to extreme probabilities.

In the above analyses, our key dependent variable is the subject’s perceived value of p. However,

because this perceived value is unobservable, we estimate it using the certainty equivalent data—

under the assumption that the subject has a linear utility function. If, instead, we relax this linear

utility assumption and allow the subject to have intrinsic risk aversion over the lottery payoff X,

where X = 25 is associated with probability p and X = 0 is associated with probability 1−p, then,

on each trial, the certainty equivalent that the subject provides is

CE = [E(p̃|Rp) · (25)α]1/α = [E(p̃|Rp)]
1/α · 25, (14)

where α is the risk aversion parameter and α ≤ 1. Equation (14) implies that E(p̃|Rp) = (CE
25 )α.

We re-estimate our main regressions in Table II, but now using (CE
25 )α as the dependent variable.

We have examined a variety of values for α, including α = 0.88, the value reported in Tversky and

Kahneman (1992), and α = 0.70, the value used by Barberis, Jin, and Wang (2021) to match

the behavior of real-world retail investors. We find that our regression results are robust to these

alternative nonlinear utility specifications: the coefficient on p× intermediate remains significantly

negative for the low test trial range and the high test trial range, and it remains significantly

positive for the intermediate test trial range. We also note that, with higher risk aversion (i.e., as

α decreases), the implied perceived value of p will increase. For example, when α = 0.7, we find

that small probabilities are distorted upwards: v(p) > p when p is small.

VI. Discussion

VI.1. Noisy coding of payoffs and probabilities

The model described in Sections II and IV assumes that noise enters the decision process only

when the DM encodes probabilities; that is, it makes the simplifying assumption that there is no

noise in encoding lottery payoffs. To justify this assumption, we use the same lottery upside of

$25 on each trial of Experiment 2, and thus noisy coding of this fixed amount of $25 should be
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minimal. However, previous studies have shown that when payoffs vary across decision problems,

noisy encoding of payoffs has important consequences for behavior (Khaw et al., 2021; Frydman

and Jin, 2022). In this section, we study a more general case in which the DM encodes both payoffs

and probabilities with noise.

Consider a risky lottery of the form ($X, p; $0, 1−p); it pays X > 0 with probability p and zero

dollars with probability 1 − p. Suppose that the DM holds prior beliefs about X and p, denoted

by f(X, p). When the lottery is revealed to the DM , she draws two noisy signals: Rx is a noisy

signal of X and Rp is a noisy signal of p. The two signals are drawn from their respective likelihood

functions, f(Rx|X, p) and f(Rp|X, p). Further suppose that the DM encodes X and p through a

total number of n “neurons”—following Heng et al. (2020)—and that she chooses f(Rx|X, p) and

f(Rp|X, p) to maximize the mutual information between the payoff-probability pair, (X, p), and its

noisy representation, (Rx, Rp).

We now analyze a special case of the above model in whichX and p are statistically independent;

in this case, f(X, p) = f(X) · f(p). This special case is easier to solve, yet it remains a generalized

version of our baseline model as it allows for variation in X and noisy coding of X. We solve it

in Online Appendix B. We find that, under this model, our main predictions for the instability of

probability weighting continue to hold.

To illustrate our finding, we provide a numerical example. Suppose the DM holds a prior that

X is drawn uniformly from [23, 27] and that X and p are drawn independently. Also suppose that

the DM has a total of n = 15 neurons for the encoding of X and p. Then, in the intermediate

condition where the DM ’s prior about p is a mixture of the stable component of (10) and the fast-

moving component of (11), she optimally allocates nx = 8 neurons to encode X and np = 7 neurons

to encode p. Conversely, in the extreme condition where the DM ’s prior about p is a mixture of the

stable component of (10) and the fast-moving component of (12), she optimally allocates nx = 7

neurons to encode X and np = 8 neurons to encode p. Figure B.1 in Online Appendix B shows that

the weighting functions implied by the intermediate and the extreme conditions are quantitatively

similar to those in the lower graph of Figure V. As such, the theoretical predictions discussed in

Sections IV and V regarding the malleability of probability weighting remain robust to allowing for

noisy coding of X.

We emphasize that the above analysis assumes that X and p are statistically independent. In
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a more general model where X and p are correlated and the DM is aware of this correlation, the

optimal encoding rules will change. Deriving predictions from this general model is beyond the

scope of the paper.15 One potentially interesting direction for future work is to experimentally

manipulate the correlation between X and p in order to assess the extent to which information

about p affects the encoding precision of X. This, in turn, could guide future theorizing about how

the DM jointly encodes payoffs and probabilities.

VI.2. Belief distortion as a source of probability weighting

Both of our experiments showcase the role that efficient coding plays in generating probability

distortions. Experiment 1 highlights that subjects’ discrimination ability varies systematically over

the unit interval in a way that is predicted by efficient coding when subjects have a U -shaped prior.

Experiment 2 highlights the malleability of probability weighting, as exogenous shifts in the prior

lead to predictable changes in valuation.

The model that we present, which builds on earlier work by Khaw et al. (2021) and Frydman

and Jin (2022), has only one free parameter n. This parameter measures the number of “neurons”

that the DM uses to encode probability, so it can be interpreted as a capacity constraint. Our

assumption that n is finite—and thus information processing is constrained—is responsible for the

prediction that the average perception of p does not equal p. As such, our model of probability

weighting derives exclusively from a friction in information processing and thus points to a belief-

based channel as an important driver of probability distortions.

Such a belief-based channel is worth emphasizing, given that the literature beginning with Kah-

neman and Tversky (1979) has largely interpreted probability weighting as an expression of pref-

erences, rather than a misperception of beliefs. Specifically, our results suggest that the degree of

probability weighting should be modulated by the agent’s prior expectations, and thus informa-

tion provision and past experience may play an important role in characterizing the shape of the

weighting function. This interpretation is consistent with recent work by Enke and Graeber (2023),

who show that the weighting function can be modulated by the complexity of the lottery under

consideration. If the weighting function were instead exclusively driven by preferences, the weight-

15For related theoretical work, see Khaw et al. (2022) who allow the encoding precision of X to depend on the
noisy signal for p. Note that their model exogenously assumes the encoding functions; on the contrary, our model
endogenously derives the encoding functions from the DM ’s prior.
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ing function should not vary with complexity—which is then counterfactual to the data presented

by Enke and Graeber (2023). At the same time, our data do not rule out preferences as a source

of probability weighting. That is, even if we shut down our noisy encoding channel, it may well be

that valuation is still passed through an exogenous nonlinear probability weighting function.

There are some intricacies of the mechanism that our experiments do not nail down. For

example, consider the scenario in which a subject is presented with a risky lottery and is simply

asked to report the probability that is associated with the upside payoff. We speculate that subjects

would be able to report back to the experimenter the exact probability that is displayed on screen.

This raises the question: if the subject has conscious access to the objective probability, how could

the distortion of probability still operate through a belief-based channel?

One hypothesis is that, when information about p is retrieved from memory for the purpose of

valuation, it is retrieved with errors of the type we have modeled in our efficient coding framework.

Obviously, this finer hypothesis about the particular stages at which representations of probability

are and are not corrupted with error remains untested. Put differently, the cognitive representation

of probability may be different when a subject is asked to simply repeat back a probability to the

experimenter, compared to when she is asked to use it as an input to a subjective valuation process.

What our model attempts to capture is the cognitive representation that is relevant for valuation.16

VI.3. Endogenizing the encoding function

As we briefly discussed in the Introduction, there have been many earlier attempts to microfound

the probability weighting function. Our model is closest in spirit to recent models of noisy and

efficient coding of probability. In particular, Khaw et al. (2021, 2022) assume that the DM encodes

probabilities using a log odds encoding (or likelihood) function; specifically, the DM ’s noisy signal

of p is drawn from a normal distribution with mean of log( p
1−p).

17 Note that this likelihood

function hard-wires a feature whereby extreme probabilities are easier to discriminate compared to

intermediate probabilities. In contrast, our efficient coding model endogenously derives a likelihood

function that is qualitatively consistent with this feature, but under the assumption that the DM

16The triple-code model proposed in Dehaene (1992) suggests that the representation of number differs across
different decision contexts.

17Zhang and Maloney (2012) propose a related encoding function whereby the DM ’s distorted probability is a
convex combination of the log odds, namely log( p

1−p
), and a constant.
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has a U -shaped prior.18 Of course, if the DM ’s prior changes, our model then produces a different

likelihood function, presumably of a different functional form, whereas the likelihood function

in Khaw et al. (2021, 2022) remains fixed. Our data are consistent with the hypothesis that the

likelihood function indeed shifts with prior beliefs.

Another closely related model of efficient coding of probability is proposed in Zhang et al. (2020).

Those authors highlight the role that the prior plays in determining the precision of the encoding

function: as the range of probabilities considered becomes narrower, precision of each of those

considered probabilities increases. However, Zhang et al. (2020) do not consider general shapes of

the prior above and beyond its range, and thus cannot produce the non-uniform imprecision across

the unit interval that our model generates in the case of a U -shaped prior. At an empirical level, we

provide novel evidence that is consistent with the conjecture by Zhang et al. (2020) that “...human

representation of probability can adapt to the environment, in the spirit of efficient coding...” (pg

22032).

VI.4. An alternative performance objective

The efficient coding model in Section II assumes that the DM chooses the coding rule θ(p) that

maximizes the mutual information between probability p and its noisy signal Rp. However, there

are other plausible performance objectives that the DM may prefer instead (Ma and Woodford,

2020). For example, the DM may choose the coding rule so as to maximize the expected payoff

from the task at hand (Heng et al., 2020; Frydman and Jin, 2022). In this section, we examine

our model’s implications when the DM chooses the coding rule θ(p) that maximizes the expected

payoff from Experiment 2.

Specifically, given the Becker-Degroot-Marschak (Becker et al., 1964) incentive scheme in Ex-

periment 2, the DM will choose θ(p) to maximize the expected payoff

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp, (15)

18There is a conceptual difference between the likelihood function that arises endogenously under our model and
the exogenously assumed likelihood function where the noisy signal is drawn from a normal distribution with mean
of log( p

1−p
). Specifically, in the latter case, encoding of p becomes infinitely precise as p approaches either 0 or 1.

This, in turn, implies that v(p) → 0 as p → 0. In contrast, with the endogenous likelihood function from our model,
encoding of p remains imprecise as p approaches either 0 or 1; as a result, v(p) > 0 as p → 0. Similarly, the efficient
coding model of Zhang et al. (2020) also gives rise to v(p) > 0 as p → 0.
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where f(p) is the DM ’s prior belief, and f(Rp|p) and E[p̃|Rp] are given by equations (1) and (6);

we derive equation (15) in Online Appendix C. Because the coding rule only affects the second

term of equation (15), the performance objective can be rewritten so as to minimize the following

expected error

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp. (16)

To derive predictions, we assume that the DM again holds a U -shaped prior given by (8); we

set λ1 = λ2 = 8 and w = 0.5. Given this U -shaped prior, Figure C.1 in Online Appendix C plots

the optimal coding rule θ̂(p), which we solve numerically.19 The figure also plots the subjective

valuation v̂(p) implied by θ̂(p). Figure C.1 shows that, when the DM chooses a coding function

that maximizes the expected payoff, efficient coding and the U -shaped prior no longer lead to an

inverse S-shaped probability weighting function. This finding suggests that if the inverse S-shaped

weighting function is driven by efficient coding, then it is likely to be a consequence of the DM

maximizing mutual information.20

VI.5. Broader implications of imprecision of ratios

In Experiment 1, we use fractions as stimuli to represent probabilities. In Experiment 2, we

use explicit representations of state probabilities, both numerically (displaying percentages) and

visually (displaying the ratio of two colored bars). Throughout the paper, we have mainly been

concerned with deriving and testing implications for risky choice when the DM has an imprecise

representation of probability.

However, our theory can be applied more broadly to real numbers in the unit interval that do

not necessarily have to represent probabilities. For example, our framework of noisy and efficient

coding will also make predictions about perception of proportions when there is no intrinsic risk to

consider. To make ideas concrete, consider the task in Oprea (2022) where the DM must report

19We apply a projection method with Chebyshev polynomials to numerically solve for the θ̂(p) that minimizes (16).
See Mason and Handscomb (2003) for a detailed discussion of the properties of Chebyshev polynomials.

20When comparing different performance objectives that can be implemented in an efficient coding model, one
caveat is that there are also multiple possible information processing constraints for each performance objective. The
particular constraint we impose in our model is inherited from Heng et al. (2020), but other possible constraints—
for example, the one imposed in Wei and Stocker (2015)—have also been examined. For further discussion on the
comparison between minimizing error and maximizing discriminability in the context of probabilities, see Zhang et al.
(2020).
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a valuation of a riskless—but disaggregated—set of monetary payments. In particular, subjects

are asked to provide a valuation for an asset that is comprised of 100 disaggregated payments. A

proportion p of these payments are each worth $2.50 and the remaining proportion 1 − p of the

payments are worth $0. Thus, the subject’s task is simply to aggregate the 100 payments into a

single valuation.

If the subject encodes the proportion p with noise, this can drive a wedge between the subject’s

reported valuation and the “true” valuation—the latter is simply the sum of the 100 disaggre-

gated payments. Indeed, Oprea (2022) finds that subjects report valuations—what his paper calls

“simplicity equivalents”—that seem to accord with the four-fold pattern of risk-taking, even in the

absence of any intrinsic risk.21 Our model would predict this four-fold pattern—as long as the

DM ’s prior over p is U -shaped, which is consistent with the distribution of the realized values of

p in Oprea (2022)’s experiment. Moreover, our model makes an additional untested prediction,

which is that the pattern of reported simplicity equivalents can be modulated by the DM ’s prior

belief about proportions.

VI.6. Applications to financial economics

While probability weighting has been applied in a variety of areas of economics, including insur-

ance and betting markets, it has been particularly fruitful in explaining facts in financial economics

(Barberis, 2013; O’Donoghue and Somerville, 2018). The core component of probability weighting

that most researchers in financial economics have invoked is the overweighting of small probabilities.

Models with this basic assumption can generate the high equity premium (De Giorgi and Legg,

2012), abnormal returns of individual stocks (Barberis and Huang, 2008; Barberis, Mukherjee, and

Wang, 2016; Barberis et al., 2021), overpricing of out-of-the-money stock options (Baele, Driessen,

Ebert, Londono, and Spalt, 2019), and time-inconsistent risk-taking (Barberis, 2012; Ebert and

Strack, 2015; Heimer, Iliewa, Imas, and Weber, 2021). Importantly, in all these studies, researchers

assume that probability distortions are “hard-wired” and do not shift over time.

Our results suggest that the degree of probability distortions depends critically on the DM ’s

prior belief about probability, which can vary over time. It follows that the financial phenomena

21See also Vieider (2022) who replicates the Oprea (2022) findings using binary choice rather than the multiple
price list approach.
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described above should also vary over time—to the extent that they are generated by probability

weighting. This insight leads to two concrete paths forward for future empirical work. First, our

model predicts when probability distortions should arise, and thus when we should observe anoma-

lous asset prices and risk-taking behavior. For example, when combined with the theory in Barberis

et al. (2021), our model predicts conditional moments of asset prices by identifying periods when

overweighting of small probabilities should be more pronounced. During these periods—when per-

ception of probability is heavily distorted—we should observe average returns of individual stocks

that are consistent with those returns documented in anomalies that can be explained by prob-

ability weighting, for example, the idiosyncratic volatility and failure probability anomalies. But

during other periods, when investors’ prior beliefs induce less perceptual distortions, the asset

pricing anomalies should be weaker.

Second, by connecting probability distortions to investors’ prior beliefs, our model also makes

predictions about individual heterogeneity (Bruhin, Fehr-Duda, and Epper, 2010). In particular,

those investors who hold prior beliefs that probabilities are skewed towards 0 and 1 will distort

probabilities more than investors who believe that probabilities are uniformly distributed. One

challenge, of course, in testing these predictions is to obtain accurate measures of investors’ prior

beliefs about probabilities.

VII. Conclusion

We have provided a new explanation for probability weighting based on a core principle from

neuroscience called efficient coding. We first develop a model to show that efficient coding and a

U -shaped prior together generate the inverse S-shaped probability weighting from prospect the-

ory. Our model also predicts that, when the prior changes, the slope of different portions of the

probability weighting function will change predictably.

In a pair of experiments, we provide novel support for the efficient coding model. First, we

provide support for the hypothesis that perception of probability is jointly governed by efficient

coding and a U -shaped prior. The key piece of evidence is that decision accuracy is greater when

subjects are presented with probabilities that have higher density under a U -shaped prior. Second,

we measure the impact of the prior belief on valuation. To do so, we experimentally manipulate
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the prior and then assess whether valuation of a given lottery changes systematically. Indeed, we

find strong support that valuation and hence the shape of the probability weighting function are

unstable yet vary in the manner predicted by efficient coding.

In closing, it is useful to highlight the connection between the experimental results in our paper

and the patterns documented in recent experiments by Payzan-LeNestour and Woodford (2022)

and Frydman and Jin (2022). Each of the two latter papers provides experimental support in

favor of efficient coding as a driver of diminishing sensitivity, which is another core ingredient of

prospect theory. Thus, when viewed against this broader perspective, our data add credence to

the hypothesis that efficient coding serves as a common mechanism underlying multiple features of

prospect theory (Woodford, 2012a,b).
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sentation of the magnitude of symbolic and nonsymbolic ratios in adults, Quarterly Journal of

Experimental Psychology 65, 702–724.

Moyer, Robert S., and Thomas K. Landauer, 1967, Time required for judgments of numerical

inequality, Nature 215, 1519–1520.

O’Donoghue, Ted, and Jason Somerville, 2018, Modeling risk aversion in economics, Journal of

Economic Perspectives 32, 91–114.

37



Oprea, Ryan, 2022, Simplicity equivalents, Working paper.

Payzan-LeNestour, Elise, and Michael Woodford, 2022, Outlier blindness: A neurobiological foun-

dation for neglect of financial risk, Journal of Financial Economics 143, 1316–1343.

Prelec, Drazen, 1998, The probability weighting function, Econometrica 66, 497–527.

Quiggin, John, 1982, A theory of anticipated utility, Journal of Economic Behavior & Organization

3, 323–343.

Rottenstreich, Yuval, and Christopher K. Hsee, 2001, Money, kisses, and electric shocks: On the

affective psychology of risk, Psychological Science 12, 185–268.

Schneider, Michael, and Robert S. Siegler, 2010, Representations of the magnitudes of fractions,

Journal of Experimental Psychology: Human Perception and Performance 36, 1227–1238.

Siegler, Robert S., Clarissa A. Thompson, and Michael Schneider, 2011, An integrated theory of

whole number and fractions development, Cognitive Psychology 62, 273–296.

Steiner, Jakub, and Colin Stewart, 2016, Perceiving prospects properly, American Economic Review

106, 1601–1631.

Stewart, Neil, Nick Chater, and Gordon Brown, 2006, Decision by sampling, Cognitive Psychology

53, 1–26.

Szkudlarek, Emily, and Elizabeth M. Brannon, 2021, First and second graders successfully reason

about ratios with both dot arrays and arabic numerals, Child Development 92, 1011–1027.

Tversky, Amos, and Daniel Kahneman, 1992, Advances in prospect theory: Cumulative represen-

tation of uncertainty, Journal of Risk and Uncertainty 5, 297–323.

Vieider, Ferdinand M., 2022, Decisions under uncertainty as bayesian inference on choice options,

Working paper.

Viscusi, W Kip, 1989, Prospective reference theory: Toward an explanation of the paradoxes,

Journal of Risk and Uncertainty 2, 235–263.

38



Wei, Xue-Xin, and Alan A. Stocker, 2015, A bayesian observer model constrained by efficient coding

can explain ‘anti-bayesian’ percepts, Nature Neuroscience 18, 1509–1517.

Woodford, Michael, 2012a, Inattentive valuation and reference-dependent choice, Working paper.

Woodford, Michael, 2012b, Prospect theory as efficient perceptual distortion, American Economic

Review Papers and Proceedings 102, 41–46.

Yaari, Menahem E, 1987, The dual theory of choice under risk, Econometrica 95–115.

Zhang, Hang, and Laurence T. Maloney, 2012, Ubiquitous log odds: a common representation

of probability and frequency distortion in perception, action, and cognition, Frontier in Neuro-

science 6, 1–14.

Zhang, Hang, Xiangjun Ren, and Laurence T. Maloney, 2020, The bounded rationality of proba-

bility distortion, Proceedings of the National Academy of Sciences 117, 22024–22034.

Zimmermann, Jan, Paul W. Glimcher, and Kenway Louie, 2018, Multiple timescales of normalized

value coding underlie adaptive choice behavior, Nature Communications 9, 3206.

Zou, Deqiang, Gordon D. A. Brown, Ping Zhao, and Songting Dong, 2008, The shape of probability

weighting function: Findings in a binary comparison, Journal of Marketing Science 4, 56–68.

39



0 0.5 1

0

1

2

3

4

0 0.5 1

0

0.5

1

0 5 10

0

0.5

1

Figure I
Prior distribution, coding rule, and optimal likelihood functions

Panel A plots a U -shaped prior distribution in the form of (8) described in the main text; the
parameter values are: λ1 = λ2 = 8 and w = 0.5. Panel B plots the coding rule θ(p), defined in
equation (3), for the prior distribution from Panel A. Panel C plots the implied likelihood function
f(Rp|p), defined in equation (1), for four different probability values: p = 0.02, p = 0.04, p = 0.49,
and p = 0.51; the parameter n is set to 10.

40



0 0.5 1

0

1

2

3

4

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure II
Prior distribution and value function: Efficient coding and U -shaped prior

The upper graph plots a U -shaped prior distribution in the form of (8) described in the main
text; the parameter values are: λ1 = λ2 = 8 and w = 0.5. The lower graph plots the subjective
valuation implied by efficient coding, v(p), and its one-standard-deviation bounds v(p)±σ(p); when
computing v(p) and σ(p), we use the coding rule from equation (3) in the main text and we set the
parameter n to 10. The green dash-dot line is the forty-five degree line.
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Figure III
Accuracy and response time data from the fraction discrimination task (Experiment 1)

The upper panel plots the average accuracy rate for classification among the test trials in Exper-
iment 1. The lower panel plots the average response time also among the test trials. The x-axis
denotes the average probability of the two fractions on a given trial. The smoothed black line
represents the best fitting second-order polynomial; fitting is conducted at the subject-trial level.
The blue vertical bars denote two standard errors of the mean for each level of average probability.
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Figure IV
Prior distribution, coding rule, and optimal likelihood functions: Efficient coding and mixed prior

Panel A: the upper graph plots the mixed prior distribution in the form of (9) for the intermediate
condition; the middle graph plots the corresponding coding rule θ(p); the lower graph plots the
implied likelihood function, for p = 0.12, p = 0.14, p = 0.49, and p = 0.51. Panel B: the upper graph
plots the mixed prior distribution in the form of (9) for the extreme condition; the middle graph
plots the corresponding coding rule θ(p); the lower graph plots the implied likelihood function, for
p = 0.12, p = 0.14, p = 0.49, and p = 0.51. For both conditions, the first component of the mixed
prior is U -shaped in the form of (10); the parameter values are: λ1 = λ2 = 8 and w = 0.5. For
the intermediate condition, the second component of the mixed prior is in the form of (11); the
parameter values are: pl = 0.38 and ph = 0.62. For the extreme condition, the second component of
the mixed prior is in the form of (12); the parameter values are: pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,
and ph,2 = 0.9. For both panels, we set ξ = 0.5 and n = 10.
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Figure V
Prior distribution and value function: Efficient coding and mixed prior

The upper graph plots a mixed prior distribution fc(p) in the form of (9) described in the main
text. The first, stable component takes the form of (10); the parameter values are: λ1 = λ2 = 8 and
w = 0.5. The second, fast-moving component takes the form of (11) in the intermediate condition
and takes the form of (12) in the extreme condition; the parameter values are: pl = 0.38, ph = 0.62,
pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to the stable
component is 0.5. The lower graph plots, for both the intermediate condition and the extreme
condition, the subjective valuation implied by efficient coding, v(p); when computing v(p), we set
the parameter n to 10. The green dash-dot line is the forty-five degree line.
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Figure VI
Causal effect of prior experience on probability distortions (Experiment 2)

Each panel plots perceived probabilities against objective probabilities from one of the three test
trial ranges in Experiment 2. The legend in the upper left of each panel denotes the adaptation
condition. Vertical bars denote two standard errors of the mean.
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Table I
Accuracy and response times in Experiment 1

All trials Only trials with two-digit numerators

(1) (2) (3) (4)

Dependent variable: Correct Response time (seconds) Correct Response time (seconds)

extreme 0.026*** –0.112*** 0.011** –0.152***

(0.004) (0.013) (0.005) (0.018)

Constant 0.723*** 2.493*** 0.718*** 2.534***

(0.007) (0.040) (0.007) (0.041)

Observations 43,833 43,833 26,597 26,597

Notes. The table reports results from mixed effects linear regressions. Correct is a dummy

variable that takes the value of one if the subject correctly classifies the larger fraction on a given

trial. extreme takes the value of one if both fractions on the trial are less than 0.2 or greater than

0.8. Only test trials are included in the regression; catch trials are not included. We include a

random intercept which allows accuracy to vary across subjects. Standard errors of the fixed effect

estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.
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Table II
Perceptual biases of probability in Experiment 2

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.620*** 0.664*** 0.983***

(0.060) (0.059) (0.061)

intermediate 1.710 –18.531*** 14.857**

(1.901) (4.092) (6.745)

p×intermediate –0.312*** 0.367*** –0.166**

(0.070) (0.094) (0.084)

Constant 0.352 –5.279* –21.057***

(1.217) (2.722) (4.969)

Observations 1,127 1,096 1,133

Notes. The table reports results from mixed effects linear regressions in which the dependent

variable is the perceived probability, estimated from the certainty equivalent on each trial. The

dummy variable, intermediate, takes the value of one if the trial belongs to the intermediate adap-

tation condition, and zero otherwise. The variable p takes the objective value of the probability

associated with the risky lottery’s upside payoff. Both the dependent variable and the independent

variable p are multiplied by 100 (in percentage). Only data from test trials are included. There are

random effects on the independent variable p and the intercept. Standard errors of the fixed effect

estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.
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Online Appendix

A. Key Components for Generating the Inverse S-shaped

Probability Weighting Function

In this section, we argue that both efficient coding and a U -shaped prior are fundamentally

important for generating an inverse S-shaped weighting function. To illustrate how the weighting

function depends on both components, we examine two scenarios. The first scenario keeps the U -

shaped prior but replaces the efficient coding rule in equation (3) of the main text by an inefficient

one

θ(p) =
(
sin

(π
2
p
))2

. (A.1)

An important observation about this alternative coding rule is that it does not connect the prior

belief f(p) with the likelihood function f(Rp|p).22 Figure A.1 Panel A plots the weighting function

v(p) when the coding rule takes the form of equation (A.1). It shows that, in the absence of

efficient coding, the U -shaped prior alone is insufficient to generate an inverse S-shaped probability

weighting function.

[Place Figure A.1 about here]

The second scenario keeps the efficient coding rule but replaces the U -shaped prior by a uniform

prior. That is, we replace the U -shaped prior in equation (8) of the main text by a uniform prior

f(p) = 1. Figure A.1 Panel B shows that, with the uniform prior, efficient coding alone is also

insufficient to generate an inverse S-shaped weighting function. The results in Figure A.1 therefore

highlight that it is the particular set of likelihood functions that are optimized under a U -shaped

prior that are crucial for generating the inverse S-shaped weighting function.

22There are an infinite number of inefficient coding rules; equation (A.1) is just one of them that we use to explain
why a noisy coding model with a U -shaped prior is insufficient to generate an inverse S-shaped weighting function.
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Figure A.1
Model implications when relaxing the efficient coding or U -shaped prior assumption

Panel A: the upper graph plots a U -shaped prior distribution in the form of (8) described in
the main text; the parameter values are: λ1 = λ2 = 8 and w = 0.5. The lower graph plots
the subjective valuation implied by inefficient coding, v(p), and its one-standard-deviation bounds
v(p)± σ(p); when computing v(p) and σ(p), we use the coding rule from equation (A.1). Panel B:
the upper graph plots a uniform prior distribution f(p) = 1. The lower graph plots the subjective
valuation implied by efficient coding, v(p), and its one-standard-deviation bounds v(p)±σ(p); when
computing v(p) and σ(p), we use the coding rule from equation (3) in the main text. For both
panels, we set the parameter n to 10. In the lower graph of each panel, the green dash-dot line is
the forty-five degree line.
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B. Multi-Dimensional Efficient Coding

Consider a binary risky lottery: ($X, p; $0, 1−p). In this section, we analyze an efficient coding

model with two dimensions: the first dimension is X, the lottery upside; the second dimension is p,

the probability that the risky lottery delivers X. Suppose that the DM holds prior beliefs about

X and p, denoted by f(X, p). When the lottery is revealed to the DM , she draws a noisy signal,

Rx, of X, from the likelihood function f(Rx|X, p) and a noisy signal, Rp, of p, from the likelihood

function f(Rp|X, p). We then assume that the DM encodes X and p through a total number of n

“neurons” and that she chooses f(Rx|X, p) and f(Rp|X, p) to maximize

I((X, p); (Rx, Rp)), (B.1)

which is the mutual information between the payoff-probability pair, (X, p), and its noisy repre-

sentation (Rx, Rp).

Here, we analyze a special case of the above model in which the DM has a prior that X

and p are drawn independently. In this case, p contains no information about X and therefore

f(Rx|X, p) = f(Rx|X); similarly, X contains no information about p and therefore f(Rp|X, p) =

f(Rp|p). Moreover, it is easy to show that, when X and p are drawn independently,

I((X, p); (Rx, Rp)) = I(X;Rx) + I(p;Rp). (B.2)

That is, the overall mutual information in (B.1) is equal to the sum of I(X;Rx), the mutual

information between X and Rx, and I(p;Rp), the mutual information between p and Rp.

We then follow Heng et al. (2020) and obtain

f(Rx|X) =

(
nx

Rx

)
(θ(X))Rx(1− θ(X))nx−Rx ,

f(Rp|p) =

(
np

Rp

)
(θ(p))Rp(1− θ(p))np−Rp , (B.3)

where

θ(X) =
(
sin

(π
2
F (X)

))2
, θ(p) =

(
sin

(π
2
F (p)

))2
. (B.4)

That is, when theDM maximizes mutual information within each dimension, she arrives at the cod-

ing functions, θ(X) and θ(p), derived in Heng et al. (2020). As such, the constrained optimization

problem faced by the DM reduces to

max
nx>0,np>0

{I(X;Rx) + I(p;Rp)}, (B.5)

subject to equations (B.3) and (B.4) and nx + np = n. We solve this constrained optimization

problem numerically.

[Place Figure B.1 about here]
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Figure B.1 provides a numerical example of the model’s solution. Suppose the DM holds a

prior that X is drawn uniformly from [23, 27] and that X and p are drawn independently. Further

suppose that the DM has a total of n = 15 neurons to encode X and p. We then consider the

two mixed priors, which take the form of (9) described in Section IV. For both mixed priors, the

stable component takes the form of (10); the parameter values are: λ1 = λ2 = 8 and w = 0.5.

In the intermediate condition, the fast-moving component takes the form of (11). In the extreme

condition, the fast-moving component takes the form of (12). The parameter values are: pl = 0.38,

ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to the

stable component is 0.5.

Following the constrained optimization described by (B.5), the DM optimally allocates nx = 8

neurons to encode X and np = 7 neurons to encode p in the intermediate condition; she optimally

allocates nx = 7 neurons to encode X and np = 8 neurons to encode p in the extreme condition.

Figure B.1 plots the probability weighting functions implied by the intermediate and the extreme

conditions. Comparing Figure B.1 with Figure V, we observe that the theoretical predictions

discussed in Section IV regarding the malleability of probability weighting remain robust to allowing

for noisy coding of X.
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Figure B.1
Prior distribution and value function: Multi-dimensional efficient coding

The upper graph plots a mixed prior distribution fc(p) in the form of (9) described in the main
text. The first, stable component takes the form of (10); the parameter values are: λ1 = λ2 = 8
and w = 0.5. The second, fast-moving component takes the form of (11) in the intermediate
condition and takes the form of (12) in the extreme condition; the parameter values are: pl = 0.38,
ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to
the stable component is 0.5. The lower graph plots, for both the intermediate condition and the
extreme condition, the probability weighting function implied by the multi-dimensional efficient
coding model described in Online Appendix B; here we set n = 15. For both the intermediate
condition and the extreme condition, X is drawn uniformly from [23, 27]. In the intermediate
condition, the DM optimally chooses nx = 8 and np = 7; in the extreme condition, the DM
optimally chooses nx = 7 and np = 8. The green dash-dot line is the forty-five degree line.
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C. Expected Payoff from Experiment 2

In this section, we derive the expected payoff a subject receives from Experiment 2. As described

in Section V, each subject receives a fix amount of $3.00 for participating in the experiment. As

such, when computing the subject’s expected payoff, we focus only on the bonus component.

Suppose, for a given trial in Experiment 2, the objective probability is p. Given p, the subject’s

perceptual system generates a noisy signal Rp from f(Rp|p). Then, given Rp, the subject reports

a certainty equivalent of 25 · E[p̃|Rp]. With the Becker-Degroot-Marschak (Becker et al., 1964)

incentive scheme, the expected bonus payoff the subject receives, conditional on p and Rp, is

1

25

∫ 25

25·E[p̃|Rp]
qdq +

1

25

∫ 25·E[p̃|Rp]

0
(25× p)dq

=
1

25

∫ 25

25p
qdq +

1

25

∫ 25p

0
(25× p)dq − 1

25

∫ 25·E[p̃|Rp]

25p
(q − 25p)dq

=
25

2
(1 + p2)− 25

2
(E[p̃|Rp]− p)2. (C.1)

Note that equation (C.1) corresponds to the limiting case of the 2,500-row payoff scheme we im-

plemented in Experiment 2; the details of this 2,500-row payoff scheme are provided in Online

Appendix E.2; as the number of rows increases from 2,500 to infinity, the expected bonus payoff

approaches the expression given by equation (C.1).

Averaging across different Rp for a given p, and further averaging across different values of p

drawn from the subject’s prior belief f(p), the expected bonus payment is

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp, (C.2)

which is equation (15) in the main text.

[Place Figure C.1 about here]

Given the DM ’s performance objective in equation (C.2) and the U -shaped prior from equa-

tion (8) of the main text, Figure C.1 plots the optimal coding rule θ̂(p), which we solve numerically,

and the subjective valuation v̂(p) implied by θ̂(p).
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Figure C.1
Comparing performance objectives: Maximizing mutual information vs. maximizing expected

payoff

Panel A plots a U -shaped prior distribution in the form of (8) described in the main text; the
parameter values are: λ1 = λ2 = 8 and w = 0.5. Panel B plots the coding rule θ̂(p), numerically
solved for maximizing the expected payoff given by equation (C.2); it also plots the coding rule
θMI(p), defined in equation (3), that maximizes the mutual information between p and Rp. Panel

C plots the subjective valuation v̂(p) implied by θ̂(p); it also plots the subjective valuation vMI(p)
implied by θMI(p); the green dash-dot line is the forty-five degree line. For both Panel B and Panel
C, we set the parameter n to 10.
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D. Experimental Designs

Figure D.1
Screenshot from Experiment 1

Subjects are incentivized to quickly and accurately select the larger of the two displayed fractions.
Subjects input their response on the keyboard using either the “Q” key (for left) or the “P” key
(for right).
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Figure D.2
Screenshot of trial from Experiment 2

In this example, the risky lottery pays $25 with 53% probability and $0 with 47% probability. The
slider position indicates that the subject’s reported certainty equivalent on this trial is $10.12.
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Table D.1
Fraction pairs in Experiment 1

Test trials Catch trials

Fraction 1 num Fraction 1 denom Fraction 2 num Fraction 2 denom Fraction 1 num Fraction 1 denom Fraction 2 num Fraction 2 denom

1 25 3 50 3 45 1 20

2 25 3 50 2 9 3 8

3 25 7 50 7 55 3 20

4 25 7 50 5 6 3 8

4 25 9 50 9 46 4 21

6 25 11 50 3 7 2 7

6 25 13 50 13 55 6 21

7 25 13 50 5 9 3 7

8 25 17 50 17 45 8 21

9 25 17 50 5 9 2 7

9 25 19 50 19 55 9 20

11 25 21 50 3 5 3 8

11 25 23 50 23 45 11 20

12 25 23 50 7 8 2 9

13 25 27 50 27 55 13 20

14 25 27 50 5 6 7 8

14 25 29 50 29 45 14 21

16 25 31 50 2 9 5 9

16 25 33 50 33 55 16 21

17 25 33 50 5 6 3 4

18 25 37 50 37 45 18 19

19 25 37 50 3 7 5 6

19 25 39 50 39 55 19 20

21 25 41 50 7 8 3 7

21 25 43 50 43 45 21 25

22 25 43 50 5 6 3 7

23 25 47 50 47 55 23 25

24 25 47 50 2 7 7 8

Notes. The table presents the fraction pairs used in the discrimination task from Experiment 1. The left panel provides the 28

fraction pairs used in the test trials; the right panel provides the 28 fraction pairs used in the catch trials. For each panel and each row,

“Fraction 1 num” and “Fraction 1 denom” denote the numerator and denominator of the first fraction. “Fraction 2 num” and “Fraction

2 denom” denote the numerator and denominator of the second fraction. We counterbalance the left-right ordering of the two fractions

so that each subject is presented with a total of 56 test trials.
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Table D.2
Design parameters for Experiment 2

Adaptation conditions Test conditions

Extreme Low Intermediate High Low Intermediate High

10 10 38 67 11 38 69

11 11 39 68 15 42 73

12 12 40 69 19 47 77

13 13 41 70 23 53 81

14 14 42 71 27 58 85

15 15 43 72 31 62 89

16 16 44 73

17 17 45 74

18 18 46 75

19 19 47 76

20 20 48 77

21 21 49 78

79 22 51 79

80 23 52 80

81 24 53 81

82 25 54 82

83 26 55 83

84 27 56 84

85 28 57 85

86 29 58 86

87 30 59 87

88 31 60 88

89 32 61 89

90 33 62 90

Notes. The table provides the specific values of probability (in percentage) used in each of the

adaptation and test conditions. Each of the four columns on the left corresponds to an adaptation

condition, and it contains 24 trials. Each of the three columns on the right corresponds to a test

condition, and it contains 6 trials. Each entry in the table denotes a probability p associated with

the upside payoff of $25. Subjects who are randomized into the low test condition are further

randomized into either the low or intermediate adaptation condition; subjects who are randomized

into the high test condition are further randomized into either the high or intermediate adaptation

condition; subjects who are randomized into the intermediate test condition are further randomized

into either the extreme or intermediate adaptation condition.

58



E. Experimental Instructions

E.1. Instructions for the discrimination task in Experiment 1
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E.2. Instructions for the valuation task in Experiment 2
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