

Identification of novel strain-specific and environment-dependent minor **QTLS linked to fire blight resistance in apples** Elsa Desnoues¹, Mason Clark¹, John L. Norelli², Herb S. Aldwinckle¹, Michael E. Wisniewski², Katherine M. Evans³, Mickael Malnoy⁴, Awais Khan^{*1}

¹Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA ²USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Rd., Kearneysville, WV 25430, USA ³Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Ave. Wenatchee, WA 98801, USA ⁴Foundation Edmund Mach, Via Mach 1, 38010 San Michele all'Adige (TN), Italy

Introduction

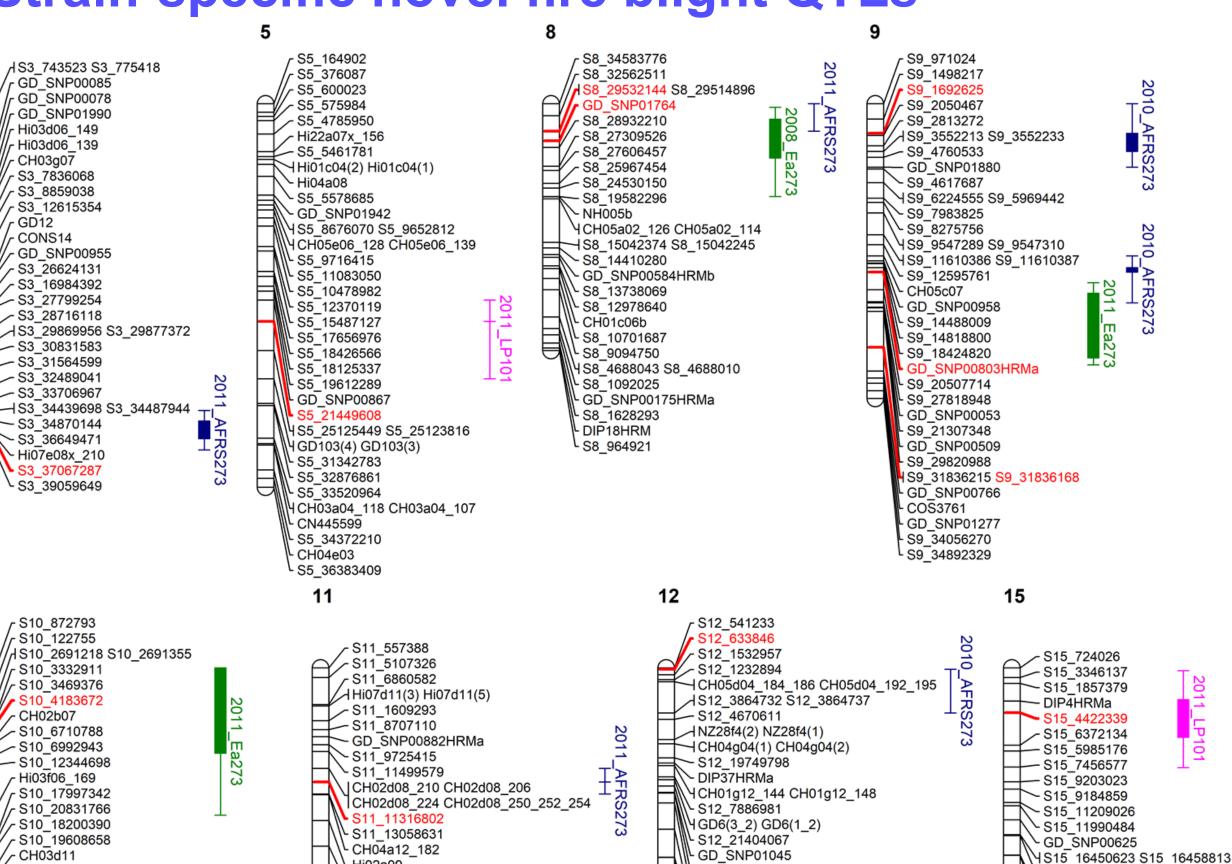
Fire blight, caused by the gram negative bacterium Erwinia amylovora (EA), threatens apple and pear production globally. Identifying novel functional alleles is needed for apple cultivars with enhanced fire blight resistance. The majority of QTLs identified are strain-specific and not effective for multiple pathogen strains, as are often present in orchards. Durable broad-spectrum resistance can be created through combining multiple monogenic and polygenic resistances with complementary action toward different strains.

QTL analysis

 Total shoot length and fire blight lesion length were measured after 6-10 weeks when lesions had ceased extension and a distinct margin was visible between necrotic and healthy stem tissue

Mapping population and inoculation

- 169 F1 progeny of GMAL 4593 mapping population, 'Royal Gala' (female) x 'PI 613981' (male)
- Progeny and parents were grafted onto rootstocks in three replications and grown in greenhouse in 2008 in Geneva, NY, and in the field in 2010 and 2011 at Kearneysville, WV
- Inoculation was done using three different bacterial strains (Table 1) by cutting young leaves with scissors dipped in Ea inoculum


Strain	Location	Host	Isolator	Trial Year
AFRS273	Unknown	Unknown	J.L. Norelli	2010, 2011
Ea273	New York	M x domestica 'R.I. Greening'	S.V. Beer	2008, 2011
.P101	Washington	Malling 26 apple rootstock	P.L. Pusey	2011
Strain-s	pecific r	novel fire blig	ght QTL	S
IS3_743523 S3_775418 GD_SNP00085 GD_SNP01990 Hi03d06_149 Hi03d06_139 CH03g07 S3_7836068 S3_8859038 S3_12615354 GD12 CONS14 GD_SNP00955	5 S5_164902 S5_376087 S5_600023 S5_575984 S5_4785950 Hi22a07x_156 S5_5461781 Hi01c04(2) Hi07 Hi04a08 S5_5578685 GD_SNP01942 S5_8676070 S5	S8_24530150 S8_19582296 NH005b	AFRS273 2008_Ea273	S9_971024 S9_1498217 S9_1692625 S9_2050467 S9_2813272 IS9_3552213 S9_3552233 S9_4760533 GD_SNP01880 S9_4617687 IS9_6224555 S9_5969442 S9_7983825 S9_8275756

- Percentage of shoot length necrosis (PSN) was calculated as necrosis/total shoot length length
- Best linear un-biased predictions (BLUPs) were estimated using PSN for each genotype/year and strain in R software
- The apple genetic map was composed of 578 SSR, SNPlex, HRM, GBS markers (Norelli *et al.* 2017)
- QTL analysis was done using Kruskal-Wallis and Interval mapping in MapQTL 5 software

Strain-specific fire blight response

Fire blight QTLs in Fig. 3 GMAL 4593 mapping for Ea273, population AFRS273, LP101 in 2008, 2010, 2011. LOD threshold for a significant QTL in IM was set as 4.5 (95%) and KW was ****:0.005. The QTLs detected with strain Ea273 using IM are represented in green, the lines correspond to the 1- and 2-LOD confidence intervals. The QTLs detected with AFRS273 and LP101 using KW are in blue and pink, respectively;

1503672 LS12_22702128 S12_24172607 S12_26830418 512 27081751 S12 27873134 S12_29885878 S12_29889098 S12_31125679 512 31715518 32936473 S12 32285372 S12 33253031 S12_34971774 S12_34971822 - CH01d03(3_1) S12_35779795 S12_35779837

	CH05a02_109 S15_19613979	boxes correspond to markers
	S15_19613979 S15_17445493 S15_23629630 GD_SNP01850 S15_27622304 S15_27176892 CH02d11 GD_SNP01347 S15_33435219 S15_33435219 S15_40536614 S15_40536681 S15_42664461 S15_44098130	significant at p = 0.005 and the
		confidence interval lines for
		the significant QTL are up to
	V Hi23g12 Y S15_49946373 S15_49946491 S15_53851944	<i>p</i> = 0.1.

Conclusions

S3_2779925

S3_28716118

- S3_30831583

- S3 31564599

S3 32489041

- S3 33706967

~ S3_36649471

Hi07e08x_210

S3_37067287 S3_39059649

S10_872793

S10 333291⁻

S10_6710788

- S10_6992943

- Hi03f06 169

- S10_2083176

-S10 18200390

- CH03d11

- S10_12344698

CH02b07

510 3469376

0 4183672

- The progeny of the GMAL 4593 mapping population are segregating for fire blight resistance with varying responses to three *E. amylovora* strains (Fig.1 and 2)
- Progeny plants inoculated with strain Ea273 in 2008 and 2011 had normal distributed PSN. Genotypes inoculated with strain AFRS273 in 2011 skewed towards high PSN, indicating severe fire blight infection, while LP101 infection had more genotypes below 40% necrosis, indicating low to mild severity of fire blight infection compared to other datasets (Fig. 2)
- A total of 13 significant fire blight QTLs were identified (Fig. 3) in eight linkage groups using interval mapping at 95% confidence and Kruskal-Wallis at *P*-value= 0.005
- The QTLs on LG10 for strain Ea273 in 2011 and strain LP101 in 2011, and on LG15 for strain LP101 could be QTLs previously identified with strain CFBP1430 in cultivar 'Florina' and 'Co-op16 x Co-op17' mapping population, respectively
- $\circ\,$ The majority are far enough from previously identified fire blight QTLs to assume they

are new loci representing novel resistance mechanisms

Experimental conditions in the greenhouse and field, and between years, and virulence levels of strains might be responsible for strain- and year-specific QTLs

Acknowledgements: We thank Philip Forsline (USDA-ARS Plant Geneva, NY), Roger Lewis, Wilbur Hershburger, Daniel Silverman, and Trevor Parton (USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV) and Herbert Gustafson (Plant-Microbe Biology, Cornell University, Geneva, NY) for their expert technical assistance. This work was funded in part by the Washington Tree Fruit Research Commission, WA project AP-08-804 'Mapping Malus sieversii: A valuable genetic resource for apple breeding', project CP-10-101 'Fire blight resistance in Malus sieversii for scion breeding', and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project accession number 1011771.