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We develop a tractable model of realization utility that studies the role of reference-
dependent S-shaped preferences in a dynamic investment setting with reinvestment. Our
model generates both voluntarily realized gains and losses. It makes specific predictions
about the volume of gains and losses, the holding periods, and the sizes of both realized
and paper gains and losses that can be calibrated to a variety of statistics, including Odean’s
measure of the disposition effect. Our model also predicts several anomalies, including,
among others, the flattening of the capital market line and a negative price for idiosyncratic
risk. (JEL G02, G11, G12)

How do investors decide about and evaluate their own investment performance?
Standard economic theory posits that investors maximize the expected utility
of their lifetime consumption stream by dynamically adjusting their portfolio
allocations based on their current wealth and their expectations of the future.
Although this way of modeling investors’ behavior may be close to reality for
sophisticated investors, it is questionable whether less sophisticated investors
behave this way.

A growing amount of research shows that individual investors do not
always behave in the ways that expected utility theory predicts. In particular,
the independence axiom seems troublesome as does the assumption of risk
aversion, at least for losses. The latter assumption is not a requirement of
expected utility theory, but it—or something like it—is important for most
equilibrium models that follow from maximizing behavior. In contrast to
what theories like the APT or CAPM predict, individual investors seem to
be particularly concerned about an asset’s change in price from a reference
point.
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Behavioral literature suggests alternative views of modeling investors’
behavior. Kahneman and Tversky (1979) have argued that risk aversion does not
characterize many choices and proposed an S-shaped utility function. Shefrin
and Statman (1985) use “mental accounting” to justify investors’ concentrating
on specific separate incidents. Thaler (1999) says that “A realized loss is more
painful than a paper loss.” Barberis and Xiong (2012) study a model that
assumes that investors think of their investing experience as a series of separate
episodes during each of which they either made or lost money and that the
primary source of utility comes in a burst when a gain or loss is realized.1

Frydman et al. (2012) find evidence using the neural data that supports this
“realization utility” hypothesis.

In this paper, we use these notions to develop an intertemporal model of
investors who have prospect theory’s S-shaped utility and who evaluate their
performance incident by incident based on realized profits and losses.2 Our
model is a partial equilibrium framework with an infinite horizon. An investor
purchases stocks whose prices evolve as geometric Brownian motions. At each
subsequent point in time, the investor decides whether to hold on to his current
investment or realize his gain or loss, thereby obtaining an immediate utility
burst. If he sells, he reinvests the proceeds after transaction costs into another
stock. We show that the investor’s optimal strategy is to wait until the stock
price rises or falls to certain percentages above or below the purchase price
before selling. Our model includes that of Barberis and Xiong (2012) as a
special case.

Voluntary loss taking can be optimal in a dynamic setting because the
subsequent reinvestment resets the reference level and increases the likelihood
of realizing future gains. But, in the Barberis-Xiong (2012) model, utility is
piecewise linear.As a direct consequence, they predict that investors voluntarily
realize gains but never voluntarily sell at a loss, which is clearly unrealistic and
inconsistent with the data. In our model, with an S-shaped function, marginal
utility decreases with the magnitude of both gains and losses. This means that
lifetime utility can be increased by taking frequent small gains along with
occasional larger losses because the latter have less total disutility than the
utility of the former, and realizing losses resets the reference level for future
gains. The disposition effect, an empirically robust pattern that individual
investors have higher propensities to realize gains than to realize losses,3

follows naturally from this result, but it is a dynamic result.

1 Further discussion on the psychological foundation of viewing investments as episodes is in their paper.

2 Kyle, Ou-Yang, and Xiong (2006) and Henderson (2012) study one-time liquidation problems with prospect
theory preferences, but reinvestment, which is a key component of our model, is ignored in their models.

3 The disposition effect for individual investors has been found in the United States, Israel, Finland, China, and
Sweden by Odean (1998), Shapira and Venezia (2001), Grinblatt and Keloharju (2001), Feng and Seasholes
(2005), and Calvet, Campbell, and Sodini (2009), respectively. It is also documented for U.S. mutual fund
managers, the real estate market, and the exercise of executive stock options by Frazzini (2006), Genesove and
Mayer (2001), and Heath, Huddart, and Lang (1999).
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What has been commonly argued in both theoretical and empirical literatures
is that an S-shaped utility function leads to the disposition effect because risk
seeking over losses induces investors to retain their positions and gamble on
the future, whereas risk aversion over gains induces the opposite. However,
this is a static argument. Extrapolating this reasoning period by period would
imply that losses are never realized; the disposition effect should be infinite.
In our dynamic realization utility model, the exact opposite is true. Investors
naturally want gains, but an S-shaped utility helps generate voluntary losses
and thereby reduces the magnitude of the disposition effect to the observed
level.

We calibrate our model in two parts. First, we show that the magnitudes
and frequencies of realized gains and losses and the frequencies of paper gains
and losses as observed in the trading data of Odean and others are consistent
with the type of simple two-point strategy our model predicts. In particular,
Odean reports that 54% of round-trip trades are realized gains with an average
size of 28%; the remainder are losses averaging −23%. Also conditional on a
trade, investors realize 15% of possible gains and only 10% of possible losses.
Using those average realized gain and loss sizes, our model makes the very
accurate prediction that 58% of sales should be gains, and investors should
have propensities of 14% and 11% to realize gains and losses, respectively.
In addition, we propose a modified form of Tversky-Kahneman utility that
generates the two optimal sales points, 28% and −23%, either alone or in a
mixture of heterogeneous investors.

Our model also has a variety of other empirical implications and predictions.
For instance, investors may be risk seeking in some circumstances because of
the option value inherent in realizing losses; this helps explain a flatter security
market line and the negative pricing of idiosyncratic risk as shown in Ang et al.
(2006). It may also help explain why investors appear to hold portfolios that
appear underdiversified.

The plan of our paper is as follows. In Section 1, we lay out a specific
intertemporal reference-dependent realization utility model and present its
solution and basic insights. Section 2 examines the properties of the derived
value function and analyzes the optimal sales policies. Section 3 provides a
detailed calibration of our model to several empirical regularities. Section 4
analyzes voluntary loss realization in a more general context. Section 5 presents
further model applications and predictions. Section 6 gives some concluding
remarks and direction for future research.Asummary of the important notation,
all the proofs, and some more detailed technical considerations are included in
the Appendix.

1. A Realization Utility Model with Tversky-Kahneman Utility

In this section, we present a simple, specific model of intertemporal realization
utility. Our investor takes positions in a series of purchases, buying a number
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of shares and later selling his entire position and reinvesting it.4 Each realized
gain or loss contributes a burst of utility, and our investor acts to maximize the
expectation of the sum of the discounted values of these bursts.

We assume that the investor applies narrow framing when he evaluates
his gains. This assumption sidesteps any complications that might arise from
diversification or rebalancing motives.5 Narrow framing can be justified if
the investor derives realization utility only when both the purchase and sale
prices of the asset are salient, and therefore evaluating individual assets is the
applicable setting for studying realization utility. As a result, even when the
investor holds multiple stock positions simultaneously, narrow framing allows
us to study each sequence of purchases and sales separately.

Second, we assume that a utility burst is received only at the time when a gain
or a loss is realized. As with prospect theory, we normalize utility so that gains
and losses contribute positive and negative utility, respectively.6 Although it
is assumed that utility depends primarily on the size, G of the gain or loss, it
seems reasonable that the reference level, R, might also have a separate effect.
In particular, a gain or loss of a given size probably has a greater utility impact,
either good or bad, the smaller the reference level; for example, the gain or
loss of $10 is felt more strongly when the reference level is $100 than when
it is $500. Therefore, we denote the utility burst function as a function of both
variables, U (G,R). In this paper, we assume that U (G,R) is homogeneous of
degree β in G and R:

U (G,R)=Rβu(G/R) . (1)

This assumption is important for keeping the model tractable, but it also focuses
utility on rates of return rather than dollar changes, which is in keeping with
the general emphasis in finance. Expressed in this way, the scaling parameter
β gauges the impact of the reference level on utility bursts measured as rates
of return.

We study a Merton-type partial equilibrium economy in continuous time
with an infinite horizon. At t =0, the investor chooses either to stay out of the
market, which earns him a utility of zero, or to invest in one of a number of
identically distributed stocks. The stock price evolves according to a geometric
Brownian motion, dS/S =μdt +σdω, where μ and σ are the growth rate and

4 Our model restriction of full liquidation is an empirically plausible one for individual investors. Feng and
Seasholes (2005) document that individual investors trading through a large Chinese brokerage house during
1999–2000 liquidated their full position 80.35% of the time when selling. Shapira and Venezia (2001) report
that approximately 80% of round-trips on the Tel Aviv Stock Exchange in 1994 consisted of a single purchase
followed by a single sale of the entire holding. Kaustia (2010) reports a similar result for his Finnish data, though
he does not provide specific numbers.

5 For instance, the investor might have an incentive to sell a losing stock to purchase a winning stock. Another
example could be the incentive of purchasing a diversified fund. These considerations are outside the scope of
this paper, though some related discussion is provided in the last two sections of the paper.

6 Typically, the centering of utility is arbitrary and has no effect on expected utility maximization. In some models
like this, the investor might be able to choose to take no action at all, so if no action is presumed to give a utility
of zero, then the centering chosen here can affect participation in the market.
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logarithmic standard deviation, respectively, and ω is a standard Brownian
motion. At each subsequent point in time, t , the investor chooses either to
hold his investment for a longer time or to sell his entire position and realize
a utility burst. When he sells, he pays a proportional transaction cost, ks , and
reinvests the net proceeds after paying a second proportional transaction cost,
kp, reducing his investment to Xt+ = (1−ks)Xt−/(1+kp)≡KXt− . Between
realization dates, the investment value follows the same geometric Brownian
motion as the underlying asset:

dX/X=μdt +σdω. (2)

In a static prospect theory setting, the reference level is essentially a
parameter of the utility function defining the status quo. However, in our
dynamic model, we must address how it is updated and exactly how the gain or
loss is measured relative to it. The simplest rule is to set R at the net purchase
price, as defined above, and hold it constant between sales.7 That is, when the
investor sells his stock for Xt , he resets his reference level to KXt until the
next sale. However, this is a subjective matter and could differ from investor
to investor; there are other ways that the new reference level might be set.
For instance, an investor might view it as the gross amount invested including
the purchasing cost, that is, R=(1−ks)Xt . It might also be some intermediate
level, particularly if the transaction costs have different components, such as a
bid-ask spread and a commission. Most brokerage accounts show the purchase
price, which would tend to emphasize the net investment as the reference level.
On the other hand, the tax cost basis includes the purchasing cost, which would
tend to emphasize the gross investment as the reference level. In our analysis,
we assume the simplest case, that the investor fully accounts for costs and sets
the reference level to the net amount invested, KX.8

A related issue is how the investor evaluates his utility burst upon a sale.
Again, there are several ways he might do so depending on his subjective view
of the transaction costs. For example, if he ignores costs completely, then the
gain is the gross sales value less the reference level, Gt =Xt− −Rt− . If he
fully recognizes transaction costs and compares the net reinvested amount
to the reference level, then Gt =KXt− −Rt− . If he views the gain as the
difference between the net proceeds of the sale and the reference level, then
Gt =(1−ks)Xt− −Rt− . These three cases are covered by defining the gain as

7 Throughout this paper, we assume the reference level is constant between sales. More generally, it might grow
deterministically at a constant rate (like the interest rate) or evolve stochastically over time. It could also be
updated based on recent history of the stock price.

8 The analysis here is largely unchanged for different ways of setting the reference level. If an investor adopts
the gross cost view, then Equation (5) below has V (KX,(1−ks )X) as the second term on the right-hand side.
Presumably, an investor would not adopt a gross cost view for setting the new reference level as well as recognizing
both costs in assessing the gain, as this would double count the purchasing costs. However, the only requirement
for our model is that the investor sets his reference level consistently over time. Barberis and Xiong (2012) also
adopt the net cost interpretation, which in their notation is (1−k)X, with k being the round-trip transaction cost,
and only consider the full recognition of transaction costs in determining gain size.
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Gt =κXt− −Rt− and setting the parameter κ to 1, K , or 1−ks , respectively.
Intermediate views are also possible. We leave the parameter κ free, allowing
many interpretations.

The time-consistency of these rules together with the three assumptions that
(1) the utility bursts in Equation (1) are homogeneous of degree β in X and R,
(2) the asset value process has stochastic constant returns to scale, and (3) the
investment horizon is infinite jointly guarantee that the future looks the same
depending only on the current investment and reference level. This simplifies
our problem in two ways. First, it removes time as an explicit variable. Second,
our investor always has the incentive to reinvest immediately upon selling a
position because he chose to enter the market in the first place.

Denote the value function discounted to time t by V (Xt,Rt ). As discussed
above, V does not depend on time explicitly but only on the current investment
and reference level. By definition, the value function is the maximized
expectation of the sum of future discounted utility bursts:

V (Xt,Rt )=max{τ̃i }
Et

[∑
i
e−δτ̃iU (G̃t+τ̃i ,R̃t+τ̃i )

]
, (3)

where δ is the rate of time preference,G̃t+τ̃i andR̃t+τ̃i are the dollar size and the
reference level for the ith future gain, respectively, and t + τ̃i is the random
time it is realized. In our model, these are stopping times that are endogenously
chosen by the investor to maximize his lifetime expected utility.9 To solve
the problem posed by Equation (3), we use the time-homogeneity property to
rewrite it as a recursive expression:

V (Xt,Rt )=max
τ̃

Et

[
e−δτ̃U (κX̃t+τ̃ −Rt,Rt )+e−δτ̃ V (KX̃t+τ̃ ,KX̃t+τ̃ )

]
, (4)

where τ̃ is the time until the next sale. Hereafter, we suppress time subscripts
for notational convenience, unless necessary for clarity.

At a sale, the value function before the sale must equal the sum of the utility
burst of the sale and the post-reinvestment continuation value function. So,
upon a sale realizing X before costs,

V (X,R)=U (κX−R,R)+V (KX,KX) . (5)

Between sales times, Equation (4) can be re-expressed using the law of iterated
expectations and Itô’s lemma:

0=E
{
d
[
e−δtV (X,R)

]}
=e−δt

(
1
2σ

2X2VXX+μXVX−δV )dt. (6)

Because U (G, R) is homogeneous of degree β in G and R and the asset value
process has stochastic constant returns to scale, V must be also homogeneous

9 To complete the specification of this maximization, we need to assign a utility value to the policy of never
executing any sales. The obvious choice in this case is to assign this policy a utility value of zero, the same value
that would be realized with a policy that allowed sales but never happened to execute any.
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of degree β inX andR and therefore can be written asV (X,R)=Rβv(x),where
v is the reduced-form value function and x≡X/R is the gross return per dollar
of the reference value.10 The equation for v is

0= 1
2σ

2x2v′′ +μxv′−δv . (7)

The general solution to Equation (7) is

v(x)=C1x
γ1 +C2x

γ2 , where γ1,2 ≡
−μ+ 1

2σ
2 ±
√

(μ− 1
2σ

2)2 +2δσ 2

σ 2
. (8)

This is true regardless of the form for u. The utility of the sales bursts affects
only the constants, C1 and C2. Again, because of the homogeneity, the optimal
sales strategy must be to realize a gain or loss when the stock price reaches a
constant multiple, 	, or fraction, θ , of the reference level.11 The upper sales
point, 	, must exceed 1/κ >1, as otherwise the sale is not a gain after costs.
The lower sales point, θ , must be less than one.12

Applying the homogeneity relation (1) to the boundary condition (5) yields
the reduced-form boundary conditions

v(	)=u(κ	−1)+(K	)βv(1), v(θ )=u(κθ−1)+(Kθ )βv(1). (9)

Equating these to the general solution from Equation (8), we can determine the
constants C1 and C2 in terms of the policy variables

C1 =
c2(θ )u(κ	−1)−c2(	)u(κθ−1)

c1(	)c2(θ )−c1(θ )c2(	)
(10)

C2 =
c1(	)u(κθ−1)−c1(θ )u(κ	−1)

c1(	)c2(θ )−c1(θ )c2(	)
, where ci(φ)≡φγi −(Kφ)β.

The optimal sales points, 	 and θ , can now be determined either by
maximizing C1 +C2, which is the value of v(1), or by applying the smooth-
pasting condition at both sales points.13 The solution and the optimal θ -	

10 V must be positively homogeneous; that is,β≥0. BecauseV (X0,X0)=Xβ0 v(1), utility is decreasing in the amount
of the original investment when β<0, and the investor would always prefer to reduce his initial investment and
in the limit not participate at all. A positive β also assures that |U (gR,R)| is increasing in R for a fixed g; that
is, the higher the reference level, the bigger is the utility of a given rate of return. This property is similar to
increasing relative risk aversion.

11 See the Appendix for more details on the constancy of the optimal policy.

12 A sale at any point in the range (1,1/κ) produces a subjective loss after accounting for transaction costs. Under
a constant policy with θ in this range, there would never be any sales at a higher price, as the stochastic process
for x is continuous and begins at one after each repurchase when the reference level is set to the net investment.
This means that only losses, with their negative utility bursts, would be realized, leading to a negative v, and this
could not be the optimal policy, as never selling gives a utility of zero, as does not participating at all.

13 The optimal sales strategy must maximize v for every value of its argument in the continuation region, and x =1
is guaranteed to be in the continuation region because θ <1<1/κ <	. Note that the smooth-pasting condition
does not simply match the derivative of v to the marginal utility of the burst. It must be applied to Equation
(9), which has the continuation value and the utility burst on the right-hand side. As discussed in Proposition
1 below, in some cases there is a constrained optimum, θ =0, at which the smooth-pasting condition does not
apply. Unless δ>0 and β≤γ1, there is no unique optimum, as many strategies lead to infinite utility. These
transversality issues are discussed in the Appendix.
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Figure 1
Determination of the optimal sales policies
This figure illustrates the value function and the optimal policy for realizing gains and losses. The value in the
continuation or no-sales region is tangent to the sum of the payoff function and the continuation value at each
sales point, θ or 	.

strategy are illustrated in Figure 1. The no-sales region runs from θ to 	. The
value function exceeds the sum of the utility burst plus the continuation value
in this region as illustrated; it is tangent to the payoff including the continuation
value at 	 and θ . For some parameter values, it may be optimal to forgo all
losses. In these cases, the continuation value is not large enough to offset the
disutility of realizing a loss. The value function is still given by Equation (8),
though C2 =0 and therefore v(0)=0.

Typical stock and transaction cost values are μ=9%, σ =30%, and
ks =kp =1%. How would a realization-utility investor trade this stock? To
answer this question, we must specify the burst utility function. A reference-
scaled version of the Cumulative Prospect Theory (CPT) utility proposed by
Tversky and Kahneman (1992), hereafter called scaled-TK utility, is

UsTK(G,R)=RβusTK(G/R) for usTK(g)=

{
gαG g≥0

−λ(−g)αL g<0
, (11)

with 0<αG,αL≤1,λ≥1.14 As for CPT, the parameters αG and αL determine
the investor’s risk aversion over gains and risk seeking over losses, whereas loss

14 Setting β =αG and λ=λ0R
αL−αG reduces Equation (11) to the standard case introduced in Tversky and

Kahneman (1992), with λ0 being their loss aversion parameter. Loss aversion then would vary with R, but

730

 at Y
ale U

niversity on February 15, 2013
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


[15:18 1/2/2013 OEP-hhs116.tex] Page: 731 723–767

Realization Utility with Reference-Dependent Preferences

aversion is measured by λ. The scaling parameter satisfies 0≤β≤min(αL,αG).
The upper restriction on β ensures the desired property discussed earlier that
|U (G,R)| is weakly decreasing in R for a fixed G. A nonnegative β is a
participation constraint.

Tversky and Kahneman (1992) estimated the utility parameters as αG=
αL=0.88 and λ=2.25. Because they were not concerned about intertemporal
aspects, they neither estimated a discount rate nor considered scaling. However,
for such a low level of risk aversion, the transversality condition is violated
and the investor waits forever to realize any gain unless δ is nearly equal to
the expected rate of return.15 For αG=αL=0.88 and δ=8%, the investor never
voluntarily realizes losses unless there is little loss aversion with λ close to one.

However, voluntary loss taking can be part of the optimal policy for other
utility parameters. Wu and Gonzalez (1996), for example, estimate α=0.5.
Using utility parameters, αG=αL=0.5, λ=2, and δ=5%, the optimal strategy
does include voluntary losses for any β less than about 0.327.

Figure 2 shows the optimal sales strategies, 	 and θ , plotted against λ for
different values of αG and αL. Both	 and θ decrease with λ, though θ falls at a
much faster rate, and for a large enough loss aversion, the investor refrains from
realizing any losses. Provided losses are realized, they are always larger than
gains in magnitude. This might seem counterintuitive, but the smaller gains are
realized more frequently, and because marginal utility is decreasing with the
magnitude of the gain or loss, several small gains more than offset the disutility
of a single loss of the same total size.

One common observation about the realization of gains and losses is the
disposition effect, which has often been claimed to be a consequence of an
S-shaped utility function.16 The reasoning is that the investor realizes his gains,
as he is risk averse and therefore unwilling to gamble about future uncertain
gains; however, being risk seeking over losses, he will gamble and postpone
realizing them. This analysis implicitly assumes something like realization
utility because any effects of the unrealized gains or losses are ignored. But the
argument is static, considering only a single sale and ignoring any effects of
reinvestment; it also does not address the question of why any losses are ever
realized rather than their being continually postponed. Of course, even ignoring
reinvestment, the realization of gains might be postponed if the expected change

the reference level is constant in the original static interpretation. The Barberis-Xiong (2012) model is the
special case β =αG =αL =1.

15 The restriction on δ comes from the transversality condition, αG≤γ1. Although the required discount rate is
large relative to those usually assumed, many behavioral finance models do assume that investors are quite
impatient. It seems reasonable that utility derived from trading gains might well display more impatience than
utility for lifetime consumption. In addition, this high discount rate could incorporate the hazard rate describing
the investor’s ceasing this type of trading. Death is sometimes inserted into infinite-horizon models in this fashion,
though here the termination of trading might be a simple lack of further interest.

16 Shefrin and Statman (1985) were the first to argue that an S-shaped utility function leads to the disposition effect.
Similar arguments were made in Weber and Camerer (1998), Odean (1998), Grinblatt and Han (2005), and other
theoretical and empirical papers.
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Figure 2
Optimal sales policies
This figure illustrates the optimal policies for selling at gains or losses as a multiple or fraction of the reference
level. The stock price parameters are μ=9%, σ =30%. Transaction costs are ks =kp =1%. Utility parameters are
δ=5%, β =0.25, and αG =αL =0.3, 0.5, and 0.6, as indicated. The investor fully recognizes transaction costs in
assessing his utility, that is, κ =K≡ (1−ks )/(1+kp ).

in the stock price is sufficiently high that a larger expected gain in the future
offsets its extra risk. Conversely, if the mean price change is negative, losses
might be realized early to avoid larger expected losses in the future, whereas
gains would be realized both to avoid risk and to avoid smaller expected gains.17

With concave realization utility, the disutility of a loss can never be offset by
the benefit of recovering that loss in subsequent gains of the same total size, but
as seen in Figure 2 losses will be realized, as well as gains, with an S-shaped
utility function. Losses are substantially less common than gains because θ is
much farther from one than is 	.18 However, in sharp contrast with the static
argument that an S-shaped utility leads to the disposition effect, the S-shape
actually serves to reduce the disposition effect in a dynamic context. As αG and
αL decrease and the S-shape becomes more pronounced, the optimal gain point,
	, is affected only a little, whereas the loss point, θ , increases dramatically,
reducing the disposition effect. The reason is that realizing a loss resets the
reference level for future possible gains, and this can more than offset the
direct disutility of the loss. That is, the realization of a loss is, in some sense,
the purchase of a valuable option. When αG is small, this option effect can be

17 Henderson (2012) formalizes this argument by examining a diffusion model like ours that allows only a single
liquidating sale with no reinvestment. She finds that losses are voluntarily realized only if μ<0. In contrast
to her model, our paper shows that reinvestment is important, and as a direct consequence, there is voluntary
realization of losses even with a positive μ of empirically relevant magnitude.

18 Because returns are lognormal, the proper “distance” comparison is �n	�−�nθ ; also, μ− 1
2 σ

2>0, so even if
the log distances were equal, gains would be realized more often.
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Figure 3
The value function for scaled-TK utility
The reduced value function for scaled-TK utility measured immediately after a sale and reference level reset,
v(1), is plotted against different loss sales points, θ . The gain sales point,	, is fixed at its optimal value. The solid
line shows the value function for λ=2.531, the dashed line shows the value function for λ=2.5, and the dotted
line shows the value function for λ=2.56. The other parameters are μ=9%, σ =30%, ks =kp =1%, αG =αL =0.5,
β =0.3, δ=5%, and κ =1−ks . For λ=2.5, the two-point policy (θ =0.183, 	=1.037) is optimal. For λ=2.56,
the one-point policy (	=1.036) is optimal. For the critical value λ=λ∗= 2.531, the two-point policy (θ =0.166,
	=1.036) and the one-point policy (	=1.036) have the same expected utility.

substantial because the marginal utility of small gains is very large, making the
disutility of losses “affordable.”

With intertemporal realization utility, an S-shaped utility function does not
create the disposition effect; it actually reduces it, explaining why any voluntary
losses are realized rather than none.19

As the loss aversion parameter λ increases, losses become more painful,
and θ drops discontinuously to zero, as shown in Figure 2. The discontinuous
change occurs because this maximization problem is not a standard convex
optimization. As illustrated in Figure 3, the reduced value function, v(1), is not
a concave function of θ . Both an interior local maximum and a corner local
maximum at zero are possible, and either can be the global maximum. The
high marginal disutility of repeated small losses together with transaction costs
makes loss taking suboptimal for high values of θ near one. On the other hand,
for low θ , the continuation value, which is proportional to (Kθ )β , is very small
and cannot offset the disutility of a loss. This makes avoiding losses altogether
(θ =0) better than taking a large loss. Only for intermediate values of θ is the
continuation value possibly sufficient to offset the disutility of a loss. So, v(1)
attains its local maximum value at either θ =0 or an intermediate value.

19 Some research suggests that prospect theory may not lead to the disposition effect, for example, Barberis and
Xiong (2009), Kaustia (2010), and Hens and Vlcek (2011). In contrast with our model, none of these papers
consider reinvestment.
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Figure 3 illustrates both optimum types for αG=αL=0.5 and β =0.3. The
initial reduced value function after any sale and repurchase, v(1), is plotted
against θ for three values of λ. The upper sales point is fixed at its distinct
optimal value in each case. For λ=2.5, it is optimal to sell for a loss at θ =0.183.
For λ=2.56, there is an optimum at θ =0.147, but this is only a local maximum,
as never selling at a loss provides higher utility, as shown. For the critical value
of λ≈2.531, both selling for a loss at θ =0.166 and never selling for a loss
provide the same expected utility. Therefore, the lower sales point, θ , does not
decrease smoothly to zero as λ increases; it drops discontinuously from 0.166
to 0 as λ passes the critical value of 2.531. A similar change in regime for θ is
true for the other parameters. The two regimes are characterized in Proposition
1; a proof is supplied in the Appendix.

Proposition 1 (Sales policies with loss taking). Scaled-TK utility has both
an upper and a (nonzero) lower optimal sales point if and only if λ is less
than the critical value

λ∗ =
(κ	∗−1)αG−1θ

β
∗

(1−κθ∗)αL−1	
β
∗

× (αG−γ1)κ	∗ +γ1

(αL−γ1)κθ∗ +γ1
,

where (12)

0=(αG−γ1)κ	γ1+1−β
∗ +γ1	

γ1−β
∗ −(αG−β)Kβκ	∗−βKβ

0=(αL−γ1)κθγ1+1−β
∗ +γ1θ

γ1−β
∗ −(αL−β)Kβκθ∗−βKβ

determine 	∗ and θ∗. If λ is greater than this critical value, only gains are
realized. The solution is still characterized by Equations (8), (9), and (10) with
C2 set to 0. As β approaches its transversality upper limit, γ1, λ∗ → 0, and
voluntary losses are never realized. �

The Barberis-Xiong (2012) model is a special case of scaled-TK utility with
αL=αG=β =1. For this model, or indeed any realization utility model with
piecewise linear utility for gains and losses and 0≤β≤γ1, the critical value λ∗
is less than one. Therefore, losses are never realized voluntarily.

2. The Value Function and Optimal Sales Policies

The value function or its reduced-form equivalent, v, measures the present
value of the investor’s utility bursts and gives a point estimate of the benefit
of his strategy. It serves the role of the derived utility function in a standard
Merton-type portfolio problem.

Figure 4 presents the reduced value function, v, measured at the time
of any reinvestment, that is, v(1), plotted against the asset’s expected rate
of return, μ, and standard deviation, σ . The default utility parameters
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are λ=2, δ=5%, β =0.3, and αG=αL=0.5. For the μ and σ graphs, the
other parameter is set to σ =30% or μ=9%, respectively. For comparison
purposes, each value function is normalized to one at the values μ=9% and
σ =30%.20

Naturally, the value function is increasing in μ. On average for higher μ,
the next trade is more likely to be a gain and to occur sooner. The relation is
steeper for a larger β because the continuation value from the reinvestment is
larger because of scaling. The relation is also steeper for smaller δ because the
benefits from future gains are discounted less heavily.

Surprisingly, the value function is not always strictly decreasing in volatility
as it is for a standard expected utility maximization; it can be increasing or
U-shaped. Of course, CPT investors are risk seeking with respect to losses,
but that is not the reason for this effect. For example, the value function is
increasing in volatility in the Barberis and Xiong (2012) model, where burst
utility is piecewise linear and weakly concave. In our model there are conflicting
effects.

Changing the three parameters, μ, δ, and σ 2, proportionally is identical to a
change in the unit of time and leaves our model unaffected. So, an increase in
σ 2 can be interpreted as a proportional decrease in both μ and δ. Decreasing
μ lowers the value function as just explained, but decreasing δ raises the value
function because the future net positive bursts are discounted less heavily. As
explained above, the smaller the β, the less important is the μ effect. So, for
small β, the value function is less steeply decreasing or even increasing in
volatility. Also, the larger δ becomes, the more important its effect. So, for
large δ, the value function is again less steeply decreasing or even increasing
in volatility.

Figure 5 presents graphs of the optimal selling points for gains and losses
for scaled-TK investors. The parameters left unchanged in each graph are
set to the default valuesμ=9%,σ =30%,ks =kp =1%,αG=αL=0.5,β =0.3,λ=
2, and δ=5%. The dotted lines show the optimal policies for an investor
who ignores the reinvestment cost in assessing his gains, that is, κ =1−ks .
The solid lines show the optimal policies for an investor who recognizes
this cost, that is, κ =(1−ks)/

(
1+kp

)
. Several features are immediately

evident.
For both types of investors, realized losses are typically much larger than

realized gains, so the basic strategy is to realize a few large losses and many
small gains, as we have already suggested intuitively. However, the no-sales
region is wider for an investor who recognizes the reinvestment cost as reducing
his gain. An investor who internalizes the costs more when assessing his well-
being is obviously more reluctant to trade.

20 Standard utility functions are defined only up to a positive affine transformation. Realization utility has its level
set so that a gain of zero gives a utility of zero, but scaling is still arbitrary.
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Figure 5
The optimal sales policies for scaled-TK utility
The optimal sales points,	 and θ , for scaled-TK utility plotted against various parameters. The default parameters
in each graph are μ=9%, σ =30%, ks =kp =1%, αG =αL =0.5, β =0.3, λ=2, and δ=5%. The dotted lines show
the optimal policies for an investor who ignores the reinvestment cost in assessing his gains, κ =1−ks . The
solid lines show the optimal policies for an investor who recognizes the reinvestment cost in assessing his gains,
κ =K≡ (1−ks )/(1+kp ).
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The upper sales point,	, is much less affected by parameter changes than is
the lower sales point, θ , in most cases. In fact,	 is largely unaffected by any of
the variables, except transaction costs and the scaling parameter, β. And, for β,
any effect occurs mostly near the transversality limit. As β approaches its limit
of γ1, θ drops discontinuously to zero, and 	 approaches β/[κ(β−αG)].21

On the other hand, the optimal loss-taking strategy does vary substantially
as the utility parameters change. Increasing λ makes losses hurt more, so θ
is lowered in response to avoid some of them. Smaller αL leads to higher
marginal disutility for small losses. This induces the investor to wait longer
to realize a loss, as his risk-seeking behavior increases (αL decreases from
one to zero). Conversely, for low αG, the marginal utility of small gains is
quite high, making small losses “affordable” and desirable to set up future
gains. So, θ decreases with αG. Similarly, when β is small, the pain of
realizing a loss is offset more by the lowering of the reference level for
subsequent gains; this intensifies loss taking, increasing θ . With a higher β,
the investor is more reluctant to experience a loss just to increase future
gains.

The effect of the subjective discount rate, δ, on the optimal sales policy is
unusual. A more impatient investor wants to realize gains sooner and defer
losses longer. We see that 	 is decreasing in δ as expected; however, θ is not.
All losses are taken voluntarily, and the desire to take gains early induces a
derived willingness to realize losses to set up these future gains. This causes
θ to also be increasing in δ at low discount rates; however, at higher discount
rates, the initial intuition dominates because future gains are discounted more,
so the benefit of resetting is less.

Increasing the transaction costs, ks and kp, naturally widens the no-sales
region because the costs take part of each gain and increase every loss. As the
costs go to zero, both	 and θ approach one, and the trading frequency increases
without limit. Because marginal utility becomes infinite as the gain size goes
to zero, the investor takes every opportunity to realize even the smallest of
gains. Of course, there is unbounded marginal disutility for near-zero losses,
but under the optimal strategy θ approaches one slower than does 	, so there
is a net increase in the value function with frequent trades.

There is a similar result for any utility function that is strictly concave for
gains even if their marginal utility is not infinite at zero. There is always an
incentive to realize any gain as a series of smaller increments because the
marginal utility is highest near zero, and in the absence of transaction costs,
there is no selling penalty to offset this. However, when the marginal utility
for gains is not infinite at zero, the loss sales point, θ , need not be near one.
In the presence of loss aversion (λ>1), the marginal utility of small losses

21 For β>γ1, there is no well-defined optimal upper sales point. Any 	>K−β/(β−γ1) provides infinite expected
utility. See the Appendix for details on this and other transversality-type violations. When αG is very close to
one, the upper sales point is sensitive to β and can be decreasing for low β.
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exceeds the marginal utility of small gains, which precludes an immediate loss
realization even in the absence of transaction costs.

Changes in μ have very little effect on the size of optimal realized gains,	.
The value function is strongly increasing in μ, but this is because of the
reduction in the average time before a sale occurs rather than any significant
change in policy. The lower sales point, θ , is affected more. For large or small
μ, the option to reset the reference point by selling at a loss is less valuable than
for intermediate values of μ. It is less valuable for large μ because the asset
price grows quickly enough for gains to be realized without a painful reset.
Conversely, with a very low μ, there is less value in resetting the reference
level because future gains will be realized infrequently. So, θ is highest for
intermediate values of μ.22

The standard deviation, σ , has only a tiny impact on the optimal gain
point. 	 decreases as σ rises but by an amount imperceptible in the graphs.
Increasing σ also lowers the loss sales point, θ . The reason is that for typical
parameter values, higher volatility would increase the probability of loss
realization, and the investors responds by lowering θ to postpone voluntary
loss taking.

3. Model Calibration

In this section, we calibrate our model using representative investors to
determine if it can explain observed trading patterns. The model described in the
previous sections makes specific predictions about the magnitudes, frequencies,
and relative proportion of both realized and unrealized gains and losses. In this
context, we explore an alternate utility specification that improves the model
predictions. We also compare our model results to predictions assuming random
trading. The best calibration is achieved when we consider heterogeneous
trading strategies.

If we consider a single set of utility and stock price parameters, our model
predicts that the magnitudes of all realized gains and losses are	−1 and θ−1,
respectively. The frequency of trading is determined by the time required for
the investment value to rise to	R or fall to θR from the original reference level
R. Paper gains expressed as a percentage of the reference level are distributed
over the range θ−1 to 	−1. The properties of these distributions are given
in Proposition 2. Its proof and that of all later propositions are provided in the
Appendix.

Proposition 2 (Properties of realized and unrealized gains and losses). If
the asset value has a lognormal evolution, dX/X=μdt + σdω, and the investor

22 Note that this is very different from the result in Henderson (2012). In her model, with neither reinvestment nor
discounting, losses are only realized to avoid even larger losses on average when μ is negative.
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trades repeatedly according to a constant two-point policy, θ -	, then the
probabilities that a given episode eventually ends with a gain or a loss are23

QG=
θ−η−1

(	/θ )η−1
QL=1−QG=

1−	−η

1−(θ /	)η
, (13)

where η≡1−2μ/σ 2.

The fractions of the time that the asset has an unrealized gain or loss are

ϕG=
(1−θη)[�n	− 1

η
(	η−1)]

(1−θη)�n	+(	η−1)�nθ
ϕL=1−ϕG . (14)

The expected duration of each investment episode is

E[τ ]=
(	η−1)�nθ−(θη−1)�n	

(	η−θη)(μ− 1
2σ

2)
, (15)

and in a sequence of consecutive investments, the expected number of
investment episodes per unit time is 1/E[τ ]. �

The properties derived in this proposition and Proposition 4 depend on neither
the specific realization utility function assumed nor the maximization of utility.
They obtain whenever a specific two sales point strategy is employed for assets
with lognormal diffusions.

For comparison, we want the same type of predictions for investors who
may trade for liquidity purposes, based on information, or for other reasons.
Describing the actions of all such investors is outside the scope of this
paper, so we simply assume that these investors trade stocks randomly in
separate episodes with each episode terminated independently of the stock
price evolution. The predictions of this model are given in Proposition 3.

Proposition 3 (Characteristics of investment episodes for random trades).
Assume that each asset’s price evolves according to a lognormal diffusion and
that each trading episode terminates with a sale that occurs according to a
Poisson process that is independent of the evolution of the stock price and has
intensity ρ. The trading episodes have the properties given below.

The duration of each episode has an exponential distribution with mean
duration E[τ ] = 1/ρ. The average realized gain and loss are24

	̄=− ρ(1−ψ−)

(ρ−μ)ψ− θ̄ =
ρ(ψ+ −1)

(ρ−μ)ψ+
, (16)

where ψ± ≡
−(μ− 1

2σ
2)±

√
(μ− 1

2σ
2)2 +2ρσ 2

σ 2
.

23 When 2μ=σ2 (so η=0), L’Hôspital’s rule gives QG =1−QL =ϕL =1−ϕG =−�nθ/�n(	/θ ) and E[τ ]=
−�n(θ )�n(	)/θ2.

24 For ρ =μ, L’Hôspital’s rule gives θ̄ =μ
/(

μ+ 1
2 σ

2
)

. The expected value of the upper sales, 	̄, is finite only if

ρ>μ; θ̄ is always finite because its realizations are bounded between zero and one.
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The probability that a given episode will end with a sale at a gain and the
probability that an unrealized investment is a paper gain are both

QG=ϕG=
ψ−

ψ−−ψ+
. (17)

Of course, the probability that a given episode will end in a loss and the
probability of an unrealized loss are QL=ϕL=1−QG=1−ϕG. �

Note that the trading points,	̄ and θ̄ , given in Equation (16) are averages.
Although threshold-realization-utility investors always trade at fixed ratios, the
sales of random traders can occur at any price.

One set of trading statistics that has garnered considerable attention was
proposed by Odean (1998) to measure the disposition effect. These include the
proportion of gains realized, PGR; the proportion of losses realized, PLR; and
the Odean measure, O. PGR is defined as a ratio. The numerator is the number
of realized gains summed over all days and all accounts. The denominator is
the total over all days of the number of stock positions showing a gain (realized
or not) in all accounts that realized either a gain or a loss on that day. PLR is
similarly defined for losses. The Odean measure is the ratio PGR/PLR.

In a given sample, these statistics will be affected by many factors. These
include the varying sales thresholds for the distinct assets held by different
investors, the number of stocks held in each account, the correlation between the
stocks’ returns, and the sampling interval.25 Proposition 4 derives PGR, PLR,
and the Odean measure for the special case of independent and identically
distributed assets. The number of stocks held per account may vary across
investors, but each individual stock is traded according to the same two-point
or random strategy.

Proposition 4 (Odean’s statistics with a representative investor). Assume
that asset returns are independent and identically distributed with a lognormal
evolution, dX/X=μdt + σdω, and that all stocks are traded using the same
strategy. Then, as the number of sales increases, the probability limits of PGR,
PLR, and the Odean measure are

plim PGR=
QG

QG+(n̄+σ 2
n /n̄−1)ϕG

plim PLR=
QL

QL+(n̄+σ 2
n /n̄−1)ϕL

plim O=
plimPGR

plimPLR
=
QG

QL

QL+(n̄+σ 2
n /n̄−1)ϕL

QG+(n̄+σ 2
n /n̄−1)ϕG

, (18)

where n̄ and σ 2
n are the average number and variance of the number of stocks

held across accounts,26 and QG, QL, ϕG , and ϕL are the probabilities defined

25 The effects of these factors are examined in Ingersoll and Jin (2012).

26 If each account holds a fixed number of assets over time, then n̄ and σ2
n are the average and variance of account

sizes. Under mild regularity conditions, the proposition remains valid for accounts whose sizes vary over time,
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Table 1
Summary statistics for reference-dependent realization utility model with scaled Tversky-Kahneman
utility

	−1 θ−1 QG ϕG E[τ ] PGR PLR O
Odean data 27.7% −22.8% 53.8% 41.9% 312 14.8% 9.8% 1.51
Dhar and Zhu data — — 65.8% 46.5% 122 13.2% 6.4% 2.06
Fit to Odean’s 	,θ 27.7% −22.8% 57.7% 50.7% 174 14.0% 10.9% 1.28

Random trading (Poisson) model
ρ =0.36 72.2% −22.8% 58.7% 58.7% 688 12.5% 12.5% 1
ρ =0.80 36.4% −17.4% 55.9% 55.9% 312 12.5% 12.5% 1
ρ =1.16 27.7% −15.2% 54.9% 54.9% 215 12.5% 12.5% 1
ρ =1.94 19.7% −12.4% 53.8% 53.8% 129 12.5% 12.5% 1

Realization model with scaled-TK utility
αG =1

{
β =0 or 1 95.3% never 100% 27.1% 3717 34.5% 0 ∞

αL =1 β =0.53 45.6% never 100% 16.6% 2087 46.2% 0 ∞
αG =0.88

{
β =0 17.6% never 100% 7.7% 901 65.0% 0 ∞

αL =0.88 β =0.88 96.2% never 100% 27.3% 3743 34.4% 0 ∞
αG =0.5

{
β =0 3.9% −13.5% 80.6% 21.5% 15 34.9% 3.4% 10.22

αL =0.88 β =0.3 5.8% −45.3% 93.8% 9.5% 85 58.6% 1.0% 60.64

αG =0.5
{

β =0 3.8% −6.3% 64.9% 36.7% 7 20.2% 7.3% 2.74
αL =1.0 β =0.3 5.9% −28.2% 87.6% 15.6% 50 44.5% 2.1% 21.64

αG =0.5
{

β =0 4.0% −47.3% 95.9% 6.5% 63 67.8% 0.6% 107.90
αL =0.5 β =0.3 5.7% −75.8% 98.3% 4.9% 169 74.3% 0.3% 293.06

The table reports 	−1, θ−1: percentages above and below the reference level for realized gains and losses,
QG: fraction of episodes that end in realized gains, ϕG: fraction of stocks with unrealized paper gains, E[τ ]:
average holding period in trading days (250 per year), PGR, PLR: proportions of gains and losses realized, and
O≡PGR/PLR: Odean’s measure. Asset parameters are μ=9% and σ =30%. The accounts’ sizes are fixed with
n̄+σ2

n /n̄=8.0. Utility parameters are λ=2 and δ=5% (except δ=8% for αG =0.88 and δ=10% for αG =1 to avoid
a transversality violation). Transaction costs are ks =kp =1%, and the investor accounts for both costs in his
subjective view of his realized gains, κ =K . Odean’s data are taken from Tables 1 and 3 of his 1998 paper. Dhar
and Zhu’s (2006) data are from the notes to their Table 3. The “Fit to Odean’s 	, θ” row uses Odean’s estimates
of 	 and θ to compute the other values using Propositions 2 and 4. Each “Poisson Model” row chooses ρ to
match one of Odean’s estimates of 	, θ , QG, or E[τ ], as marked in bold, and computes the other values using
Propositions 3 and 4; the observed ϕG cannot be matched, as the Poisson model cannot give values less than
50% when μ>σ2/2.

in Equations (13) and (14) if the investors are realization-utility investors or in
Equation (17) if the investors are random Poisson traders. �

The statistics of Proposition 4 are the same as those that would be produced
by a single representative investor holding n̄+σ 2

n /n̄ rather than n̄ stocks. The
representative investor’s holding is biased high relative to the average because
those investors holding more stocks are represented more often in the data.

With the statistics derived in Propositions 2 through 4, we can assess how our
realization utility model and the random trading model fit the trading patterns of
individual traders. For comparison, we incorporate data from Odean (1998) and
Dhar and Zhu (2006) with the statistics generated by this model into Table 1.
The first row of the table presents Odean’s data extracted from his Tables 1

with n̄ and σ2
n being the average and variance of the number of shares held per account across both accounts and

time.
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and 3, including the header text. He reports that 53.8% of sales were realized
gains with an average size of 27.7%; the remaining trades were losses averaging
−22.8%. The average holding period was 15 months, which we have expressed
as 312 trading days.27 Paper gains and losses composed 41.9% and 58.1% of
the unrealized positions. PGR and PLR were 14.8% and 9.8%. Dhar and Zhu’s
(2006) data are taken from their Table 1 and the note to their Table 3. Gains were
realized on 65.8% of trades, but paper gains composed only 46.5% of unrealized
positions. PGR and PLR were 13.2% and 6.4%.28 The average holding period
was 122 days. They do not report the average sizes of realized gains and losses.
The differences in this data can probably be attributed to the periods studied.
During the Dhar-Zhu period, 1991–1996, the market rose 113% with only minor
corrections, whereas during Odean’s period, 1987–1993, the market rose only
89% and suffered two major downturns. So, Dhar-Zhu traders would have
reached their 	-points more frequently, whereas Odean’s traders would have
had more opportunities to sell at losses.

To determine if any calibration is feasible, the data in the third row use just
Odean’s average sales price ratios as estimates for 	 and θ . The remaining
values are determined from them and the stock evolution parameters using
Propositions 2 and 4. This fit is not optimized; we have simply chosen an
asset comparable to a typical share of stock with μ=9% and σ =30%. The
fit for QG and ϕG, and therefore the corresponding loss statistics, do seem
reasonable allowing for sampling error and heterogeneity of assets and investors
in the actual sample.29 To compute PGR, PLR, and O, we need account size
information. Goetzmann and Kumar (2008), using the same data set as in
Barber and Odean (2000), provide more details about portfolio sizes. They
give the percentages of accounts of various sizes in their Table 1, from which
we compute approximate values of n̄= 4.1 and σn=4.0, giving n̄+σ 2

n /n̄≈8.0.
For a similar data set, Barber and Odean (2000) report that the average number
of stocks per account is 4.3; Dhar and Zhu (2006) give average account sizes of
4.4 and 4.2 for investors whose occupations they identify as professional and
nonprofessional.

The next four rows of the table illustrate the fit of a trading model based
on random Poisson trades to Odean’s data. As ρ increases, both average sales

27 This calculation assumes fifteen months is an exact figure of 312.5 days. The actual value could range from 302
to 323 days because of rounding.

28 These are reported in their note to Table 3 using Odean’s method of aggregation. In their Table 2, Dhar and Zhu
(2006) report simple averages across investors for PGR and PLR of 38% and 17%, respectively. Computing PGR
and PLR first at the investor level and then averaging across investors puts relatively more weight on investors
who have fewer stocks in their accounts, and these investors typically have higher PGR and PLR. For instance,
suppose QG =ϕG =0.5. Then, for an equal mix of investors who hold two and six stocks, PGR is 0.5 and 0.167.
The average PGR is 0.33, but using Equation (18) with n̄=4 and σn =2, the aggregated PGR is 0.2.

29 Our fitted value of 174 days for E[τ ] differs from both Odean’s and Dhar-Zhu’s, though it is between them. All
of the statistics in the last six columns, except for E[τ ], depend only on the ratio μ/σ2, so increasing μ and
σ2 proportionally will reduce E[τ ] and leave the others unchanged. In our analysis below, it is only the relative
holding times for different accounts that matter, not the level.
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points, 	̄ and θ̄ , approach one. Under random trading, QG and ϕG must be
equal, and both fall from 100% to 50% as ρ increases from 0 to ∞.30 Although
the individual statistics can be matched, they cannot be fit simultaneously. In
addition, both PGR and PLR must equal (n̄+σ 2

n /n̄)−1 with random trading, so
the Odean measure must always be one.

The final ten rows of the table attempt to fit specific realization utility
functions to Odean’s data. Using αG=αL=0.88 and λ=2.25, as proposed by
Tversky and Kahneman (1992), and δ=8%, the upper sales point of our model
varies from 17.6% to 96.2% above the reference level as the scaling parameter,
β, ranges over its permitted values 0 to 0.88. This includes Odean’s estimate of
27.7%, but the fit is far from satisfactory as no losses are voluntarily realized
for these parameters.

For piecewise linear utility, αG=αL=1 (and δ=10% to avoid transversality
violation), the table confirms that voluntary loss taking is again never optimal,
as was shown in Proposition 1. Gains are realized after the stock price has risen
by 95.3% for β =0 or 1 or by a lesser amount for any β between those values.
The smallest gain-realization point is 45.6% when β =0.53. It is apparent from
the table that realization utility model cannot fit Odean’s data with α values
this high.

Tversky and Kahneman’s estimates are from experimental settings with small
gamble sizes. For the much larger size of investment that a typical investor
makes in financial markets, we expect more risk aversion.31 Therefore, in
Table 1, we also use αG=0.5, which is the estimate of Wu and Gonzalez
(1996).32 This also permits lowering the rate of time preference to a more
reasonable 5%. Because Wu and Gonzalez only estimate αG, we use αL in the
range 0.5 to 1.0.

From Table 1, it is apparent that the basic model can generate a wide variety
of optimal sales points; however, for any parameter values that permit voluntary
sales at the size of losses observed in Odean’s data, the upper sales point,	, is
much too low. As a direct result, sales at gains vastly outnumber sales at losses
(QG�QL), and PGR is too large, whereas PLR is too small.

One difficulty with scaled-TK utility is that its derivative is very high near
zero; indeed, u′(0)=∞ for any αG<1. This makes the total utility of realizing
gains in numerous tiny increments very large and pushes the optimal threshold,
	, quite close to one. This is a particular problem in our model because sales,

30 If 2μ<σ2, then bothQG and ϕG rise from 0% to 50% as ρ increases. In this case, Odean’s value ofQG =53.8%
cannot be matched. Conversely, for the parameters used here, ϕG cannot be matched to Odean’s value of 41.9%.

31 Barber and Odean (2000) report that the average household in their sample holds 4.3 stocks worth $47,334, so
the averaged dollar amount invested per stock is a little more than $11,000. In Table 6 of Tversky and Kahneman
(1992), the largest gamble about which subjects were questioned was $401, which represents a modest 3.6%
gain or loss on the average stock position.

32 Wu and Gonzalez (1996) only estimate αG. Their estimation depends on the form for the probability weighting
function. When using that proposed in Tversky and Kahneman (1992), they estimate αG =0.5; using the form
proposed in Prelec (1998), they estimate αG =0.48.
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and therefore the sizes of any gains, are not exogenous but completely at the
discretion of the investor.33

To avoid this problem, we consider a modified-TK utility function,

UmTK(G,R)=

{
Rβ[(1+G/R)αG−1]

/
αG G≥0

−λRβ[1−(1+G/R)αL ]
/
αL −R≤G<0 .

(19)

For αG<1<αL, utility is S-shaped; the risk parameters, αG and αL,
are unbounded below and above, respectively, allowing more flexibility.34

Marginal utility is bounded at G=0, reaching the values λRβ−1 and Rβ−1

just below and above zero. This discontinuous change introduces a true kink
in the utility function.

Table 2 provides additional calibrated results using the modified-TK utility
specification. The results presented there are not as extreme as those in Table 1
using scaled-TK utility. In particular, the lower marginal utility at small gains
has served its purpose of raising the optimal gains threshold,	. The estimates
in the final row, with αG=0.5, αL=30, and β =0.3, match the data quite well.
As should be obvious from the parameters, this is not an optimized or best fit;
rather, round numbers are used for αG, αL, and β, which provide a good fit.

It might well be argued that αL=30 implies an implausibly high risk-seeking
behavior, so the model is doubtful despite fitting the data. Further parameter
adjustments cannot do much to improve the fit. For a given threshold-sales
policy,	-θ , the remaining values in Tables 1 and 2, except the average holding
time, are completely determined by the ratio μ/σ 2. Therefore, adjusting the
utility parameters further cannot better the fit, nor can altering μ or σ improve
the fit for PGR and PLR without degrading that for QG and ϕG. However, the
calibration can be improved by introducing additional heterogeneities beyond
a difference in the number of stocks held because this model is not one in which
a single average investor can serve as a stand-in for the group.

If investors trade some of their stocks differently (heterogeneous holdings) or
different investors have different sales policies (heterogeneous investors), there
are further aggregation effects on the various measures. In particular, the closer
to one are 	 and θ , the shorter will be the average length of each investment
episode. Stocks that are traded more frequently will disproportionately affect
the statistics because their characteristics will be overrepresented. In addition,
the characteristics of the other stocks held in the same account will also be
overrepresented, as paper gains and losses are counted only when a stock in the

33 The Arrow-Pratt measure of absolute risk aversion for scaled-TK utility is (1−αG)/G for uncertain prospects
with gains only. So, if agents have moderate risk aversion for moderately sized gains, they must be extremely risk
averse about small gambles and close to risk-neutral for large ones. For modified-TK utility introduced below,
the Arrow-Pratt measure is (1−αG)/(R+G), which has less variation as the size of the gamble changes.

34 As usual, α=0 corresponds to a logarithmic form, Rβ�n(1+G/R). Modified-TK utility can also be adapted to
study strictly risk-averse incremental utility by setting αL<1. Utility is increasing and for λ≥1 strictly concave.
If αL =αG and λ=1, this is incremental power utility; otherwise, there is a discontinuous change in risk aversion
(if αG �=αL) or in marginal utility (if λ �=1) at zero.
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Table 2
Summary statistics for reference-dependent realization utility model with modified Tversky-Kahneman
utility

	−1 θ−1 QG ϕG E[τ ] PGR PLR O
Odean data 27.7% −22.8% 53.8% 41.9% 312 14.8% 9.8% 1.51
Dhar and Zhu data — — 65.8% 46.5% 122 13.2% 6.4% 2.06
Fit to Odean’s 	, θ 27.7% −22.8% 57.7% 50.7% 174 14.0% 10.9% 1.28

Realization model with modified-TK utility
αG =0.5

{
β =0 60.4% −90.7% 96.3% 25.2% 2037 35.3% 0.7% 50.25

αL =2.0 β =0.3 49.2% never 100.0% 17.6% 2221 44.8% 0 ∞
αG =0.5

{
β =0 44.6% −64.1% 85.3% 31.5% 909 27.9% 3.0% 9.36

αL =4.0 β =0.3 47.4% −73.6% 89.7% 28.3% 1169 31.1% 2.0% 15.45

αG =0.5
{

β =0 27.5% −42.7% 77.6% 33.3% 351 25.0% 4.6% 5.44
αL =8.0 β =0.3 38.3% −48.7% 77.4% 36.5% 556 23.2% 4.8% 4.80

αG =0.5
{

β =0 13.5% −17.5% 64.1% 41.0% 67 18.3% 8.0% 2.29
αL =30.0 β =0.3 26.7% −24.3% 60.5% 48.0% 181 15.2% 9.8% 1.56

The table reports 	−1, θ−1: percentages above and below the reference level for realized gains and losses,
QG: fraction of episodes that end in realized gains, ϕG: fraction of stocks with unrealized paper gains, E[τ ]:
average holding period in trading days, PGR, PLR: proportions of gains and losses realized, and O≡PGR/PLR:
Odean’s measure. Asset parameters are μ=9% and σ =30%. The accounts’ sizes are fixed with n̄+σ2

n /n̄=8.0.
Utility parameter are λ=2 and δ=5%. Transaction costs are ks =kp =1%, and the investor accounts for both costs
in his subjective view of his realized gains, κ =K . Odean’s data are taken from Tables 1 and 3 of his 1998 paper.
Dhar and Zhu’s (2006) data are from the notes to their Table 3. The “Fit to Odean’s 	, θ” row uses Odean’s
estimates of 	 and θ to compute the other values using Propositions 2 and 4.

same account is sold. The effects of aggregation are described in Propositions 5
and 6. Proposition 5 gives the statistics when different investors follow distinct
trading strategies. Proposition 6 gives the statistics when the trading strategies
differ for stocks within the same account. These heterogeneities have distinct
effects.

Proposition 5 (Realization utility statistics with heterogeneous investors).
Assume that asset returns are independent and identically distributed35 and
that investors differ in their trading strategies or number of stocks they hold.
Type i investors constitute the fraction πi of the sample, hold ni stocks, and
follow a 	i-θi threshold strategy or a ρi random strategy. As the number
of observed trades increases, the probability limits of the various aggregate
statistics are the weighted averages

plim�̄=
∑

i
wi�i , where wi≡ πini /E[τi]∑

i πini /E[τi]
(20)

and � is any of the statistics 	, θ , QG, QL, or E[τ ]. The probability limits of
the fraction of unrealized paper gains or losses are

plim ϕ̄G=1−plim ϕ̄L=

∑
i πini(ni−1)ϕiG

/
E[τi]∑

i πini(ni−1)
/

E[τi]
. (21)

35 The assets’ means and variances can differ across the types of investors, provided they are identical within types.
The effects of any asset differences are completely incorporated into Qi

G
,Qi
L
,ϕi
G
,ϕi
L

, and E[τi ].
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The probability limits of PGR and PLR are

plim PGR=

∑
i πiniQ

i
G

/
E[τi]∑

i πini[Q
i
G+(ni−1)ϕiG]

/
E[τi]

plim PLR=

∑
i πiniQ

i
L

/
E[τi]∑

i πini[Q
i
L+(ni−1)ϕiL]

/
E[τi]

.

(22)

As before, plim O = plim PGR/plim PLR. �

Proposition 6 (Realization utility statistics with heterogeneous holdings).
Assume that a representative investor trades N stocks whose returns are
independently distributed. These stocks are grouped into categories. Within
group i, there are ni stocks with identical means, variances, and trading
strategies. The latter are either 	i-θi threshold strategies or ρi random
strategies. As the number of observed trades increases, the probability limits
of the various aggregate statistics are the weighted averages

plim�̄=
∑

i
wi�i , where wi≡ ni /E[τi]∑

i ni /E[τi]
(23)

and � is any of the statistics 	, θ , QG, QL, or E[τ ]. The probability limits of
the fraction of unrealized paper gains or losses are

plim ϕ̄G=1−plim ϕ̄L=

∑
i ni

(∑
j njϕ

j

G−ϕiG
)/

E[τi]

(N−1)
∑

i ni
/

E[τi]
. (24)

The probability limits of PGR and PLR are

plim PGR=

∑
i niQ

i
G

/
E[τi]∑

i ni[Q
i
G+
∑

j njϕ
j

G−ϕiG]
/

E[τi]

plim PLR=

∑
i niQ

i
L

/
E[τi]∑

i ni[Q
i
L+
∑

j njϕ
j

L−ϕiL]
/

E[τi]
,

(25)

with plim O = plim PGR/plim PLR as always. �

Table 3 summarizes the calibrated results for heterogeneous investors and
heterogeneous holdings based on the statistics derived in Proposition 5 and
6. For comparison purposes, we pick the utility parameters used in Table 2,
excluding the high risk tolerance case, which is no longer needed for a good fit.
All of the averages in this table assume that there is an equal mix of two types.
For “heterogeneous investors,” one half of the investors optimize realization
utility and the other half trade randomly. For “heterogeneous holdings,” each
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investor trades one-half of his stocks by optimizing his realization utility and
trades the other half randomly.

Throughout our analysis, stock-level narrow framing is assumed. That is,
decisions on when to sell are not affected by any other stock’s performance.
Therefore, all empirical statistics for realized gains and losses depend only
on the overall distribution of investing strategies and stock parameters; the
form of the heterogeneity, whether it is within or across accounts, is irrelevant.
Specifically, if the stock-level heterogeneity is the same in the “heterogeneous
investors” and the “heterogeneous holdings” cases, then 	̄,θ̄ ,Q̄G,Q̄L, and
E[τ ] are identical. However, in Odean’s methodology, paper gains and losses
are counted by the outside econometrician only when another stock in the same
account is sold. As a result, the difference between “heterogeneous investors”
and “heterogeneous holdings” in grouping stocks into accounts yields distinct
values for the statistics related to paper gains and losses, that is, ϕ̄G,ϕ̄L, PGR,
PLR, and O.

Following Odean, ϕ̄G (ϕ̄L) is the fraction of stocks trading at a paper gain
(loss) when some other stock in the same account is sold. Stocks with a lower
E[τ ] trade more frequently and therefore increase the impact of all other stocks
held in the same account on ϕ̄G and ϕ̄L and the other statistics that depend on
these. For example, from Table 2, investors with αL=8, αG=0.5, and β =0 have
an average holding period of 351 trading days with ϕG=33.3%; ρ =1 random
trades have a smaller average holding period of 250 days and a higher ϕG of
55.3%. Therefore, with an equal mixture of these investors, the average ϕ̄G=
46.1% is closer to that of the random traders because they trade more often.
Conversely, with heterogeneous holdings, the opposite is true; the average ϕ̄G=
44.0% is closer to the threshold-traded stock value. Because random trades
occur more often, the threshold-traded stocks are the ones observed more often
in determining the paper gains and losses. As a consequence, PGR and O are
typically larger, and PLR is typically smaller for heterogeneous holdings than
for heterogeneous investors.

The reported averages are in fairly close agreement with Odean’s empirical
results for each level of risk tolerance, with no need to resort to the very
high risk tolerance required in Table 2. The average time between trades has
also increased to better match Odean’s value. This table simply highlights
the possibilities. Using mixtures of other than 50-50, including more types of
investors, or allowing heterogeneity of trading strategies, both across investors
and within the same account, would permit further tweaking of the fit.

In summary, we have shown that our realization utility model is consistent
with and can shed light on several dimensions of observed trading data. We have
neither made an attempt to match the empirical patterns exactly nor considered
all dimensions. For instance, in his 1998 paper, Odean reports the average size
of paper gains and losses measured when some other stock in the same account
was traded. The average paper gains and losses were 46.6% and −39.3%,
which are larger in magnitude than the realized gains and losses of 27.7%
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and −22.8%. Our model with a single representative investor following an
identical 	-θ strategy on all the stocks cannot possibly generate this pattern,
as the realizations occur at the extreme points of the paper gains and losses
distribution. Although it is possible to generate this pattern by considering an
economy with heterogeneous investors, other explanations are also possible,
such as investors updating their reference levels based on the recent price history
of the asset.36 Once the reference level changes from the initial purchase price,
the subjectively measured gain or loss realized by an investor differs from the
gain or loss as measured objectively by an outside econometrician. This topic
is examined in detail in Ingersoll and Jin (2012).

4. Voluntary Loss Realization

One of the main objectives of this paper is to create an intertemporal realization
utility model with voluntary loss realization. In earlier sections, we introduced
scaled- and modified-TK utility functions, and our numerical analysis shows
that either can generate voluntary loss taking. In this section, we pose a
more general question: What are the necessary characteristics for any utility
function to generate voluntary sales at losses in the intertemporal realization
utility framework posed in Equation (3)? We are not ruling out other possible
preference- or belief-based explanations that contribute to voluntary loss taking,
such as changes in information or portfolio rebalancing. Nevertheless, our
general analysis may shed light on theoretical and experimental work on
realization utility and the disposition effect.

Both versions of TK utility have two properties that separately seem
important, an S-shape and reference scaling. To illustrate, consider an investor
with the scale-free utility function, U (G) = sgn(G)·|G|1/2, that does not
explicitly depend on the reference level. This investor might be willing to
realize a loss of two because, if the price subsequently recovers, he can take
two gains of one and have positive total utility. Not taking the loss of two
prevents realizing the recovery as a gain. With scale-free concave utility, the
benefit of a recovery gain can never offset the disutility of the loss because
marginal utility is decreasing, so the disutility of the loss must be larger than
the utility of subsequent gains no matter how it is divided. Now consider a
simple scaled utility function with no convexity for losses, U (G, R)=G/R. A
loss from four to two has a disutility of −2/4, whereas a recovery from two
back to four provides a utility of 2/2. Now the decreasing scaling may make
taking the loss worthwhile to realize a later gain. Conversely, with increasing
scaling, loss taking could never be optimal. This analysis is made precise in
Proposition 7 below, which describes the conditions under which losses will
never be realized voluntarily.

36 See Section 4 of Odean (1999) for an informal discussion on this. Related experimental and empirical evidence
can be found in Gneezy (2005) and Arkes et al. (2008, 2010).
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Proposition 7 (Sufficient conditions to preclude voluntary sales at losses).
Assume that an investor maximizes expected realization utility as in
Equation (3), with a burst utility function of U (G, R), and that the reference
level is updated to the investment value after a sale but remains constant
between sales. The following four conditions,

(a)δ>0 (b)
∂U

∂G
>0 (c)

∂2U

∂G2
≤0 (d)

∂2U

∂G∂R
≥0, (26)

are jointly sufficient to preclude the voluntary realization of any losses in the
absence of transaction costs.37 �

A proof of this proposition is given in the Appendix. The intuition for the
result is that the disutility of a loss cannot be offset by the utility of any later
gains that recoup this loss because each gain utility burst comes at a later time,
has a smaller marginal utility, and has a lower reference level. Each of these
aspects makes the gain utility smaller by (26a), (26c), and (26d), respectively.

The first three conditions in Equation (26) are standard utility properties.
Time preference is positive, and marginal utility is positive and decreasing.
Taking the first two as inviolable, voluntary losses are then possible only
if utility is not everywhere concave or marginal utility is not everywhere
increasing in the reference level. We have already discussed the option-like
effect that S-shaped utility has on loss taking from resetting the reference level.
A violation of condition (26d), that is, marginal utility is decreasing in the
reference level over some range, can have the same effect. A loss measured
from a high R can have a smaller negative impact on utility than the same size
gain from a lower R. This might induce the investor to realize a loss so he is in
position to take a later gain when the asset recovers in value.

S-shaped utility functions are commonly used in behavioral models, and
we have already argued that ∂|U (G, R)|/∂R ≤ 0 is a likely description of
realization utility which, if true, means condition (26d) cannot hold, except
when ∂2U /∂G∂R≡0.38 Therefore, both S-shaped utility and decreasing scaling
of utility with respect to R may contribute to the optimal voluntary realization
of losses. In theory, a violation of (26c) or (26d) alone is sufficient to make
voluntary loss taking optimal. However, our model calibration indicates that
both are probably necessary to explain the data.

37 As seen in Figure 5, transaction costs widen the no-sales region and therefore make voluntary loss taking less
likely to occur. With transaction costs, we would require stronger violations of these conditions to make voluntary
loss taking optimal.

38 Letting subscripts denote partial derivatives,U2(G,R)=U2(0,R)+∫G0 U12(g,R)dg. BecauseU (0,R)=0 for allR,
U2(0,R)=0. If (26d) holds strictly, that is, U12>0, then the integral is positive (negative) for positive (negative)
G and ∂|U |/∂R>0. Therefore, assuming (26d), the relation ∂|U |/∂R≤0 cannot hold, except when U12 ≡0.
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5. Further Model Predictions and Applications

As discussed above, our paper makes several direct and specific predictions
about trading activity.39 The two-point, 	-θ , trading strategy is quite specific
about the volume of gains and losses, the holding periods, and the sizes of
both realized and paper gains and losses. These results can help explain the
difference between the trading volume in rising and falling markets as well as
the effect of historical highs on the propensity to sell. Together, risk-seeking
behavior and the trading strategy might also explain the heavy trading of highly
valued assets because the optimal strategies are related to the assets’ means
and variances. Furthermore, if an investor’s subjective reference level is not
constant but is updated based on recent stock prices, then the predicted trading
patterns become path-dependent.

Models like this one may also rationalize hazard-rate types of models for
investor behavior. In a recent paper, Ben-David and Hirshleifer (2012) examine
various holding periods and document V-shape empirical patterns between the
probability of selling a stock and the unrealized return since its purchase. Using
the statistics developed in Proposition 5 for heterogeneous investors, our model
can match this pattern.40 Many of these considerations are examined further in
Ingersoll and Jin (2012).

Tax-trading behavior is another obvious topic addressed by this model. In
fact, capital gains are a near-perfect fit with realization utility because they are
typically due only upon sale of an asset. Standard reasoning indicates that an
investor should realize losses and defer gains to minimize the tax burden. With
taxes, loss taking should predominate over gain taking, which is the opposite
of the disposition effect. However, this reasoning again fails to recognize the
importance of the reinvestment effect. To illustrate, consider an investor with
modified-TK utility with αG=0.5, αL=4, β =0.3, λ=2, and δ=5% investing
in an asset with μ=9% and σ =30% and paying 1% transaction costs. In the
absence of a capital gains tax, the investor would sell at	=1.460 or θ =0.261.41

With a 15% capital gains tax, he sells at	=1.549 or θ =0.248. The capital gains
tax does cause the investor to postpone the realization of gains because they now
provide a smaller utility burst. However, loss taking is also postponed precisely
because gains are less valuable, so it no longer is quite so advantageous to realize
a painful loss to reset the reference point. Of course, loss taking is affected less
than gain taking because of different tax treatment.

39 A more detailed discussion on some of these applications can be found in Barberis and Xiong (2012).

40 Ben-David and Hirshleifer (2012) implicitly assume that the representative investor’s trading is random with a
hazard rate that is a function of the holding period and the size of the unrealized gain. In contrast, in our model
with heterogeneous investors, the representative investor is not an average investor, and the hazard rate measures
an aggregation effect.

41 For consistency in the comparison, we assume that the investor views his subjective gain as the taxable gain and
resets his reference level to the new cost basis even if the tax rate is zero. That is, he uses the gross cost view of
setting his reference level as discussed in footnote 8.
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Our model also makes other indirect predictions. Two such predictions are
the flattening of the capital market line and the pricing of idiosyncratic risk.
There is no equilibrium model in our paper, so precise predictions are not
possible, but the model does indicate directional effects.

The μ-σ indifference curves for a realization-utility investor are flatter than
the observed capital market line and, in some cases, are actually decreasing
with the investor preferring more variance to less. However, our model does
not address to what these indifference curves should be applied. If an investor
holds only a diversified mutual fund, the model indicates he should display
less risk aversion than is typical in the selection of a fund. But, it also seems
plausible that investors might save the bulk of their wealth in diversified
portfolios, recognizing that those are the best vehicle for long-term saving42

and still actively trade other stocks because they enjoy doing so. Only this
latter investment activity might be governed by realization utility of the type
we have modeled. This might explain why we see only a small number of stocks
in typical trading accounts.

With flatter indifference curves, there will be an excess demand for high-
variance stocks. This means that high-beta and high residual risk stocks should
have smaller expected returns than predicted by equilibrium models like the
CAPM. Ang et al. (2006) document this. They test alphas for stocks with
different total and residual volatilities and find just this result. The difference
between the alphas of the highest and lowest volatility stocks is −1.35%
(t =−4.62) for the CAPM and −1.19% (t =−5.92) for the Fama-French three-
factor model. The difference in alphas between the highest and lowest residual
volatility stocks is −1.38% (t =−4.56) for the CAPM and −1.31% (t =−7.00)
for FF-3.

Precise predictions are, unfortunately, not possible, because we have ignored
modeling diversification directly. In a standard portfolio model, risk-averse
investors optimally hold many assets to provide diversification. Our model
assumes narrow framing, with the utility from each investment depending solely
on how it is traded. It might seem, therefore, that there is no benefit from
diversification. However, this is not true. For utility that is homogeneous of
degree β, as we have assumed, the value of investing wealth W in several
assets in proportions wi and subsequently reinvesting each portion without
any rebalancing is

∑
i(wiW )βvi(1),where vi is the separate valuation of asset

i that depends on its mean and variance and the specific utility function. For
0<β<1, utility is maximized withwi∝ [vi(1)]1/(β−1). Of course, this portfolio
is generally not optimal, absent the just-assumed no-rebalancing restriction, but
it does demonstrate that investing in a single stock is a dominated policy so some
diversification must be optimal. A more thorough analysis would show that

42 In a Swedish data set, Calvet, Campbell, and Sodini (2009) find that the asymmetry between selling winners and
selling losers is much weaker for investors’ holdings of mutual funds than for their individual stocks, suggesting
that households’ motive for mutual funds investment is different from individual stocks investment.
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when rebalancing is allowed, investors should deviate from a strictly constant
	-θ policy whenever their allocations stray too far from the optimal.

However, before diversification and rebalancing can be studied completely,
a more fundamental question must be answered: How are separate gains
and losses aggregated under realization utility? Our model assumes complete
narrow framing, both across assets and over time. All utility bursts are
evaluated separately, and then their discounted values are summed over
different assets and time periods. In a different model, investors might aggregate
contemporaneous gains and losses into a single utility burst and sum those
over time. Both assumptions are psychologically plausible, but either creates
problems in multiperiod models, particularly continuous-time models.

If the utility function aggregates contemporaneous gains and losses, and
the investor’s utility is S-shaped, losses on different assets should be taken
simultaneously if possible because marginal utility is decreasing in the
magnitude of losses. This will lead to timing complications with investors
postponing some loss taking, while accelerating other losses to achieve
synchronicity. On the other hand, gains on different assets should always be
kept separate in time because their marginal utility is decreasing. This is trivial
to achieve in continuous time with time-additive utility, which so narrowly
frames the time dimension that a separation of dt is sufficient for a completely
independent evaluation. But, is it reasonable to assume that two gains realized
simultaneously have a different utility than the same two gains realized only
instants apart? And, if not, how long a time separation is required? Similar
questions have arisen in the standard consumption-portfolio problem, and
various suggestions like recursive utility or Hindy, Huang, and Kreps’ (1992)
intertemporal aggregation have been made. The question here is more difficult
because consumption is naturally smoothed in intertemporal models, but here
we have both smoothing of gains and lumping of losses to address.

6. Concluding Remarks

In this paper, we have built an intertemporal realization utility model to
study investors’ trading behavior. Highlighting the role reinvestment plays
in a dynamic context, we have shown that investors may voluntarily realize
losses even though this has an immediate negative utility impact. The necessary
condition for voluntary losses is either risk-seeking behavior over at least some
losses or decreasing scaling under which the magnitude of the utility of gains
and losses realized with smaller reference levels is larger.

Under our model, a two-point sales strategy is optimal; an investor sells for a
gain when the asset value rises to a fixed multiple of the reference level or sells
at a loss at a fixed fraction of the reference level. We have provided a detailed
calibration of the model, showing that the trading data of Odean and others is in
close agreement with such two-point strategies but is inconsistent with random
trading that is independent of the potential gain. We also introduced a modified
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form of Tversky-Kahneman utility that predicts, either alone or in a model of
heterogeneous investors, the average realized gains and losses observed in the
data.

We have discussed some properties predicting trading patterns and price
effects. In particular, our model suggests a flattening of the capital market line
and that idiosyncratic risk could have a negative risk premium. Both of these
features also are seen in the data, but other effects still need to be investigated.
For example, how do trading patterns and volume evolve over time in different
markets? What is the relation between realization utility and momentum?

There are several directions for future theoretical research. One important
step is to study the diversification motive of realization-utility investors and
solve a full portfolio problem. We do know that some diversification and
rebalancing is optimal, but this means that the optimal sales strategy for a stock
depends not only on its reference level but also on the prices and reference
levels of the other assets held in the portfolio. In addition, assumptions must
then be made on how contemporaneous and near-contemporaneous gains and
losses are subjectively aggregated and about the proper reference level for a
position that consists of shares purchased for different prices at different times.

It is also important to understand how realization utility interacts with other
types of utility. Do investors also receive utility just from holding assets with
paper gains even if they do not sell? Clearly investors also value consumption;
are the motives to smooth consumption and to realize gains evaluated separately
or combined somehow?

Finally, if an S-shaped utility function is important, does probability weight-
ing also have an effect on realization utility? It is a nontrivial task to incorporate
probability weighting into an intertemporal setting because the law of iterated
expectations does not hold if probabilities are replaced by decision weights.
As shown in Barberis (2012) and Ingersoll (2012), cumulative probability
weighting typically induces time inconsistency, and certain rules that define
economic actions need to be imposed to further model this type of behavior.

Appendix

A. Notation

Table A1
Important notation

E Expectations operator
G Dollar size of a gain or a loss
ks Proportional transaction cost for selling stock
kp Proportional transaction cost for purchasing stock
K Round-trip proportional transaction cost for selling the current asset being held and reinvesting in

another asset, K≡ (1−ks )/(1+kp )
n̄ Average number of stocks held in a single investment account
O The Odean measure of the disposition effect, O≡ PGR/PLR
PGR Proportion of gains realized
PLR Proportion of losses realized

(continued)
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Table A1
Continued

R The reference level
QG The probability that a given investment episode eventually ends with a realized gain
QL The probability that a given investment episode eventually ends with a realized loss
S The stock price
U The utility burst function U (G,R)
u The reduced form utility burst function u(G/R)≡R−βU (G,R)
V The value function V (X,R)
v The reduced form value function v(x)≡R−βV (X,R)
X The level of investment
x Gross return per dollar of the reference level, x≡X/R
αG Parameter of risk aversion for gains in evaluating utility bursts
αL Parameter of risk seeking for losses in evaluating utility bursts
β The scaling parameter gauging the impact of the reference level, R, on utility bursts
γ1,γ2 Characteristic roots of the partial differential equation, defined in Equation (8)
δ The subjective discount rate
η Defined parameter η≡1−2μ/σ2

	 Optimal sales multiple for a gain; sale occurs at X=	R
θ Optimal sales fraction for a loss; sale occurs at X=θR
κ Parameter measuring the subjective effect of transaction costs in evaluating utility bursts
λ Loss aversion parameter
μ Growth rate of the stock price
ρ Poisson intensity for random trading
σ Logarithmic standard deviation of the stock price
σn Standard deviation of number of stocks held in investment accounts
τ Duration of an investment episode from purchase to sale
ϕG The fraction of time an asset has an unrealized paper gain
ϕL The fraction of time an asset has an unrealized paper loss

B. Verification of the optimality of constant proportional sales policies

Consider the general sale and reinvestment problem given in the main text. For any given realized
stochastic price path and sales policy, denote the original stock price by S0 and the stock prices
at the points of sale, occurring at times t1,t2,...,tn, by S1,S2,...,Sn, etc. The number of shares
purchased at price Sn and sold at price Sn+1 isNn. The dollar amount under investment isX+

n =NnSn
just after the purchase at tn andX−

n =Nn−1Sn just before the sale that finances this. These amounts
differ by the round-trip transaction cost, so the relations among theX’s are given by the recurrences

X+
n =(1−ks )X−

n /
(
1+kp

)≡KX−
n X−

n+1 =X+
nSn+1/Sn. (A1)

The reference level, Rn, established after the sale and repurchase at tn is X+
n if the investor

considers both sets of transaction costs. Alternatively, he might ignore the repurchase costs setting
Rn =X−

n (1−ks )=X+
n (1+kp). To cover both of these and many other cases, we define Rn =K ′X+

n .
The subjective rate of return realized on the gain at time tn and its utility burst are

κX−
n /Rn−1 −1=

(
κ/K ′)X−

n /X
+
n−1 −1=

(
κ/K ′)Sn/Sn−1 −1

e−δtnRβn−1u
((
κ/K ′)Sn/Sn−1 −1

)
. (A2)

Using the recursion relations in (A1),

Rn =K ′X+
n =K ′KX−

n =K ′KX+
n−1Sn/Sn−1 = ···=K ′KnX+

0Sn/S0. (A3)

Total utility is therefore

ϒ =
(
X+

0K
′)β∑

j=1

e
−δtj

[
Kj−1(Sj /S0

)]β
u
((
κ/K ′)Sj /Sj−1 −1

)
. (A4)

The same relation holds looking ahead from any point in the future.
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Now consider a rule that generates the optimal sales policy. It sets gain and loss sales points for
the first sale of S̄1(S0) and S1(S0) and sets contingent rules for the second sales points, S̄2(S1) and
S2(S1), etc. These optimal policies can depend neither on time because the stochastic process is
time homogeneous and the investor has a constant subjective discount rate nor on the current state,
X+

0 , because from (A4) realized utility depends only on the proportional scaling factor (X+
0 )β and

the price ratios that have stochastic constant returns to scale and are independent. Consequently,
the optimal policy must be a constant sales policy.

It is clear from this analysis that constant proportional transaction costs, a constant and
proportional subjective interpretation of the realized return and reference level (κ and K ′), a
stock price process with independent and identically distributed returns, a constant rate of time
preference, an infinite horizon, and a utility based on rates of return with power scaling factor are
all necessary for a constant optimal policy.

C. Transversality conditions

There are several different conditions required in our analysis to keep the value function finite
and produce a well-defined optimal trading strategy. First, the discount rate must be large enough
or utility bursts far in the future will dominate the value function and make it unbounded. This
restriction mimics the transversality conditions in the standard portfolio problem. Second, the
scaling parameter β must not be too large; otherwise, repeated selling lets total utility accumulate
too quickly by increasing the reference level and thereby the utility bursts of future sales. Finally,
transaction costs cannot be zero or the investor can repeatedly realize small gains with their very
high marginal utility.

To see that δ and β must be restricted, suppose an investor adopts a constant sales policy,	, and
never sells at a loss. With each sale, the reference level increases by the factorK	, so the reference
level for the nth sale will be Rn =R1(K	)n−1. The nth sale has a subjective gain of κ	−1 per
dollar of the reference level. The expected lifetime utility from a series of sales at gains and no
sales at losses is

E

∞∑
n=1

e−δt̃nRβn u(κ	−1)=u(κ	−1)
R
β

1

(K	)β

∞∑
n=1

(K	)nβE

[
e−δt̃n

]
. (A5)

Here, t̃n is the random time of the nth sale. Note that the utility bursts realized are known; it is
only the timing that is random. Because the times between successive sales are independent and
identically distributed,

E

[
e−δt̃n

]
=E

[
e−δt̃1

]
E

[
e−δ(t̃2−t̃1)

]
···E

[
e−δ(t̃n−t̃n−1)

]
=
(
E[e−δt̃1 ]

)n
, (A6)

and the final sum in (A5) is

∞∑
n=1

(
(K	)βE

[
e−δt̃1

])n
, (A7)

which converges if and only if (K	)βE
[
e−δt̃1

]
<1. The expected value in (A7) depends on 	

through the stopping time t̃1, but unless δ>0, it is at least one for any	, so the sum is unbounded
for any	>1/K and infinite utility is possible. Therefore, δ must be positive just as in the standard
infinite-horizon investment problem.
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The expectation in (A7) is a particular value of the Laplace transform43 of the first-passage
time density of the random variable, Xt , to 	R; that is,

E

[
e−st̃1

]
=exp

(
σ−2�n	

[
μ− 1

2σ
2 −
√

(μ− 1
2σ

2)2 +2sσ 2

])

⇒ E

[
e−δt̃1

]
=exp(−γ1�n	), (A8)

where γ1 is the positive exponent in the solution of the differential equation for valuation as given
in Equation (8). Therefore, for the sum in (A7) to be bounded, we also require

1> (K	)βE

[
e−δt̃1

]
=Kβ	β−γ1 . (A9)

The feasible policy choices are 	>1/κ≥1, so infinite utility can be achieved if β>γ1 with
any feasible 	>K−β/(β−γ1). If 0≤β≤γ1, then the sum converges for all feasible policies.44

Combining these results, necessary conditions for there to be no investment plans that lead to
infinite expected utility are

β≤γ1 and δ>0. (A10)

These conditions depend only on the scaling and the discounting of the burst utility function and
are required whatever the functional form of the reduced utility u(·).

However, these conditions are not sufficient. Unbounded utility can also be achieved if the
growth rate of the asset is too large. Suppose an investor adopts a gains-only policy (θ =0), then
from Equation (10) in the text, C2 =0. And, as 	→∞, the initial value function is

v(1)=C1 =
u(κ	−1)

	γ1 −(K	)β
∼
{

καG	αG−γ1 for scaled-TK
καG	αG−γ1

/
αG for modified-TK

(A11)

because β≤γ1. This is clearly unbounded if αG>γ1; therefore, a necessary condition for no
transversality violation is αG≤γ1, or in terms of the exogenous parameters,

αG

[
μ+ 1

2 (αG−1)σ 2
]
≤δ. (A12)

This restriction is similar to the transversality condition found in the standard infinite horizon
portfolio problem. For linear utility over gains,μ cannot exceed the discount rate, but risk aversion
expands the set of admissible values for μ.45

Finally, unbounded utility can be achieved for scaled-TK utility46 if there are no transaction
costs, so there is also no well-defined optimal strategy in the absence of costs. To demonstrate this,

43 The Laplace transform of a density function, L(f (t))≡E[e−st ], can be easily determined from the moment-
generating function, M(f (t))≡E[est ], for a negative argument. The Laplace transform is defined for all values
of μ (unlike the moment-generating function) because the first passage time is a positive random variable.

44 We have assumed that β≥0 to ensure participation; however, if β<0, then the sum in (A7) might diverge for
	≈1. The minimum feasible value for 	 is 1/κ , so the convergence condition is 1>Kβκγ1−β . If the investor
is subjectively fully cognizant of all transaction costs, then κ =K , and this condition is met; otherwise, for κ >K ,
the lower bound on β is γ1�n(κ)/�n(κ/K).

45 The interpretation of this transversality violation is that for any sufficiently high policy, 	, choosing an even
higher policy will increase expected utility. As 	→∞, sales will become increasingly rare but never cease
altogether, so expected utility continues to rise. This limiting result should not be confused with the ex ante
policy of never selling, which is assigned zero utility.

46 Unbounded utility can be achieved for scaled-TK utility by realizing a series of infinitesimally sized gains because
u′(0+)=∞, and with no transaction costs, nothing prevents the investor from doing so. Unbounded utility cannot
be achieved in the same way with modified-TK, as its marginal utility is bounded.
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we construct a sequence of feasible sales strategies and show that as the transaction costs go to
zero, the constructed strategies lead to unbounded utility. Therefore, the optimal strategy must also
yield infinite utility in the limit of zero costs.

Consider a sequence of economies indexed by k. We assume that the sales and purchase costs
are in the same proportion for each step of the sequence, that is, ks =k and kp =ck for some c≥0.
At each step, the sales policies considered are

	=1/(1−k)+kω0 , θ =1−kω1 , where 0<ω0,ω1<
1
2 . (A13)

These are not assumed to be the optimal strategies, only feasible ones.
Initial utility is v(1) = C1 +C2, where these constants are defined in Equation (10). Using a

Taylor expansion for small k, the functions determining C1 and C2 are47

c1 (	)=(γ1 −β)kω0 + 1
2 [γ1 (γ1 −1)−β (β−1)]k2ω0 +o

(
k2ω0

)

c1 (θ )=(β−γ1)kω1 + 1
2 [γ1 (γ1 −1)−β (β−1)]k2ω1 +o

(
k2ω1

)
(A14)

c2 (	)=(γ2 −β)kω0 + 1
2 [γ2 (γ2 −1)−β (β−1)]k2ω0 +o

(
k2ω0

)

c2 (θ )=(β−γ2)kω1 + 1
2 [γ2 (γ2 −1)−β (β−1)]k2ω1 +o

(
k2ω1

)
.

The constants are

C1 =
(β−γ2)kω1+αGω0 −λ(β−γ2)kω0+αLω1 +o

(
kmin(ω0+αLω1,ω1+αGω0)

)
C
(
k2ω0+ω1 +k2ω1+ω0

)
+o
(
kmin(2ω0+ω1,2ω1+ω0)

)

C2 =
(γ1 −β)kω1+αGω0 −λ(γ1 −β)kω0+αLω1 +o

(
kmin(ω0+αLω1,ω1+αGω0)

)
C
(
k2ω0+ω1 +k2ω1+ω0

)
+o
(
kmin(2ω0+ω1,2ω1+ω0)

) , (A15)

where C = 1
2 (γ1 −γ2)(γ1 −β)(β−γ2)≥0.

If we choose the convergence rates, ω0 and ω1, such that ω0/ω1> (1−αL)/(1−αG), then from
(A15) it is easy to verify that C1,C2 →∞, as k→0. So, this strategy gives infinite utility in the
limit, and, therefore, the truly optimal strategy must as well.

D. Proof of Proposition 1

As illustrated in Figure 2, there can be two local maxima to our optimization problem. The one-point
maximum is a corner solution with θ =0; the two-point maximum is an interior maximum with
θ >0. Which local maxima is the global maximum depends on the specific economic and utility
parameters, but it can be most easily characterized by the loss aversion parameter, λ. The value
function for the one-point maximum does not depend on λ because no losses are ever realized.
The value function for the two-point maximum is obviously decreasing in λ. Therefore, there is
a single critical value of λ, marking the change in regime, at which the two value functions are
equal.

Denote the two-point and one-point value functions as v(2)(x)=C(2)
1 xγ1 +C(2)

2 xγ2 and v(1)(x)=

C
(1)
1 xγ1 . Because, for the critical value of λ∗, the value functions are equal everywhere that they are

47 Given that ω0 and ω1 are both less than one half, all the terms associated with c are included in the higher-order
terms o(k2ω0 ) and o(k2ω1 ).
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defined, we must have C(2)
1 =C(1)

1 =C1 and C(2)
2 =0. From Equation (9), the boundary conditions

are

C1	
γ1 =u(κ	−1)+(K	)β C1 C1θ

γ1 =u(κθ−1)+(Kθ )β C1. (A16)

The smooth-pasting conditions for a maximum are

γ1C1	
γ1−1 =κu′ (κ	−1)+βKβ	β−1C1 γ1C1θ

γ1−1 =κu′ (κθ−1)+βKβθβ−1C1. (A17)

The two boundary conditions in (A16) must yield the same value for C1; therefore,

C1 =
u(κ	−1)

	γ1 −(K	)β
=
u(κθ−1)

θγ1 −(Kθ )β
. (A18)

Similarly, from (A17),

C1 =
κu′ (κ	−1)

γ1	
γ1−1 −βKβ	β−1

=
κu′ (κθ−1)

γ1θ
γ1−1 −βKβθβ−1

. (A19)

Substituting the scaled-TK utility function into (A18) and solving for λ∗ gives

λ∗ =− (κ	−1)αG

(1−κθ )αL
θγ1 −Kβθβ

	γ1 −Kβ	β
. (A20)

Combining (A18) and (A19) gives

0=(αG−γ1)κ	γ1+1−β +γ1	
γ1−β−(αG−β)Kβκ	−βKβ

0=(αL−γ1)κθγ1+1−β +γ1θ
γ1−β−(αL−β)Kβκθ−βKβ. (A21)

These equations can be re-expressed as

	γ1 −(K	)β =
(K	)β (γ1 −β)(κ	−1)

(αG−γ1)κ	+γ1
θγ1 −(Kθ )β =

(Kθ )β (γ1 −β)(κθ−1)

(αL−γ1)κθ +γ1
. (A22)

Substituting back into (A20) gives

λ∗ =
(κ	−1)αG−1θβ

(1−κθ )αL−1	β
× (αG−γ1)κ	+γ1

(αL−γ1)κθ +γ1
, (A23)

which is the desired expression in Equation (12).
Correspondingly for modified-TK utility introduced in the calibration session, (A18) now gives

λ∗ =
αL

αG

(κ	)αG−1

(κθ )αL−1

θγ1 −Kβθβ

	γ1 −Kβ	β
(A24)

instead of (A20), and (A19) together with (A18) now give

0=(αG−γ1)καG	γ1+αG−β +γ1	
γ1−β−(αG−β)Kβ (κ	)αG−βKβ (A25)

0=(αL−γ1)καLθγ1+αL−β +γ1θ
γ1−β−(αL−β)Kβ (κθ )αL−βKβ.

Together, (A24) and (A25) give

λ∗ =
αL

αG

(
θ

	

)β (αG−γ1)καG	αG +γ1

(αL−γ1)καLθαL +γ1
(A26)

in place of (A23).
As β→γ1 from below, both (A21) and (A25) yield θ≈Kβ/(γ1−β) →0. Substituting this into

either (A23) or (A26) gives λ∗ →0, which implies that voluntary loss realization will never take
place in this limiting case because λ≥1>λ∗. �
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E. Proofs of Propositions 2 to 6

E.1 Proof of Proposition 2
The ultimate resolution probabilities for a single episode, which were given in Equation (13), can
be determined from the time-independent backward equation

0= 1
2σ

2x2q ′′ +μxq ′. (A27)

The time-invariant probability of any event measurable in terms of the current variable x is a
solution to this equation. Solving (A27) with boundary conditions q(θ )=0 and q(	)=1 gives the
probability that x will reach 	 before it reaches θ conditional on the current value of x

q(x)=
xη−θη
	η−θη , where η≡1− 2μ

σ 2
. (A28)

The ultimate resolution probabilities in Equation (13) are QG =q(1), QL =1−QG.
To determine the expected duration of an investment episode, note that the process �nxt−(μ−

1
2σ

2)t is a martingale starting at zero. Because the times of sales are stopping times for the process,
the martingale stopping time theorem gives

0=E

[
�nx̃τ −

(
μ− 1

2σ
2
)
τ̃
]

=QG�n	+QL�nθ−
(
μ− 1

2σ
2
)

E[τ̃ ], (A29)

from which Equation (15) is immediate.
Over repeated investment episodes, the stochastic process for x≡X/R is a Markov process

with bounded support, x∈ (θ,	). It is a diffusion everywhere, except at x =1, θ , and 	. It is not
a diffusion at those points because whenever x reaches either boundary, it returns immediately to
x =1 because of the sale and reinvestment. The steady-state distribution of xis the solution to the
Kolmogorov forward equation

0=
1

2

d2

dx2

[
σ 2x2f

]
− d

dx
[μxf ]= 1

2σ
2x2fxx +

(
2σ 2 −μ

)
xfx +

(
σ 2 −μ

)
f (A30)

for x∈ (θ,1)∪(1,	) and subject to f (θ )=f (	)=0.

The density must vanish at the boundaries just as it does with an absorbing barrier because the
infinite variation in the diffusion process assures that the barrier will be reached with probability
approaching unity whenever the diffusion enters a small neighborhood of the barrier.

Because x is not a diffusion at one, the differential equation does not hold at that point, and the
equation must be solved separately in the two regions, then pieced together. The general solution
to the differential equation is Ax−1 +Bx−1−η , where η≡1−2μ/σ 2, and the two constants differ in
the two regions. The two boundary conditions, the continuity of the density at x =1, and the unit
mass of f over the entire region supply the four equations needed to determine the four constants.
The density and cumulative distribution function are

f (x)=

⎧⎪⎨
⎪⎩

(	η−1)
(
θηx−η−1

)
x−1

(1−θη )�n	+(	η−1)�nθ x≤1

(θη−1)
(
	ηx−η−1

)
x−1

(1−θη )�n	+(	η−1)�nθ x≥1

and F (x)=

⎧⎪⎨
⎪⎩

(	η−1)
(
�n(θ /x)+ 1

η [1−(θ /x)η]
)

(1−θη )�n	+(	η−1)�nθ x≤1

1− (θη−1)
(
�n(x /	)+ 1

η [(	/x)η−1]
)

(1−θη )�n	+(	η−1)�nθ x≥1 .

(A31)

The probabilities in Equation (14) are ϕG =1−ϕL =1−F (1). �
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E.2 Proof of Proposition 3

It is well known that the duration of each episode of a Poisson process has an exponential distribution
with probability density ρe−ρt . At the end of an episode lasting τ , �nx has a normal distribution
with mean (μ−σ 2/2)τ and variance σ 2τ . Therefore, the expected price ratios conditional on a
sale at a gain and a loss are

	̄=(QG)−1
∫ ∞

0
ρe−ρτ

∫ ∞

0

1
σ
√
τ
ezφ

(
z−
(
μ−σ2/2

)
τ

σ
√
τ

)
dzdτ =− ρ

(
1−ψ−)

(ρ−μ)ψ−

θ̄ =(QL)−1
∫ ∞

0
ρe−ρτ

∫ 0

−∞
1

σ
√
τ
ezφ

(
z−
(
μ−σ2/2

)
τ

σ
√
τ

)
dzdτ =

ρ
(
ψ+ −1

)
(ρ−μ)ψ+

,

(A32)

with ρ>μ required for 	̄ to be finite.
The probability, H (x), that a given episode eventually events with a loss conditional on the

current asset value ratio, x =X/R, satisfies the modified backward equation

0= 1
2σ

2x2H ′′ +μxH ′ +ρ (1x<1 −H ) subject to H (0)=1, H (∞)=0, (A33)

where 1x<1 is the indicator function that the asset currently has a paper loss. This final term is
the probability per unit time that H changes discontinuously to one (zero) if a sales event occurs
when x is less (greater) than one, resulting in a realized loss (gain). Solving this equation in the
two regions and matching it and its derivative at the boundary x =1 gives

H (x)=

⎧⎨
⎩

ψ+

ψ+−ψ− xψ
−

x>1

1 + ψ−
ψ+−ψ− xψ

+
x<1.

(A34)

The probabilities that a new investment episode ends in a sale at a loss and gain areQL =H (1)
andQG =1−H (1). Because the Poisson events determining sales are independent of the stochastic
process of the stock price, the probability of realizing a loss for any episode must equal the
steady-state probability of holding an unrealized paper loss; that is, ϕL =QL. Similarly for gains,
ϕG =QG =1−H (1). �

E.3 Proof of Proposition 4

In a given sample of T observed sales, the observed proportion of gains realized is48

PGR=
∑T
t=1 s̃

G
t∑T

t=1(s̃Gt +
∑ñt
i=1,i �=it ũ

G
ti

)

s̃Gt =

{
1 if the t th trade is a realized gain
0 if the t th trade is a realized loss (A35)

ũGti =

{
1 if the ith stock held in the account executing the t th trade has a paper gain
0 if the ith stock held in the account executing the t th trade has a paper loss
ñt = the number of stocks held in the account making the t th trade
and it is the index of the stock sold in the t th trade.

48 Consistent with the empirical implementation of Odean (1998), the calculation in (A35) counts paper gains and
losses only when at least one stock is sold in the account. Also (A35) assumes that each trade involves the sale
of a single asset in a given account. This is justified in a continuous-time model because two less than perfectly
correlated assets will never reach their sales thresholds simultaneously with probability one.
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Because each stock has an equal probability of being sold in the steady state, by the Weak Law
of Large Numbers, the fraction of trades made by accounts holding n shares converges to nπn / n̄,
where πn is the fraction of investors who have n stocks in their accounts, and

plimT −1
T∑
t=1

s̃Gt =QG

plimT −1
T∑
t=1

ñt∑
i=1,i �=it

ũGti =
∑
n

(πnn/n̄)(n−1)ϕG =
(
n̄+σ 2

n /n̄−1
)
ϕG.

(A36)

From Slutsky’s Theorem, that the probability limit (plim) of a function of random variables is equal
to the same function of the separate probability limits, the plim of PGR is the ratio of these two
quantities. Similar reasoning derives the plim of PLR. Equation (18) follows from an additional
application of Slutsky’s Theorem to the ratio PGR/PLR. �

E.4 Proof of Proposition 5
Because asset returns are independent and identically distributed, a sequence of investment episodes
for any investor is a renewal process. Therefore, by the Elementary Renewal Theorem, the average
number of investment episodes per unit time in a single sequence of trades for a type i investor is
1/E[τi ]. Because type i investors hold the fraction πini of the stocks, their trades form the fraction
πini/E[τi ] of all trades on average, and this weight is used to compute the average statistics. In
determining ϕ̄G, this weight is applied to the sum of the probabilities that each of the ni−1 other
stocks not traded by the given type i investor has a paper gain. The probability limit then follows
from Slutsky’s Theorem. The same reasoning applies to PGR and PLR. �

E.5 Proof of Proposition 6
This proof is similar to that for Proposition 5. Here, the stocks in group i form the fraction ni/E[τi ]
of all trades on average, and this weight is used to compute the average statistics. In determining
ϕ̄G, this weight is applied to the sum of probabilities that each of the N−1 stocks not traded has a
paper gain when one of the ni stocks is traded. The probability limit then follows from Slutsky’s
Theorem. The same reasoning applies to PGR and PLR. �

F. Proof of Proposition 7

To prove this proposition, we use the following lemma.

Lemma. The last two conditions of Proposition 7,

(a)δ>0 (b)
∂U

∂G
>0 (c)

∂2U

∂G2
≤0 (d)

∂2U

∂G∂R
≥0, (A37)

lead to the two relations

U (X−R,R)≤
∫ X

R

∂U
(
0−,r

)
∂G

dr ifX<R, U (X−R,R)≤
∫ X

R

∂U
(
0+,r

)
∂G

dr ifX>R.

(A38)

Proof. For X>R, we have

U (X−R,R)=
∫ X

R

∂U (r−R,R)

∂G
dr≤

∫ X

R

∂U
(
0+,R

)
∂G

dr≤
∫ X

R

∂U
(
0+,r

)
∂G

dr. (A39)
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The first inequality holds because marginal utility is decreasing by (A37c), and the second integrand
is evaluated at 0+, its smallest argument in the range of the integral. The second inequality holds
because marginal utility is increasing in R by (A37d), and each of the reference levels at which
the integrand is evaluated is above R. A similar proof holds when X<R. �

Proof of Proposition 7. The reference level for the kth sale is Rk =Xk−1 because there are no
transaction costs, the reference level is constant between sales, and the reference level is updated
to the investment value after a sale. For any given realized stochastic path of X, assume there
is a realized loss, and denote its reference level as RI =XI−1. By assumption, XI <XI−1. First,
assume that the asset is eventually sold at a price above the reference level for this loss. Let J
denote the first such sale; that is, for some J , XJ >XI−1>XJ−1. The total utility realized from
the sales I through J is

J∑
k=I

e−δtk U (Xk−Xk−1,Xk−1)=
J−1∑
k=I

e−δtk U (Xk−Xk−1,Xk−1)

+e−δtJ U (XI−1 −XJ−1,XJ−1) (A40)

+e−δtJ U (XJ −XJ−1,XJ−1)−e−δtJ U (XI−1 −XJ−1,XJ−1).

The equality is a tautology with the utility from a fictitious sale occurring at time tJ at value
XI−1, both added and subtracted. This lets us split the sales into two parts. The first two lines
include sales for which the gains and losses (though not their utility) net exactly to zero. The utility
of this part is bounded by applying the lemma

J−1∑
k=I

e−δtk U (Xk−Xk−1,Xk−1)+e−δtJ U (XI−1 −XJ−1,XJ−1)

≤
J−1∑
k=I

Xk <Xk−1

e−δtk
∫ Xk

Xk−1

∂U
(
0−,x

)
∂G

dx+
J−1∑
k=I

Xk >Xk−1

e−δtk
∫ Xk

Xk−1

∂U (0+,x)

∂G
dx (A41)

+e−δtJ
∫ XI−1

XJ−1

∂U
(
0+,x

)
∂G

dx<0.

This contribution to utility is negative because each element of the first integrand over losses has
a matching element in the second or third integrand of gains. Note that the integrals in the first
sum are negative because the lower limits are larger than the upper limits and the integrand is
strictly positive by (A37b). The four assumptions in (A37) assure that the marginal utility of each
loss element is greater than that of the matching gain element. In particular, marginal utility is
decreasing in G by (A37c), so evaluating the marginal utilities of gains at 0+ makes them smaller
than the marginal utilities of losses evaluated at 0−. Marginal utility is also decreasing in time by
(A37a,b) and increasing in R by (A37d), and each gain occurs later and has a smaller reference
level than the corresponding loss.49

49 The final inequality is strict because condition (A37a) on δ and condition (A37b) on the marginal utility are strict.
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Because the terms in the first two lines of (A40) are negative, the total utility realized from the
sales I through J is less than the sum of the two terms in the third line:

J∑
k=I

e−δtk U (Xk−Xk−1,Xk−1)<e−δtJ U (XJ −XJ−1,XJ−1)

−e−δtJ U (XI−1 −XJ−1,XJ−1)

=e−δtJ
∫ XJ

XI−1

∂U (x−XJ−1,XJ−1)

∂G
dx (A42)

≤e−δtJ
∫ XJ

XI−1

∂U (x−XI−1,XI−1)

∂G
dx

=e−δtJ U (XJ −XI−1,XI−1).

The new inequality in the fourth line holds because of (A37c,d). The final comparison shows that
holding the stock with reference level XI−1 and selling at XJ lead to strictly higher utility than
that provided by the original plan, which therefore cannot be optimal.

Now suppose there is no later sale that occurs at a level aboveXI−1. In this case, the accumulated
utility up through every sale J after I is weakly negative. Precisely, using the same reasoning as
before,

J∑
k=I

e−δtk U (Xk−Xk−1,Xk−1)<
J∑
k=I

Xk <Xk−1

e−δtk
∫ Xk

Xk−1

∂U (0−,x)

∂G
dx

+
J∑
k=I

Xk >Xk−1

e−δtk
∫ Xk

Xk−1

∂U (0+,x)

∂G
dx<0. (A43)

This is true even for an infinite investment horizon with J→∞. Therefore, holding the stock at a
reference level of XI−1 with no subsequent sales is strictly better than the original plan. �
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