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ABSTRACT

I develop a dynamic equilibrium model that incorporates incorrect beliefs about crash risk and

use it to explain the available empirical evidence on financial booms and busts. In the model, if

a long period of time goes by without a crash, some investors’ perceived crash risk falls below the

true crash risk, inducing them to take on excessive leverage. Following a drop in fundamentals,

these investors de-lever substantially, both because of their high pre-crash leverage and because

they now believe future crashes to be more likely. Together, these two channels generate a crash in

the risky asset price that is much larger than the drop in fundamentals. The lower perceived crash

risk after years with no crashes also means that the average excess return on the risky asset is low

at precisely the moment when any crash that occurs would be especially large in size; moreover,

it means that, in the event of a crash, some investors may default and banks may sustain large

unexpected losses. Finally, the model shows how pre-crash warning signs can generate financial

fragility. By reducing investors’ optimism, warning signs also increase investors’ uncertainty about

their beliefs and thereby make them more likely to overreact to future bad news.
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A central topic of study in economics is financial instability—crashes in financial markets, bank

losses and failures, as well as the economic downturns that often accompany these events. One of the

most striking findings to emerge from recent research on these issues is the close link between debt

accumulation and subsequent instability. In a comprehensive analysis of financial crises over the

past eight centuries across 66 countries, Reinhart and Rogoff (2009) show that debt accumulation

during an economic boom often induces greater systemic risks than is initially apparent, and can

be followed by a severe financial crash. Similarly, Mian and Sufi (2010, 2011, 2014) document a

sharp rise in household leverage during the years before the Great Recession; Glick and Lansing

(2010) and Jorda, Schularick, and Taylor (2011) demonstrate a close relation between the build-up

of credit expansion and the severity of subsequent recessions; and Baron and Xiong (2014) find

that bank credit expansion predicts a higher probability of a subsequent equity crash.

What is the origin of this debt-linked financial instability? A growing strand of empirical work

highlights the importance of incorrect beliefs about crash risk: Coval, Jurek, and Stafford (2009)

show that investors underestimated the probability and the correlations of mortgage defaults during

the most recent credit boom; Foote, Gerardi, and Willen (2012) suggest that both investors and

banks underestimate the likelihood of a potential crash event during economic booms; Coval, Pan,

and Stafford (2014) find that suppliers of downside economic insurance products underestimate

crash risk before a crash occurs; and Baron and Xiong (2014) discover that, although crash risk

is significantly higher following bank credit expansions, the equity excess returns are nevertheless

lower, even in the absence of crashes. Although these empirical findings all suggest that incorrect

beliefs about crash risk may play a role in generating credit booms, asset bubbles, and price crashes,

a formal dynamic theory that captures this narrative has yet to be developed.

In this paper, I develop a continuous-time equilibrium model that studies the impact of incorrect

beliefs about crash risk on asset prices, portfolio decisions, and bank losses. There are two assets

in the infinite-horizon economy: a risk-free asset with a fixed return; and a risky asset which is

a claim to a stream of dividends that are subject to occasional crashes in fundamentals governed

by a Poisson process with a constant likelihood (I use “likelihood” and “intensity” interchangeably

hereafter). There are three types of agents: speculators, long-term investors, and banks. Both

speculators and long-term investors trade in the asset markets. Banks, on the other hand, provide

collateralized funding to speculators when these speculators want to take a levered position in

the risky asset. Long-term investors exhibit a downward-sloping demand for the risky asset; their

presence allows speculators to sell their risky asset holdings when they become too pessimistic.

Speculators—and their belief structure—are a primary focus of the paper. While the true crash

intensity is constant, speculators have incorrect views about it—they believe that the crash intensity

switches between a high-intensity state and a low-intensity state. This is the only difference between

the speculators in my model and the agents in a model with full information; the speculators

make proper Bayesian updates to their beliefs based on the observed crashes and are otherwise

fully rational in their optimizations. Importantly, this one deviation drives many of the model

implications.
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I first use the model to show that the magnitude of a price crash can sometimes be much larger

than the magnitude of the crash in fundamentals. The amplification works through two channels.

The first is a standard wealth channel: when speculators are highly levered, they respond to a

crash by selling a portion of the risky asset to reduce leverage to the desired level, pushing the price

further down. The second channel operates through beliefs: a crash occurrence provides evidence

to speculators that the economy is more likely to be in the high-intensity state, causing them

to increase their perceived likelihood of future crashes and to move their portfolios into the safe

asset. There is a strong interaction between these two amplification channels: on the one hand,

it is the underestimation of crash intensity that leads speculators to take on excessive leverage

before a crash; on the other hand, the post-crash deterioration in beliefs makes the pre-crash debt

accumulation a stronger force to push down the asset price. I show that, without incorrect beliefs

about crash intensity, the wealth channel alone does not generate a strong amplification—with fully

correct beliefs, speculators do not take on excessive leverage during the lead-up period, and they

do not panic after observing a sequence of crash events.

I then show that the model generates a positive relation between the size of the credit expansion

and the severity of a subsequent price crash. Following a long period without crashes, speculators’

perceived likelihood of future crashes becomes lower than the true crash likelihood, driving them

to take on excessive leverage—banks are willing to lend to speculators because they have the

underlying asset as collateral. Through levered risky investment, the amount of speculative capital

grows at a faster rate, adding fragility to the economy. Upon a crash, the wealth effect and the

deterioration in beliefs together lead to severe deleveraging, and a larger amount of speculative

capital associated with pessimistic beliefs further exacerbates the price crash. An amplified price

crash has persistent effects on the economy because the net worth of speculators grows only slowly

as their confidence recovers.

Consistent with the empirical results in Baron and Xiong (2014), the model also predicts that,

even as the true crash risk rises following a credit expansion, the average excess return of the risky

asset falls, and this is true even in the absence of a subsequent crash: with a lower perceived

crash intensity following a credit expansion, strong demand from the speculators pushes up the

equilibrium price of the risky asset and pushes down its average excess return.

In the model described so far, I have assumed that, while speculators have incorrect beliefs about

crash likelihood, all agents in the economy hold correct beliefs about the severity of a potential crash

in the risky asset price. Given this, no default occurs on the collateralized loans, and banks play

the same role as a riskless technology. In the next part of the paper, I relax this assumption

and allow for incorrect beliefs of speculators and of banks about crash severity. I endogenize

these beliefs using a bounded rationality argument. In particular, I show that, if agents—banks

and speculators—are unable to properly anticipate how other agents will act in the event of a

crash, this can generate underestimation and overestimation of crash severity in different states

of the world. With incorrect beliefs about crash severity, speculator defaults arise endogenously

and banks can take unanticipated losses upon a crash. In the absence of a crash, the perceived
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crash intensity decreases over time and excessive debt accumulation takes place. In such a levered

economy, failure to fully assess the market-wide deleveraging causes banks to require an insufficient

amount of collateral, which, in turn, leads to unanticipated losses for them when a crash occurs. In

this way, incorrect beliefs about crash likelihood and incorrect beliefs about crash severity interact,

and together generate a relation between banks’ funding decisions in the lead-up period and the

degree to which they are caught by surprise during financial crises. Indeed, a growing literature

indicates that financial intermediaries may suffer from unanticipated losses during a financial crisis

due to excessive lending in the preceding period (see, for example, Coval et al. (2009), Coval et al.

(2014), and Baron and Xiong (2014)).

The model makes several additional predictions. First, the belief dynamics about crash risk

naturally give rise to strong procyclical leverage, consistent with the empirical findings of procyclical

leverage for households, financial intermediaries, and hedge funds documented in Mian and Sufi

(2010), Adrian and Shin (2010), and Ang, Gorovyy, and van Inwegen (2012), respectively. Second,

the model simultaneously matches the countercyclical true Sharpe ratios and procyclical perceived

Sharpe ratios observed in the data (Lettau and Ludvigson (2010); Amromin and Sharpe (2013)).1

Third, in equilibrium, return extrapolation arises endogenously in the model, matching the survey

evidence analyzed by Vissing-Jorgensen (2004), Bacchetta, Mertens, and van Wincoop (2009),

Amromin and Sharpe (2013), and Greenwood and Shleifer (2014). Finally, the model highlights

the role of pre-crash warning signs in creating financial fragility. By reducing the level of optimism,

warning signs increase speculators’ uncertainty about their own beliefs and make them more likely

to overreact to future crashes, causing larger price drops and bigger losses for banks and speculators.

In summary, my paper provides a unified theory for explaining both booms and busts; the

nature and the magnitude of the boom drive the severity of the bust and the speed of the subsequent

recovery. All of these results hinge on the incorrect beliefs about crash risk.

The paper is related to the general notion, proposed in Kindleberger (1978) and Minsky (1992),

that prolonged economic booms lead to overoptimism and credit expansions, which introduce

fragility into the financial system. My framework is also connected to the heterogeneous-belief

models analyzed by Fostel and Geanakoplos (2008), Geanakoplos (2010), and Simsek (2013). How-

ever, my framework is fully dynamic while these models are, by and large, static. This is a crucial

distinction: it is the dynamics of beliefs that play a key role in the implications of the current

model. This paper also provides a micro-foundation for the neglected risk model of Gennaioli,

Shleifer, and Vishny (2012): my model only needs the incorrect beliefs about crash risk to explain

both credit expansions and severe price crashes, whereas the model of Gennaioli et al. (2012) needs

both neglected risks and infinite risk aversion for investors to explain these results. In addition, this

paper is related to the large literature in macroeconomics on business fluctuations and financial

instability.2 The principal difference between the current paper and this previous work is that I

1Notice that, without the belief dynamics about crash risk, the standard wealth effect generates a countercyclical,
rather than procyclical, pattern for leverage.

2For models of financial frictions, see Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler,
and Gilchrist (1999), He and Krishnamurthy (2012, 2013), and Brunnermeier and Sannikov (2014). For models of
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study incorrect beliefs while these other papers study financial frictions, agency costs, or infor-

mation production. My model setting is similar to the model of Xiong (2001). Nevertheless, on

top of his framework, mine brings in aggregate crash events, collateralized funding, and the belief

dynamics about crash risk that are central to my results.

Lastly, my model is related to the asset pricing literature on aggregate stock market behavior,

and, in particular, to the time-varying rare disaster models of Gabaix (2012) and Wachter (2013).

Three fundamental differences are worth noting. First, the disaster events in Gabaix (2012) and

Wachter (2013) correspond to events that cause dramatic consumption drops in the economy—

these are events that occur every 30 to 40 years; the crash events in my model are more frequent,

corresponding to financial crashes and economic downturns. Second, in Gabaix (2012) and Wachter

(2013), investors have fully correct beliefs about disaster risk, so the equilibrium risk premium is

low when the true disaster intensity is low; however, in my model, investors have incorrect beliefs

about crash risk, so the equilibrium risk premium is low when the perceived crash intensity is

low—a moment at which actual crash risk is high. Last, the representative-agent approach in these

models cannot address the empirical patterns on leverage, whereas leverage plays a crucial role in

my model.

The paper proceeds as follows. In Section I, I lay out the basic elements of the model. In

Section II, I first examine the implications of a benchmark model in which all agents have fully

correct beliefs. Section III introduces and studies incorrect beliefs about crash likelihood. Section IV

extends the model to allow for incorrect beliefs about crash severity. Section V concludes and

suggests directions for future research. All proofs, numerical analyses, and discussion of some

technical issues are in Appendices A and B.

I. General Framework

In this section, I lay out the basic structure of the model. The economy consists of two assets:

a risky asset with a fixed per-capita supply of one; and a safe asset with a perfectly elastic supply

and a constant interest rate r. The risky asset is a claim to a continuous dividend stream whose

level evolves as

dDt/Dt = gDdt+ σDdωt − κ(dNt − λdt), (1)

where gD, σD, λ, and κ are all positive constants, ωt is a one-dimensional Weiner process, and Nt

is a Poisson process with intensity λ. On average, the dividend level grows at a rate of gD with

random small fluctuations and occasional reductions of κ percent when a Poisson event occurs. The

Poisson event induces a crash in the asset price.

The equilibrium price of the risky asset is denoted Pt. Its evolution can be generically written

as

dPt/Pt = gP,tdt+ σP,tdωt − κP,t(dNt − λdt), (2)

risk-based funding constraints, see Danielsson, Shin, and Zigrand (2012) and Adrian and Boyarchenko (2012). For
models of information production, see Gorton and Pennacchi (1990) and Gorton and Ordonez (2014).
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where gP,t, σP,t, and κP,t are to be determined endogenously in equilibrium. I denote total return

volatility at time t as σ̄P,t; from (2), σ̄P,t = (σ2
P,t + λκ2

P,t)
1/2.

There are three types of agents in the economy: speculators, long-term investors, and banks.

Only speculators and long-term investors hold the risky asset—banks do not hold the risky asset

themselves; they provide collateralized funding to speculators when the speculators want to take a

levered position in the risky asset. I assume that, among the holders of the risky asset, speculators

make up a fraction µ of the population and long-term investors, a fraction 1− µ.

Long-term investors have a downward-sloping demand for the risky asset, namely

Qt = (PF,t − Pt)/k, (3)

where PF,t ≡ Dt/(r − gD) is the long-term investors’ estimate of the fundamental value of the

asset—the value determined by risk-neutral investors discounted at the interest rate without any

risk compensation.3 The presence of long-term investors provides a buyer for speculators to sell

their risky investment to when they become very pessimistic.

Speculators—and their belief structure—are a primary focus of the paper. Speculators have

incorrect views about the likelihood of crashes: while the true crash intensity is λ, they mistakenly

believe that the latent crash intensity λ̃t follows a two-state Markov chain with high- and low-state

intensity states, λh and λl, and update their expected crash intensity using Bayes’ law based on

past occurrences of crashes. These beliefs about crash intensity capture the notion that, after not

observing a crash for a long time, crash events fade in speculators’ memories, leading them to

underestimate the likelihood of a potential crash event; and conversely that, after a sequence of

crashes, crashes are salient to speculators, leading them to overestimate the likelihood of future

crashes. These dynamics are consistent with the literature in psychology on the availability heuristic

and memory biases; they are also consistent with the survey evidence on crash expectations and

the empirical evidence on investors’ risk taking behavior in financial markets.4 Speculators may

also have incorrect beliefs about the magnitude or severity of price declines in the event of a crash.

All speculators have time-additive log-utility preferences with a discount rate ρ.5 At time 0,

speculator i maximizes

Ei0
[∫ ∞

0
e−ρt`n(Cit)dt

]
(4)

subject to her beliefs and wealth evolution as specified later.

The lending relationship between speculators and banks works as follows. Each speculator

can either save by depositing her wealth in a bank or borrow from a bank by using the risky

asset as collateral. For simplicity, both the deposit and lending rates are fixed exogenously at

the interest rate r, and both deposit and collateralized funding last only for a period of dt—

3PF,t is the standard price from the Gordon growth model when the discount rate is r. Using a different discount
rate does not generate any qualitative change in my results.

4I discuss the belief structure and the evidence for it in detail in Section III.
5The log utility assumption is for simplicity; it allows me to solve for the equilibrium without solving the value

function for speculators.

5



new contracts are formed thereafter. Denote banks’ perceived severity of the potential asset price

crash at time t as κ̂BP,t. For each dollar invested at time t through collateralized funding, banks

provide (1 − κ̂BP,t)(1 − rdt) dollars requiring 1 − κ̂BP,t dollars back at t + dt, and speculators put

down the remaining 1 − (1 − κ̂BP,t)(1 − rdt) dollars. If a default occurs, speculators pay back

min[1− κ̂BP,t, θ(1− κP,t)], where θ ≥ 1 measures the ability of banks to seize speculators’ personal

wealth, and κP,t stands for the true severity of the crash in the asset price. When θ = 1, banks

cannot seize speculators’ personal wealth and take a loss of (κP,t − κ̂BP,t)/(1− κ̂BP,t) dollars on each

dollar they lent to speculators if κP,t > κ̂BP,t. With a higher θ, banks can seize some of speculators’

personal wealth and therefore experience a smaller loss. In short, banks’ beliefs about crash severity

is the key determinant for collateralized funding; if banks underestimate the crash severity, they

may lend too much to speculators and end up experiencing losses when a crash event occurs.

Defaults are an issue in the model only in Section IV.

II. The Rational Benchmark

In this section, I focus on a special case of the general framework in which both speculators

and banks hold fully correct beliefs about both the crash intensity and the crash severity—in other

words, all agents in the economy know both λ and κP,t. I refer to this special case as the rational

benchmark.

The economy is characterized by two state variables: speculators’ per-capita wealth, Wt, and

the dividend level Dt. Given log preferences for speculators, the constant stochastic returns to

scale for the dividend process, and the linear demand curve of the long-term investors, Pt must be

homogeneous of degree one in Dt and Wt. As a result, without loss of generality, Pt/Dt = l(xt),

where xt ≡Wt/Dt measures speculators’ wealth relative to fundamentals. In Appendix A.1, I show

that xt is the only state variable that governs the evolutions of gP,t, σP,t, and κP,t.

The evolution of speculator i’s wealth is

dW i
t = −Citdt+ rW i

t dt+ witW
i
t [(gP,t +Dt/Pt − r)dt+ σP,tdωt − κP,t(dNt − λdt)], (5)

with the restriction that wit ≤ κ−1
P,t. Here, wit is the fraction of wealth invested by speculator i in the

risky asset, either through collateralized investing (when wit > 1), through direct investing (when

0 ≤ wit ≤ 1), or through shorting (when wit < 0). The upper bound for wit is imposed by banks to

ensure that their loans can be repaid after a crash.

Below I provide the definition of an equilibrium.

Definition 1. An equilibrium in the rational benchmark is characterized by the price process {Pt}
and the consumption and portfolio decisions {Cit , wit} for each speculator i such that:

1) Given the price process {Pt} and the constant interest rate r, speculator i’s consumption and

portfolio decisions solve the maximization problem in (4) subject to her wealth evolution in (5);
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2) On a per-capita basis, the market clearing condition for the risky asset

µWtwt + (1− µ)Qt = Pt (6)

is satisfied at each point in time.6

To understand the implications of the rational benchmark, I begin with the following lemma

that characterizes the optimizing behavior of price-taking speculators.

Lemma 1. In the rational benchmark, speculator i’s optimal consumption stream is

Cit = ρW i
t , (7)

and her optimal risky asset investment wit is the lower root of

gP,t + λκP,t + l−1 − r − witσ2
P,t −

λκP,t
1− witκP,t

= 0. (8)

That is,

(wit)
∗ = wt =

κP,tAt + σ2
P,t −

√
(κP,tAt − σ2

P,t)
2 + 4λκ2

P,tσ
2
P,t

2κP,tσ2
P,t

, (9)

where At ≡ gP,t + λκP,t + l−1 − r is the average excess return of the risky asset in the absence of a

crash.

Proof. See Appendix A.1. �

Lemma 1 shows that, in the absence of crashes, the standard tradeoff between the average

excess return gP,t + λκP,t + l−1− r and the return variance σ2
P,t determines the optimal investment

in the risky asset. In addition to this mean-variance tradeoff, speculators are concerned about

crash risk; this is captured by the last term in (8): λκP,t/(1− witκP,t). Compared to the no-crash

case, crash risk lowers investors’ risky asset investment. When the conditional expected excess

return gP,t + l−1 − r is positive, the optimal investment wit is between 0 and κ−1
P,t, and when the

conditional expected excess return is negative, speculators optimally choose to short the asset. Since

speculators have correct beliefs about the crash severity κP,t, they will never choose to invest more

than κ−1
P,t in the risky asset regardless of how high its expected excess return is: as wit approaches

κ−1
P,t from below, there is a non-zero probability for speculator wealth to drop to a level that is close

to zero. Log-utility investors—and more generally any investor with an infinite marginal utility at

zero wealth—are extremely averse to such situations and hence reduce leverage.

With individual investors’ optimal portfolio and consumption decisions in hand, I now charac-

terize the equilibrium asset-pricing implications of the rational benchmark.

6In this paper, attention is restricted to the symmetric equilibrium.
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Proposition 1. In the rational benchmark, the Brownian volatility, the average growth rate of the

risky asset in the absence of a crash, and the crash severity on the asset price are, respectively,

σP,t(xt) =
1− (l′/l)xt

1− (l′/l)(c0l − c1)
σD, (10)

(gP,t + λκP,t)(xt) ≡ ḡP,t(xt) = [1− (l′/l)(c0l − c1)]−1
{
gD + λκ+ σDσP,t − σ2

D

+ (l′/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+1
2(l′′/l)[(l/l′)(σP,t − σD)]2

}
,

(11)

κP,t(xt) =
ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt

λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt

, (12)

where

c0 = (k + 1− µ)/(µk), c1 = (1− µ)/(µk(r − gD)), (13)

and the fraction of speculator wealth invested in the risky asset is

wt(xt) = (c0l − c1)/xt. (14)

The price-dividend ratio l(xt) is the solution to

λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt)

= l

(
λ

(1− κ){λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

xt

)
,

(15)

a second-order ordinary differential-difference equation after substitution of (10) through (12), with

boundary conditions

lim
xt→∞

l(xt) = (r − gD)−1, (16)

lim
xt→0

l(xt) = c1/c0, lim
xt→0

l′(xt) = w(0)/c0, (17)

where w(0) ≡ κA+σ2
D−
√

(κA−σ2
D)2+4λκ2σ2

D

2κσ2
D

and A = gD + λκ + (r − gD)(1 + k/(1 − µ)) − r. The

argument, sometimes omitted, of the function l and of its derivatives in Eqs. (10), (11), (12), (14),

and (15) is xt, except on the right-hand side of (15) where it is the post-crash value.

Proof. See Appendix A.1. �

Proposition 1 shows that the asset price and the portfolio and consumption decisions are fully

characterized by the price-dividend ratio l(xt), its first and second derivatives, and the evolution of

the fundamental dividend process Dt. From (10) and (14), the Brownian volatility can be written
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as

σP,t(xt) =
1− (l′/l)xt

1− (l′/l)wtxt︸ ︷︷ ︸
wealth effect

σD. (18)

For a typical set of parameter values that I specify later, l increases monotonically in xt: when

speculator wealth is low, most of the risky asset is held by long-term investors who require a low

price in order to hold the asset; when speculator wealth is high, their strong demand pushes up

the asset price. Provided that l′ is positive, the return volatility σP,t is greater (less) than the

fundamental volatility σD when speculators’ risky asset portfolio weight wt is greater (less) than

one. This captures the standard wealth effect. When wt is greater than one, speculators borrow

money to invest more in the risky asset. In this case, a price drop caused by a negative dividend

shock would drive up speculators’ leverage ratio and induce them to delever. This deleveraging

pushes the asset price further down and hence amplifies the return volatility. Conversely, when wt

is less than one, speculators only invest a fraction of their wealth in the risky asset. In this case, a

price drop caused by a negative dividend shock leads speculators to rebalance by purchasing more

of the risky asset, which in turn reduces the return volatility. As I will show in the numerical

analysis, this wealth effect also drives the model implications for the crash severity on the asset

price κP,t.

The boundary conditions on l are given in (16) and (17). As xt →∞, speculator wealth is much

larger than the dollar supply of the risky asset, and the asset market can clear only if the expected

excess return converges to zero; this leads to the condition in (16). On the other hand, as xt → 0,

the level of the asset price is mostly determined by long-term investors while the sensitivity of the

asset price with respect to xt is mostly affected by speculators’ portfolio decisions, and this leads

to the two conditions in (17).

The differential-difference equation in (15) reflects speculators’ rational forecast of the crash

severity. When making portfolio and consumption decisions, speculators correctly evaluate the

crash severity by thinking through the impact of a crash on the asset price, on the wealth level of

all agents, and on the future consumption of all agents. Eq. (15) cannot be solved analytically; I

therefore resort to numerical methods. The argument of the function l in the second line of the

equation in (15) includes a jump in the state variable with the jump size endogenously determined in

equilibrium. Due to this complexity, the standard finite-difference approach is insufficient for solving

the problem. I instead adopt a projection method with Chebyshev polynomials—a commonly used

numerical procedure in applied economics. To confine the state variable xt to the domain required

for Chebyshev polynomials, [−1, 1], I apply the monotonic transformation

zt = (xt − γ)/(xt + γ), (19)

where γ is a positive constant. I then define h(z) ≡ l(x(z)) and solve it numerically. I discuss the

details of the numerical analysis in Appendix B.1.
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Throughout the paper, I use the following default parameter values: µ = 0.5, r = 4%, gD =

1.5%, ρ = 1%, σD = 10%, k = 0.5, λ = 0.2, and κ = 0.04. Here λ = 0.2 means that, on average,

crashes occur every 5 years, while κ = 0.04 means that the dividend level decreases by 4% every

time a crash occurs.

In Figure 1, I plot the price-dividend ratio h, the crash severity κP , speculators’ risky asset

portfolio weight w, the conditional expected capital gain of the risky asset gP , the Brownian

volatility σP , as well as the total volatility σ̄P , all as functions of the transformed wealth-dividend

ratio z.

[Place Figure 1 about here]

Figure 1 shows that the equilibrium price-dividend ratio decreases as speculators’ per-capita

wealth level decreases. On the one hand, speculators’ dollar demand for the risky asset drops as

their wealth level drops; on the other hand, the long-term investors will absorb a larger fraction of

the asset supply only if the asset price decreases. The positive relation between the price-dividend

ratio and speculator wealth explains the pattern for speculators’ risky asset portfolio weight w. As

speculator wealth decreases, so does their dollar demand for the risky asset; to induce the long-term

investors to hold more of the risky asset, the price must fall, which in turn makes the risky asset

more attractive to speculators and cause them to increase w.

To gain intuition on the behavior of the crash severity κP , the Brownian volatility σP , and the

total volatility σ̄P , consider first the case when z moves away from one. In this case, speculator

wealth drops from an extremely high level and the fraction of their wealth invested in the risky asset

goes up from zero. With a small but positive w, the portfolio-rebalancing motive dampens the crash

severity κP and the return volatilities σP and σ̄P . Consider next the case when z further decreases

to the extent that speculators begin to take on debt, that is, w becomes greater than one. Here,

a price reduction triggered by a dividend reduction causes their leverage to increase. Naturally,

speculators would like to delever by selling some of their risky holdings to the long-term investors,

and this pushes the price further down. This deleveraging serves as an amplification mechanism

that pushes up κP , σP , and σ̄P . These patterns are consistent with the earlier discussion on the

wealth effect. Consider last the case when z goes to −1. In this case, speculator wealth becomes

very low and most of the risky asset is held by the long-term investors. As a result, deleveraging

by speculators has little impact on the asset price and the price-dividend ratio tends to become

constant, with κP , σP , and σ̄P converging to κ, σD, and (σ2
D + λκ2)1/2, respectively.

It is important to note that the rational bechmark is unable to match the empirical implica-

tions discussed in the Introduction. For example, the amplification in the rational benchmark is

quite small—the maximum crash size in asset price is around 4.6%, only slightly higher than the

4% crash size in dividend. One key reason for this small amplification is that speculators’ fully

correct beliefs about the crash likelihood and severity allow them to prevent a large asset price

drop and consumption reduction by (i) not taking on excessive leverage ex ante, and (ii) not pan-

icking ex post after observing a sequence of crash events. As I will show in Sections III and IV,

10



allowing for incorrect beliefs about crash intensity and crash severity greatly increases the amplifi-

cation. Another example is that as suggested in Figure 1, without the belief dynamics about crash

risk, the standard wealth effect in the rational benchmark generates a countercyclical, rather than

procyclical, pattern for leverage.

III. Incorrect Beliefs about Crash Likelihood

In this section, I study the case where speculators have incorrect beliefs about the likelihood of

future crashes. Specifically, I assume that, as in the rational benchmark, the true crash intensity

is a constant λ. However, speculators mistakenly believe that the latent intensity λ̃t follows a

two-state Markov chain with a high-state intensity λh and a low-state intensity λl that satisfy

0 < λl < λ < λh, and with the transition matrix7

( λ̃t+dt = λh λ̃t+dt = λl

λ̃t = λh 1− qhdt qhdt

λ̃t = λl qldt 1− qldt

)
, (20)

where qh, ql > 0 are the intensities for the transition from the high state to the low state and from

the low state to the high state, respectively.

This belief structure can be motivated by the availability heuristic, the notion that people assess

the frequency of an event by the ease with which instances or occurrences can be brought to mind.8

After a sequence of dramatic events, these events become salient to speculators, leading them to

increase their estimate of the frequency of such events. As these events move into the distant past,

however, it becomes difficult to retrieve them from memory, and as a result, speculators lower their

estimate of the frequency of such events.

Empirical and survey evidence both lend support to the availability heuristic and the belief

structure proposed above. Foote et al. (2012) present evidence to show that both investors and

banks underestimate the likelihood of a potential crash event during economic booms. Coval et al.

(2014) suggest that suppliers of downside economic insurance products neglect crash risk before a

crash occurs as they charge an insufficient risk premium. Dessaint and Matray (2014) show that

firms located close to a hurricane path become fearful after the event and increase the amount of

corporate cash holdings even though the real liquidity risk remains unchanged, and also that this

behavior reverses over time as the disaster recedes further back in time. The survey data collected

by Robert Shiller—his data measures, for both individual and institutional investors, their level of

confidence that there will be no stock market crash in the next six months—indicate that financial

crises tend to spur depression fears, while subsequent recoveries and economic booms tend to drive

7The belief structure can be viewed as a continuous-time limit of the regime-switching belief structure proposed
in Barberis, Shleifer, and Vishny (1998).

8See Tversky and Kahneman (1974), Kahneman and Frederick (2002), and Schwarz and Vaughn (2002) for detailed
discussion of the availability heuristic.
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the confidence level up.9

In my model, speculators use past occurrences of crashes up to time t as their information set to

form beliefs about πt, the probability that λ̃t equals λh. I will denote their beliefs by the perceived

intensity λt ≡ πtλh + (1− πt)λl. Solving the filtering problem for the belief evolution of λt gives10

dλt = [ql(λh − λt)− qh(λt − λl)− (λh − λt)(λt − λl)]dt+ λ−1
t (λh − λt)(λt − λl)dNt

≡ a(λt)dt+ b(λt)(dNt − λtdt).
(21)

Several observations about the λt process are worth noting. First, at any time, λt stays within

(λm, λh) unless the prior beliefs fall outside this region. The lower bound λm is greater than λl

because speculators know that, over any dt interval, there is a positive probability such that λ̃t can

switch from λl to λh, and as a result their expected intensity λt will be higher than λl.
11, 12 Second,

both barriers, λm and λh, are inaccessible. For any λt ∈ (λm, λh), λt deterministically trends

downward unless a Poisson event occurs and pushes up its level: in the absence of Poisson events

for a long period, λt decreases and gets asymptotically close to its lower barrier λm; conversely, after

frequent Poisson events, λt gets pushed up towards λh. Lastly, upon a Poisson event, λt exhibits

the largest jump in value if its pre-jump level is (λhλl)
1/2; with the expected intensity at this level,

speculators are most unsure about the true value of λ̃t and therefore the amount of information

carried by a crash event is the largest.

To prevent the model implications from being driven by speculators who are either too optimistic

or too pessimistic on average, I impose the following parameter restriction:

λ =
ql

qh + ql
λh +

qh
qh + ql

λl. (22)

This ensures that, from speculators’ perspective, the average λt in the long run is equal to the true

intensity λ.

Given their estimate of the expected crash intensity, λt, speculators believe the dividend evolu-

tion is

dDt/Dt = (ĝD,t + λtκ)dt+ σdω̂t − κdNt, (23)

where ĝD,t is their perceived expected growth rate of the dividend and dω̂t is their perceived

Brownian shock. As the actual dividend can be observed, this evolution must match the true

evolution

dDt/Dt = (gD,t + λκ)dt+ σdωt − κdNt. (24)

Because the focus of this paper is on the effects of incorrect beliefs about crash risk, I assume that

9The Crash Confidence Index is at http://som.yale.edu/faculty-research/our-centers/international-center-finance/data.
10This is a special case of the filtering problem derived in Moreira and Savov (2014) without a noisy signal. The

detailed derivation is in Appendix A.2.
11Here λm is given by {λh + λl + qh + ql − [(λh − λl + qh − ql)2 + 4qhql]

1/2}/2.
12As ql goes to zero, λm converges to λl from above.
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speculators’ perceived Brownian shock equals the true shock dω̂t = dωt. This means that

ĝD,t = gD + κ(λ− λt). (25)

That is, whenever the speculators are incorrect about crash intensity, they must make an offsetting

error in their belief about the expected growth rate of the dividend.13

Applying a similar argument to the equilibrium price evolution gives14, 15

ĝP,t = gP,t + κP,t(λ− λt). (26)

Eq. (26) is in line with the empirical findings of Vissing-Jorgensen (2004), Bacchetta et al. (2009),

Amromin and Sharpe (2013), and Greenwood and Shleifer (2014): after a period of high realized

returns due to the absence of crash events, speculators decrease their perceived likelihood of future

crashes, and therefore increase their perceived expected return relative to the true expected return.

In this specific sense, extrapolating the likelihood of crashes is one possible source of the return

extrapolation we observe among real-world investors.

Using (26), the evolution of the equilibrium price can be written as

dPt/Pt = (ĝP,t + λtκP,t)dt+ σP,tdωt − κP,tdNt

= (gP,t + λκP,t)dt+ σP,tdωt − κP,tdNt.
(27)

Therefore, speculator i ’s wealth evolves as

dW i
t = −Citdt+ rW i

t dt+ witW
i
t [(ĝP,t + λtκP,t +Dt/Pt − r)dt+ σP,tdωt − κP,tdNt]

= −Citdt+ rW i
t dt+ witW

i
t [(gP,t + λκP,t +Dt/Pt − r)dt+ σP,tdωt − κP,tdNt].

(28)

The economy is now characterized by three state variables: speculators’ perceived crash intensity

λt, their per-capita wealth Wt, and the dividend level Dt. The assumptions that speculators have

log-utility preferences, that the dividend process exhibits constant stochastic returns to scale, that

the long-term investors’ demand curve is linear in Dt and Pt, and that the belief structure in (20)

is imposed on a unit-free quantity λt, imply that Pt is homogenous of degree one in Dt and Wt.

Without loss of generality, then, Pt/Dt = l(xt, λt). In Appendix A.2, I show that the evolutions of

gP,t, σP,t, κP,t, wt, and ĝP,t are fully governed by the evolutions of λt and xt.

For this model, the definition of an equilibrium is given below.

Definition 2. An equilibrium is characterized by the price process {Pt} and the consumption and

13Eq. (25) says that, after a period of high realized dividend growth due to lack of crashes, speculators become
more optimistic about the expected dividend growth rate. In this sense, extrapolating the crash intensity can be
transformed to extrapolating the dividend growth rate. Extrapolation of fundamentals is consistent with the empirical
evidence documented by Lakonishok, Shleifer, and Vishny (1994), La Porta, Lakonishok, Shleifer, and Vishny (1997),
and Greenwood and Hanson (2013).

14As in any continuous-time model, the quadratic variations of dPt give the exact value of σP,t. In addition, in this
section, all agents are assumed to have correct beliefs about κP,t.

15Eqs. (25) and (26) can both be viewed as variations of the Girsanov theorem.
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portfolio decisions {Cit , wit} for each speculator i such that:

1) Given the price process {Pt} and the constant interest rate r, speculator i’s consumption and

portfolio decisions solve

max
{Ci

t ,w
i
t≤κ

−1
P,t}t≥0

Ei0
[∫ ∞

0
e−ρt`n(Cit)dt

]
(29)

subject to her belief evolution in (21) and her wealth evolution in (28);

2) On a per-capita basis, the market clearing condition for the risky asset

µWtwt + (1− µ)Qt = Pt (30)

is satisfied at each point in time.

To gain some intuition for the model’s implications, I first summarize speculators’ optimizing

behavior in the following lemma.

Lemma 2. For the model in which speculators hold incorrect beliefs about the likelihood of future

crashes, speculator i’s optimal consumption stream is

Cit = ρW i
t (31)

and her optimal risky asset investment wit is the lower root of

ĝP,t + λtκP,t + l−1 − r − witσ2
P,t −

λtκP,t
1− witκP,t

= 0. (32)

That is,

(wit)
∗ = wt =

κP,tAt + σ2
P,t −

√
(κP,tAt − σ2

P,t)
2 + 4λtκ2

P,tσ
2
P,t

2κP,tσ2
P,t

, (33)

where At ≡ ĝP,t + λtκP,t + l−1 − r = gP,t + λκP,t + l−1 − r is the average excess return of the risky

asset in the absence of a crash.

Proof. See Appendix A.2. �

As in Lemma 1, the mean-variance-crash risk tradeoff still drives the portfolio decisions. The

only difference is that speculators’ beliefs about crash likelihood are now incorrect. When the

perceived crash intensity λt is lower (higher) than the true crash intensity λ, speculators invest too

much (too little) in the risky asset.

In the proposition below, I present the analytical results that describe the asset pricing impli-

cations of the model.

Proposition 2. For the model in which speculators have incorrect beliefs about crash likelihood,

the Brownian volatility, the average growth rate of the risky asset in the absence of a crash, and
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the severity in the risky asset price are, respectively,

σP,t(xt, λt) =
1− (lx/l)xt

1− (lx/l)(c0l − c1)
σD, (34)

(gP,t + λκP,t)(xt, λt) ≡ ḡP,t(xt, λt) = [1− (lx/l)(c0l − c1)]−1
{
gD + λκ+ σDσP,t − σ2

D

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+(lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)[(l/lx)(σP,t − σD)]2

}
,

(35)

κP,t(xt, λt) =
ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt

. (36)

The fraction of speculator wealth invested in the risky asset is

wt(xt, λt) = (c0l − c1)/xt. (37)

The price-dividend ratio l(xt, λt) is the solution to

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt, λt)

= l

(
λt

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

xt, λt + b(λt)

)
,

(38)

a second-order partial differential-difference equation after substitution of (34) through (36), with

boundary conditions

lim
xt→∞

l(xt, λt) = [r − lim
xt→∞

ĝP,t(xt, λt)]
−1 ≡ m(λt), (39)

lim
xt→0

l(xt, λt) = c1/c0, lim
xt→0

lx(xt, λt) = w(0, λt)/c0, (40)

for ∀λt ∈ (λm, λh), where w(0, λt) ≡
κA+σ2

D−
√

(κA−σ2
D)2+4λtκ2σ2

D

2κσ2
D

, and the function m(λt) is deter-

mined by

m′(λt)[a(λt)− λtb(λt)] = m(λt)

(
λt − gD − λκ−m−1(λt) + r − (1− κ)λtm(λt + b(λt))

m(λt)

)
. (41)

The arguments, sometimes omitted, of the function l and of its derivatives in Eqs. (34) to (38) are

xt and λt, except on the right-hand side of (38) where they are the post-crash values.

Proof. See Appendix A.2. �

Proposition 2 shows that the asset pricing implications of the model are governed by the price-

dividend ratio l(xt, λt), its first and second derivatives, the evolution of the fundamental dividend

process Dt, and the belief dynamics of λt.
16 More important, the interaction between the wealth

16As both λh and λl converge to λ, Proposition 2 reduces to Proposition 1, which characterizes the equilibrium for
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effect and speculators’ belief dynamics drives many of the model’s implications.

From (34) and (37), the Brownian volatility is

σP,t(xt, λt) =
1− (lx/l)xt

1− (lx/l)wtxt︸ ︷︷ ︸
wealth effect and belief effect

σD. (42)

From Lemma 2, the multiplier in (42) is similar to that in (18) but now incorporates the effects of

both wealth and beliefs. When the perceived crash likelihood is lower than the true crash likelihood,

speculators to take on excessive leverage. Then, from (42), upon a negative Brownian shock to

the dividend, higher leverage will lead to a larger percentage loss of speculator wealth and hence a

stronger deleveraging effect. This in turn results in a larger amplification of the Brownian volatility.

Therefore, the multiplier in (42) is jointly determined by the standard wealth effect and the belief

effect.

For the crash severity on the equilibrium asset price, Eqs. (36), (37), and (38) imply

1− κP,t(xt, λt)
1− κ

l(xt, λt) = l

1− wtκP,t(xt, λt)
1− κ︸ ︷︷ ︸

wealth effect
and belief effect

xt, λt + b(λt)︸ ︷︷ ︸
belief effect

 . (43)

The post-crash price-dividend ratio can be determined in two ways. First, given that the price level

is reduced by κP,t and the dividend level is reduced by κ upon a crash, the post-crash price-dividend

ratio must equal its pre-crash level multiplied by (1− κP,t)/(1− κ), as suggested by the expression

on the left-hand side of (43). Second, given that the price-dividend ratio l is a function of xt and λt,

changes in l must come from changes in xt and λt, as suggested by the expression on the right-hand

side of (43). By linking these two expressions, Eq. (43) shows that the equilibrium crash severity

is jointly determined by the portfolio and funding decisions made by speculators and banks before

a crash and by their reactions to the crash. The longer the lead-up period is, the more confident

speculators become in terms of underestimating the likelihood of future crashes. Along with their

optimistic beliefs, less wealthy speculators borrow heavily through collateralized funding so that

they can invest more in the risky asset. As banks have the risky asset as collateral, they are willing

to lend to speculators. This results in a credit boom and a more vulnerable economy. Upon a crash

event, the higher leverage taken by the speculators in the pre-crash period causes more deleveraging

that pushes down the price-dividend ratio and pushes up the crash severity—a higher wt leads to

a sharper decline in the state variable xt on the right-hand side of (43), which in turn contributes

to a larger crash severity κP,t—the change in speculator wealth is jointly determined by the wealth

effect and the belief effect. In addition to causing the deleveraging process just described, the

crash event also affects speculators’ beliefs: their perceived crash likelihood increases from λt to

λt + b(λt). More pessimistic beliefs cause speculators to reduce risk taking and sell the risky asset,

the rational benchmark.
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and this further exacerbates the decline of the asset price—the jump in λt on the right-hand side

of (43) leads to a larger κP,t.

It is important to note that the second channel of deterioration in beliefs feeds back to the first

deleveraging channel—a higher κP,t caused by a sudden increase in λt further lowers speculators’

post-crash wealth, and this, as a result, leads to additional deleveraging and pushes the asset price

further down. It is also worth noting that the second belief channel and its feedback to the first

deleveraging channel are key determinants only of the crash severity, but not of the Brownian

volatility—in the absence of a crash, small fluctuations in the dividend do not cause speculators

to increase their perceived crash likelihood. This is the reason why incorrect beliefs about crash

likelihood greatly amplify the crash severity but not the Brownian volatility.

As for the rational benchmark, I use a projection method with Chebyshev polynomials to

solve the differential-difference equation in (38), with the same change of variables zt ≡ (xt −
γ)/(xt + γ) and with h(zt, λt) ≡ l(x(zt), λt). The details of the numerical procedure are laid out

in Appendix B.2. To examine the model’s quantitative implications, I leave the parameter values

provided in Section II unchanged and further specify the parameter values for the belief structure

in (20): I set λl = 0.025, λh = 1, and qh = 0.025, and derive ql = 0.005 from the parameter

restriction in (22). I provide some motivation for these parameter values when discussing the

time-series properties of the model.

[Place Figure 2a and Figure 2b about here]

Figures 2a and 2b present 3-D and 2-D graphs, respectively, for the price-dividend ratio h, the

crash severity κP,t, speculators’ portfolio weight in the risky asset wt, the Brownian volatility σP,t,

the true expected capital gain of the risky asset gP,t, and the perceived expected capital gain ĝP,t,

all as functions of speculators’ perceived crash intensity λt and the transformed wealth-dividend

ratio zt.

Figures 2a and 2b show that the price-dividend ratio h generally increases as λt decreases;

speculators push up the asset price as their perceived likelihood of future crashes decreases. The

price-dividend ratio also increases as zt increases; as speculators become wealthier, their demand

for the risky asset rises, and this pushes the asset price up.17 By comparing Figures 2a and 2b with

Figure 1, one can quantify the overvaluation and the undervaluation caused by the incorrect beliefs

about crash likelihood. For instance, when xt = ∞, speculator wealth is very high. In this case,

the price-dividend ratio is 48.8 if λt = λm, 22% higher than its value in the rational benchmark;

and if λt = λh, the price-dividend ratio is 27.1, 32% lower than its value in the rational benchmark.

17The validity of this statement depends on parameter values. In my example, the downward pressure on the
asset price caused by speculators’ pessimism is generally smaller compared to the downward pressured caused by
the long-term investors when they are the only investors in the economy. This is because of two reasons. First, the
value set for parameter k in Eq. (3) is such that the long-term investors have inelastic demand with respect to price
changes, so they require a very low price to hold the entire supply of the risky asset. Second, even when speculators’
perceived likelihood of future crashes is high, they know that their beliefs tend to revert back, and this puts an upper
bound on the extent to which they want to push down the asset price. For a higher λh, a lower qh, or a smaller k,
the price-dividend ratio may decrease in zt.

17



When xt = 10, speculator wealth is very low. In this case, the price-dividend ratio is 25 if λt = λm,

3% higher than its value in the rational benchmark; and if λt = λh, the price-dividend ratio is

20.1, 18% lower than its value in the rational benchmark. The asymmetry in size between the

overvaluation and the undervaluation is primarily due to the fact that crashes are infrequent so

the true crash intensity λ is small; with λ closer to λm than λh, the highest degree of pessimism is

larger than the highest degree of optimism.

The crash severity κP,t is hump-shaped with respect to λt for any given level of speculator

wealth. On the one hand, when speculators’ perceived likelihood of future crashes is very low,

seeing a crash will not cause them to become much more pessimistic because their uncertainty

about their own beliefs is low; that is, the revision in beliefs, b(λt), is small when λt is close to

λm. Therefore, the belief effect characterized in (43) is not very strong. On the other hand, when

speculators’ perceived likelihood of future crashes is very high, seeing another crash is consistent

with their current beliefs, so speculators will also not become much more pessimistic—again, the

belief effect in (43) is not very strong when λt is close to λh. At an intermediate level of λt, however,

speculators are quite uncertain about their own beliefs and therefore the information carried by a

crash event is large.18

The crash severity κP,t increases in speculator wealth for medium and high values of λt, but is

hump-shaped in speculator wealth for low values of λt: a higher wealth level for speculators means

that changes in their beliefs have a larger impact on the asset price, while a lower wealth level

leads to higher leverage and hence stronger deleveraging if a crash occurs; it is only when λt is low

that speculators take on sufficiently high leverage so that deleveraging plays a significant role in

determining κP,t.

It is important to note that, in the model, the belief and the wealth effects combined generate a

much stronger amplification than does the standard wealth effect alone. When λt = 0.20 and when

speculator wealth is high—for example, when xt =∞—the crash severity can be as high as 37.4%;

this is more than nine times as high as the dividend reduction of 4%. Even when speculator wealth

is low—for example, when xt = 10—the crash severity is 18.9% when λt = 0.20; this is still more

than 4.5 times as high as the dividend reduction. In this case, the debt-to-equity ratio is 61.3%;

collateralized funding effectively increases the amount of capital controlled by the speculators and

the impact of their beliefs on the asset price. As shown in (43), high leverage in the pre-crash

period and the post-crash deterioration in beliefs together greatly amplify the equilibrium crash

severity.

The risky asset portfolio weight wt increases as λt decreases for any given level of speculator

wealth; all else equal, a lower perceived likelihood of future crashes causes speculators to invest

more in the risky asset. Quantitatively, a large variation in wt takes place as λt changes—for

example, w(0, λt) in (40) shows that, when speculators have little wealth, their portfolio weight wt

rises from −61% to 316% as λt drops from λh to λm.

For low and medium values of λt, the portfolio weight wt increases as speculator wealth de-

18This is related to the uncertainty of beliefs analyzed in Veronesi (1999)
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creases, but is hump-shaped in speculator wealth for high values of λt. At lower levels of speculator

wealth, the downward pressure on the asset price created by the long-term investors increases, and

therefore the dividend-yield becomes higher. This generally makes the risky asset more attractive

to speculators and hence increases the portfolio weight they put on the asset. For a high value of

λt, however, a counterforce becomes important. With lower wealth, speculators have less capacity

to push up the asset price in later periods as their pessimism level decreases over time. Given

this, speculators’ perceived expected capital gain of the risky asset decreases as their wealth level

decreases; this reduces the portfolio weight speculators put on the risky asset.

Generally, the Brownian volatility σP,t has an inverse S-shaped relation with speculator wealth,

and this relation gets stronger as speculators’ perceived crash likelihood decreases. With a lower

value of λt, speculators invest more in the risky asset through collateralized funding, and the

deleveraging effect captured in (42) becomes larger upon a negative Brownian shock on the dividend.

By comparing Figures 2a and 2b with Figure 1, one can quantify the impact the belief dynamics

in (21) have on σP,t. For example, when xt = 10, speculators with fully correct beliefs take a debt-

to-equity ratio of 76% and σP,t = 11.46%. Speculators with incorrect beliefs about crash likelihood

take a debt-to-equity ratio of 101% if λt = λm, and σP,t = 12.23%. Note that the amplification

the belief effect creates on the Brownian volatility is much smaller than the amplification it creates

on the crash severity: in the model, small Brownian shocks do not affect speculators’ beliefs about

the likelihood of future crashes, but Poisson shocks can cause large deterioration in beliefs that are

detrimental to the asset price.19

The true expected capital gain of the risky asset gP,t is primarily driven by the rate at which

speculators’ belief about λt trends down in the absence of crashes—this is measured by a(λt) −
λtb(λt)—and by the sensitivity of the price-dividend ratio to belief changes—this is measured by

lλ/l. At an intermediate level of λt, speculators’ perceived crash likelihood decreases at a fast rate

and the impact of the belief dynamics on the asset price is large. In this case, later periods’ price

will be substantially pushed up by speculators’ decreasing level of perceived crash likelihood, and

this in turn pushes up the true expected capital gain of the risky asset in the current period.

It is important to note that the perceived expected capital gain of the risky asset ĝP,t and the

true expected capital gain gP,t exhibit quite different patterns. The perceived quantities are the ones

that determine speculators’ portfolio and consumption decisions. For either a low or a high level

of wealth, speculators’ perceived expected capital gain increases as λt decreases. When speculator

wealth is low, the asset price is, by and large, determined by the long-term investors, and the

expected capital gain of the asset price gP,t stays approximately constant at the fundamental growth

rate gD. The perceived expected capital gain ĝP,t is therefore higher than gD when speculators

underestimate the crash likelihood, and is lower than gD when speculators overestimate the crash

likelihood—this results in a negative relation between ĝP,t and λt when xt is low. When speculator

wealth is high, their holding of the risky asset is low, so in equilibrium, the perceived expected

19A different reason that limits the impact of beliefs on σP is the log preferences of speculators—if speculators’
relative risk aversion is much lower than one, then σP will become more responsive to λt because high confidence
that crashes are unlikely to occur would stimulate risk taking to a larger extent.

19



excess return must be close to zero. As a result, if λt is low, the dividend yield is low, and the

perceived expected capital gain must be high; conversely, if λt is high, the dividend yield is high,

and the perceived expected capital gain must be low—this again results in a negative relation

between ĝP,t and λt when xt is high.20 With either a high or a low wealth level, speculators have

little concern about the impact of their beliefs on the crash severity: when their wealth level is

high, speculators invest mostly in the safe asset; and when their wealth level is low, speculators’

beliefs have little impact on the asset price. However, at an intermediate wealth level, speculators

have a high concern about the impact of their beliefs on the crash severity because, in this case,

a crash on the asset price may significantly reduce their future consumption. Therefore, in order

to induce more risk taking, speculators’ perceived expected capital gain must be high when the

crash severity is high, that is, when λt is at an intermediate level—this results in a hump-shaped

relation between ĝP,t and λt when xt is at an intermediate level. The same reasoning also generates

a hump-shaped relation between ĝP,t and xt when λt is at an intermediate level—a level at which

a new crash has the greatest effect on speculators’ beliefs.

Following a sequence of crashes, speculators have pessimistic beliefs and tend to disinvest in

the risky asset. In the absence of new crashes, pessimism fades over time; this raises speculators’

perceived expectations of the capital gain on the risky asset. When financially constrained spec-

ulators believe that crashes are sufficiently unlikely to occur, they begin to take levered position

through collateralized funding; this helps them to accumulate wealth at a faster rate. At an inter-

mediate level of λt, the higher amount of speculative capital pushes up the perceived capital gain

as described in the previous paragraph. As time passes and speculators become overly optimistic,

“leaning against the wind” by the long-term investors prevents the true capital gain from becoming

too low, and this again helps to keep the perceived capital gain high. This line of argument suggests

that the model can capture the survey evidence on return expectations documented in Greenwood

and Shleifer (2014): in surveys, investors’ expectations about the market return increase after stock

prices have previously risen and decrease after stock prices have previously fallen. The model sug-

gests one source of extrapolative beliefs: investors tend to underestimate the likelihood of extreme

events after not seeing them for a long time, and tend to overestimate the likelihood of such events

once they observe a few of them in a row.

Figures 2a and 2b provide a state-space view of the model by plotting the values of various

quantities of interest in any state of the world characterized by xt and λt. To fully understand the

model implications, I also examine how the asset price, the portfolio and consumption decisions,

and investors’ beliefs and wealth evolve over time. Below I analyze some important time-series

properties of the model.

[Place Figure 3a and Figure 3b about here]

In Figures 3a and 3b, I present the time-series implications of the model given the initial values

of the two state variables and a simulated dividend process in the subsequent periods. This analysis

20At xt = 0, the exact relation ĝP,t = gD +κ(λ−λt) holds; at xt =∞, the exact relation ĝP,t = r−m−1(λt) holds.
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proceeds in four steps. First, I set the time span and the initial states for the time series by using

two pieces of data. The Crash Confidence Index provided by Robert Shiller suggests that, for both

individual and institutional investors, their perceived crash intensity peaked in November 2002

after the market bottomed out in October 2002. Therefore, I choose a ten-year time span from the

beginning of November 2002 to the end of 2012 with a high initial value for λt of 0.5. Empirical

studies also suggest that, for both U.S. households and hedge funds, leverage increased significantly

in the lead-up period to the Great Recession. Therefore, I set a low initial value for xt of 5 so that

financially constrained speculators in the model would like to take levered positions in the risky

asset once their expectations on the crash intensity become sufficiently low. Second, I preselect a

few dates—dates that mark the periods during which dramatic events or news hit the market—for

the Poisson shocks in the model. These dates include July 16th 2007, October 15th 2008, and August

8th 2011.21 Third, I discretize Eq. (1) and simulate a single dividend process with a step size of

a day, with an initial level of 10, and with three Poisson shocks on the three dates just described.

Lastly, I use the model solution from Proposition 2 to generate model-implied time series of the

equilibrium asset price, the crash severity, the belief dynamics of expected crash severity, the risky

asset portfolio weight, the perceived expected excess return, and the true expected excess return,

among other quantities.

Below I detail the time-series properties of the model by discussing a number of its empirical

predictions that are consistent with the data.

A. Procyclical Leverage and Amplification of Crash Severity

Many empirical studies document that, for both individual and institutional investors, leverage

exhibits a procyclical pattern. For example, Mian and Sufi (2010, 2011) show a striking rise in

household leverage during the years before the Great Recession; Adrian and Shin (2010) present

evidence of financial intermediaries actively adjusting their balance sheets in such a way that

leverage is high during booms and low during busts; and Ang et al. (2012) document that hedge

funds reduce leverage during financial downturns. Importantly, rising debt is a strong predictor

of the likelihood and the severity of subsequent crashes: Baron and Xiong (2014) show that bank

credit expansion significantly predicts a higher probability of subsequent equity crashes, while Glick

and Lansing (2010) and Jorda et al. (2011) demonstrate a close relation between credit expansions

and the severity of subsequent recessions.

21July 16th 2007 marks the failure of two Bear Stearns-run hedge funds. This event carries the notion of warning
signs embedded in a sequence of news throughout 2007 concerning the economic outlook; notably, the aggregate
monthly earnings in the U.S. started to decrease after July 2007. Around October 15th 2008 was a hectic period with
the financial sector being dysfunctional and with mounting concerns of a recession: a market panic on September 29th

was triggered by the failure of the House of Representatives to pass a $700 billion bank bailout bill; a steep market
decline on October 9th was caused by negative news about the auto industry; a significant Dow loss on October
15th was precipitated by Bush’s announcement of the largest government intervention in the banking sector since the
Great Depression; a big drop on October 22nd was fueled by increasing fears of a global recession; and a sharp decline
on December 1st was sparked by the NBER’s official announcement of a recession in the U.S. The stock market losses
topped one trillion dollars on August 8th 2011 because of the downgrade of the U.S. federal government, four days
after a large Dow drop triggered by fears of a double-dip recession and by worries about the European debt crisis.
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The time-series patterns in Figures 3a and 3b suggest that my dynamic theory generates a

strong procyclical leverage cycle for speculators. In the model, from November 2002 to the end

of 2006, speculators’ debt-to-equity ratio rises from 6.9% to 98.7% and their per-capita debt level

accordingly increases from 3.4 to 132.5. A sequence of warning signs clustered in mid-July of 2007

leads to substantial deleveraging; speculators cut their borrowing from 95.1% to 26.5% of their

wealth so that the debt level drops from 150.3 to 29.7. During the financial turmoil after the

bankruptcy of Lehman Brothers in September 2008, speculators fully exit the credit market, with

only 22.7% of their wealth invested in the risky asset. As the market stabilizes and recovers over

time, speculators gradually increase their risk-taking until fears of a double-dip recession strike the

market again in August of 2008, with speculators’ risky asset portfolio weight plummeting from

150.8% to 8.5% and their debt level dropping from 87.1 to zero.

Consistent with the data, Figures 3a and 3b also suggest that the severity of the asset price

crashes becomes larger after the credit expansion. In time order, the three crash events in the time

series reduce the equilibrium price by 14.2%, 18.3%, and 16.3%, respectively; these price reductions

are much larger than the dividend reductions of 4%. It is worth noting that this model quantifies

the impact of higher leverage on the equilibrium crash severity—the crash severity plot in Figure 3a

indicates that, if a Poisson event had hit the market at the beginning of November 2002 before the

credit boom, the crash size would have been 10.7%, 42% lower than the largest price reduction in

mid-October of 2008.

The fundamental reason why the model generates procyclical leverage cycle is the incorrect

beliefs about crash likelihood. Indeed, as pointed out by Danielsson et al. (2012), the standard

wealth effect alone, as analyzed in Xiong (2001), would generate countercyclical leverage: during

booms, when investors are wealthy, higher dollar demand for the risky asset tends to push up

the asset price and push down the Sharpe ratio, making it unattractive for investors to take on

high leverage; conversely, during busts when investors are poor, lower dollar demand tends to push

down the asset price and push up the Sharpe ratio, inducing investors to take on high leverage.

In the model, however, a countervailing force arises from the belief dynamics; instead of a mean-

variance tradeoff, speculators face a mean-variance-perceived crash risk tradeoff when making their

portfolio decisions. After a sequence of crash events, the high expected crash intensity perceived

by speculators cause them to reduce risk taking. As the crash events go into the distant past, the

perceived crash risk decreases and leverage begins to rise. Toward the end of a bubble period, the

debt-to-equity ratio tends to flatten out: on the one hand, with high leverage and good market

conditions, speculator wealth grows at a faster rate than the asset price, making the wealth effect a

stronger force, one that reduces leverage; on the other hand, there is an upper limit to speculators’

degree of optimism. Upon new crashes, speculators become pessimistic and their wealth level drops

significantly. The belief channel becomes the dominant force again, and a new cycle begins.

The belief dynamics are also the reason why the model yields a close relation between leverage

and the crash severity. As summarized in Eq. (43), the standard wealth effect and the belief

dynamics jointly determine the size of a crash; lower estimation of the crash intensity induces
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higher leverage, and this in turn means that a crash event and the associated belief deterioration

have a larger impact on the asset price through more severe deleveraging.

B. Credit Expansion and Subsequent Excess Returns

Baron and Xiong (2014) show that credit expansion not only predicts future crash risk, but

is also followed by lower equity excess returns, with or even without the presence of crash events

in the subsequent periods. This finding presents a challenge to existing theories with fully correct

beliefs because higher crash risks should be compensated by higher equity premia. However, the

incorrect beliefs about crash intensity in this model naturally generate these empirical patterns.

Indeed, Figure 3b suggests that both the true expected excess return and the average excess return

in the absence of crash events are lower following a significant credit expansion: a credit expansion

in the model is driven by an increasing degree of crash risk neglect, and it is exactly the crash risk

neglect that drives down the true excess return.

C. Countercyclical Sharpe Ratios

Empirical evidence suggests that the market Sharpe ratio is countercyclical (see Lettau and

Ludvigson (2010) for a detailed discussion of this topic). Figure 3b shows that the model generates

such a countercyclical pattern, with the driving force being the sharp rise of the expected excess

return during crises: on the one hand, the price reduction is much larger than the dividend reduction

upon a crash and therefore the dividend yield spikes up; on the other hand, as the economy begins

to recover, investor pessimism decays and their dollar demand for the risky asset rises, lifting up

the asset prices in later periods, and, as a result, pushing up the current period’s expected capital

gain as well.

It is important to notice that, in my framework, even though the true Sharpe ratios are coun-

tercyclical, the perceived Sharpe ratios are strongly procyclical, consistent with the procyclical

leverage cycle discussed above—the time-series correlation between the perceived Sharpe ratios

and the true Sharpe ratios in Figure 3b is −0.78. Using survey data, Amromin and Sharpe (2013)

show that the Sharpe ratios perceived by households are indeed procyclical. The contrast between

these two time series stems from the incorrect beliefs about crash intensity; as I am about to dis-

cuss, although the true expected excess return spikes up during crashes, the perceived expected

excess return drops significantly. 22

D. Extrapolative Expectations

Survey evidence analyzed by Vissing-Jorgensen (2004), Bacchetta et al. (2009), Amromin and

Sharpe (2013), and Greenwood and Shleifer (2014) suggests that many investors—both individual

and institutional investors—hold extrapolative expectations, believing that the stock market will

keep rising after rising in the past, and falling after falling in the past.

22Any asset pricing model with fully correct beliefs will be unable to match both patterns.
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The time series of perceived expected excess return in Figure 3b suggests that return extrap-

olation arises naturally in the model. After a sequence of crashes, the asset price goes down and

investors become overly pessimistic, revising down their expected excess returns amid fears of fu-

ture crashes. As historic crash events get into the distant past, the asset price rises and investors

become more and more optimistic, revising up their expected excess returns.

It is worth emphasizing that the source of return extrapolation in the model is clearly not the

only one. The belief dynamics specified in (21) are only affected by crashes but are unaffected

by small Brownian shocks. It is evident that positive fundamental shocks in economic booms can

lead to overoptimism, and the theory proposed in Barberis, Greenwood, Jin, and Shleifer (2014)

analyzes the effect of realized Brownian shocks on investors’ beliefs and asset prices.

In contrast to the procyclical pattern for the perceived expected excess return, the true expected

excess return exhibits a strong countercyclical pattern; the correlation between the two time series

is −0.60. It is exactly when market is filled with fear after crashes that the true expected excess

return becomes large—to some extent, loss of confidence is why the true expected excess return, as

well as the true Sharpe ratio, is high during busts. The negative correlation between the perceived

and the true expected excess returns is consistent with the finding of Amromin and Sharpe (2013)

and Greenwood and Shleifer (2014) that investors’ expectations of returns are negatively correlated

with realized returns.

The time-series results in Figures 3a and 3b are based on one particular simulated dividend

path. To complete the discussion of the model’s time-series implications, I present in Figure 4

several quantities of interest, with each quantity averaged over 1000 simulated paths, and with

specified initial states and timing of subsequent crash realizations. Specifically, I compute the

average amount of credit expansion, measured by changes in the level of debt over either one year

or two years in the absence of an intervening crash event, for various initial values of x0 and λ0. I

then compute the average severity of the crash in the asset price assuming that a dividend crash

hits the market by the end of the one-year or two-year period. In this way, I examine the effect that

the initial belief, the initial wealth, and the length of the expansion period have on the relation

between credit expansion and crash severity. I further examine the consequence of the crash by

computing the average recovery time in subsequent periods.23

[Place Figure 4 about here]

During a period without a crash, Figure 4 suggests that the amount of credit expansion is hump-

shaped in speculators’ initial wealth: with a low wealth level, the amount of debt speculators can

borrow is limited by their wealth; with a medium wealth level, speculators rely heavily on debt to

invest in the risky asset as their optimism increases over time, resulting in a large credit expansion;

with a high wealth level, a general equilibrium effect pushes down the expected excess return so

that speculators take on less debt. The end-of-period crash severity in the asset price, however, is

23The recovery time is defined as the amount of time the economy spends without borrowing and lending between
speculators and banks. I look at the subsequent three years following a crash event; if the credit market stops
operating for more than three years, the recovery time is capped at three.

24



monotonically increasing in speculators’ initial wealth level since the higher speculator wealth leads

to a larger impact of speculators’ beliefs on the asset price, whether or not they are levered. The

post-crash recovery time is also monotonically increasing in speculators’ wealth because a larger

crash requires more time to correct.

If one views the speculators in the model as households, a group that does not have enough

wealth to absorb the entire supply of the risky asset, then the low and medium wealth levels are of

more empirical relevance. In this range, higher speculator wealth causes a bigger credit expansion, a

more severe crash, and a longer recovery time. In other words, higher speculator wealth strengthens

the relation between credit expansion and the severity of subsequent crashes.

Given a low initial wealth level for speculators, the size of credit expansion is hump-shaped

in the initial belief λ0: a medium initial level of λ0 tends to be followed by the largest increase

in the level of optimism, resulting in a bigger size of credit expansion. Given a medium-to-high

initial wealth level, however, the amount of credit expansion becomes monotonically decreasing in

λ0: a lower λ0 helps speculators to accumulate wealth at a faster rate during the early stage of the

credit expansion and this amplifies their need for debt as they becomes more optimistic over time;

the same intuition also explains why the end-of-period crash severity is larger for speculators with

lower λ0. The recovery time is increasing in λ0 since, with higher λ0, speculators become more

pessimistic after the crash so it takes a longer time for borrowing to resume.

Figure 4 indicates that a longer expansion period naturally leads to a larger amount of credit

expansion and a larger crash severity. Interestingly, it also shows that a longer expansion period

leads to a shorter rather than longer recovery time in the model. This result comes from the fact

that a longer credit expansion increases the level of optimism to a larger extent and therefore results

in less pessimistic beliefs after a crash event.

Up to this point, I have been assuming that only speculators have incorrect beliefs about crash

likelihood and both speculators and banks have fully correct beliefs about crash severity. In such

a model, banks do not take any losses after crashes since they have fully thought through all

the consequences of a crash event and have requested a sufficient amount of collateral to hedge the

crash risk. Nevertheless, a growing empirical literature suggests that banks do take significant losses

during financial crises, and that, to some degree, they are caught by surprise: Foote et al. (2012)

argue that banks were among the biggest losers in the recent Great Recession; Baron and Xiong

(2014) show that the mean excess return for the bank equity index following credit expansions is

substantially negative; Cheng, Raina, and Xiong (2013) provide evidence that mid-level managers

in securitized finance were significantly more likely to purchase second homes for their personal

accounts compared to some control groups during the housing bubble and that the performance

of their home portfolios was much worse; Coval et al. (2014) demonstrate that neglected crash

risk by suppliers of downside economic insurance products leads to large unexpected losses. Given

these findings, it is important to consider the case where agents have incorrect beliefs about crash

severity. I do this in Section IV.
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IV. Incorrect Beliefs about Crash Severity

In this section, I further generalize the model to allow for incorrect beliefs about the severity of

the price crash. To model incorrect beliefs about crash severity and provide a micro-foundation for

them, I take a bounded-rationality approach.24 Recall from Eq. (43) that speculators and banks

need to fully anticipate the deleveraging taken by all the speculators in the economy to make a

rational forecast of the size of a potential crash. Such complete awareness may be implausible. If a

single-risky-asset framework is a reduced-form model for multiple assets, then assessing deleveraging

for all assets requires, at the very least, an accurate estimate of systematic risk. Investors may make

mistakes in this assessment—indeed, Coval et al. (2009) show that investors underestimated both

the probability of mortgage defaults and the correlations among these defaults during the most

recent credit boom. It is therefore reasonable to assume that, ex ante, speculators and banks may

have limited capacity to assess the post-crash market-wide deleveraging. To capture this form of

bounded rationality, I modify (43) as

1− κ̂SP,t(xt, λt)
1− κ

l(xt, λt) = l


[
ξ + (1− ξ)

1− wtκ̂SP,t(xt, λt)
1− κ

]
︸ ︷︷ ︸

wealth effect and belief effect
with bounded rationality

xt, λt + b(λt)︸ ︷︷ ︸
belief effect

 . (44)

Eq. (44) specifies the ex ante crash severity perceived by speculators κ̂SP,t given the current state

variables xt and λt. The parameter ξ measures the degree of bounded rationality.25 When ξ = 1,

investors are completely myopic in assessing the impact of a crash on the state variable xt; they

ignore the effect of deleveraging by the other investors and believe that the reduction in others’

wealth in a crash will have the same percentage size as the reduction in the dividend. When

ξ = 0, (44) reduces to (43) and speculators have completely rational forecasts about the severity of

a price crash. For simplicity, I assume that banks and speculators are equally irrational in assessing

the crash severity. In other words, κ̂SP,t = κ̂BP,t = κ̂P,t.

Two observations about the modelling assumption on the incorrect beliefs about crash severity

are worth mentioning. First, (44) only determines the perceived crash severity, not the true or

realized crash severity κP,t. When κ̂BP,t < κP,t, the collateral requirement may be insufficient to

repay the loan, and banks could suffer losses upon a crash. Second, (44) can generate either

underestimation or overestimation of the crash severity depending on the state of the world; the

24Alternatively, incorrect beliefs about crash severity can also be motivated in the same way as with incorrect beliefs
about the crash likelihood, namely, using the availability heuristic. After a sequence of crashes, such events become
very salient and easy to recall; as a result, investors may overestimate the magnitude of future crashes. Conversely,
after a prolonged absence of crashes, investors may find it difficult to retrieve crash-related information from memory,
and therefore underestimate the severity of future crashes.

25Note that, in principle, speculators and banks could also hold incorrect beliefs about the size of the dividend
crash, κ. However, given that κ is a constant and can be learned after just a single crash observation, I assume that
it is known to all agents in the economy.
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size of misestimation is tied to the value of the parameter ξ.

Given incorrect beliefs about crash severity, the state-dependent expected capital gain, as per-

ceived by speculators, now includes a severity term in addition to the intensity effect introduced

earlier

ĝP,t = gP,t + κP,t(λ− λt)︸ ︷︷ ︸
intensity effect

+λt(κP,t − κ̂P,t)︸ ︷︷ ︸
severity effect

. (45)

Underestimating the crash severity leads speculators to overestimate the expected capital gain,

and conversely, overestimating the crash severity leads speculators to underestimate the expected

capital gain.

By (45), the perceived evolution of the equilibrium price is

dPt/Pt =̂ (ĝP,t + λtκ̂P,t)dt+ σP,tdωt − κ̂P,tdNt

=̂ (gP,t + λκP,t)dt+ σP,tdωt − κ̂P,tdNt.
(46)

The symbol “=̂” indicates that the equation holds only in speculators’ perception. Recall that, as

discussed in (26), ĝP,t + λtκ̂P,t and gP,t + λκP,t have been assumed to be equal to focus attention

on errors in beliefs about crash risk. This means that the perceived price evolution matches the

true evolution except when a crash occurs.

Given (46), speculator i perceives that her wealth evolution is

dW i
t =̂ − Citdt+ rW i

t dt+ witW
i
t [(ĝP,t + λtκ̂P,t +Dt/Pt − r)dt+ σP,tdωt − κ̂P,tdNt]

=̂ − Citdt+ rW i
t dt+ witW

i
t [(gP,t + λκP,t +Dt/Pt − r)dt+ σP,tdωt − κ̂P,tdNt].

(47)

with wit ≤ κ̂−1
P,t.

Introducing incorrect beliefs about the crash severity does not bring in new state variables for

the economy. As before, Pt/Dt = l(xt, λt).

The definition of an equilibrium in this economy is given below.

Definition 3. An equilibrium is characterized by the price process {Pt} and the consumption and

portfolio decisions {Cit , wit} for each speculator i such that:

1) Given the price process {Pt} and the constant interest rate r, speculator i’s consumption and

portfolio decisions solve

max
{Ci

t ,w
i
t≤κ̂

−1
P,t}t≥0

Ei0
[∫ ∞

0
e−ρt`n(Cit)dt

]
, (48)

subject to her belief evolution in (21) and her perceived wealth evolution in (47);

2) On a per-capita basis, the market clearing condition for the risky asset

µWtwt + (1− µ)Qt = Pt (49)
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is satisfied at each point in time.

In Lemma 3, I characterize speculators’ optimal consumption and portfolio decisions.

Lemma 3. For the model with incorrect beliefs about both the crash likelihood and crash severity,

speculator i’s optimal consumption stream is

Cit = ρW i
t , (50)

and her optimal risky asset investment wit is the lower root of

ĝP,t + λtκ̂P,t + l−1 − r − witσ2
P,t −

λtκ̂P,t
1− witκ̂P,t

= 0. (51)

That is,

(wit)
∗ = wt =

κ̂P,tAt + σ2
P,t −

√
(κ̂P,tAt − σ2

P,t)
2 + 4λtκ̂2

P,tσ
2
P,t

2κ̂P,tσ2
P,t

, (52)

where At ≡ ĝP,t + λtκ̂P,t + l−1 − r = gP,t + λκP,t + l−1 − r is the average excess return of the risky

asset in the absence of a crash.

Proof. See Appendix A.3. �

In the proposition below, I present the analytical results that describe the asset pricing impli-

cations of the model.

Proposition 3. For the model with incorrect beliefs about both the crash likelihood and crash

severity, the Brownian volatility, the average growth rate of the risky asset in the absence of a

crash, and the crash severity on the asset price are, respectively,

σP,t(xt, λt) =
1− (lx/l)xt

1− (lx/l)(c0l − c1)
σD, (53)

(gP,t + λκP,t)(xt, λt) ≡ ḡP,t(xt, λt) = [1− (lx/l)(c0l − c1)]−1
{
gD + λκ+ σDσP,t − σ2

D

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+(lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)[(l/lx)(σP,t − σD)]2

}
,

(54)

κ̂P,t(xt, λt) =
ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt

. (55)

The fraction of speculators’ wealth invested in the risky asset is

wt(xt, λt) = (c0l − c1)/xt. (56)
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The price-dividend ratio l(xt, λt) is the solution to

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt, λt)

= l

([
ξ +

(1− ξ)λt
(1− κ){λt + [ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt](c0l − c1)/xt}

]
xt, λt + b(λt)

)
,

(57)

a second-order partial differential-difference equation after substitution of (53) through (55), with

boundary conditions

lim
xt→∞

l(xt, λt) = [r − lim
xt→∞

ĝP,t(xt, λt)]
−1 ≡ m(λt), (58)

lim
xt→0

l(xt, λt) = c1/c0, lim
xt→0

lx(xt, λt) = w(0, λt)/c0, (59)

for ∀λt ∈ (λm, λh), and the function m(λt) is the solution to

m′(λt)(a(λt)− λtb(λt)) = m(λt)

(
λt − gD − λκ−m−1(λt) + r − (1− κ)λtm(λt + b(λt))

m(λt)

)
. (60)

The true crash severity κP,t is the solution to

1− κP,t
1− κ

l(xt, λt) =


l

(
1− wtκP,t

1− κ
xt, λt + b(λt)

)
wt ≤ 1

l

(
1− wtκP,t + (wt − 1) max[0, 1− (1− κP,t)θ/(1− κ̂P,t)]

1− κ
xt, λt + b(λt)

)
wt > 1

.

(61)

The arguments, sometimes omitted, of the function l and of its derivatives in Eqs. (53) to (57) are

xt and λt, except on the right-hand side of (57) where they are the post-crash values.

The unanticipated percentage loss for speculators, defined as the difference between their realized

dollar loss upon a crash and their anticipated dollar loss divided by their pre-crash wealth level, is

UPLS(xt, λt) =

{
wt(κP,t − κ̂P,t) wt ≤ 1

wt(κP,t − κ̂P,t)− (wt − 1) max[0, 1− (1− κP,t)θ/(1− κ̂P,t)] wt > 1
. (62)

The unanticipated total loss for speculators, defined as their unanticipated dollar loss normalized

by the dividend level, and denoted UTLS, is xtUPL
S.

The unanticipated percentage loss for banks, defined as their realized dollar loss upon a crash

divided by the pre-crash dollar amount of collateralized funding they provide, is

UPLB(xt, λt) =

{
0 wt ≤ 1

max[0, 1− (1− κP,t)θ/(1− κ̂P,t)] wt > 1
. (63)

The unanticipated total loss for banks, defined as their unanticipated dollar loss normalized by the

dividend level, and denoted UTLB, is (wt − 1)xtUTL
B.
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Proof. See Appendix A.3. �

A few remarks regarding the analytical results in Lemma 3 and Proposition 3 are worth making.

First, all the asset pricing implications, except the realized crash severity, are completely determined

by the perceptions of speculators and banks. Given the incorrect beliefs about the crash severity,

speculators and banks will be surprised by a crash in that its magnitude will differ from what

they expected. Second, when speculators and banks underestimate the crash severity and when

speculators take on leverage, they both experience unexpected losses when a crash occurs. The

loss size is linked to the amount of collateralized funding and to banks’ ability to seize speculators’

personal wealth. When wt ≤ 1, speculators do not borrow; they takes the entire unexpected loss.

When wt > 1, they do borrow; the unexpected loss is shared between banks and speculators, with

the banks’ share being smaller, the greater their ability to seize speculators’ other assets. Lastly, the

boundary conditions in Eqs. (58), (59), and (60) are identical to those in Proposition 2—bounded

rationality plays no role in the two limiting cases. When xt →∞, speculators invest most of their

wealth in the safe asset and hence experience no deleveraging upon a crash. When xt → 0, the

risky asset is mostly held by the long-term investors so speculators and banks do not affect the

asset price.

To quantify the implications of incorrect beliefs about crash severity on the asset price and the

trading behavior, I use numerical methods to solve (57) and (61). As in Section III, I define zt ≡
(xt−γ)/(xt+γ) and h(zt, λt) ≡ l(x(zt), λt). The numerical procedure is outlined in Appendix B.3.

[Place Figure 5a and Figure 5b about here]

Figures 5a and 5b provide 3-D and 2-D views of the model implications, respectively. I have

already discussed the implications of incorrect beliefs about crash likelihood, so I focus here on the

additional implications yielded by incorrect beliefs about crash severity.

Figures 5a and 5b show that the realized and the perceived crash severities can be quite different

in the presence of bounded rationality. For most values of (xt, λt), the realized crash severity is

greater than the perceived crash severity. The ratio of the realized over the perceived crash severity

reaches its highest value when speculators’ expected crash intensity λt is low and when their wealth

level xt is intermediate. With a low λt and an intermediate xt, speculators are optimistic and borrow

heavily from banks but then need to delever after a crash. As each speculator neglects market-wide

deleveraging, they substantially underestimate the crash severity—for example, when λt = λm and

xt = 19.0, speculators underestimate the crash severity by 22%. For some values of (xt, λt), the

crash severity can be overestimated. The ratio reaches its lowest value when λt is high and when xt

is intermediate. With a high λt and an intermediate xt, speculators are pessimistic and only invest a

small fraction of their wealth in the risky asset and invest more after a crash occurs to rebalance their

portfolios. As each speculator neglects this market-wide rebalancing, she overestimates the crash

severity—for example, when λt = λh and xt = 54.8, speculators overestimate the crash severity by

7%. These results show that the bounded-rationality approach can generate underestimation and

overestimation of the crash severity in different states of the world.
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For speculators, incorrect beliefs about crash severity can lead to unanticipated losses in crashes.

Both the unanticipated percentage loss and the unanticipated total loss are largest when speculators’

perceived crash likelihood λt is low, but not too low, and when their wealth level xt is intermediate.

With a low λt and an intermediate xt, speculators tend to underestimate the crash severity and

hence experience a larger-than-expected loss when a crash occurs. However, when λt is too close

to its minimum level, the true crash severity is smaller because speculators retain much of their

optimism after a crash, resulting in a smaller unanticipated loss.

Banks, on the other hand, do not expect any losses upon crashes. However, with incorrect beliefs

about crash severity, they will sometimes experience them. The largest unanticipated percentage

or total loss for banks occurs when banks provide a lot of funding but significantly overestimate the

post-crash collateral value of the underlying asset. Once again, this happens when λt is low, but

not too low, and when xt is intermediate—for example, when λt = 6.25% and xt = 29.0, banks lose

5% on each dollar they provide. When speculators’ risky asset portfolio weight wt is less than one,

banks provide no funding to speculators and therefore experience no losses when a crash occurs.

As the model is dynamic, I can also examine the time-series implications of incorrect beliefs

about crash severity. I look at the size of crash expansions, the crash severity, and bank losses,

with each quantity averaged over 1000 simulated dividend paths. Specifically, I first compute the

average size of credit expansion over either one year or two years in the absence of an intervening

crash event for various initial values of x0 and λ0 and with the bounded rationality parameter ξ

equal to 0.5 or 1. I then compute the average crash severity and the average unanticipated percent

loss for banks, assuming that a crash occurs by the end of this one-year or two-year period. The

results are summarized in Figure 6.

[Place Figure 6 about here]

Figure 6 suggests that incorrect beliefs about crash severity have a much smaller impact on the

size of the credit expansion relative to incorrect beliefs about crash likelihood. When the perceived

crash likelihood is low, the overall perceived crash risk is low and insensitive to changes in the

perceived crash severity. On the other hand, incorrect beliefs about crash severity have strong

implications for the losses taken by banks in crashes. Three specific observations are worth noting.

First, a stronger degree of bounded rationality leads to a larger underestimation of crash severity,

which, in turn, leads to larger post-crash bank losses—for example, when x0 = 20 and λ0 = 0.4,

increasing ξ from 0.5 to 1 on average almost double banks’ unanticipated percentage loss from

1.66% to 3.13% if a crash occurs after one year. Second, the impact of incorrect beliefs about

crash severity on bank losses is significantly affected by incorrect beliefs about crash likelihood—

for example, when x0 = 20 and ξ = 1, decreasing λ0 from 0.6 to 0.4 on average increases banks’

unanticipated percentage loss by 64%, from 1.91% to 3.13%, if a crash occurs after one year. With

a lower λ0, speculators are more optimistic at the end of the expansion period, and their leverage

is therefore higher when the crash occurs; with higher leverage, the deleveraging effect is stronger

and therefore bounded rationality about market-wide deleveraging generates a more severe loss
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for banks and speculators. Finally, a longer period of expansion amplifies the effect of incorrect

beliefs about crash severity on bank losses. After a long “quiet” period, speculative capital grows

significantly with the help of collateralized funding. If a crash occurs in such situations, the amount

of speculative capital associated with the post-crash pessimism remains large, resulting in a bigger

drop in the collateral value. Given this, underestimation of the crash severity can be quite costly

to banks. A longer period of credit expansion leads to more financial fragility in the model.

Note that bounded rationality in assessing market-wide deleveraging is just one possible source

of incorrect beliefs about crash severity; there may be many other sources. The compounding

impact of incorrect beliefs about crash severity on losses for banks and speculators can be much

larger than estimated in the model.

V. Conclusion

In this paper, I have developed a dynamic equilibrium model that studies the impact of incorrect

beliefs about crash risk on asset prices, portfolio decisions, and bank losses. The model generates

a strong amplification—the magnitude of a price crash can be much larger than the magnitude of

the crash in fundamentals when financially constrained speculators underestimate crash likelihood

and take on excessive leverage and when their post-crash beliefs about the likelihood of future

crashes differ a lot from their pre-crash beliefs. The standard wealth effect and the belief dynamics

about crash risk together give rise to a positive relation between credit expansion and the severity

of a crash in the asset price in subsequent periods—financial fragility builds up over time as the

perceived crash risk decays, and a credit boom arises endogenously along the way with an increasing

amount of crash risk borne by both speculators and banks. With a lower perceived crash likelihood

following a prolonged credit expansion, the model predicts that average excess returns of the risky

asset become lower even when the financial system becomes more fragile. In addition, bounded

rationality in assessing the post-crash scenario of market-wide deleveraging can lead to speculator

defaults and bank losses.

The model shows that the impact on beliefs of any policy intervention that attempts to reduce

financial fragility cannot be ignored when evaluating its effectiveness. For example, when investors

are overly optimistic and have taken on high leverage, the effects of an intervention that forces

them to reduce leverage will also depend on its impact on investor confidence. If investors interpret

the intervention to mean an increased crash likelihood, then the deterioration in beliefs might be

much more severe after a crash. The overall effect of the intervention could then be detrimental.

On the other hand, if the policy makers can keep the level of confidence unchanged while reducing

leverage, then it will limit the impact of incorrect beliefs and reduce financial fragility. A more

careful analysis of the model’s policy and welfare implications is left for future research.

The model can be further extended in a number of ways. In my setting, although the size

of a crash event is endogenous, its origin is still exogenous—it occurs whenever a Poisson event

arrives. Endogenizing such an event requires developing more complex belief dynamics about crash
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intensity that are affected not only by past occurrences of price crashes but also by the sizes of those

crashes. In such extensions, it is conceivable that belief dynamics about crash risk would interact

with market liquidity and funding liquidity, as analyzed in Brunnermeier and Pedersen (2009), and

create additional amplification, both contemporaneously and intertemporally. For example, when

funding liquidity is tightened, speculators will reduce their trading positions and push down asset

prices; lower asset prices then may lead to larger perceived crash risk by both speculators and

banks and result in higher margin requirements, which in turn may trigger further deleveraging

and deterioration in beliefs, and so on.

The current framework only includes one risky asset and can be extended to allow for multiple

assets. Kyle and Xiong (2001) show that the time-varying wealth of convergence traders can create

contagion across assets. In a multi-asset extension of my model, both the time-varying speculative

capital and the dynamic beliefs about crash risk would likely contribute to contagion. If a crash

hits the asset that serves as collateral for investing in other risky assets, then the deterioration in

beliefs on this particular asset would lead to a drop in its collateral value, making it difficult for

speculators to invest in other risky assets, and a large reduction in wealth caused by deleveraging

would force speculators to cut back further on investments in all risky assets, triggering additional

price drops. In such a framework, further allowing for both positive and negative Poisson shocks of

equal size on the dividend process may endogenously generate negatively skewed market returns.
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Appendices

A. Analytical Results for the Equilibrium

1. Solving the Equilibrium for the Rational Benchmark

Proof of Lemma 1. First, define the value function for speculator i as

J(W i
t , xt) ≡ max

{Ci
t+s,w

i
t+s≤κ

−1
P,t+s}s≥0

Eit
[∫ ∞

0
e−ρt`n(Cit+s)ds

]
, (A.1)

and write the evolution of the state variable xt as

dxt = gx,t(xt)dt+ σx,t(xt)dωt − κx,t(xt)(dNt − λdt). (A.2)

I verify the Markov nature of xt later in the proof of Proposition 1.

Given the wealth evolution in (5) and the evolution of xt in (A.2), I use the stochastic dynamic

programming approach developed in Merton (1971) to derive the Hamilton-Jacobi-Bellman (HJB)

equation for speculator i as

ρJ(W i
t , xt) = max

{Ci
t ,w

i
t≤κ

−1
P,t}


`n(Cit) + JWW

i
t [−Cit/W i

t + r + wit(gP,t + λκP,t + l−1(xt)− r)]

+1
2JWW (W i

tw
i
tσP,t)

2 + Jx(gx,t + λκx,t) + 1
2Jxxσ

2
x,t + JWxw

i
tW

i
tσP,tσx,t

+λ{J((1− witκP,t)W i
t , (1− κ)−1(1− wtκP,t)xt)− J(W i

t , xt)}

 .

(A.3)

Upon the occurrence of a Poisson event, the state variable xt is scaled down with the reduction of

the per-capita wealth by a factor of (1−wtκP,t), where wt is speculators’ per-capita investment in

the risky asset. It is the aggregate investment that determines the reduction in per-capita wealth

so wt is not a choice variable for speculator i.

Now conjecture that the value function has the form

J(W i
t , xt) = ρ−1`n(W i

t ) + j(xt). (A.4)

The first order condition of (A.3) with respect to Cit , together with the conjecture in (A.4), yields

Cit = J−1
W = ρW i

t . (A.5)

As is standard for log-utility preferences, the consumption rate is proportional to wealth with a

constant of proportionality ρ.

Substituting (A.4) and (A.5) back to the HJB equation gives
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ρj = max
wi

t≤κ
−1
P,t


`n(ρ) + ρ−1[r − ρ+ wit(gP,t + λκP,t + l−1(xt)− r)]

−1
2ρ
−1(wit)

2σ2
P,t + (gx,t + λκx,t)j

′(xt) + 1
2σ

2
x,tj
′′(xt)

+λ{ρ−1`n(1− witκP,t) + j((1− κ)−1(1− wtκP,t)xt)− j(xt)}

 , (A.6)

a reduced-HJB equation for the j function. The absence of W i
t in (A.4) verifies the conjecture

in (A.4). The first order condition with respect to wit gives

gP,t + λκP,t + l−1 − r − witσ2
P,t −

λκP,t
1− witκP,t

= 0, wit ≤ κ−1
P,t, (A.7)

with the last term capturing the effect of the Poisson shock on investors’ portfolio decisions.

Eq. (A.7) is a quadratic equation for wit with one root above κ−1
P,t and one root below κ−1

P,t. The

leverage constraint excludes the larger root so the optimal holding is

(wit)
∗ = wt =

κP,tAt + σ2
P,t −

√
(κP,tAt − σ2

P,t)
2

+ 4λκ2
P,tσ

2
P,t

2κP,tσ2
P,t

, (A.8)

where At ≡ gP,t + λκP,t + l−1 − r.26 �

Proof of Proposition 1. The first step is to write the evolution of the state variable xt in a more

fundamental way. Given the optimal consumption plan in (A.5), the optimal per-capita wealth of

the speculators evolves as

dWt/Wt = (r − ρ+ wtAt)dt+ wtσP,tdωt − wtκP,tdNt. (A.9)

Applying Ito’s lemma to both sides of xt = Wt/Dt and using Eqs. (1) and (A.9) gives

dxt/xt = (r − ρ+ wtAt − gD − λκ− wtσDσP,t + σ2
D)dt

+ (wtσP,t − σD)dωt + (κ− wtκP,t)(1− κ)−1dNt.
(A.10)

Comparing (A.10) with (A.2) leads to

gx,t + λκx,t = (r − ρ+ wtAt − gD − λκ− wtσDσP,t + σ2
D)xt,

σx,t = (wtσP,t − σD)xt, κx,t = (wtκP,t − κ)(1− κ)−1xt.
(A.11)

26The second derivative of the reduced-HJB equation in (A.6) with respect to wi
t is negative when wi

t ∈ (0, κ−1
P,t),

suggesting that the solution in (A.8) indeed maximizes rather than minimizes the value function.
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Next, applying Ito’s lemma to both sides of Pt/Dt = l(xt) and using Eqs. (1), (2), and (A.2) yields

gP,t + λκP,t − gD − λκ+ σ2
D − σDσP,t = (l′/l)(gx,t + λκx,t) + 1

2(l′′/l)σ2
x,t,

σP,t − σD = (l′/l)σx,t,

(1− κ)−1(1− κP,t)l(xt) = l((1− κ)−1(1− wtκP,t)xt).

(A.12)

The argument of function l and its derivatives is sometimes omitted for brevity.

Substituting the demand function of (3) for the long-term investors into the market clearing

condition in (6) yields

wt(xt) =
(k + 1− µ)(r − gD)l(xt)− (1− µ)

µk(r − gD)xt
≡ (c0l(xt)− c1)x−1

t , ∀t. (A.13)

Combining (A.11), (A.12),and (A.13) allows me to derive the Brownian volatility and the av-

erage growth rate of the risky asset in the absence of a crash as

σP,t =
1− (l′/l)xt

1− (l′/l)wtxt
σD =

1− (l′/l)xt
1− (l′/l)(c0l − c1)

σD, (A.14)

gP,t + λκP,t ≡ ḡP,t = [1− (l′/l)wtxt]
−1
{
gD + λκ+ σDσP,t − σ2

D

+ (l′/l)xt[r − ρ− gD − λκ+ σ2
D + wt(l

−1 − r − σDσP,t)]

+1
2(l′′/l)σ2

x,t

}
= [1− (l′/l)(c0l − c1)]−1

{
gD + λκ+ σDσP,t − σ2

D

+ (l′/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+1
2(l′′/l)[(l/l′)(σP,t − σD)]2

}
.

(A.15)

Substituting (A.13) into the first-order condition in (A.7) gives

κP,t =
ḡP,t + l−1 − r − witσ2

P,t

λ+ (ḡP,t + l−1 − r − witσ2
P,t)w

i
t

=
ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt

λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt

.

(A.16)

Further substituting (A.13) and (A.16) into the last equation in (A.12) gives

λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt)

= l

(
λ

(1− κ){λ+ [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

xt

)
,

(A.17)

where σP,t and ḡP,t are determined as functions of l and its derivatives in (A.14) and (A.15).

Eq. (A.17) is a second-order differential-difference equation for l.

To fully determine the functional form of l, two boundary conditions need to be imposed. First,

consider the limiting case as xt = Wt/Dt → ∞. In this case, (A.13) implies that wt → 0, and the
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first-order condition in (A.7) then implies that the conditional expected excess return must converge

to zero. That is, as the fraction of speculators’ wealth invested in the risky asset approaches zero

so does the risk, and speculators’ behavior approaches risk-neutrality. Under these properties, a

proportional economy forms, and from (A.7)

lim
xt→∞

l(xt) = (r − gD)−1. (A.18)

In this limiting case, the Gordon growth model applies, and the long-term investors’ dollar demand

reduces to zero.

Second, consider the case as xt → 0. In this case, speculator wealth goes to zero, and the

long-term investors must hold the entire supply of the risky asset. From the demand function of

the long-term investors in (3) and from the definitions of c0 and c1 in (A.13)

lim
xt→0

l(xt) = (r − gD)−1[1 + k/(1− µ)]−1 = c1/c0. (A.19)

By (A.8),

w(0) ≡
κA+ σ2

D −
√

(κA− σ2
D)

2
+ 4λκ2σ2

D

2κσ2
D

, (A.20)

where A ≡ gD + λκ+ (r − gD)(1 + k/(1− µ))− r. Furthermore, from (A.13) and (A.20)

lim
xt→0

l′(xt) = w(0)/c0. (A.21)

Eqs. (A.14) to (A.16) verify the conjecture that xt is the only state variable that governs the

evolutions of gP,t, σP,t and κP,t. Furthermore, this statement, together with Eqs. (A.11) and (A.13),

verifies the claim made in the proof of Lemma 1 that xt is a Markov process in itself. �

2. Solving the Equilibrium for the General Model in Section III

The Filtering Problem. The evolution of speculators’ beliefs πt has two components. The first

comes from the believed Markov switching between the two states λh and λl. Although the believed

switching is random, it is unobserved and has a deterministic effect on changes in πt

Prit{λ̃t = λh}Prit{λ̃t+dt = λh|λ̃t = λh}+ Prit{λ̃t = λl}Prit{λ̃t+dt = λh|λ̃t = λl} − πt
= πt(1− qhdt) + (1− πt)qldt− πt = [−πtqh + (1− πt)ql]dt.

(A.22)

The probabilities labeled with a superscript i are the subjective beliefs of speculator i. The second

component arises from the new information carried by the observed Poisson jump. By Bayes’

rule, πt changes to πtλh/λt conditional on a jump (dNt = 1) and to πt(1 − λhdt)/(1 − λtdt) =

πt[1 + (λt − λh)dt] + o(dt) conditional on no jump (dNt = 0). Putting these two components
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together, the evolution of πt is

dπt = [−πtqh + (1− πt)ql]dt+ λ−1
t πt(λh − λt)(dNt − λtdt). (A.23)

Because λt ≡ πtλh + (1− πt)λl, the evolution of λt is

dλt = (λh − λl)[−πtqh + (1− πt)ql]dt+ λ−1
t πt(λh − λl)(λh − λt)(dNt − λtdt). (A.24)

Further substituting for πt = (λt − λl)/(λh − λl) gives

dλt = a(λt)dt+ b(λt)(dNt − λtdt), (A.25)

where a(λt) ≡ ql(λh − λt)− qh(λt − λl) and b(λt) ≡ λ−1
t (λh − λt)(λt − λl).

Proof of Lemma 2. The value function for speculator i can be defined as

J(W i
t , xt, λt) ≡ max

{Ci
t+s,w

i
t+s≤κ

−1
P,t+s}s≥0

Eit
[∫ ∞

0
e−ρt`n(Cit+s)ds

]
, (A.26)

with the evolution of λt described in (21) and the evolution of xt generically written as

dxt = (ĝx,t + λtκx,t)(xt, λt)dt+ σx,t(xt, λt)dωt − κx,t(xt, λt)dNt

= (gx,t + λκx,t)(xt, λt)dt+ σx,t(xt, λt)dωt − κx,t(xt, λt)dNt,
(A.27)

where ĝx,t is the conditional expected rate of change of the state variable xt perceived by speculators.

Eqs. (A.27) and (A.25) state that xt and λt are jointly Markov. This statement is verified later in

the proof of Proposition 2.

Given the belief evolution in (21), the wealth evolution in (28), and the evolution of xt in (A.27),

speculator i’s HJB equation is

ρJ(W i
t , xt, λt) = max

{Ci
t ,w

i
t≤κ

−1
P,t}



`n(Cit) + JWW
i
t [−Cit/W i

t + r + wit(ĝP,t + λtκP,t + l−1(xt, λt)− r)]

+1
2JWW (W i

tw
i
tσP,t)

2 + Jx(ĝx,t + λtκx,t) + 1
2Jxxσ

2
x,t

+Jλ(a(λt)− λtb(λt)) + JWxw
i
tW

i
tσP,tσx,t

+λt{J((1− witκP,t)W i
t , (1− κ)−1(1− wtκP,t)xt, λt + b(λt))− J(W i

t , xt, λt)}


.

(A.28)

The arguments, sometimes omitted, of the derivatives of J are Wt, xt, and λt.

Now conjecture that the value function J takes the form

J(W i
t , xt, λt) = ρ−1`n(W i

t ) + j(xt, λt). (A.29)
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The first-order condition of (A.28) with respect to Cit , together with (A.29), gives

Cit = J−1
W = ρW i

t . (A.30)

Substituting the conjectured form of J in (A.29) and the optimal consumption in (A.30) back

to the HJB equation in (A.28), one can then obtain the reduced-HJB equation for the j function

as

ρj = max
wi

t≤κ
−1
P,t


`n(ρ) + ρ−1[r − ρ+ wit(ĝP,t + λtκP,t + l−1(xt, λt)− r)]

−1
2ρ
−1(wit)

2σ2
P,t + jx(ĝx,t + λtκx,t) + 1

2jxxσ
2
x,t + jλ(a(λt)− λtb(λt))

+λt{ρ−1`n(1− witκP,t) + j((1− κ)−1(1− wtκP,t)xt, λt + b(λt))− j(xt, λt)}

 .

(A.31)

The conjectured form of J in (A.29) is now verified as (A.31) is independent of W i
t . The first-order

condition of (A.31) with respect to wit gives

ĝP,t + λtκP,t + l−1 − r − witσ2
P,t −

λtκP,t
1− witκP,t

= 0. (A.32)

Noting from (26) that ĝP,t + λtκP,t = gP,t + λκP,t, (A.32) can be rewritten as

gP,t + λκP,t + l−1 − r − witσ2
P,t −

λtκP,t
1− witκP,t

= 0. (A.33)

This is a quadratic equation in wit. Again, only the smaller root is valid under the leverage con-

straint. Therefore,

(wit)
∗ = wt =

κP,tAt + σ2
P,t −

√
(κP,tAt − σ2

P,t)
2

+ 4λt(κP,tσP,t)
2

2κP,tσ2
P,t

, (A.34)

where At ≡ ĝP,t + λtκP,t + l−1 − r = gP,t + λκP,t + l−1 − r. �

Proof of Proposition 2. First, from the optimal consumption in (A.30), the evolution of the optimal

per-capita wealth of the speculators is

dWt/Wt = (r − ρ+ wtAt)dt+ wtσP,tdωt − wtκP,tdNt. (A.35)

Applying Ito’s lemma to both sides of xt = Wt/Dt gives

dxt/xt = (r − ρ+ wtAt − gD − λκ− wtσDσP,t + σ2
D)dt

+ (wtσP,t − σD)dωt + (κ− wtκP,t)(1− κ)−1dNt.
(A.36)

39



Matching terms between (A.36) with (A.27) then gives

gx,t + λκx,t = ĝx,t + λtκx,t = (r − ρ+ wtAt − gD − λκ− wtσDσP,t + σ2
D)xt,

σx,t = (wtσP,t − σD)xt, κx,t = (wtκP,t − κ)(1− κ)−1xt.
(A.37)

Next, differentiating both sides of Pt/Dt = l(xt, λt) by Ito’s lemma and applying Eqs. (1), (2), (21),

and (A.27) yields

gP,t + λκP,t − gD − λκ+ σ2
D − σDσP,t

= (lx/l)(gx,t + λκx,t) + (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)σ

2
x,t,

σP,t − σD = (lx/l)σx,t,

(1− κ)−1(1− κP,t)l(xt, λt) = l((1− κ)−1(1− wtκP,t)xt, λt + b(λt)).

(A.38)

The two arguments of function l and its derivatives, xt and λt, are sometimes omitted for brevity.

Rewriting the market clearing condition in (30) as

wt(xt, λt) = (c0l(xt, λt)− c1)x−1
t (A.39)

and combining it with (A.37) and (A.38), I derive the Brownian volatility and the average growth

rate of the risky asset in the absence of a crash as

σP,t =
1− (lx/l)xt

1− (lx/l)wtxt
σD =

1− (lx/l)xt
1− (lx/l)(col − c1)

σD, (A.40)

gP,t + λκP,t = ḡP,t = [1− (lx/l)wtxt]
−1
{
gD + λκ− σ2

D + σDσP,t

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + wt(l

−1 − r − σDσP,t)]

+ (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)σ

2
x,t

}
= [1− (lx/l)(c0l − c1)]−1

{
gD + λκ− σ2

D + σDσP,t

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+ (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)[(l/lx)(σP,t − σD)]2

}
.

(A.41)

Substituting (A.39) into the first-order condition of (A.33) leads to

κP,t =
ḡP,t + l−1 − r − witσ2

P,t

λt + (ḡP,t + l−1 − r − witσ2
P,t)w

i
t

=
ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt

.

(A.42)

Combining (A.42) and the last equation in (A.38) gives

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt, λt)

= l

(
λt

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

xt, λt + b(λt)

)
,

(A.43)
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where σP,t and ḡP,t are derived in (A.40) and (A.41). The arguments, sometimes omitted, of

function l are xt and λt. Eq. (A.43) is a second-order partial differential-difference equation for l.

For the boundary conditions, first note that as xt = Wt/Dt →∞, (A.39) implies that wt → 0.

The first-order condition in (A.32) then implies

lim
xt→∞

l(xt, λt) = [r − lim
xt→∞

ĝP,t(xt, λt)]
−1 ≡ m(λt) (A.44)

for ∀λt ∈ (λm, λh), which reduces (A.43) to

m′(λt)[a(λt)−λtb(λt)] = m(λt)

(
λt − gD − λκ−m−1(λt) + r − (1− κ)λtm(λt + b(λt))

m(λt)

)
, (A.45)

a first-order differential-difference equation. Normally, one boundary condition is required to solve

this type of equation. However, in this particular case, no boundary condition should be imposed

because a(λt)− λtb(λt) goes to zero as λt goes to λm so λh is a singular point for this differential-

difference equation.27

As xt = Wt/Dt → 0, the long-term investors are the only holders of the risky asset. From (A.34)

wt(0, λt) =
κA+ σ2

D −
√

(κA− σ2
D)

2
+ 4λt(κσD)2

2κσ2
D

. (A.46)

By Eqs. (A.39) and (A.46)

lim
xt→0

l(xt, λt) = c1/c0 (A.47)

lim
xt→0

lλ(xt, λt) = wt(0, λt)/c0 (A.48)

for ∀λt ∈ (λm, λl).

Eqs. (A.39) to (A.42) and Eq. (26) verify that the evolutions of gP,t, σP,t, κP,t, wt, and ĝP,t are

governed by the evolutions of xt and λt, which, along with (A.37), verify that xt and λt are jointly

Markov. �

3. Solving the Equilibrium for the General Model in Section IV

Proof of Lemma 3. The proof is the same as the proof of Lemma 2, except that the true crash

severity κP,t is now replaced by the perceived crash severity κ̂P,t. �

Proof of Proposition 3. Define the value function for speculator i as

J(W i
t , xt, λt) ≡ max

{Ci
t+s,w

i
t+s≤κ̂

−1
P,t+s}s≥0

Eit
[∫ ∞

0
e−ρt`n(Cit+s)ds

]
, (A.49)

27For a formal treatment of singular boundary value problems, see Powers (2006).
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Write the perceived evolution of the state variable xt generically as

dxt =̂ (ĝx,t + λtκ̂x,t)dt+ σx,tdωt − κ̂x,tdNt =̂ (gx,t + λκx,t)dt+ σx,tdωt − κ̂x,tdNt, (A.50)

where ĝx,t is the perceived conditional expected rate of change of the state variable xt, and κ̂x,t is

the perceived percentage reduction of xt upon a crash. The true evolution of xt, on the other hand,

is

dxt = (gx,t + λκx,t)dt+ σx,tdωt − κx,tdNt, (A.51)

where κx,t is the true percentage reduction of xt upon a crash.

Given the optimal consumption in (50), the perceived evolution of the optimal per-capita wealth

of the speculators is

dWt/Wt =̂ (r − ρ+ wtAt)dt+ wtσP,tdωt − wtκ̂P,tdNt. (A.52)

Applying Ito’s lemma under speculators’ beliefs to both sides of xt = Wt/Dt gives

dxt/xt =̂ [gD + λκ− r + ρ− wtAt + w2
t σ

2
P,t − wtσDσP,t]dt

+ (σD − wtσP,t)dωt − (κ− wtκ̂P,t)(1− wtκ̂P,t)−1dNt .
(A.53)

Matching terms between (A.50) and (A.53) then gives

gx,t + λκx,t = ĝx,t + λtκ̂x,t = (r − ρ+ wtAt − gD − λκ− wtσDσP,t + σ2
D)xt,

σx,t = (wtσP,t − σD)xt, κ̂x,t = (wtκ̂P,t − κ)(1− κ)−1xt .
(A.54)

Differentiating both sides of Pt/Dt = l(xt, λt) using Ito’s lemma and Eqs. (1), (2), (21), and (A.51)

gives

gP,t + λκP,t − gD − λκ+ σ2
D − σDσP,t

= (lx/l)(gx,t + λκx,t) + (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)σ

2
x,t,

σP,t − σD = (lx/l)σx,t,

(1− κ)−1(1− κP,t)l(xt, λt) = l(xt − κx,t, λt + b(λt)).

(A.55)

The two arguments of function l and its derivatives are sometimes omitted for brevity. Note that

unlike in the proof for Proposition 2, the last equation in (A.54) and the last equation in (A.55)

cannot be linked directly since the former contains the perceived crash size of xt and the latter

contains the true crash size. Also note that (A.55) is from the view of an outside econometricians,

not from the speculators’ perception.

Rewrite the market clearing condition in (49) as

wt(xt, λt) = (c0l(xt, λt)− c1)x−1
t . (A.56)

By (A.54), (A.55), and (A.39), I derive the Brownian volatility and the average growth rate of the

risky asset in the absence of a crash as
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σP,t =
1− (lx/l)xt

1− (lx/l)wtxt
σD =

1− (lx/l)xt
1− (lx/l)(col − c1)

σD, (A.57)

gP,t + λκP,t = ḡP,t = [1− (lx/l)wtxt]
−1
{
gD + λκ− σ2

D + σDσP,t

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + wt(l

−1 − r − σDσP,t)]

+ (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)σ

2
x,t

}
= [1− (lx/l)(c0l − c1)]−1

{
gD + λκ− σ2

D + σDσP,t

+ (lx/l)xt[r − ρ− gD − λκ+ σ2
D + (l−1 − r − σDσP,t)(c0l − c1)/xt]

+ (lλ/l)[a(λt)− λtb(λt)] + 1
2(lxx/l)[(l/lx)(σP,t − σD)]2

}
.

(A.58)

Substituting the first-order condition of (51) and the equilibrium portfolio weight of (A.56) into

the assumption in (44) for boundedly rational speculators gives

λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt]((c0l − c1)/xt − 1)

(1− κ){λt + [ḡP,t + l−1 − r − σ2
P,t(c0l − c1)/xt](c0l − c1)/xt}

l(xt, λt)

= l

([
ξ +

(1− ξ)λt
(1− κ){λt + [ḡP,t + l−1 − r − σ2

P,t(c0l − c1)/xt](c0l − c1)/xt}

]
xt, λt + b(λt)

)
,

(A.59)

where σP,t and ḡP,t are solved in (A.57) and (A.58). The arguments, sometimes omitted, of function

l and its derivatives are xt and λt. Eq. (A.59) is a second-order partial differential equation for

l. It is important to note that the all the equilibrium quantities, except the actual realized crash

severity, are determined purely from the perceptions of speculators and banks.

As xt = Wt/Dt →∞, (A.56) implies that wt → 0. Then the first-order condition in (51) implies

lim
xt→∞

l(xt, λt) = [r − lim
xt→∞

ĝP,t(xt, λt)]
−1 ≡ m(λt) (A.60)

for ∀λt ∈ (λm, λh). In this limiting case, (A.59) reduces to

m′(λt)(a(λt)− λtb(λt)) = m(λt)

(
λt − gD − λκ−m−1(λt) + r − (1− κ)λtm(λt + b(λt))

m(λt)

)
,

(A.61)

a first-order differential-difference equation. Eq. (A.45) is identical to Eq. (A.61) because bounded

rationality plays little role when speculators invest most of their wealth in the safe asset and hence

experience no deleveraging in the case as xt →∞.

As xt → 0, the long-term investors are the only holders of the risky asset. From (52)

wt(0, λt) =
κA+ σ2

D −
√

(κA− σ2
D)

2
+ 4λt(κσD)2

2κσ2
D

. (A.62)
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Eqs. (A.56) and (A.62) imply

lim
xt→0

l(xt, λt) = c1/c0 (A.63)

lim
xt→0

lλ(xt, λt) = wt(0, λt)/c0 (A.64)

for ∀λt ∈ (λm, λl). Eqs. (A.62) to (A.64) are identical to Eqs. (A.46) to (A.48) because bounded

rationality plays little role when the population fraction for speculators goes to zero.

To determine the true crash severity on the asset price κP,t, note that there are two separate

cases. First, if wt ≤ 1, speculators lose the fraction κP,t of their risky asset investment upon a

crash, so κx,t = (wtκP,t − κ)xt/(1 − κ). Second, if wt > 1, speculators have borrowed (wt − 1)Wt

from banks and need to pay back (wt − 1) min[1, (1− κP,t)θ/(1− κ̂P,t)]Wt upon a crash, so κx,t =

{(1− wt) max[0, 1− (1− κP,t)θ/(1− κ̂P,t)]− κ+ wtκP,t}xt/(1− κ). Substituting these two values

of κx,t back into the last equation in (A54) yields

1− κP,t
1− κ

l(xt, λt) =


l

(
1− wtκP,t

1− κ
xt, λt + b(λt)

)
wt ≤ 1

l

(
1− wtκP,t + (wt − 1) max[0, 1− (1− κP,t)θ/(1− κ̂P,t)]

1− κ
xt, λt + b(λt)

)
wt > 1

.

(A.65)

If wt ≤ 1, the realized post-crash wealth level is (1 − wtκP,t)Wt, while the anticipated post-

crash wealth level is (1−wtκ̂P,t)Wt. If wt > 1, the realized post-crash wealth level is {1−wtκP,t +

(wt− 1) max[0, 1− (1−κP,t)θ/(1− κ̂P,t)]}Wt, while the anticipated post-crash wealth level is again

(1− wtκ̂P,t)Wt. Given this, the unanticipated percentage loss for the speculators is

UPLS(xt, λt) =

{
wt(κP,t − κ̂P,t) wt ≤ 1

wt(κP,t − κ̂P,t)− (wt − 1) max[0, 1− (1− κP,t)θ/(1− κ̂P,t)] wt > 1
. (A.66)

If wt ≤ 1, no bank funding is involved in the risky asset investment, so UPLB = 0. If wt > 1,

the dollar amount paid back to banks after a crash is (wt − 1) min[1, (1− κP,t)θ/(1− κ̂P,t)]Wt, and

the amount banks anticipated to get back is (wt − 1)Wt. Given this, the unanticipated percentage

loss for banks is

UPLB(xt, λt) =

{
0 wt ≤ 1

max[0, 1− (1− κP,t)θ/(1− κ̂P,t)] wt > 1
. (A.67)

�
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B. The Numerical Procedure for Solving the Equilibrium

1. Solving the Ordinary Differential-Difference Equation for the Rational Benchmark

The second-order differential-difference equation in (15) includes a jump term; the equation not

only links the values of l at adjacent points of xt but also connects them to the function evaluated

at a distant point, (1 − κ)−1(1 − wtκP,t)xt, with the jump size for xt endogenously determined

in equilibrium. Due to this complexity, the standard finite-difference approach is insufficient for

solving the problem. Instead, I use a projection method with Chebyshev polynomials. For brevity,

below I omit the subscript t in all variables.

The value of x ranges from 0 to ∞, whereas the domain for Chebyshev polynomials is [−1, 1],

so I transform x to a new state variable z

z = (x− γ)/(x+ γ). (B.1)

Define h(z) ≡ l(x(z)) and rewrite the differential-difference equation as

(1− κP )h(z)

1− κ
= h

(
(1 + z)− γ−1κP (c0h− c1)(1− z)− (1− κ)(1− z)
(1 + z)− γ−1κP (c0h− c1)(1− z) + (1− κ)(1− z)

)
, (B.2)

where

σP =
1− 1

2(h′/h)(1− z2)

1− 1
2γ (h′/h)(c0h− c1)(1− z)2σD, (B.3)

ḡP = [1− 1
2γ (h′/h)(c0l − c1)(1− z)2]−1

{
gD + λκ+ σDσP − σ2

D

+ 1
2(h′/h)(1− z2)[r − ρ− gD − λκ+ σ2

D + γ−1(h−1 − r − σDσP )(c0h− c1)(1− z)/(1 + z)]

+ 1
2 [h′′/h− 2h′/(h(1− z))][(σP − σD)(h/h′)]

2
}
,

(B.4)

κP =
ḡP + h−1 − r − γ−1σ2

P (c0h− c1)(1− z)/(1 + z)

λ+ γ−1[ḡP + h−1 − r − γ−1σ2
P (c0h− c1)(1− z)/(1 + z)](c0h− c1)(1− z)/(1 + z)

. (B.5)

Reexpress the boundary conditions in Eqs. (A.18), (A.19), and (A.21) as

lim
z→1

h(z) = (r − gD)−1, (B.6)

lim
z→−1

h(z) = (r − gD)−1[1 + k/(1− µ)]−1, (B.7)

lim
z→−1

h′(z) = γw(0)/(2c0). (B.8)

The objective is to numerically solve equation (B.2) subject to the boundary conditions in

Eqs. (B.6) to (B.8). To apply the projection method, note from (B.7) and (B.8) that the unknown
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function h(z) can be approximated by

ĥ(z) =
c1

c0

(
1 +

γw(0)

2c1
(1 + z)

)
+ (1 + z)2

∑n

r=0
arTr(z), (B.9)

where Tr(z) is the rth degree Chebyshev polynomial of the first kind.28 The projection method

chooses the coefficients {ar}nr=0 so that the differential-difference equation and boundary conditions

are approximately satisfied. One criterion for a good approximation is a minimum weighted sum

of squared errors

∑M

i=1

1√
1− z2

i

[
(1− κ̂P )ĥ(zi)

1− κ
− ĥ

(
(1 + zi)− γ−1κ̂P (c0ĥ− c1)(1− zi)− (1− κ)(1− zi)
(1 + zi)− γ−1κ̂P (c0ĥ− c1)(1− zi) + (1− κ)(1− zi)

)]2

+K[ĥ(1)− (r − gD)−1]2,

(B.10)

where {zi}Mi=0 are the M zeros of TM (z). The last term in (B.10) guarantees that the boundary

condition in (B.6) can be approximately satisfied.29 By the Chebyshev interpolation theorem, if

M is sufficiently larger than n and if the sum of weighted square in (B.10) is sufficiently small, the

approximated h function in (B.9) should be very close to the true solution.

For the numerical results in Section II of the main text, I set γ = 30, n = 25, M = 200, and

K = 106. I then apply the Levenberg-Marquardt algorithm and obtain a minimized sum of squared

errors less than 10−6. The small size of the errors indicates a good convergence of the numerical

solution. The solution is also insensitive to the choice of M or K. These findings indicate that the

numerical solution is a sufficient approximation for the true h function.

2. Solving the Partial Differential-Difference Equation for the General Model in Section III

In this section, I solve the second-order partial differential-difference equation in (A.43) subject

to the boundary conditions in (A.44), (A.47), and (A.48).

First, m(λt) in (A.44) needs to be solved numerically. I first transform the belief variable λt

to a new variable yt ≡ [2λt − (λh + λm)]/(λh − λm) with the required range [−1, 1]. Now define

n(y) ≡ m(λ(y)) and rewrite (A.45) as

n′(y)[a(y)− λ(y)b(y)] = 1
2(λh − λm)n(y)

(
λ(y)− gD − λκ− n−1(y) + r − (1− κ)λ(y)n(y′)

n(y)

)
,

(B.11)

28See Mason and Handscomb (2003) for detailed discussion of the properties of Chebyshev polynomials.
29Note that Tn(1) = 1, Tn(−1) = (−1)n, T ′n(1) = n2, and T ′n(−1) = (−1)n−1n2.
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where

λ(y) = 1
2 [y(λh − λm) + (λh + λm)],

a(y) = 1
2 [(1− y)ql − (y + 1)qh](λh − λm)− qh(λm − λl),

b(y) = [y(λh − λm) + (λh + λm)]−1(1− y)(λh − λm)[1
2(y + 1)(λh − λm) + (λm − λl)],

y′ = [2(λ(y) + b(y))− (λh + λm)]/(λh − λm).

(B.12)

The singular boundary value problem in (B.11) does not require a boundary condition. I apply the

same projection method as discussed in Appendix B.1 and approximate n by

n̂(y) =
∑n

r=0
brTr(y). (B.13)

I then choose {br}nr=0 to minimize the weighted sum of squared errors

∑M

i=1

1√
1− y2

i

 n̂′(yi)(a(yi)− λ(yi)b(yi))− 1
2(λh − λm)n̂(yi)

×
(
λ(yi)− gD − λκ− n̂−1(yi) + r − (1− κ)λ(yi)n̂(y′i)

n(yi)

) 2

, (B.14)

with yi chosen as the M zeros of TM (y). I set n = 25 and M = 200, apply the Levenberg-Marquardt

algorithm, and obtain a solution with a minimized sum of residual errors of (B.14) less than 10−14.

To further solve the two-dimensional system, again transform x to z defined in (B.1) and write

h(z, y) ≡ l(x(z), λ(y)). Rewrite the differential-difference equation of (A.43) for h as

(1− κP )h(z, y)

1− κ
= h

(
(1 + z)− γ−1κP (c0h− c1)(1− z)− (1− κ)(1− z)
(1 + z)− γ−1κP (c0h− c1)(1− z) + (1− κ)(1− z)

,
2[λ(y) + b(y)]− (λm + λh)

λh − λm

)
,

(B.15)

where

σP =
1− 1

2(hz/h)(1− z2)

1− 1
2γ (hz/h)(c0h− c1)(1− z)2σD, (B.16)

ḡP = [1− 1
2γ (hz/h)(c0h− c1)(1− z)2]−1

{
gD + λκ+ σDσP − σ2

D

+ 1
2(hz/h)(1− z2)[r − ρ− gD − λκ+ σ2

D + γ−1(h−1 − r − σDσP )(c0h− c1)(1− z)/(1 + z)]

+ 2
λh−λm (hy/h)[a(y)− λ(y)b(y)] + 1

2 [hzz/h− 2hz/(h(1− z))][(σP − σD)(h/hz)]
2
}
,

(B.17)

κP =
ḡP + h−1 − r − γ−1σ2

P (c0h− c1)(1− z)/(1 + z)

λ(y) + γ−1[ḡP + h−1 − r − γ−1σ2
P (c0h− c1)(1− z)/(1 + z)](c0h− c1)(1− z)/(1 + z)

.

(B.18)
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The boundary conditions in Eqs. (A.44), (A.47), and (A.48) become

lim
z→1

h(z, y) = n(y) (B.19)

lim
z→−1

h(z, y) = c1/c0 (B.20)

lim
z→−1

hz(z, y) = γw(y)/(2c0) (B.21)

for ∀y ∈ (−1, 1), with w(y) =
κA+σ2

D−
√

(κA−σ2
D)

2
+4λ(y)(κσD)2

2κσ2
D

.

Provided the boundary conditions in (B.20) and (B.21), the unknown function h(z, y) can be

approximated by

ĥ(z, y) =
c1

c0

(
1 +

γw(y)

2c1
(1 + z)

)
+ (1 + z)2

∑
i+j≤n

a(i, j)Ti(z)Tj(y). (B.22)

The boundary condition in (B.19) is approximated by

c1

c0

(
1 +

γw(y)

c1

)
+ 4

∑
i+j≤n

a(i, j)(−1)iTj(y) = n̂(y) (B.23)

for ∀y ∈ (−1, 1), where n̂(y) is the numerical solution of (B.14).

Now choose {a(i, j)}i+j≤n such that ĥ(z, y) approximately satisfies (B.15) and (B.19). A good

approximation is to minimize the weighted sum of squared errors

∑M

i,j=1
w(i, j)



(1− κ̂P (zi, yj))ĥ(zi, yj)

1− κ
−

ĥ


(1 + zi)− γ−1κ̂P (zi, yj)(c0ĥ(zi, yj)− c1)(1− zi)− (1− κ)(1− zi)
(1 + zi)− γ−1κ̂P (zi, yj)(c0ĥ(zi, yj)− c1)(1− zi) + (1− κ)(1− zi)

,

2[λ(yj) + b(yj)]− (λm + λh)

λh − λm





2

+K
∑M

j=1

1√
1− y2

j

[ĥ(1, yj)− n̂(yj)]
2
,

(B.24)

where w(i, j) = [(1 − z2
i )(1 − y2

j )]
−1/2, and zi, yj are the M zeros of TM . The last term in (B.24)

ensures that the boundary condition in (B.19) is approximately satisfied. There are (n+1)(n+2)/2

unknown coefficients. By the Chebyshev interpolation theorem, if M2 is sufficiently larger than

(n + 1)(n + 2)/2 and if the weighted sum of squared errors in (B.24) is sufficiently small, the

approximated h function in (B.22) should be close to the true solution.

For numerical results in Section III of the main text, I again choose γ = 30, and then I set

n = 40, M = 90, and K = 106. In this case, there are 861 unknown coefficients and 8100 grid

points. I apply the Levenberg-Marquardt algorithm and obtain a minimized sum of squared errors
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for (B.24) of 0.027; this is equivalent to a percentage error about 0.007%. Such a small percentage

error, together with the observation that the numerical solution is insensitive to changes in n, M

and K, guarantees a good approximation of the true h function by ĥ.

3. Solving the Partial Differential-Difference Equation for the General Model in Section IV

The procedure for solving the price-dividend ratio as a function of the two state variables is by

and large the same as the one outlined in Appendix B.2. Instead of (B.24), I now minimize

∑M

i,j=1
w(i, j)



(1− κ̂P (zi, yj))ĥ(zi, yj)

1− κ
−

ĥ


(1− ξκ)(1 + zi)− (1− ξ)γ−1 ˆ̂κP (zi, yj)(c0ĥ(zi, yj)− c1)(1− zi)− (1− κ)(1− zi)
(1− ξκ)(1 + zi)− (1− ξ)γ−1 ˆ̂κP (zi, yj)(c0ĥ(zi, yj)− c1)(1− zi) + (1− κ)(1− zi)

,

2[λ(yj) + b(yj)]− (λm + λh)

λh − λm





2

+K
∑M

j=1

1√
1− y2

j

[ĥ(1, yj)− n̂(yj)]
2

(B.25)

over {a(i, j)}i+j≤n. Note that in the case of full rationality on forecasting the crash severity, ξ = 0

and (B.25) reduces to (B.24).

For numerical results in Section IV of the main text, I choose γ = 30, n = 40, M = 90, and

K = 106, and apply the Levenberg-Marquardt algorithm and obtain a minimized sum of squared

errors of (B.25) less than 0.03 for ξ = 0.1, 0.2,. . .1, which is equivalent to a percentage error of less

than 0.008% for all the values of ξ I examine. Such a small percentage error, together with the

observation that the numerical solution is insensitive to changes in n, M and K, guarantees a good

approximation of the true h function by ĥ.

For the true crash severity, I implement a simple interpolation method to search for the inter-

section between the left-hand side and the right-hand side of (61) with κP,t as the running variable

on each grid point.
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Figure 1. Asset Pricing Implications for the Rational Benchmark. This figure plots
the price-dividend ratio h, the crash severity κP , speculators’ risky asset portfolio weight w, the
conditional expected capital gain of the stock gP , the Brownian volatility σP , and the total volatility
σ̄P , as functions of the transformed wealth-dividend ratio z defined in (19). The parameter values
are: µ = 0.5, r = 4%, gD = 1.5%, ρ = 1%, σD = 10%, k = 0.5, κ = 0.04, and λ = 0.2.
The numerical approximations follow the procedure in Appendix B.1 with γ = 30, n = 25, and
M = 200.
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Figure 2a. Model Implications of Incorrect Beliefs about Crash Likelihood (3-D). This
figure plots the price-dividend ratio h, the crash severity κP,t, the portfolio weight wt, the Brownian
volatility σP,t, the true expected capital gain gP,t, and the perceived expected capital gain ĝP,t, as
functions of λt and zt. The parameter values are: µ = 0.5, r = 4%, gD = 1.5%, ρ = 1%, σD = 10%,
k = 0.5, κ = 0.04, λ = 0.2, λl = 0.025, λh = 1, qh = 0.025, and ql = 0.005. The numerical
approximations follow the procedure in Appendix B.2 with γ = 30, n = 40, and M = 90.
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Figure 2b. Model Implications of Incorrect Beliefs about Crash Likelihood (2-D). This
figure plots the price-dividend ratio h, the crash severity κP,t, the portfolio weight wt, the Brownian
volatility σP,t, the true expected capital gain gP,t, and the perceived expected capital gain ĝP,t, as
functions of zt for various values of λt. The black, blue, red, orange, and green line corresponds
to λt = λm, 0.25, 0.5, 0.75, and 1, respectively. The parameter values are the same as those for
Figure 2a, and the numerical approximations follow the procedure in Appendix B.2 with γ = 30,
n = 40, and M = 90.
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Figure 3a. Time-Series Implications based on a Simulated Dividend Process. This figure presents the time series of the
equilibrium price Pt, the crash severity κP,t, the portfolio weight wt, the per-capita wealth for speculators Wt, as well as the amount of
collateralized funding max(wt − 1, 0)Wt, given a simulated dividend path Dt. The initial dividend level is 10 and the initial values for
the state variables are λt = 0.5 and xt = 5. Three Poisson shocks are set on day 1182, 1499, and 2207, respectively.
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Figure 3b. Time-Series Implications based on a Simulated Dividend Process. This figure presents the time series of the belief
dynamics λt, the perceived expected excess return ĝP,t + h−1 − r, the true expected excess return ḡP,t − λκP,t + h−1 − r, the average
excess return in the absence of a crash ḡP,t + h−1 − r, the perceived Sharpe ratio [ĝP,t + h−1 − r]/(σ2

P,t + λtκ
2
P,t)

1/2, as well as the true

Sharpe ratio [ḡP,t−λκP,t +h−1− r]/(σ2
P,t +λtκ

2
P,t)

1/2, given a simulated dividend path Dt. The initial dividend level is 10 and the initial
values for the state variables are λt = 0.5 and xt = 5. Three Poisson shocks are set on day 1182, 1499, and 2207, respectively.

59



0 5 10 15
0

20

40

60

intial value W0/D0C
re

d
it

ex
p

an
si

on
(c

ra
sh

in
1

y
r)

0 5 10 15
0

20

40

60

80

100

intial value W0/D0C
re

d
it

ex
p

a
n

si
o
n

(c
ra

sh
in

2
y
rs

)

0 5 10 15
0

0.1

0.2

intial value W0/D0

C
ra

sh
se

v
er

it
y

(c
ra

sh
in

1
y
r)

0 5 10 15
0

0.1

0.2

intial value W0/D0

C
re

d
it

se
v
er

it
y

(c
ra

sh
in

2
y
rs

)

0 5 10 15

2

2.5

3

intial value W0/D0

R
ec

ov
er

y
ti

m
e

(c
ra

sh
in

1
y
r)

0 5 10 15
1

1.5

2

2.5

intial value W0/D0

R
ec

ov
er

y
ti

m
e

(c
ra

sh
in

2
y
rs

)

Figure 4. Time-Series Implications of Incorrect Beliefs about Crash Likelihood. This
figure plots the credit expansion over a course of one year or two years in the absence of an
intervening crash event, the end-of-period crash severity on the asset price, and the subsequent
recovery time, with each quantity averaged over 1000 dividend paths for various initial values of
W0/D0 and λ0. The black, blue, and red lines correspond to λ0 = 0.4, 0.5, and 0.6, respectively.
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Figure 5a. Model Implications of Incorrect Beliefs about Crash Severity (3-D). This
figure plots the perceived crash severity κ̂P,t, the ratio of the true over the perceived crash severity
κP,t/κ̂P,t, the unanticipated percentage loss for speculators and for banks UPLS and UPLB, the
unanticipated total loss for speculators and banks UTLS and UTLB, as functions of λt and zt. The
parameter values are: µ = 0.5, r = 4%, gD = 1.5%, ρ = 1%, σD = 10%, k = 0.5, κ = 0.04, λ = 0.2,
λl = 0.025, λh = 1, qh = 0.025, ql = 0.005, ξ = 1, and θ = 1. The numerical approximations follow
the procedure in Appendix B.3 with γ = 30, n = 40, and M = 90.

61



−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

transformed Wt/Dt

P
er

ce
iv

ed
cr

a
sh

se
ve

ri
ty

−1 −0.5 0 0.5 1
0.9

1

1.1

1.2

1.3

transformed Wt/Dt

R
at

io
of

tr
u
e

a
n

d
p

er
ce

iv
ed

cr
as

h
se

v

−1 −0.5 0 0.5 1

0

0.02

0.04

transformed Wt/DtU
n

an
ti

ci
p

at
ed

p
ct

lo
ss

(s
p

ec
u

la
to

r)

−1 −0.5 0 0.5 1
0

0.03

0.05

transformed Wt/Dt

U
n

an
ti

ci
p

at
ed

p
ct

lo
ss

(b
an

k
)

−1 −0.5 0 0.5 1

0

1

2

transformed Wt/DtU
n

a
n
ti

ci
p

at
ed

to
t

lo
ss

(s
p

ec
u

la
to

r)

−1 −0.5 0 0.5 1
0

0.4

0.8

transformed Wt/Dt

U
n

a
n
ti

ci
p

at
ed

to
t

lo
ss

(b
an

k
)

Figure 5b. Model Implications of Incorrect Beliefs about Crash Severity (2-D).This
figure plots the perceived crash severity κ̂P,t, the ratio of the true over the perceived crash severity
κP,t/κ̂P,t, the unanticipated percentage loss for speculators and for banks UPLS and UPLB, the
unanticipated total loss for speculators and banks UTLS and UTLB, as functions of zt for various
values of λt. The black, purple, blue, red, orange, and green line corresponds to λt = λm, 0.0625,
0.25, 0.5, 0.75, and 1, respectively. The parameter values are the same as for Figure 5a, and the
numerical approximations follow the procedure in Appendix B.3 with γ = 30, n = 40, and M = 90.
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Figure 6. Time-Series Implications of Incorrect Beliefs about Crash Severity. This figure
plots the credit expansion over a course of one year or two years in the absence of an intervening
crash event, the end-of-period crash severity on the asset price, and the end-or-period unanticipated
percentage loss for banks upon a crash, with each quantity averaged over 1000 dividend paths
for various initial values of W0/D0 and λ0. The black, blue, red, and green line corresponds to
(λ0, ξ) = (0.4, 0.5), (0.6, 0.5), (0.4, 1), and (0.6, 1), respectively.
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