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ABSTRACT

We present a model of dynamic investment and production in which producers may have biased

beliefs in which they overextrapolate recent demand conditions into the future. This bias leads

producers’ beliefs to exhibit insufficient mean reversion, as these producers underestimate the

degree of mean reversion in the demand process. In a volatile industry, while biased beliefs lead

firms to make sub-optimal investment decisions in the short-run, they can be beneficial in the long-

run by counteracting the general trend in the industry, “cushioning” the industry against prolonged

downturns and aiding faster recovery. As an empirical case study, we consider oil exploration in

Alaska. We present evidence that firms in this industry were subject to extrapolation bias, leading

to drilling of lower-profit wells after recent price increases. Calibration of our model to Alaska oil

exploration shows that the cushioning effect can be large: in a typical episode of oil price decline

arising from a sequence of adverse demand shocks, the cushioning effect reduces the decline of the

oil price by 8.2% and accelerates the price recovery by 27%. This showcases the potential positive

implications that biased beliefs can have on industry dynamics.
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Biased belief formation is a bedrock underlying many models in behavioral finance and behav-

ioral economics. In financial settings, many real-world investors, both individual and institutional

investors, exhibit extrapolative expectations: they believe that prices will remain high in the future

when recent prices have been high. Accordingly, these beliefs can be conducive to price bubbles,

and sometimes tend to lengthen the duration of bubbles (Bagehot (1873), Kindleberger (1978),

Barberis, Greenwood, Jin, and Shleifer (2017)). Conversely, extrapolative expectations can am-

plify downward price movements and sometimes lead to slow recovery in an industry or economy

(Greenwood, Hanson, and Jin (2016), Jin (2015)). By and large, biased beliefs have negative

implications for market dynamics in these settings.

A large literature has focused on consumers having biased beliefs and how their beliefs affect

trading in asset markets, In reality, however, biased beliefs arguably also play a role in many

“real” investment decisions. Indeed, some recent research explores how biased expectations can

impact such decisions. For instance, Gennaioli, Ma, and Shleifer (2015) document that corporate

investment plans and actual investments are explained by CFOs’ incorrect expectations; Greenwood

and Hanson (2015) study how biased beliefs generate return predictability in the global ship building

industry.

In this paper, we study a model of biased beliefs populated by producers who make real invest-

ment decisions based on these beliefs. Specifically, the biased beliefs take the form of backward-

looking extrapolation: producers’ expectations of future consumer demand is formed as a weighted

average of these consumers’ past demands.1 These beliefs exhibit insufficient mean reversion: pro-

ducers mistakenly assume that the long-run mean of the demand process is changing and estimate it

using recent realizations of demand, thus underestimating the degree of mean reversion in the pro-

cess. These biased beliefs affect producers’ investment behavior, leading to sub-optimal decisions.

Obviously, sub-optimal decisions impose welfare losses on the economy, and much of the existing

behavioral literature focuses on these negative effects arising from agents’ behavioral biases.

In this paper, however, we go one step further. When firms’ investment decisions occur within

a dynamic market equilibrium, these “mistakes” can actually translate into long-run gains in the

market. Specifically, we show that over time, biased beliefs generate some unexpected effects that

counteract the general trend of an industry or economy, “cushioning” the industry or economy

against prolonged downturns and therefore leading to faster recovery. During industry upturns,

these cushioning effects can shorten the duration of bubbles. Unlike many papers in the existing

literature, our focus is on the positive implications that biased beliefs may play in market dynamics.

To illustrate these cushioning benefits, consider the oil exploration industry, an industry with

pronounced boom-and-bust cycles and volatile prices in which extrapolation can have big effects.

In this market, the producers are large oil companies who make important decisions with long-run

impact on oil exploration and production. When oil prices spiral downward (as occurred recently

1Earlier works of Barberis and Shleifer (2003), Barberis, Greenwood, Jin, and Shleifer (2015), and Hirshleifer, Li,
and Yu (2015) propose extrapolative beliefs about stock market returns and GDP growth.
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in the world oil market), oil companies extrapolate low prices continuing into the future, and

therefore cut back on new exploration. Indeed, extrapolative beliefs cause firms to cut exploration

more than they would in the non-extrapolative benchmark, resulting in large welfare losses in the

interim. However, over time, this excessive reduction in oil production will put upward pressure on

prices, thus reversing the downward trend in prices and aiding the oil industry out of its doldrums.

Moreover, this recovery will happen faster when firms have extrapolative beliefs. Conversely, in

periods of rising prices, extrapolative producers overinvest in oil exploration, which puts downward

pressure on the rising prices. We show that these cushioning effects constitute a generic feature of

real investment models with producers having backward-looking extrapolative beliefs.

Our model builds on standard aggregate investment models of Abel (1981) and Abel and Eberly

(1994). The price of industry output is positively related to consumer demand and negatively re-

lated to total investment from producers. Over time, consumer demand follows a mean-reverting

process with a constant long-run mean. Without knowing this long-run mean, however, produc-

ers extrapolate past realizations of consumer demands in forming expectations of future demand.

Based on these beliefs, producers make investment decisions. For comparison, we also examine a

benchmark model in which producers know the long-run mean of consumer demand. To analyze

the cushioning effects, we analyze the impulse response of investment, total supply, and product

prices with respect to shocks to consumer demands. Our analysis leads to two observations. First,

with extrapolative beliefs from producers, a negative demand shock gives rise to persistent under-

investment in subsequent periods, causing total supply to decrease at a faster rate relative to the

benchmark model. This rundown in supply lends support to prices, thus “cushioning” the negative

impact of the demand shock on the product price. Second, due to the persistence of the cushioning

effects, the product price can sometimes even start rising in the midst of a sequence of negative

demand shocks.

As an empirical case study, we consider the behavior and experience of oil producers operating

in the North Slope of Alaska, one of the most active oil exploration sites in North America. Since

oil exploration is not a liquid asset market with ample trading and resale opportunities, the return

regressions or survey evidence used in the existing literature to detect extrapolation are not available

in this context. Given these challenges, we present several pieces of evidence from Alaska exploration

which are consistent with the presence of biased beliefs on the part of producers. First, we find that

the number of new wells drilled are positively correlated with past levels of oil prices, with more

significant correlation with prices from six to twelve months prior. Second, we find that the five-

year production and five-year revenue from oil production for newly drilled wells are both negatively

correlated with past levels of oil prices. This finding that drilling projects initiated following high

prices yield systematically inferior outcomes support our interpretation of these projects as resulting

from biased beliefs.

As a further test for firms’ biased beliefs, we exploit the availability of data on both oil com-

panies’ planned and actual investments to establish that the number of “scrapped” wells — that
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is, the difference between the number of wells actually drilled and the number of wells planned —

is negatively correlated with both past levels of oil prices and the average changes in prices during

the subsequent two-year period within which oil companies are approved to carry out the planned

drilling. This finding suggests that oil companies over-extrapolate past oil prices when planning for

well drilling but subsequently change their mind and forgo these opportunities if oil prices decline

during the time after the well was approved but before drilling has commenced.2

In addition, we document some path-dependent features of belief formation. When recent oil

prices have risen at an increasing rate, oil companies extrapolate to a lesser extent; if the oil price

six months ago is 50 dollars per barrel, then all else being equal, an increasing rise of the oil price

between six months ago and the time of drilling will result in a 12% reduction of the number of

new wells drilled.

Motivated by this empirical evidence of oil companies’ suboptimal exploration decisions in

repsonse to recent prices, we quantify the magnitude of the cushioning benefit by calibrating our

model using parameters appropriate to this industry. In one example, a sequence of adverse demand

shocks leads to a price decline which is 8.2% smaller in the extrapolative compared to the benchmark

scenario, which quickens the recovery by four months. Another calibration example suggests that

the industry downturn during the 2008 financial crisis would have been lengthened by four months if

oil industry firms did not have biased extrapolative beliefs. These examples show how extrapolative

beliefs cushion, or soften, the extremes during the periodic big downturns which punctuate the oil

exploration industry. At the same time, the overall welfare calculus is ambiguous; while this

cushioning effect shortens the downturn, the biased beliefs lead firms to severely underinvest in

drilling activity during the downturn relative to the non-extrapolative benchmark, which involves

large costs in lost jobs, underutilized equipment, and so on. Biased beliefs lead to shorter, albeit

direr, downturns, and the overall welfare effect involves a tradeoff between the short-run costs and

the long-run gains.

Our paper adds to both theoretical and empirical research that aims to understand the impli-

cations of biased beliefs on asset price movements, consumption and portfolio choices, investment

decisions, and individual behavior. On the empirical side, recent papers by Vissing-Jorgensen

(2004), Bacchetta, Mertens, and van Wincoop (2009), Amromin and Sharpe (2013), Greenwood

and Shleifer (2014), Koijen, Schmeling, and Vrugt (2015), and Kuchler and Zafar (2016) present sur-

vey evidence that real-world investors exhibit extrapolative expectations and they behave according

to these beliefs. Cassella and Gulen (2015) show that the extent to which investors extrapolate past

returns of the stock market is highly correlated with the degree of predictability of future market

returns. And Gennaioli et al. (2015) find that CFO expectations about future earnings growth are

extrapolative and predictive of planned and actual investments. On the theoretical side, Fuster,

Hebert, and Laibson (2011), Choi and Mertens (2013), Hirshleifer et al. (2015), Barberis et al.

(2015), Jin and Sui (2017) show that extrapolative expectations can generate stock market move-

2Similarly, Conlin, O’Donoghue, and Vogelsang (2007) used data on purchased and subsequently returned clothing
to identify projection bias.
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ments that are consistent with the data. Alti and Tetlock (2014) show that overextrapolation and

overconfidence affect investment decisions. Barberis et al. (2017) use extrapolation to explain asset

bubbles and trading volume. Gennaioli, Shleifer, and Vishny (2012) and Jin (2015) connect biased

beliefs that arise from risk neglect and availability heuristic with market leverage and financial

crashes. Glaeser and Nathanson (2015) tie extrapolation to housing dynamics. And Bordalo, Gen-

naioli, and Shleifer (2017) and Greenwood et al. (2016) use extrapolative expectations to make

sense of facts about credit cycles.

Our paper makes three contributions to this line of research. First, the paper embeds extrapola-

tive expectations into the supply side of a model with real investments and unearths the potential

cushioning benefits from these biased beliefs. It is worth pointing out that most research so far

has focused on the negative effects and costs associated with biased beliefs; only Dong, Hirshleifer,

and Teoh (2017) discuss the potential benefits. Our study adds to the latter strand of literature

and counsels greater caution when accessing the overall effect of biased beliefs. Second, we present

empirical evidence from the oil exploration industry that supports our model assumptions and

predictions. Thus our paper joins a small but growing literature exploring and quantifying the

impact of biased beliefs in a specific industrial (i.e., non-financial) setting.3 Our data allow us to

look at the planned and actual investments separately, and studying the difference between the two

supports the hypothesis that producers on the supply side exhibit biased beliefs. Finally, we use

our data to calibrate model parameters; this allows us to further quantify the cushioning effects

highlighted in the paper.

Our paper is related to the works of Greenwood and Hanson (2015) and Bordalo et al. (2017);

these works also connect biased beliefs with investment decisions. Different from their studies

which analyze the asset price implications of biased beliefs, we focus on the cushioning benefits of

these beliefs. Our paper is also related to the work of Glaeser, Gyourko, and Saiz (2008). Their

work shows that the elasticity of housing supply can affect the magnitude and duration of housing

bubbles, and biased beliefs in their framework come from the demand side. Instead, our study

highlights the importance of biased beliefs from the supply side.

The paper proceeds as follows. In Section I, we lay out the model and characterize its solution.

We then use impulse responses of the model to illustrate the cushioning benefits. Section II uses

the Alaska exploration data to provide evidence that supports the extrapolative bias amongst oil

and gas companies. In Section III, we calibrate model parameters in accordance with the data and

further analyze the implications of the model using these parameter values. Section IV concludes.

All technical details are in the Appendix.

3The other paper is Greenwood and Hanson (2015). Kellogg (2014) estimates a structural model of individual oil
companies’ oil drilling decisions in Texas and also estimates producers’ belief process for future oil prices.
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I. The Model

In this section, we first develop a simple aggregate investment model with incorrect beliefs

from producers. Then we examine the model implications through impulse response analysis.

For congruence with the empirical case study which follows, we will describe the model using

terminology from the oil industry. The firms are oil producers who make decisions about the

number of wells to drill each period, and obtain revenue from selling the oil extracted from the

wells.

Assume that the demand relationship between crude oil prices per barrel Ht and the total

number of active wells Qt is

Ht = At −BQt. (1)

Here At represents a demand factor; this captures outside influences on prices which are exogenous

to the firms. Since the oil market is global, these influences can include supply disturbances in other

oil-producing areas of the world (such as Texas, Canada, the Middle East, etc.) which will also

impact the price that Alaskan producers receive for their oil. Such disturbances evolve randomly

and with some serial dependence, so we model the law of motion for At as

At+1 = A+ ρ0(At −A) + εt+1, (2)

with ρ0 ∈ [0, 1) and Var[εt+1] = σ2ε . Qt, the aggregate number of wells, is an investment decision

made by a continuum of risk-neutral firms. At each point in time, each firm chooses its level of

investment iGt . The relation between the firm’s wellcount qt and its time-t investment is

qt+1 = (1− δ)qt + p · iGt = qt + p · it, (3)

where 0 < δ < 1 is the depreciation rate, p is the probability of success when producing the industry

output, and it = iGt − δqt/p.4 Effectively, it is the choice variable. At the aggregate level, the total

number of wells evolves as

Qt+1 = (1− δ)Qt + p · IGt = Qt + p · It. (4)

This law of motion for Qt implies that there is a one period time-lag in investment It before it

affects the number of wells Qt+1, and generates cash flow for the firms. In mapping this model to

the oil exploration industry, we use a period of a month, which is reasonable given the lag between

drilling and well production falls between a few days and a couple of months for most wells in our

data.5

4Under risk neutrality and the assumption that success or failure of production is independent across firms, (3) is
equivalent to leaving the incremental investment stochastic and then taking expectations when deriving the Bellman
value function.

5 In other industries, such as the housing market, it may take much longer (perhaps years rather than months)
for new planned housing to be completed, and we conjecture that with such long delays, biased beliefs may actually
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Similar to Greenwood and Hanson (2015), we assume that the representative firm earns a net

profit of

Πt = M · (At −BQt)− C − δPr (5)

on each active well, where M is the average number of barrels obtained from each well, C is the

operating cost of a well, and Pr is the replacement cost of a well. For an individual firm, given its

current wellcount qt and its current investment it (new drilling), the firm’s time-t total profit is

Vt = qtΠt − Prit − k ·
i2t
2
, (6)

where k · i
2
t
2 represents the adjustment costs.

Firms’ biased beliefs and insufficient mean reversion. A crucial component of our

model lies in the specification of firms’ expectational errors. Specifically, we assume that, from

firms’ perspective, the evolution of the demand factor At is

At+1 = A
α
t + ρf ·

(
At −A

α
t

)
+ εf,t+1, (7)

where

A
α
t = α ·At + (1− α)A, At = (1− ρA)At−1 + ρAAt, (8)

the subscript “f” stands for “firm”, and 1 > ρf ≥ ρ0 ≥ 0.6

Comparing Equation (2) to Equations (7) and (8) shows that such a model of beliefs exhibits

insufficient mean reversion; A is the true long-run mean of the demand process, which is contant

over time, but firms mistakenly assume it to be time-varying (denoted A
α
t in Equation (8)), and

estimate it using recent realizations of the process. Thus, in each period, firms’ beliefs about the

long-run mean of the process adjust in the direction of recent realizations: when demand has been

slack—that is, when At has been low—firms tend to believe that the long-run mean A
α
t has also

fallen, leading to a smaller perceived degree of mean reversion measured by the difference between

A
α
t and At; the opposite occurs after periods when demand has been high.

[Place Figure 1 about here]

Figure 1 contains an illustration of these beliefs. The demand factor process, At, is plotted in

the solid line, and there is first an upturn followed by a downturn. However, the true long-run mean,

A, is constant over time and equal to zero in this example, as plotted in the dotted line. In contrast,

firms’ beliefs, following Equations (7) and (8), are characterized by a time-varying long-run mean,

A
α
t , which is plotted in the dot-dash line. Clearly, firms’ beliefs about the long-run tendency of the

exacerbate rather than cushion the economy against downturns.
6Note that when α = 0, A

α
t equals A. In this case, the model reduces to the model of Greenwood and Hanson

(2015). In comparison to Greenwood and Hanson (2015), our way of modelling extrapolative expectations allows us
to further make sense of some path-depedent features of belief formation; we discuss this both later in this section
and in Section II.
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process exhibit insufficient mean reversion: following an upturn in At, firms’ perceived long-run

means also track higher, and as a result, the perceived degree of mean reversion in At, measured by

At −A
α
t , becomes smaller, suggesting “irrational exuberance”, while the opposite occurs following

the downturn in At, suggesting “irrational pessimism”.

In addition, conditional on their estimated long-run mean A
α
t , we can also allow firms to perceive

less mean reversion of At relative to the true process by having ρf ≥ ρ0. Rearranging (7)

At+1 −At = (1− ρf )
(
A
α
t −At

)
+ εf,t+1 (9)

illustrates the path-dependent feature of firms’ belief formation. With a sequence of steady increase

in the demand factor, A
α
t rises above the true long-run mean of A. In this case, a high A

α
t and a high

ρf both make the perceived evolution of At+1 less mean-reverting than the true data generating

process. If, on the other hand, At rises at an increasing rate, then A
α
t increases to a smaller degree

compared to At, making firms perceive that At will mean-revert back to a low level more quickly

in the future.

Equations (7) and (8) are also related to the work of Barsky and De Long (1993). That paper

shows how investors learning about the time-varying mean of a dividend process can lead to excess

stock market movements; thus investors learning and updating about the time-varying mean of a

dividend process can appear to “extrapolate” recent innovations in the dividend process. In contrast

to the Barsky-DeLong framework, however, the mean of the demand factor in our framework is not

time-varying (Equation (2)), but firms mistakenly perceive it to be (Equation (7)). In comparison

to Barsky and De Long (1993), then, agents in our model end up “learning too much” from past

demand shocks, leading to an excessive degree of extrapolation, and insufficient mean reversion,

relative to the full-information benchmark, as pointed out above.

Dynamic investment decision. The model has three state variables at each point in time:

At, At, and Qt. For an individual firm, its Bellman equation is

J(qt;At, At, Qt) = max
it

{
V (qt, it;At, At, Qt) +

Ef [J(qt + p · it;At+1, At+1, Qt+1|At, At, Qt)]
1 + r

}
.

(10)

Here “Ef” means that the expectation is taken under firms’ subjective beliefs. The first-order

condition gives

Pr + k · i∗t = p ·
∞∑
j

Ef [Πt+j |At, At, Qt]
(1 + r)j

≡ p · P (At, At, Q). (11)

Here P (At, At, Qt) is a hypothetical price of discounting future expected per-unit net profit at the

required rate of return r under firms’ subjective expectations.

We now characterize the optimal level of investment in the proposition below.
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Proposition 1. In the investment model described above, firms’ optimal level of investment is

i∗t = x+ y1 ·At + y2 ·At + z ·Qt, (12)

where

z =
BMp2 + kr

2kp
−

√(
BMp2 + kr

2kp

)2

+
BM

k
, (13)

 y1

y2

 =

 (1 + r)k +BMp2 − kρf − kzp −ρAρfk

−(1− ρf )αk (1 + r)k +BMp2 − (1− ρf )αρAk − k(1− ρA)− kzp

−1

×

 pMρf

pM(1− ρf )α

 , (14)

x =
(ky1 + ρAky2 + pM) · (1− ρf )(1− α)A− rPr − p(C + δPr)

k(r − zp) +BMp2
. (15)

Proof. See Appendix. �

A. Impulse Response Analysis: the Cushioning Benefits

We now examine the model implications through some impulse response analyses. Figure 2

plots the net investment (new drilling) It, total wells Qt, and the oil price Ht from t = 1 to t = 15

for both the benchmark model (α = 0) and the model with biased beliefs (α = 0.9 and ρA = 0.25);

from the steady-state, a sequence of half standard deviation negative shocks on At are imposed at

t = 2, 3, 4, 5, and 6.

The impulse responses presented in Figure 2 are computed using model parameters calibrated

for the Alaskan oil exploration sector. (These parameter values are presented and discussed in

Section III below.) These impulse responses highlight the cushioning benefits of biased beliefs.

Compared to the benchmark case, biased beliefs lead to lower investments (new drilling) in the

face of negative demand shocks, which lowers the number of active wells, and persists over many

periods after the negative demand shocks are realized. This lower wellcount “cushions” the negative

impact of the adverse demand shocks on the output price, resulting in a smaller price decline and a

faster price recovery. To see the mechanism in more details, notice that after a sequence of negative

shocks on At, overextrapolation leads firms to lower their estimation of the long-run mean of the

demand factor A
α
t , hence becoming pessimistic about future prices and therefore reducing their

investment. Relative to the benchmark case, the number of wells and hence total oil production

in subsequent periods drops to a larger degree and stays persistently low in the behavioral model.

This comes from two reasons: first, firms’ pessimistic beliefs about the future output price are

persistent; second, lower past investments cumulatively result in lower total drilling in subsequent
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periods. This supply effect of biased beliefs partially offsets the negative effect of adverse demand

shocks on the output price. In this example, extrapolation reduces the decline of the output price

by 8.2% and results in a faster price recovery at month 11 compared to month 15 for the benchmark

case, a difference of 27%.

While this example has considered a sequence of negative demand shocks leading to a down-

turn, the cushioning effects also arise when the market is in an upturn. Indeed, an example with a

sequence of positive demand shocks would produce exactly symmetric results: in the upturn, ex-

trapolative firms would overinvest in new drilling projects, leading to excessive production accom-

panied by downward pressure prices. The cushioning effects here would be of the same magnitude,

albeit of the opposite sign: extrapolation would reduce the magnitude of the price by 8.2% and

prices would fall back to their pre-shock levels by month 11, four months earlier compared to the

non-extrapolative benchmark case.

[Place Figure 2 about here]

Some additional observations are worth making. First, the cushioning benefits come at some

cost, as large cutbacks in investment (a 27% reduction from 194 to 142 by period 8 in the middle

panel of Figure 2) can imply a high level of industrial turmoil; this “shakeout” is more sizeable under

extrapolative beliefs than in the non-extrapolative benchmark. As such, the overall welfare calculus

of the cushioning effects is ambiguous, involving an intertemporal tradeoff between investment and

output in the short run vs. faster recovery and higher output in the long run.

Second, the smaller decline of the output price in the behavioral model comes together with a

faster recovery. As negative demand shocks continue to arrive at t = 4 and 5, they are basically

offset by the lower drilling activity in the behavioral model. As a result, the output price stays

relatively flat during these periods. Finally, combining a sequence of small negative demand shocks

into a big shock tends to limit the cushioning effect. Figure 3 shows that if we clump all the half

standard deviation negative demand shocks from Figure 2 into a large negative shock at t = 2,

the decline of the output price is of the same magnitude in both the benchmark model and the

behavioral model, although overextrapolation still leads to a faster recovery.

[Place Figure 3 about here]

B. Empirical Implications of Extrapolative Producers

In what follows, we study oil exploration in Alaska as an empirical application of the model.

Since oil exploration is not a liquid asset market with ample trading and resale opportunities, the

return regressions or survey evidence used in the existing literature to detect extrapolation are not

available in this context. For that reason, before moving on to the empirical section of the paper,

we derive some theoretical results to guide our empirical strategy of detecting extrapolative beliefs.
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The following corollary shows how Proposition 1 pins down the coefficients of regressing current

and future investments on the current output price.

Corollary 1. The regression coefficient for regressing It on Ht, both conditional and unconditional

on At−1, At−1, and Qt−1, is β0 = y1 + ρAy2. The regression coefficient for regressing It+1 on Ht,

both conditional and unconditional on At−1, At−1, and Qt−1, is β1 = (y1+ρAy2)ρ0+y2(1−ρA)ρA+

zp(y1 + ρAy2).

Proof. See Appendix. �

We plot in Figure 4 the coefficients β0 and β1 as functions of α and ρA. Compared to the

benchmark case of α = 0 or ρA = 0, higher values of α and ρA make firms tend to overestimate the

long-run mean of the demand factor after a sequence of positive demand shocks, hence reducing

firms’ perceived degree of mean reversion about future prices and causing them to overinvest;

overinvestment after a sequence of high prices — high prices are caused by positive demand shocks

— therefore leads to higher values of β0 and β1. Note that β1 tends to be lower than β0 as firms

still anticipate some degree of mean reversion about future prices so they tend to scale back future

investment. Also note that as ρA further increases, β1 increases at a lower rate or decreases in

some other cases: a higher ρA makes the estimated long-run mean of the demand factor A
α
t less

persistent, so adverse demand shocks in the future tend to affect investment decisions to a larger

extent.

[Place Figures 4 and 5 about here]

Finally, we consider some implications of our model for firms’ investment after different price

pattern scenarios. In Figure 5 we plot the impulse responses for our model under two different price

pattern scenarios. From the steady-state, two different sequences of shocks on At are imposed from

t = 2 to t = 6, resulting in one case a steady rise in oil price and in another case an increasing (or

acclerating) rise in price. The top panel of the figure then suggests that firms overinvest less (by

8.9%) in the accelerating price scenario compared to the steady price increase scenario. Indeed, our

model suggests that, in comparison with a steady increase in price, an accelerating price increase

leads to smaller revisions in the firms’ estimated long-run mean A
α
t , giving rise to stronger perceived

mean reversion in future prices and less overinvestment.

It is worth noting that leading asset pricing models of extrapolation such as Barberis, Shleifer,

and Vishny (1998) and Barberis et al. (2015) cannot explain this finding: in these models, an

increasing rise will result in stronger extrapolative beliefs and therefore more investment. On the

other hand, our finding is consistent with the empirical results of Barber, Odean, and Zhu (2009)

and Greenwood, Shleifer, and You (2017) in the context of the stock market. These findings suggest

some reasonable caution on the part of extrapolators in the face of accelerating price increase, and

hence a belief formation process that is more sophisticated than simple extrapolation studied in the
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literature. To the best of our knowledge, the belief dynamic we proposed in equations (7) and (8) is

among the first that can, at least in part, capture this path-dependent feature of belief formation.7

II. Oil Exploration: An Empirical Application

Having established the existence of cushioning benefits from extrapolative beliefs in a theoretical

model, we now proceed to quantify them in a real world setting. In choosing a suitable industry

for a case study, we seek an industry with pronounced boom and bust periods, where cushioning

can play a more important role. For that reason, we focus on oil exploration and production in

Alaska. There are several reasons which make Alaska a suitable stage for our analysis: the size of

its market, the purity of the North Slope oil price index, and the ability for Alaskan operators to

respond to price changes. Alaska has long been one of the biggest oil producing states in the U.S,

consistently ranked amongst the top five across oil producing regions in the country since the 1970s.

Its production peaked at around two million barrels a day in 1988, behind only Texas. In addition

to the sheer size of the production in Alaska, petroleum activities in Alaska are centered in the

remote North Slope region (along the northern Arctic coast of Alaska). Noth Slope field production

has accounted for over 95% of all field production in Alaska each year since the latter half of 1970s

(EIA (2017)). As a result, the Alaska North Slope crude oil price is a pure indicator of the supply

and demand for Alaska-produced oil, as almost no supply from regions outside of Alaska is in the

mix. Furthermore, due to its Arctic location, the Alaska North Slope region has a topography and

geology which differ from other main oil-producing regions in the continental United States, such as

California and Texas, and which pose unique challenges for oil drilling and production. Successful

drilling in this region requires a fair amount of local know-how and specialization. Due to such

reasons and also different state regulations, international large operators, such as British Petroleum

and ConocoPhillips, all have independent operations in Alaska that are separate from their other

U.S. operations. BP, for instance, has an independently incorporated subsidiary in Alaska, BP

Exploration (Alaska) Inc (BP (2016)). This independence allows these subsidiaries to make drilling

decisions themselves, and it is thus reasonable to model their decisions in Alaska as independent

from the decisions in other regions. These independent operations are also arguably more responsive

to the boom and bust cycle in the Alaska oil industry. For that reason, the cushioning effects that

we pointed out in the previous section, which soften out the boom and the busts, may be especially

important in Alaska compared to other oil-producing regions.

Before proceeding to the calibration exercises which quantify the magnitude of the cushioning

benefits for several historical episodes in Alaskan oil exploration, we present some suggestive ev-

idence from regressions which indicate that oil producers are affected by extrapolative beliefs in

their oil production decisions. In these regressions, we are guided by the empirical implications

from Corollary 1 above.

7Additional computations also showed that the biased belief specification for ship producers in Greenwood and
Hanson (2015) cannot generate this pattern of decreasing overinvestment with an accelerating price pattern.

11



A. Data Description

The data used in our case study is drawn from multiple sources. For oil prices, we use the

monthly Alaska North Slope (ANS) first purchase price per barrel from the U.S. Energy Information

Administration (EIA) from 1977 to 2016. As depicted by the first panel of Figure 6, the ANS price

remained relatively low prior to 2000, but increased drastically after 2000. In the meantime, cost

to drill an oil well, using the nominal average cost per crude oil well drilled each year in the US

provided by the EIA, followed a similar trend. The drilling cost remained relatively stable but

skyrocketed after 2000, as shown in the middle panel of Figure 6.8 To more accurately capture

firms’ revenue and cost considerations, we introduce a normalized oil price, defined by ANS oil

price divided by the oil well cost for the corresponding month, and then multiplied by the drilling

cost of June, 2000. Hence the normalized price in June 2000 is the same as the nominal ANS price,

but the normalized oil price is higher in the 1980s and much lower in the 2000s, as shown in the

right panel in Figure 6.

[Place Figure 6 about here]

To examine how firm investments respond to past levels of oil prices, we focus on the number

of wells drilled for oil producing or servicing purposes, using historical well activity data from the

Alaska Oil and Gas Conservation Commission (AOGCC). The drilled wells are those with records

showing the dates of actual construction activities, such as well spudding or well completion, or

those with positive well depth. A firm with extrapolative beliefs is more likely to drill a well when

it observes high oil prices in the recent past because the firm perceives high prices and hence high

revenue moving forward. In Figure 7, we plot the time series of the number of wells drilled in each

month, together with the normalized oil price. It suggests that indeed a larger number of wells are

drilled following high price periods.

[Place Figure 7 about here]

While Figure 7 suggests that recent price levels seem to be associated with firms’ well drilling

decisions, these decisions may be fully rational. Rather than over-extrapolating, the firm may

correctly foresee high oil prices in the future after observing high oil prices in the recent past,

and therefore wells drilled at these high price level times create more profit due to the rising price.

Additional evidence is needed before concluding that firms over-responded to the recent high prices,

in line with the over-extrapolation hypothesis. In Figure 8, we plot, on a monthly basis, the time

series of the average per-well profit and production in the first 60 months of production for wells

that are drilled, along with the normalized oil prices.9 Both plots do not seem to support that the

8The cost data is only available on an annual basis from 1960 to 2007. We use linear interpolation to obtain
monthly drilling cost data.

9Profit is calculated using normalized price multiplied by the production. As the normalized price is a measure of
how profitable oil production is, we multiply it by production volume for total profit
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firms are rationally foreseeing future oil prices. On the contrary, both plots in Figure 8 suggest

that lower-revenue and less productive wells are drilled following periods of high oil prices, more

consistent with the interpretation of these wells as mistakes arising from over-extrapolative beliefs.

[Place Figure 8 about here]

To further examine firms’ extrapolation bias, we utilize the availability of well approval data to

study the percentage of scrapped wells in each month. Within the well history data, we observe

all wells that received permits to drill. However, not all permitted wells ended up being drilled.

Scrapped wells are those that received permits but the constructions of which never took place

within 24 months of the permit approval.10 As stipulated by the Alaska State Legislature (Title

20 Chapter 25), if a well is not drilled within this period, a new permit needs to be applied for.

If a firm has extrapolative beliefs, then it might become overly exuberant and apply for more well

permits after observing high oil prices, but subsequently reverse its investment decision when price

drops after the permits are issued. To capture this reversal of investment decisions, we look at the

proportion of wells scrapped each month, calculated as the number of wells ending up scrapped

over the total number of wells approved in each month. Figure 9 plots the time series of wells

scrapped percentage, as well as the normalized oil price. It suggests that the percentage of wells

scrapped increases following periods of recent low prices.

[Place Figure 9 about here]

B. Regression Results

Based on what we observe in Figures 7, 8, and 9, we now run a series of regressions to formally

test whether firms extrapolate recent oil prices when making investment decisions, whether this

extrapolative belief is unbiased in terms of well profit and production, and whether firms take

actions to correct their investment decisions after receiving drilling permits.

First we look at the relationship between the number of wells drilled each month and normalized

oil prices lagged by various time periods: one, three, six, nine and twelve months,

Yt = α+ βPt−τ + γSt + εt, where τ = 1, 3, 6, 9 or 12 months. (16)

Here, Yt is the number of wells drilled in month t; Pt−τ is the normalized oil price from τ

periods before; and εt is the error term for each period. In this equation, we also include price

pattern variable St, an indicator variable for whether prices have been changing at an increasing or

decreasing rate in the previous months leading up to month t. We categorize price paths into five

10However, if a different well was drilled at the exact same longitude and latitude within two years of the initial
approval, the initial well does not count as a scrapped well, since a better well may be planned to replace the current
one.
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patterns: no clear pattern in the rate of change as the reference level; decreasing rate of decline;

increasing rate of decline; decreasing rate of rise; and increasing rate of rise. These categories are

calculated as follows. Let n be the maximum number of consecutive months prior to t that prices

have gone up or down. For n that is greater than or equal to three, we calculate the rate of change

as the difference of price changes between the second and first half of these periods.11 If the rate

of change has a different sign from the price trend, then this period experiences decreasing rate of

change; otherwise it experiences increasing rate of change. For instance, if the rate of change is less

than zero but the price has been going up, then this period is going through a decreasing rise in

price.

With extrapolative beliefs, firms perceive high oil prices moving forward after observing high

recent prices, resulting in high investments in the current period. In other words, extrapolation

implies a positive relation between the number of wells drilled and past oil prices; coefficient β

in (16) is expected to be positive. As for the price patterns, some empirical results from previous

papers for financial markets suggest that γ should be negative when St corresponds to an increasing

rate of rise; that is, accelerations in the rate of price increase tend to reduce extrapolative effect

of past prices on current behavior (see Barber et al. (2009) and Greenwood et al. (2017)). It is an

empirical question, however, whether such a result will obtain outside financial markets. Also note

that, as we described earlier, traditional extrapolation models cannot capture this fact, whereas

the belief dynamic proposed in equations (7) and (8) tends to generate it.

Table I summarizes the regression results based on equation (16). In this table, we see a

significant positive relation between the monthly number of wells drilled and the lagged normalized

oil prices from six months or more prior to drilling; the relation becomes insignificant when the

lag of past oil price is less than six months. This reduced significance for the more recent months’

coefficients is perhaps due to two reasons. First, it takes time to move equipment and set up rigs

before drilling can actually start. Second, it takes time for firms to attend to past oil prices; this

interpretation with limited attention is consistent with models of extrapolation in the behavioral

finance literature (see, for instance, Barberis et al. (2017), Barberis and Shleifer (2003), and Hong

and Stein (1999)). Overall, Table I suggests that oil companies in Alaska increase their investment

in well drilling when the oil price levels are high in recent months.

[Place Table I about here]

In addition, we also find that the extrapolation is tempered by the pattern of increasing rise in

price, as the coefficient on the “increasing rise” price patten is negative and statistically significant.

That is, when price has been going up at an increasing rate, all else equal firms become less

extrapolative and therefore reduce investments. This confirms the predictions of the extrapolation

models illustrated in Figure 5. For instance, if the normalized oil price is $50 six months ago with

11If n is even, the difference is (Pt − Pt−n/2) − (Pt−n/2 − Pt−n). If n is odd, the difference is [Pt − (Pt−(n−1)/2 +
Pt−(n+1)/2)/2]−[(Pt−(n−1)/2+Pt−(n+1)/2)/2−Pt−n], which can be simplified to (Pt−Pt−(n−1)/2)−(Pt−(n+1)/2−Pt−n).
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no observable price pattern, then a company with extrapolative beliefs would drill 18.1 wells in the

current month, 1.1 more than if the price was $40 six months ago. Furthermore, if the price has

been rising at an increasing rate in the months leading up to the current month, then the number

of wells drilled would become 16, which is 12% lower than the original level of 18.1. In other words,

the impact of observing increasingly rising oil prices leading up to the month of drilling is similar

to a decrease of $20 in oil prices from six months prior.

[Place Tables II and III about here]

The previous regression provides some evidence on firms extrapolating high levels of past prices

that they observe. However, firms’ extrapolative beliefs can be fully rational; empirically, this

regression is not able to disentangle over-extrapolative drilling behavior from “rational exuberance”

when recent oil prices have been high. To address this issue, we run regressions of initial five-year

profit and production of wells on lagged normalized prices one, three, six, nine, and twelve months

prior to the drilling date, controlling for price trend patterns. The initial five-year production is

calculated as the amount of oil produced in the first 60 months of the well production. The initial

five-year profit is the monthly production multiplied by monthly normalized oil price in the first 60

months of well production. Tables II and III summarize the results for these two regressions, which

confirms the graphical evidence presented in Figure 8 which we discussed earlier. Table II shows

that well profits are actually lower for wells drilled following high price levels, suggesting that firms

over-extrapolate and fail to foresee the price reversal when they observe periods of high prices.

Similarly, Table III shows that wells drilled following high price levels are not more productive,

hence ruling out the possibility that firms save the most productive wells for high price periods.

Taken together, these results support the interpretation that firms drill excessively after a period

of high prices, leading to lower profit and production, and symptomatic of biased beliefs.

[Place Table IV about here]

Just as how firms can over-extrapolate when they drill a well, firms can also over-extrapolate

when they apply for the permit to drill. When they observe oil price drops after the approval,

they can retract their initial plan and decide not to drill. Hence, observing an increased likelihood

of scrapped wells when prices drop after initial approval can be evidence of firms being overly

exuberant when they make drilling plans in the first place. To test this hypothesis, we regress

the indicator of whether a well is scrapped on the change in oil prices 24 months after the permit

issuance, controlling for the current normalized price in the approval month. Table IV summarizes

the results. The changes in oil prices in both columns are calculated as the percentage difference

between average oil prices in the next 24 months and the price in the approval month. In Column

2, we also control for additional well heterogeneity, such as the region of the wells, the operator

and the unit that the wells belong to.

Qualitatively, the results in both columns agree, and we will focus on the results in Column 2.
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Starting from the top, the negative and significant coefficient on the normalized oil price (–0.001)

shows that when the oil price levels are high at the time of approval, firms are less likely to scrap

these wells. This observation confirms the earlier results from Table I that when oil prices are high,

firms are more likely to actually drill the wells, and are less likely to scrap these wells.

The negative and significant coefficient (–0.009) on the 2-year post-approval price change shows

that an increase in the price after a well has been approved lowers the probability of scrapping

a well. This result is consistent with extrapolative producers, as extrapolative firms, which may

be eager to initiate new drilling projects when prices have been high (as demonstrated in earlier

results) end up scrapping these projects if oil prices decline after obtaining drilling permits (but

before drilling has begun).

III. Model Calibration

Having presented empirical evidence consistent with the hypothesis of extrapolation in the oil

exploration sector, we now turn to the calibration of the theoretical model presented in Section I

using data from Alaska to set model parameters.

To more realistically measure the effect of firms’ extrapolation bias, we calibrate the key pa-

rameters in the model using the available Alaska data. Table V summarizes the list of parameters,

their values and our justification for choosing each value.

[Place Table V about here]

Demand-related parameters are associated with equations (1) and (2). At in equation (1) can

be viewed as the long-term mean A plus a stochastic term specific to period t. Hence, to obtain

A and B, we regress the monthly per-barrel North Slope price, Ht, on the number of productive

wells in Alaska in each month, Qt.
12 We will refer to this regression as the demand regression.

The resulting intercept from the demand regression is then A and the coefficient associated with

well count is then −B. The result of the demand regression can be found in Table VI.13 Next, in

equation (2), notice that At+1−A is simply the residual from the demand regression for period t+1.

Thus, to obtain ρ0, we regress the residual on its one-month lag, and to obtain σε, we calculate the

standard deviation of the residuals from this lag regression. The results of these regressions can be

found in Table VII.14

[Place Tables VI and VII about here]

12Being “productive” here is defined as a monthly production of at least 2000 barrels, around the median of what
the bottom 10% of wells produce monthly in our sample.

13For robustness, we ran simple linear regression as well as IV regressions using lagged well counts as the instru-
ments. All regressions give us comparable range of parameter values.

14 The estimate of ρ0 = 0.68 indicate a substantial degree of mean reversion in the process of At, the demand
factor. Note that this does not rule out the possibility that oil prices may not be mean reverting.
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To determine the representative firm’s investment level, as shown in equation (3), we need to

estimate the depreciation rate δ and the probability of successful drilling p. For the depreciation

rate, we look at all the development wells that were drilled within our time frame, and see for how

long they produce. The median length of production life for our wells is around 180 months, and

hence the depreciation rate is on average 1/180. The success rate amongst wells for production

purposes, exploratory and development wells, varies by the definition of success. If the definition

of success is producing over 1000 barrels, then the success rate is around 80%.15

To calculate a representative firm’s profit, we need well production in a month for an representa-

tive well, M , and operating cost C, as well as drilling-related cost parameters Pr and k. We look at

the median well for each month since July, 1978, and find that the average of all the months come to

around 13,000 barrels. The operating costs include lease operating expenses, gathering, processing

and transporting costs, as well as water disposal and General and Administrative costs. These costs

vary widely across well locations, performances or the amount of production (EIA (2016)). We use

C as an umbrella term for all of these costs, and set C to be around 100,000 a month as an estimate

for the monthly level of all costs mentioned above. Finally, drilling cost-related parameters can be

extracted from the well cost data. In equation (6), the cost per well is modeled as Pr + k · it/2,

which increases as the number of wells drilled increases. Knowing the total cost of drilling per well

and the number of newly-drilled well in each month, it, we regress the monthly well drilling cost

on the number of wells drilled each month, and the intercept from the regression is Pr and the

coefficient for the number of wells is k/2. The results of the cost regression can be found in Table

VIII.

[Place Table VIII about here]

The impulse responses emerging from the model simulations utilizing these parameters are in

Figures 2 and 3, and we already discussed them earlier.

A. Two Historical Episodes: 2008-2011 and 1986-1987

Taking the calibration exercise one step further, we next present two additional model-fitting

exercise to quantify the cushioning benefits for specific historical episodes of price downturns for

Alaskan crude oil. Since oil produced in Alaska is mostly supplied to other parts of the U.S. and

can be easily substituted with oil produced from other regions in the U.S. and areas outside of the

U.S., Alaska oil prices are sensitive to domestic and international events that affect oil demand and

supply. We focus on episodes following two such events, the U.S. financial crisis in 2008 (the Great

Recession) and Saudi Arabia’s dramatic increase in production in 1986. These are illustrated in

Figures 10 and 11.

15If we make a more stringent requirement that the development well production needs to be at least 1 million
barrels, then p = 0.55. For a threshold of 0.5 million, p = 0.65; for a threshold of 100,000 barrels, p = 0.75.
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[Place Figure 10 about here]

In Figure 10, we consider a forty-month period from August 2008 to November 2011, coinciding

with the most recent financial crisis in the US. As illustrated in the bottom panel of this figure

(in the bubble-dashed line), oil prices fell sharply during the first six months (08/2008-01/2009)

by over 60% from peak to trough, and then recovered very slowly and gradually, regaining the

initial price level at month 33 (04/2011). Based on this, we calibrated a shock process for the

extrapolative model (dashed green line) to match the relative magnitudes and shape of the actual

price process. The recovery for this calibrated extrapolative price process takes 33 months, as in the

actual price process. Using this calibrated shock process, we also simulated prices in the benchmark

non-extrapolative industry (graphed in solid blue). For this benchmark economy, we see that the

recovery takes longer; only at month 37 (08/2011) do prices reach the initial level. Thus, in this

way, we find that the cushioning benefits shortened the recovery process by roughly 4 months, or

11%.

The two top panels in the figure show striking differences in the extrapolative and benchmark

industry during the price drop and recovery process, which ilustrates the complex welfare effects

of biased beliefs. With extrapolation, investment falls sharply as prices drop, leading to large

differences in the well-count. Since the oil exploration sector is composed of many small firms, such

a large drop in drilling activity will entail a sizeable “shakeout” as firms become inactive and are

forced to leave the market. We can get a sense of the size of this “shakeout” by looking at a period

with similar drastic decline of oil prices, though to a smaller extent and without the woes of the

global financial crisis. Following the oil price collapsing by 40% in the second half of 2014, 128 oil

and gas companies filed for bankruptcy between 2015 and 2016, up from around 30 between 2013

and 2014 (Haynes and Boone (2016), Egan (2016)). At 30 months, indeed, the number of active

wells in the extrapolative industry is only a fraction of the well-count in the benchmark industry.

Clearly, the accompanying decrease in output allows prices to recover more quickly. Extrapolative

beliefs lead to a direr but shorter duration, and results in ambiguous welfare effects.

[Place Figure 11 about here]

Figure 11 illustrates a similar exercise for an earlier and less pronounced price drop episode,

in the mid-1980’s. Between 1981 and 1985, Saudi Arabia reduced its oil production by three

quarters in order to combat the price collapse caused by the world consumption decline. However,

beginning in 1986, Saudi Arabia decided to abandon its effort and ramp up its production, causing

oil prices to fall further in 1986 (Hamilton (2011)). We again compare the lengths of recovery

period following this event under the behavioral and benchmark models. By design, the recovery

occured in the fifteenth month (April 1987) in the actual data, and also for the behavioral model.

For the benchmark non-extrapolative model, however, the recovery did not occur until September

1987; in this example, then, the cushioning effects shorten the recovery process by five months.
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Naturally, these are stylized examples, but they illustrate the real benefits that “cushioning” can

have in a real-world setting, in an industry notorious for its boom and busts sequences. Indeed, a

lesson from these examples is that the cushioning benefits of extrapolation can soften the extremes

of the cycles.

IV. Conclusion

Much of the existing literature in behavioral economics and finance has focused on the negative

and undesirable effects of behavioral biases and biased beliefs. In contrast, we point out in this

paper that in certain settings, such as industries prone to periodic boom and bust cycles, biased

beliefs can have benefits in terms of softening the up and downs of the economic cycle. In these

industries, biased beliefs cause firms making investment decisions to respond more quickly to recent

information in market prices. Thus, for instance, a price downturn will trigger a more immediate

decrease in investment; in turn, this leads to lower supply which “cushions” and prevents prices

from falling too quickly and leads to a quicker recovery. Modelling and quantifying these positive

implications of biased beliefs on industry dynamics are important contributions of this paper.

We develop a theoretical framework, based on a standard aggregate investment model to illus-

trate these cushioning benefits. We then apply this model to the oil exploration industry in Alaska,

a highly volatile industry characterized by sharp price fluctuations. One striking calibration exam-

ple shows that the industry downturn during the 2008 financial crisis would have been lengthened

by four months if oil industry firms did not have biased extrapolative beliefs. This suggests that

the cushioning benefits can be sizable in a real-world setting. In ongoing work, we are exploring

other sectors in which extrapolative beliefs may be important and hence in which the cushioning

benefits can play an important role.
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Appendices

A. Analytical Results for the Model

Proof of Proposition 1. We conjecture and verify later that the optimal investment is linear in state

variables At, At, and Qt

i∗t = x+ y1 ·At + y2 ·At + z ·Qt. (A.1)

Equation (11) then implies

P (At, At, Qt) = (kx+ ky1 ·At + ky2 ·At + kz ·Qt + Pr)/p. (A.2)

By applying the law of iterated expectations on (11), firms derive

Pr + k · i∗t = p ·
Ef [Πt+1 + P (At+1, At+1, Qt+1)|At, At, Qt]

1 + r
. (A.3)

Equations (4), (5), (7), and (8) allow us to write (A.3) out as

Pr + kx+ ky1 ·At + ky ·At + kz ·Qt

= p · M{αAt + (1− α)A+ ρf [At − αAt − (1− α)A]−B(Qt + px+ py1 ·At + py2 ·At + pz ·Qt)} − C − δPr

1 + r

+
kx+ (ky1 + ρAky2) · {αAt + (1− α)A+ ρf [At − αAt − (1− α)A]}+ ky2 · (1− ρA)At

1 + r

+
kz · (Qt + px+ py1 ·At + py2 ·At + pz ·Qt) + Pr

1 + r
. (A.4)

The fact that both sides of (A.4) are linear functions of At, At, and Qt verifies the conjecture

in (A.1). Matching terms in a sequential order then solves for x, y1, y2, and z. First, matching

terms for Qt gives the solution of z in (13). Then matching terms for At and At, we obtain

ky1 = pM
ρf −Bpy1

1 + r
+

(ky1 + ρAky2)ρf + kzpy1
1 + r

,

ky2 = pM
(1− ρf )α−Bpy2

1 + r
+

(ky1 + ρAky2)(1− ρf )α+ ky2 · (1− ρA) + kzpy2
1 + r

. (A.5)

Notice that y1 and y2 are interrelated because the evolution of At is driven by past realizations of

At. Solving these two simultaneous equations then leads to (14). Finally, matching the constant

term gives (15). �

Proof of Corollary 1. Conditional on knowing At−1, At−1, and Qt−1, It−1 and therefore Qt are
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both determined. In this case, the movements of Ht and It are only caused by the realization of

the random shock εt. That is

It = x+ (y1 + ρAy2) ·Ht + y2(1− ρA) ·At−1 + (z + y1B + ρAy2B) ·Qt
= x+ (y1 + ρAy2) ·Ht + y2(1− ρA) ·At−1 + (z + y1B + ρAy2B) · f(At−1, At−1, Qt−1).

(A.6)

So the coefficient for regressing It on Ht, both conditional and unconditional on At−1, At−1, and

Qt−1, is β0 = y1 + ρAy2.

We now consider the coefficient of regressing It+1 on Ht. Conditional on At−1, At−1, and Qt−1,

the realization of εt determines Ht and It, which further determine Qt+1. Then the realization of

εt+1 determines At+1, At+1, and It+1

It+1 = x+ y1 ·At+1 + y2 ·At+1 + z ·Qt+1

= x+ (y1 + ρAy2) · [A+ ρ0(At −A) + εt+1] + y2(1− ρA)At + z · [Qt + pIt]

= x+ (y1 + ρAy2)εt+1 + (y1 + ρAy2)(1− ρ0)A+ [(y1 + ρAy2)ρ0 + y2(1− ρA)ρA]Ht

+ y2(1− ρA)2At−1 + {z +B[(y1 + ρAy2)ρ0 + y2(1− ρA)ρA]}f(At−1, At−1, Qt−1)

+ zp[x+ (y1 + ρAy2)Ht + y2(1− ρA)At−1 + (z + y1B + ρAy2B)f(At−1, At−1, Qt−1)]

= x+ (y1 + ρAy2)εt+1 + (y1 + ρAy2)(1− ρ0)A

+ [(y1 + ρAy2)ρ0 + y2(1− ρA)ρA + zp(y1 + ρAy2)]Ht

+ y2(1− ρA)2At−1 + {z +B[(y1 + ρAy2)ρ0 + y2(1− ρA)ρA]}f(At−1, At−1, Qt−1)

+ zp[x+ y2(1− ρA)At−1 + (z + y1B + ρAy2B)f(At−1, At−1, Qt−1)].

(A.7)

So the coefficient for regressing It+1 on H1, both conditional and unconditional on At−1, At−1, and

Qt−1, is β1 = (y1 + ρAy2)ρ0 + y2(1− ρA)ρA + zp(y1 + ρAy2). �
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Figure 1. Illustration of the Biased Belief Process and Insufficient Mean Reversion.
This figures contrasts the true process for the demand shocks (Equation (2)) from producers’ beliefs
(Equations (7) and (8)). The process of demand factor At is plotted in the solid line. The true
long-run mean, A, is invariant over time and equal to zero in this example, as plotted in the dotted
line. However, producers’ beliefs about the long-run mean, A

α
t , change over time, and are plotted

in the dash-dot line. The difference between At and A
α
t measures the degree of mean reversion

in At perceived by producers. The parameter values used in this example are: A = 0, ρ0 = 0.68,
ρf = 0.68, σε = 4.25, α = 0.9, and ρA = 0.25.
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Figure 2. Impulse Responses for the Benchmark Model and the Behavioral Model.
From the steady-state, a sequence of half standard deviation negative shocks on At are imposed at
t = 2, 3, 4, 5, and 6. We plot the net investment It, total production Qt, and the output price Ht

from t = 1 to t = 15 for both the benchmark model (α = 0) and the behavioral model (α = 0.9
and ρA = 0.25). The other parameter values are: B = 0.02, A = 12, δ = 0.6%, r = 0.5%, k = 22.8,
C = 100, Pr = 463, σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M = 13.

27



2 4 6 8 10 12 14
time (t)

-30

-20

-10

0

I t

It (benchmark)

It (behavioral)

2 4 6 8 10 12 14
time (t)

100

150

200

Q
t

Qt (benchmark)

Qt (behavioral)

2 4 6 8 10 12 14
time (t)

-5

0

5

10

H
t

Ht (benchmark)

Ht (behavioral)

Figure 3. Impulse Responses for the Benchmark Model and the Behavioral Model.
From the steady-state, a two and a half standard deviation negative shock on At is imposed at
t = 2. We plot the net investment It, total production Qt, and the output price Ht from t = 1 to
t = 15 for both the benchmark model (α = 0) and the behavioral model (α = 0.9 and ρA = 0.25).
The other parameter values are: B = 0.02, A = 12, δ = 0.6%, r = 0.5%, k = 22.8, C = 100,
Pr = 463, σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M = 13.
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Figure 4. Coefficients of Regressing Current and Future Investments on Current Price
Level. The figure plots the coefficients of regressing current and future investments on the current
price level, β0 and β1, as functions of the belief-based parameters α and ρA. The default values
for α and ρA are 0.9 and 0.25, respectively. The other parameter values are: B = 0.02, A = 12,
δ = 0.6%, r = 0.5%, k = 22.8, C = 100, Pr = 463, σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M
= 13.
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Figure 5. Impulse Responses for the Behavioral Model with Different Price Patterns.
From the steady-state, two different sequences of shocks on At are imposed from t = 2 to t = 6,
resulting in a steady rise in price (solid) and an increasing rise in price (dashed), respectively. We
then plot, for these two cases, the net investment It and the output price Ht from t = 1 to t = 15
for both the benchmark model (α = 0) and the behavioral model (α = 0.95 and ρA = 0.05). The
other parameter values are: B = 0.02, A = 12, δ = 0.6%, r = 0.5%, k = 22.8, C = 100, Pr = 463,
σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M = 13.
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Figure 6. Alaska North Slope Oil Price and U.S. Well Cost Trend. The left panel of the
figure plots monthly Alaska North Slope first purchase price; the middle panel plots the interpolated
monthly U.S. well drilling cost (actual data is on an annual basis); the right panel plots the monthly
price normalized by drilling cost (with the drilling cost of June 2000 as the basis). The sample
period for all three plots is August, 1977 to June, 2007.
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Figure 7. Well Investment Trend. The solid line shows the trend for the number of oil-
related wells drilled by operators in Alaska in each month. The dashed line plots the time series of
normalized oil price. The sample period is August, 1977 to June, 2007.
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Figure 8. Well Production and Profit Trend. Figure 8(a) plots on a monthly basis the
average profit (in million dollars) in the first 60 months of production (hence the initial 5 years)
for wells that are drilled. Figure 8(b) plots on a monthly basis the average production (in million
barrels) in the first 60 months of production for wells that are drilled. The dashed lines in both
figures plot the time series of normalized oil price. The sample period for both plots is August,
1977 to June, 2002.
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Figure 9. Well Scrappage Trend. The solid line plots the percentage of wells scrapped in each
month among the wells that are given permits to drill. The dashed line plots the time series of
normalized oil price. The sample period is August, 1977 to June, 2007.
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Figure 10. Calibrated Impulse Responses for Historical Episode 1: the 2008 Great
Recession. We plot the net investment It, total production Qt, and the output price Ht from
t = 1 to t = 15 for both the benchmark model (α = 0) and the behavioral model (α = 0.9 and
ρA = 0.25). In the bottom panel, we also plot (on the right) the actual oil price from August 2008
to November 2011. From the steady-state, we choose a sequence of demand shocks on At so that
the price pattern implied by the behavioral model roughly matches the actual oil price movements.
The other parameter values are: B = 0.02, A = 12, δ = 0.6%, r = 0.5%, k = 22.8, C = 100,
Pr = 463, σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M = 13.
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Figure 11. Calibrated Impulse Responses for Historical Episode 2: the 1986 Saudi
Oil Glut. We plot the net investment It, total production Qt, and the output price Ht from
t = 1 to t = 15 for both the benchmark model (α = 0) and the behavioral model (α = 0.9 and
ρA = 0.25). In the bottom panel, we also plot (on the right) the actual oil price from February 1986
to September 1987. From the steady-state, we choose a sequence of demand shocks on At so that
the price pattern implied by the behavioral model roughly matches the actual oil price movements.
The other parameter values are: B = 0.02, A = 12, δ = 0.6%, r = 0.5%, k = 22.8, C = 100,
Pr = 463, σε = 4.25, p = 0.8, ρ0 = 0.68, ρf = 0.68, and M = 13.
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Dependent variable:

Number of wells drilled

(1) (2) (3) (4) (5)

Normalized oil price

1-month lag 0.070

(0.054)

3-month lag 0.083

(0.055)

6-month lag 0.109∗∗

(0.054)

9-month lag 0.121∗∗

(0.052)

12-month lag 0.127∗∗

(0.051)

Rate of change

decreasing decline −0.867 −1.241 −1.602 −1.384 −1.661

(1.022) (1.034) (1.108) (1.082) (1.065)

increasing decline −1.094 −1.240 −0.434 −0.428 −0.927

(1.108) (1.110) (1.002) (0.965) (0.938)

decreasing rise −1.914∗ −1.741 −1.675 −1.903∗ −2.174∗∗

(1.102) (1.149) (1.107) (1.056) (1.044)

increasing rise −2.630∗∗∗ −2.398∗∗ −2.174∗∗ −2.205∗∗∗ −2.477∗∗∗

(0.952) (0.943) (0.903) (0.854) (0.844)

Constant 13.528∗∗∗ 13.302∗∗∗ 12.690∗∗∗ 12.477∗∗∗ 12.573∗∗∗

(1.290) (1.311) (1.303) (1.210) (1.121)

Observations 358 356 353 350 347

R-squared 0.063 0.073 0.093 0.108 0.123

Adjusted R-squared 0.050 0.059 0.079 0.095 0.110

Table I. Total Wells Permitted on Normalized Oil Prices and Price Trends. The table is
based on a sample of 5,121 oil-related wells drilled in Alaska between August 1, 1977 and July 1, 2007. The
lagged prices are the normalized oil prices 1, 3, 6, 9, and 12 months prior to the month of drilling. The rate
of change categories are defined as periods with continuous increase or decrease for at least 3 periods and
the rate of change follows a convex or concave shape. Numbers in the parentheses are Newey-West standard
errors allowing for 6-month maximum lag in autocorrelation. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Dependent variable:

Initial five-year profit

(1) (2) (3) (4) (5)

Normalized oil price

1-month lag −0.106∗∗

(0.050)

3-month lag −0.108∗∗

(0.053)

6-month lag −0.258∗∗∗

(0.083)

9-month lag −0.095

(0.110)

12-month lag −0.425∗∗

(0.192)

Rate of change

decreasing decline 1.806 2.483∗∗ 3.432∗∗∗ 1.857∗ 2.240∗∗

(1.164) (1.019) (1.044) (1.057) (0.916)

increasing decline 1.350 2.910∗∗∗ 2.399∗∗∗ 1.965∗∗ 3.004∗∗∗

(1.009) (1.033) (0.916) (0.863) (0.993)

decreasing rise 3.151 2.900 2.494 3.116 3.209

(2.775) (2.885) (2.757) (2.869) (2.801)

increasing rise 1.995∗∗∗ 1.764∗∗∗ 1.527∗∗∗ 2.075∗∗∗ 2.142∗∗∗

(0.572) (0.683) (0.560) (0.723) (0.682)

Constant 74.669∗∗∗ 60.102∗∗∗ 104.908∗∗∗ 116.458∗∗∗ 130.062∗∗∗

(19.740) (14.882) (28.849) (27.434) (32.291)

Unit FE Y Y Y Y Y

Drilling Year FE Y Y Y Y Y

Observations 4,055 4,044 4,027 4,005 3,991

R-squared 0.368 0.368 0.361 0.364 0.357

Adjusted R-squared 0.345 0.345 0.338 0.342 0.335

Table II. Five-year Well Profit on Normalized Prices. This table is based on a sample of 4,055
oil-related wells with tract number drilled in Alaska between August 1, 1977 and July 1, 2002. Well profit
is calculated by summing up the monthly production times monthly normalized price for each well in the
first 60 months of production. The lagged prices are the normalized oil prices 1, 3, 6, 9, and 12 months prior
to the month of drilling. The rate of change categories are defined as periods with continuous increase or
decrease for at least 3 periods and the rate of change follows a convex or concave shape. Numbers in the
parentheses are cluster-robust standard errors clustered by units. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Dependent variable:

Initial five-year production

(1) (2) (3) (4) (5)

Normalized oil price

1-month lag −0.004

(0.002)

3-month lag −0.004∗∗

(0.002)

6-month lag −0.009∗

(0.005)

9-month lag −0.002

(0.007)

12-month lag −0.010

(0.008)

Rate of change

decreasing decline 0.096 0.119∗∗ 0.153∗∗ 0.100∗ 0.109∗∗

(0.065) (0.060) (0.069) (0.057) (0.055)

increasing decline 0.079 0.129∗∗ 0.104∗ 0.092∗ 0.116∗∗

(0.060) (0.058) (0.059) (0.051) (0.055)

decreasing rise 0.125 0.113 0.099 0.125 0.126

(0.138) (0.142) (0.140) (0.142) (0.139)

increasing rise 0.070∗∗ 0.058 0.052 0.074∗ 0.075∗∗

(0.034) (0.039) (0.036) (0.041) (0.037)

Constant 2.363∗∗∗ 1.900∗∗∗ 3.071∗∗∗ 3.329∗∗∗ 3.651∗∗∗

(0.665) (0.491) (0.809) (0.737) (0.988)

Unit FE Y Y Y Y Y

Drilling Year FE Y Y Y Y Y

Observations 4,055 4,044 4,027 4,005 3,991

R-squared 0.258 0.257 0.251 0.250 0.244

Adjusted R-squared 0.231 0.229 0.224 0.224 0.218

Table III. Five-year Well Production on Normalized Prices. This table is based on a sample
of 4,055 oil-related wells with tract number drilled in Alaska between August 1, 1977 and July 1, 2002.
Well production is calculated by summing up the monthly production for each well in the first 60 months
of production. The lagged prices are the normalized oil prices 1, 3, 6, 9, and 12 months prior to the month
of drilling. The rate of change categories are defined as periods with continuous increase or decrease for at
least 3 periods and the rate of change follows a convex or concave shape. Numbers in the parentheses are
cluster-robust standard errors clustered by units. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Dependent variable:

Whether a well is scrapped

(1) (2)

Normalized oil price −0.0004∗ −0.001∗∗∗

(0.0002) (0.0001)

2-yr avg perc. change in price −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.001)

Region = Other 0.0004

(0.020)

Region = Cook Inlet 0.988∗∗∗

(0.019)

Constant 0.018∗∗∗ 0.022∗∗∗

(0.003) (0.004)

Operator FE N Y

Unit FE N Y

Observations 4,757 4,757

R-squared 0.002 0.272

Adjusted R-squared 0.001 0.248

Table IV. Likelihood to Scrap on Normalized Oil Price and Price Change after Ap-
proval. This table is based on a sample of 4,757 oil-related wells with tract number that are
approved between August 1, 1977 and July 1, 2007. The two-year average percent change in price
is calculated as the 2-year average normalized oil price after approval minus the normalized oil
price at the time of approval, and then divided by the price at the time of approval. For region,
the reference level is the North Slope and Beaufort Sea region. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Parameter Value Justification

A 12 + Year fixed effect
Coefficients from regressing monthly price over productive well count

B 0.02

ρ0 0.68 Coefficient from regressing residual prices on its lag

σε 4.25 Standard deviation of residual from the price residual regression

δ 0.6% Inverse of the median length of life of development wells

p 0.8 Proportion of past wells producing at least 1000 barrels of oil

Pr 463
Coefficients from regressing well cost over new well count

k 22.8

C 100 Umbrella term for all operating costs

M 13 Average of the median well production for each month

Table V. Calibrated Parameter Values. This is a list of parameters in the model that can
be directly or indirectly inferred from the Alaska data. When point estimate of the parameters is
available, we use the point estimate. When the estimated values fall within a range, we round to
a reasonable number within the range. The operating costs here include lease operating expense,
gathering, processing and transport expense, water disposal costs, and any general and adminis-
trative (G&A) costs.
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Dependent variable:

Alaska North Slope crude oil first purchase price

(1) OLS (2) IV

Number of productive wells −0.021∗∗∗ −0.017∗∗

(0.007) (0.007)

Constant 12.200∗∗∗ 11.400∗∗∗

(3.270) (3.620)

Year FE Y Y

Observations 465 464

R-squared 0.963 0.963

Adjusted R-squared 0.959 0.959

Table VI. Demand Regression. These regressions can be expressed as Ht = A − B · Qt + εt,
where Ht is the per-barrel Alaska North Slope First Purchase price, and Qt is the number of wells
producing at least 2000 barrels in that month. The first column uses OLS regression. The second
column uses IV regression where the instrument is the number of productive wells in the previous
month.
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Dependent variable:

Residual from OLS Residual from IV

(1) (2)

Lagged residual (from OLS or IV) 0.673∗∗∗ 0.684∗∗∗

(0.034) (0.034)

Constant 0.004 0.004

(0.198) (0.196)

Observations 464 463

R-squared 0.452 0.467

Adjusted R-squared 0.451 0.466

σε 4.25 4.22

Table VII. Residual Demand Regression.. The residuals are calculated as Ht − Ât − B̂Qt
where Ât + B̂Qt comes from predictions from regressions in Table VI. Column 1 uses residuals
from the OLS regression and column 2 uses residuals from the IV regression. In both columns, we
regress the current period residual on the previous period’s residual. σε is the standard deviation
of the residuals of each lagged residual regression.
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Dependent variable:

Oil well drilling cost

Number of newly-drilled wells 11.399∗

(6.912)

Constant 462.581∗∗∗

(104.387)

Observations 360

R-squared 0.008

Adjusted R-squared 0.005

Table VIII. Demand Regression Calibration. We regress the per-well drilling cost associated
with oil wells on the number of newly-drilled wells in the current month. The intercept is the Pr
and the coefficient associated with the number of wells is k/2. p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

44


	The Model
	Impulse Response Analysis: the Cushioning Benefits
	Empirical Implications of Extrapolative Producers

	Oil Exploration: An Empirical Application
	Data Description
	Regression Results

	Model Calibration
	Two Historical Episodes: 2008-2011 and 1986-1987

	Conclusion
	Appendices
	Analytical Results for the Model

