Biological Control of Brown Marmorated Stink Bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae) in NYS Peter Jentsch CALS – HVRL Art Agnello CALS - AgriTech Elizabeth Tee CCE-LOFT Dana Acimovic CALS – HVRL Lydia Brown CALS – HVRL ## **Stink Bug Management** - An Ag & Urban Pest - 1-2 Generations / season - Economic Injury to High Value Crops - Late Season Ag. Presence - Arboreal Perimeter Pest - Elusive & Unpredictable - Apple: Mid-August to EOS - >MRL's During Drought - Limited Mgt. DTH <7d - Injury visible after 10d - Requires late season mgt. - Overwinter in manmade structures & woodland Hudson Valley Research Laboratory # Stink Bug Management Arboreal (BMSB) Habitat / Urban Overwinter NYS: 30 million total acres. - 63% forested - 18.9 million acres - Maple/beech/birch (comprise 53% of forests) - Sugar Maple, White Ash, Black Locust, Tree of Heaven are reproductive hosts of BMSB - BMSB can fly continuously on average 2 miles, ranging up to 20 to 75 miles in a single flight. - In woodland habitat, temperatures below -18°C or -0.4°F will kill 90% of the **adult BMSB** (Kuhar, T. 2016) - BMSB in urban overwintering sites have higher success rates then woodland OW sites, easily flying long distance to obtain food resources. # **Urban Overwintering Sites of BMSB Do They Provide a Biological Benefit?** Doug Inkley, NWF Senior Scientist >26,000 BMSB in his Maryland home ## **Brown Marmorated Stink Bug** Halyomorpha halys Citizen Science Project ### **Citizen Science Project 2011-2015** Multiple sources; HVRL + Individual CS input - 800 specimens received - 540 BMSB verified by University - Live and digital submissions - 87 distinct zip code locations - 44 NYS counties - Darker counties = higher BMSB densities iMapinvasive New York Invasive Species Public Map http://imapinvasives.org/nyimi/map/ # Brown Marmorated Stink Bug / Samurai Wasp Citizen Science Project Outreach #### **New York State Citizen Scientists** - Provide digital images for NYS BMSB mapping efforts (BMSB density) - Provide monetary support for Samurai Wasp Redistribution Project - Provide research data in geographical context of T. j. egg emergence & egg predation ## **Brown Marmorated Stink Bug Citizen Science Project** ## Citizen Science Project 2019 - BMSB density in rural, urban and suburban homes bordering woodlands and agricultural crops - Provides justification for site selection for Samurai wasp redistribution # Samurai Wasp, Trissolcus japonicus (Ashmead) In NYS Lays 1 egg into each BMSB egg (42/female) Wasp larva feed on BMSB nymph Adult wasp emerges from each BMSB egg Can have 5 generations / year Live in clustered woodland & edges of Ag. Parasitizes 60-90% of BMSB eggs in Asia. High probability of success in the US. Success = Reduced Ag & Urban pest management # Adventive Populations of *Trissolcus japonicus*Field Recovery and Redistribution Sites in the US # 2017-2019 Parasitized Egg Parasitoid Release 'Redistribution' - 'Marlboro' *T. japonicus* used to develop colony and parasitize -80°C stored BMSB eggs. - Fixed parasitized eggs to petri dish lid added zip tie for send and return mail to determine % emergence. - Parasitized eggs sent to CS and Ag. cooperators. - Parasitized eggs placed throughout NYS (11 Counties). ## Brown Marmorated Stink Bug & Samurai Wasp Citizen Science Projects #### EDDMap BMSB CS Confirmed Submissions NYS from 2007-2019 # Expanding the Range of the Parasitoid Wasp, Trissolcus japonicus, (Hymenoptera: Scelionidae) in NYS. Normal, hatched BMSB egg mass. BMSB eggs showing damage from chewing predators. BMSB eggs showing damage from sucking predators. Spined soldier bug Podisus maculiventris ### Native Predatory feeding and Parasitism Predatory feeding accounts for >20% reduction of BMSB egg loss. ## Citizen Science Release Sites of Trissolcus japonicus ## 2019 Citizen Science T. japonicus Release Sites in NYS Counties (N=48) ## Citizen Science Release Sites of Trissolcus japonicus Stink Bug Feeding Sheath on BMSB eggs: Spined soldier bug Podisus maculiventris ## Ag Site Release Site BMSB Egg Status of *Trissolcus japonicus* | Plate # | Rearing dates oviposition | Field Release
Dates | # of
Clusters | # eggs | # emerged | % emerged | Predator Activity? | |---------|---------------------------|-------------------------|---|---|---|---|---| | 11 | 7/21-8/1 | 8/6-8/20 | 1 | 22 | 2 | 9.09% | N | | 6 | 7/21-8/1 | 8/6-8/20 | 1 | 28 | 11 | 39.29% | N | | 6 | | | 1 | 27 | 15 | 55.56% | N | | | | | 1 | | | 33.3070 | V | | | 11 | Plate # oviposition 11 | Plate # oviposition Dates 11 7/21-8/1 8/6-8/20 6 7/21-8/1 8/6-8/20 6 7/21-8/1 8/6-8/20 | Plate # oviposition Dates Clusters 11 7/21-8/1 8/6-8/20 1 6 7/21-8/1 8/6-8/20 1 6 7/21-8/1 8/6-8/20 1 | Plate # oviposition Dates Clusters # eggs 11 7/21-8/1 8/6-8/20 1 22 6 7/21-8/1 8/6-8/20 1 28 6 7/21-8/1 8/6-8/20 1 27 | Plate # oviposition Dates Clusters # eggs # emerged 11 7/21-8/1 8/6-8/20 1 22 2 6 7/21-8/1 8/6-8/20 1 28 11 6 7/21-8/1 8/6-8/20 1 27 15 | Plate # oviposition Dates Clusters # eggs # emerged % emerged 11 7/21-8/1 8/6-8/20 1 22 2 9.09% 6 7/21-8/1 8/6-8/20 1 28 11 39.29% 6 7/21-8/1 8/6-8/20 1 27 15 55.56% | ### **KM** Davis ## Parasitoid Survey – Western NY Using Alpha Scent Cards KM Davies Site 1 Williamson NY 7/3 - 10/3 2018 ## Parasitoid Survey – Eastern NY Using Alpha Scent Cards Minard Thruway High New Paltz NY 5/7 - 10/18 2018 ## Parasitoid Survey – Eastern NY Using Alpha Scent Cards Poughkeepsie Farm Project 7/6 - 8/27 2018 #### **BMSB Pheromone Trap Capture Burch Orchard, Niagara Co, WNY - 2019** 6 Total Adults 5 # BMSB / 3 traps Total Nymphs 0 Oaks Orchard, Niagara Co, WNY - 2019 14 # BMSB / 3 traps Oaks Orchard **Dobbins Orchard Burch Orchard** Orleans Niagara Monroe 2 0 Genesee Oaks Orchard, Niagara Co, WNY - 2019 Erie Wyoming 50 ■Total Livingston Adults 40 30 # BMSB / 3 traps 20 Allegany Cattaraugus Chautauqua Steubo 9/2 9/2 9/2 9/2 1/4 1/2 1/2 1/2 9/2 8/2 8/2 8/2 8/2 9/2 9/2 9/2 Elizabeth Tee - CCE LOFT ## **BMSB Pheromone Trap Capture Schutt Orchard, Monroe Co, WNY** Art Agnello – Cornell AgriTech # Ag. Release Sites of *Trissolcus japonicus* 2017-19 Exceeding BMSB Action Threshold in Hudson Valley Orcahrds ### **Green & Brown Marmorated Stink Bug: Monitoring** ## **Green & Brown Marmorated Stink Bug: Monitoring** ### **Green & Brown Marmorated Stink Bug: Monitoring** # Monitoring the Stink Bug Complex Free Standing Solar LED ATK + Phermone ### Thanks to the staff at the HVRL for all their support: Research Support Specialist I Dana Acimovic Laboratory Technician Lydia Brown Research Assistant Christopher Leffelman Research Assistant Lucas Canino Farm Manager Albert Woelfersheim Administrative Assistant Erica Kane Administrative Assistant Christine Kane HRVL & NEWA Weather Data...... Christopher Leffelman, Albert Woelfersheim Special thanks to Elijah Talamas (Trissolcus spp. / parasitoid identification) ARDP - NYS Ag. & Mkts, NY Farm Viability Institute, NYS SCRI, NYS Orchards & Farmers National Institute of Food and Agriculture (NIFA), U.S. Department of Agriculture, Specialty Crop Research Initiative under award numbers 2016-51181-25409 and 2011-51181-30937.