Review of the 2015 Insect Pest Management Season in ENY

Dog Wood Borer Brown Marmorated Stink Bug Black Stem Beetle San Jose Scale

2016 Northeastern NY Commercial Tree Fruit School
February 17, 2016
Best Western Plus Hotel
Kingston, NY

Peter Jentsch
Senior Extension Associate – Entomology

Cornell University
College of Agriculture and Life Sciences
Insect Pest Observations 2015

I. Tall Spindle Decline & Collapse (M.9 /)
 2nd leaf Pink Lady (Ulster)
 4th leaf Zestar (Columbia)
 7th leaf Honeycrisp (Ulster)
 8th leaf Fuji, Ginger Gold (Ulster & Orange)

II. San Jose Scale – 3rd generation injury

III. Codling Moth Confusion

IV. Stinkbug in the Hudson Valley of NY
Black Stem Borer (BSB)
Xylosandrus germanus

- Forest Pest in the family of Ambrosia Beetles
- Attack trees under stress, under wet conditions and waterlogged soils, suffering injury from winter, fire blight, wounding from dogwood borer, emitting ETOH (ethyl alcohol) detected by the beetle.
- Females infest the tree, burrowing through bark into the heartwood; form gallaries for offspring which feed upon fungus carried in spores by adult.
Insect Pest Observations 2015
BSB Monitoring: Anna Wallis / Dan Donahue

- All ENY trap sites captured BSB
- No infested trees observed in the north country
- Commercial orchards with BSB infestations causing tree decline and tree death.
Lorsban / Chlorpyrifos (all formulations)

EPA issued a proposed revocation of Chlorpyrifos on Oct. 31, 2015, notifying the 9th Circuit Court of a final rule in December 2016.

(Chlorpyrifos levels found in drinking water, petition submitted by the Natural Resources Defense Council (NRDC) and Pesticide Action Network North America (PANNA)

Complete loss of Chlorpyrifos to the tree fruit industry: Pre-bloom mgt. of
 • Dogwood Borer
 • Black Stem Borer
 • San Jose Scale
 • Obliquebanded leafroller & green fruitworm complex
In May-November 2015, five commercial orchards were surveyed showing severe tree decline in the Hudson Valley counties: Orange, Ulster & Columbia (totaling 1200 trees)

Varieties: Pink Lady, Fuji, Zestar, Ginger Gold, Empire

Orchards Symptoms / Observations included:

• (4) Tree yellowing, decline and death
• (1) Shoot dieback
• (3) Black Stem Borer, (BSB) *Xylosandrus germanus* boring
• (3) Dogwood Borer, (DWB) *Synanthedon scitula* presence
• (3) Trunk / Rootstock cambian / bark separation
• (1) Cankering on North face of trunk (Herbicide interaction?)
• (1) Slug feeding on decomposing roots
• (2) Tested positive **Apple Chlorotic Leaf Spot Virus** (ACLSV)
Tall Spindle Tree Decline on M.9

Orchard I: Pink Lady on M.9/Nic 29 rootstock in 2nd leaf

Highland, NY: 22nd of May 2015

- Tree decline in fall 2014; 15% of trees effected < 1% dead
- Purchased from Willow Drive Nursary, WA in 2014
- Evidence of **Black Stem Borer**, *Xylosandrus germanus* (Frass)
- No exposure to standing or excessive water
- 2014-15 season *without irrigation* on gravel loam.
- 300 yards from wooded edge

(John Whiteman-CPS, Highland)
Tall Spindle Tree Decline on M.9

- Shoot dieback
- Toothpick frass
Tall Spindle Tree Decline on M.9

- Cankering
- Rootstock frass in burrknotts
Single application of post bloom (May) Lorsban EC at 1.5 qt./A
Trees showed no signs of BSB activity on 11 Nov. 2015
Tall Spindle Tree Decline on M.9

Orchard II: Zestar 4th leaf on M.9 (337)
June 2015, Columbia Co.

- Chlorotic foliage in small numer of trees in 2014; 15-30% dead
- Nearby dead deciduous trees; *shale loam soil*
- Infestation of black stem borer: gallaries 3” below the graft union, 5’ above the soil line in lower scaffold limbs Sept. 2015.
- Apple Chlorotic Leaf Spot Virus (ACLSV) was detected from stem samples taken December 2015 (Marc Fuchs Lab-PPPM)
- Bark separation from trunk; Severe DWB injury
Tall Spindle Tree Decline on M.9

Orchard II: Fuji on M.9, 7th leaf on M.9 (337)
October 14, 2015, Ulster Co.

500 Tree Block, 4 rows, 5’ x 14’, single wire

Symptoms included:

- Yellowing foliage, decline and death (chlorosis), bark scaling
- **Black Stem Borer**, (BSB) *Xylosandrus germanus* frass, gallaries in trunk
- **Dogwood Borer**, (DWB) *Synanthedon scitula*, larva & frass, bark loss and healing
- Trunk / Rootstock cambian / bark separation
- Cankering on North face of trunk (Herbicide interaction?)
- **ACLSV** in Fuji tested positive (chlorosis) and absence of chlorosis in adjacent rows of Camero (PCR-M.Fuch)
Tall Spindle Tree Decline on M.9

Injured

- Foliage Yellowing (September), browning, tree death
- Dogwood Borer
- Black Stem Borer
- Cankering
- Bark separation and cambium decline and death
Tall Spindle Tree Decline on M.9

Yellowing Foliage Browning Dead
Injured

- Yellowing
- Dogwood Borer (burr knot, bark scales & cambian feeding)
- Black Stem Borer
- Cankering
Tall Spindle Tree Decline on M.9

Injured

- Yellowing
- Dogwood Borer
Tall Spindle Tree Decline on M.9

DWB Bark Scale Feeding

- Vascular cambium and wood interface
- Above and below graft union
- Larva over winter in webbed frass
Tall Spindle Tree Decline on M.9

Injury

- Yellowing
- Dogwood Borer
- Black Stem Borer
- Cankering
Tall Spindle Tree Decline on M.9

North face moisture

N.F. Cankering
Tall Spindle Tree Decline on M.9

Injury

- Bark separation and cambium decline and death
 (Cankering?)
Tall Spindle Tree Decline on M.9

Cankering - bark separation
Healthy Trees: Growth Habit of Variety

- Bark Splitting
- Bark Flaking

Tall Spindle Tree Decline on M.9
Tall Spindle Tree Decline on M.9

Fuji M.9 Collapse

<table>
<thead>
<tr>
<th>Tree Yellowing Associated to Dogwood and Black Stem Borer</th>
<th>No yellowing</th>
<th>% Yellowing</th>
<th>% Slight Yellowing</th>
<th>% Extreme Yellowing</th>
<th>% DWB</th>
<th>% BSB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.8</td>
<td>58.2</td>
<td>46.7</td>
<td>11.5</td>
<td>52.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Tall Spindle Tree Decline on M.9

Fuji M.9 Collapse

Tree Yellowing Associated to Dogwood and Black Stem Borer

<table>
<thead>
<tr>
<th>No yellowing</th>
<th>% Yellowing</th>
<th>% Slight Yellowing</th>
<th>% Extreme Yellowing</th>
<th>% DWB</th>
<th>% BSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.8</td>
<td>58.2</td>
<td>46.7</td>
<td>11.5</td>
<td>52.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Percentage of Trees in % Damage Rating Categories (DWB, BSB and or Dead Bark)

<table>
<thead>
<tr>
<th>0 Injury</th>
<th>0-60</th>
<th>61-80</th>
<th>81-90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0%</td>
<td>41.8%</td>
<td>8.2%</td>
<td>4.9%</td>
<td>30.3%</td>
</tr>
</tbody>
</table>

Tall Spindle Tree Decline on M.9

Fuji M.9 Collapse

Tree Yellowing Associated to Dogwood and Black Stem Borer

<table>
<thead>
<tr>
<th></th>
<th>No yellowing</th>
<th>% Yellowing</th>
<th>% Slight Yellowing</th>
<th>% Extreme Yellowing</th>
<th>% DWB</th>
<th>% BSB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.8</td>
<td>58.2</td>
<td>46.7</td>
<td>11.5</td>
<td>52.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Percentage of Trees in % Damage Rating Categories (DWB, BSB and or Dead Bark)

<table>
<thead>
<tr>
<th></th>
<th>0 injury</th>
<th>61-80</th>
<th>81-90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.0%</td>
<td>41.8%</td>
<td>8.2%</td>
<td>43.4%</td>
</tr>
</tbody>
</table>

Percent of trees with visible canker

<table>
<thead>
<tr>
<th></th>
<th>% Cankers</th>
<th>% Without Cankers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.6</td>
<td>26.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canker Location</th>
<th># Trees</th>
<th>% Canker by Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Row</td>
<td>72</td>
<td>59.5</td>
</tr>
<tr>
<td>Out Row</td>
<td>17</td>
<td>14.0</td>
</tr>
<tr>
<td>None</td>
<td>32</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Total Trees Assessed: 121
Lorsban / Chlorpyrifos (all formulations)

EPA issued a proposed revocation of Chlorpyrifos on Oct. 31, 2015, notifying the 9th Circuit Court of a final rule in December 2016.

(Chlorpyrifos levels found in drinking water, petition submitted by the Natural Resources Defense Council (NRDC) and Pesticide Action Network North America (PANNA)

Loss of Chlorpyrifos to the tree fruit industry. Pre-bloom mgt. of
- Dogwood Borer
- Black Stem Borer
- San Jose Scale
- Obliquebanded leafroller & green fruitworm complex
Estimated costs of applying chlorpyrifos (Lorsban 4E) based on a plant density of 800 trees per acre. (Agnello)

- $8 per hour for labor
- $30 per gallon for Lorsban 4E
- 1.5 Qts./A; $25 per acre

Option I: Replacement Insecticides:
Assail 30SG, Delegate, Belt and Rynaxypyr WG options for DWB Mgt.

- Presently Assail 30SG is labeled in NY.
Option II: Mating disruption in blocks of 5 acres or more using Isomate (CBC (America) Corp.)

Treatment with Isomate-DWB dispensers
• 150 per acre the first season
• 100 per acre thereafter
• Labor $63.60 per acre for the first season
 $42.40 per acre in subsequent seasons.

• No special equipment is needed
• Improved worker safety? (Agnello)
2016 ARDP Funded Project:

Project Outline:

Mating Disruption (MD) on three farms
• Application on (3) 5 acre blocks
• Assess overwintering DWB population
• Monitor DWB adult trap shutdown in MD blocks
 • In non-MD blocks

On farm and HVRL plot efficacy evaluation for DWB larva mgt: Assail 30SG, Delegate, Belt and Rynaxypr WG

Assess the importance of irrigation & herbicide in tree decline
Prevention of Tree Decline in Tall Spindle

- Reducing tree stress
 - Use of NEWA / orchard soil moisture data weekly
 - Irrigation is critical in well drained soils
 - Improve drainage in wet sites

- Monitoring trees for dogwood borer feeding & BSM holes and frass
 - Yearly dogwood borer management of infested blocks

- Lorsban pre-bloom for BSB Mgt in stressed trees with new infestations (post prolong rain and flooding)
 - High volume whole tree
 - Concentrate dilute at base of tree
San Jose Scale, *Quadraspisidiotus perniciosus*,

- 2-3 generations / year in NY
- Feed on the sap of apple trees

Adults overwinter on fruit trees.

- Males and females under chitin ‘scale’ protection
- Respiration increases in spring

Males emerge to mate (May 10th 2015: biofix)

- Crawler emergence 400 DD\textsubscript{51}
 - 1st Gen. June 6th 2015; 2nd Gen. Aug. 1st; 3rd Gen. Sept. 25th
San Jose Scale, *Quadraspidiotus perniciosus*,

- Increasing SJS at packout across NYS
- Tenacious pest if left unmanaged; 2-3 gen.

- Female scale produce approximately 400 live young, “crawlers”, over a 6-week period

- Requires insecticide residue over two applications to manage the crawler population

- Extended period of emergence (mid-June HVRL)

- Insecticide shadowing post bloom (contact insecticides)
San Jose Scale, *Quadraspidiotus perniciosus*,

- Multiple tactics are needed for 100% clean fruit
- Pre-bloom
 - (Contact) Oil at 3% DD; 2% GT; or 1%
 - (IGR) Esteem 35WP (4-5 oz./A) @ P
 - (IGR) Centaur 0.7WDG (34.5 oz./A) @ P
 - (Contact) Lorsban 4E (1.5 Qts./A) @ DD-P
 - Excellent coverage (higher volume, low wind, slow speed)
San Jose Scale Management

San Jose Scale, *Quadraspidiotus perniciosus,*

- **Post-bloom**
 - Oil at 1%
 - Esteem 35WP (4-5 oz./A) @ PF-1st C
 - Centaur 0.7WDG (34.5 oz./A) @ PF-1st C
 - Movento + 0.25% oil or penetrant such as LI700 at a penetrating rate (>20 oz./100)
 - Contact insecticides: 2 Apps beginning at 1st emergence 1st crawler + 14d; pyrethroids, Imidan
San Jose Scale Management

San Jose Scale, *Quadraspidiotus perniciosus*, HVRL 2013

<table>
<thead>
<tr>
<th>Treatment / Rate</th>
<th>% Clean of SJS Infested Cluster Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oil 1% (dilute handgun)</td>
<td>100.0 a</td>
</tr>
<tr>
<td>2. Esteem 35WP (4-5 oz./A) @ PF</td>
<td>95.5 a</td>
</tr>
<tr>
<td>3. Centaur 0.7WDG (34.5 oz./A) @ PF</td>
<td>100.0 a</td>
</tr>
<tr>
<td>4. Lorsban 4E (64.0 fl. oz./A) @ DD</td>
<td>97.8 a</td>
</tr>
<tr>
<td>5. Movento + 0.25% v/v LI700 @PF, 2C</td>
<td>91.7 a</td>
</tr>
<tr>
<td>6. UTC</td>
<td>26.8 b</td>
</tr>
</tbody>
</table>
Codling Moth (CM): *Cydia pomonella*
- 2 – 3 generations/year
- 1\(^{st}\) gen. adults emerge during late bloom-PF (11\(^{th}\) May, 2015)
- Larval emergence using 220 DD\(_{50}\) from CM biofix (27\(^{th}\) May)
- 1\(^{st}\) gen. adults emerge (13th July, 2015)
- Larval emergence using 250 DD\(_{50}\) (20\(^{th}\) July)

Obliquebanded Leafroller (OBLR): *Choristoneura rosaceana*
- 2 generations/year
- Overwiner as 3\(^{rd}\) instar larva
- Adults emerge early June (June 8\(^{th}\) 2015)
- Larva emerge after 308 DD\(_{50}\) (June 20\(^{th}\) 2015)
Codling Moth vs OBLR-Leafroller Damage

OBLR: Webbing, surface feeding only

CM: Single hole in fruit
 frass at calyx end
 feed on seeds

Management timing is specific for each pest
CM: 1st – 2nd Cover & early July
OBLR late June & mid August

CM & OBLR Imidan, Intrepid, Proclaim, Altacor, Delegate
(OBLR- Bt yound larva, low rates @5d, Belt)
Golden Delicious Apple With BMSB Feeding Injury, Campbell Hall, NY October - 2012

5 bins: Range from 38 – 57% damage
2015 NY BMSB Trap Locations with late season adult captures
EDDMaps.org/bmsbny/
BMSB Distribution in NYS Tree Fruit Orchards
• Presence / absence
• Population Threshold + Damage Levels
15 NYS counties / 44 Sites

- Absence (Green)
 Monitoring but no adults caught

- Presence (Yellow)
 Under 10, no damage

- Presence + Damage Levels
 Under 10, <1% damage

- Presence + Damage Levels
 Under 10, ≥1% damage

- BMSB Threshold + Damage Levels
 10 or more, no injury

- BMSB Threshold + Damage Levels
 10 or more, <1% damage

- BMSB Threshold + Damage Levels
 10 or more, ≥1% damage
BMSB Management Threshold: Communication

• ENY CCE Hort News / Scaffolds: to disseminate recommendations

• Growers who subscribed to receive email Internet based link for BMSB mgt. recommendations as BMSB traps and damage levels are assessed

• Hudson Valley Research Lab: Blog site

• https://blogs.cornell.edu/jentsch/
Factors for BMSB Success: Overwintering

Predicted and observed BMSB: Cumulative SCP & proportion mortality

MN winter bugs LT$_{90}$ = -18°C or ~0°F

SCP: n=19 bugs
Mortality: n=17 bugs/each temp (mean ± 95% confidence interval)
Regression curves fitted with a Weibull distribution