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In this paper, we analyze a model called the k-nearest neighbor queue with the possibility
of having delayed queue length feedback. We prove fluid limits for the stochastic queueing
model and show that the fluid limit converges to a system of delay differential equations. Using
the properties of circulant matrices, we derive a closed form expression for the value of the
critical delay, which governs whether the delayed information will induce oscillations or a Hopf
bifurcation in our queueing system.
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1. Introduction

Cloud computing services are pervasive in our society and are expanding across the world. These services
are supported by very complex infrastructures in data centers. As demand for cloud computing services
continues to increase it is important to understand how to manage these data centers so that they do not
overload. It is not surprising that many researchers are now developing new load balancing algorithms for
data center applications. Since data centers can be modeled well by queueing theory, often researchers use
queueing theory to verify that their algorithms perform well. However, many data center managers must
make the trade off between using storing information about current system state or component of the
system load among several queues. Many algorithms have been developed to do this in the context of data
centers, telecommunications networks, and even call centers.

In order to achieve load balancing many authors have analyzed stochastic queueing models that are
modifications of join the shortest queue, see for example the work by [Mitzenmacher, 2001; Byers et al.,
2004; Xie et al., 2015; Bramson et al., 2010; Lu et al., 2011; Bramson et al., 2013; Mukherjee et al., 2016,
2018, 2017; Banerjee et al., 2019; Budhiraja et al., 2017; Aghajani and Ramanan, 2017; Aghajani et al.,
2015, 2017; Cybenko, 1989; Mitzenmacher, 2016]. Many of these variants of join the shortest queue allow
for joining the shortest among d randomly selected queues. Selecting only d > 2 queues allows for less
storage of all queue lengths and still achieves high quality performance.

Our paper is motivated by the load balancing literature, but is also motivated by the work of [Dong
et al., 2018; Ding et al.] where customers have the option to choose which queue they join based on
the queue length they observe in a delay announcement or smartphone app. The work of Dong et al.
[2018]; Ding et al. explores the use of the multinomial logit choice model (MNL) as a probabilistic way for
customers to choose which queue they will join. However, the current literature assumes two important,
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but not realistic properties about the information that customers have when making their decision of which
queue to join. The first assumption is that customers have information about all queues. In the context of
telecommunication systems and data centers, this assumption is not realistic as it requires a substantial
amount of data storage and knowledge. Thus, it is common in these settings that a queue might have
information only about its neighbors. The second assumption is that customers receive information in a
real-time fashion. This is also not realistic as there are many situations where either the information is
delayed from a technological point of view or the decision about joining a queue must be made before
actually joining the queue. In both situations, the information can be viewed as being delayed.

The queueing model that we present in this work tackles both of these gaps in the literature. First we
consider a 2k-nearest neighbor set-up where a customer who will join the i** queue also knows the queue
length of the k neighbors to the left and k neighbors to right. One might view this nearest neighbor setup
as each queue knowing some local information about the queues nearest to it. Second, we consider the
fact that the information about the queues is delayed and is not given in real-time. This is important to
consider in our model as the rate of information about the system is not infinitely fast. Thus, the queue
length information about the neighbors must be delayed.

We should also mention that our work is closely related to the work by Mitzenmacher [2000]; Ding
et al.; Pender et al. [2020]; Lipshutz and Williams [2015]; Novitzky et al. [2020]; Doldo et al. [2021] in that
these papers either consider choice model dynamics in the construction of their queueing models or they
consider delayed dynamics in the context of queueing theory. We should also mention that there is recent
work by Atar and Lipshutz [2021] that considers heavy traffic limits for systems with delayed information.
Thus, our work is similar in this spirit.

1.1. Owur Contributions

This paper makes the following two major contributions:

First, we develop a new model of k-nearest neighbor queues, where the information about each queue
length is delayed by a constant A.

We prove fluid limits for a scaled version of the queue length process and show that the fluid limit is a
delay differential equation. Moreover, we prove the exact threshold for when oscillations in the queue length
dynamics will occur in this fluid model.

1.2. Organization of the Paper

The rest of the paper is organized as follows:

In Section 2, we describe and construct the k-nearest neighbor queueing model. We prove the fluid
limit of the scaled queue length process and derive an exact threshold where oscillations will occur if the
delay in information is larger than the threshold. In Section 3, we conclude and provide new directions for
future research. Finally, all proofs of our main results are given in the Appendix.

2. k-Nearest Neighbor Queueing Model

In this section, we present a new stochastic queueing model where customers that would arrive to the i
queue are allowed to also join any of the k neighbors to the right or to the left of the i queue. Thus, any
arriving customer will have the option of joining 2k + 1 queues. This choice reflects the fact that often in
load balancing settings, one might not have the information of all of the possible queues one could join
since it can be computationally expensive to store all of this information. In settings where queue length
information is provided to customers via smartphone apps like in bike-sharing networks [Schuijbroek et al.,
2017; Faghih-Tmani et al., 2017] or waiting times at Disneyland [Nirenberg et al., 2018], a smartphone app
will only indicate the nearest possible queues you can retrieve or return a bike. Thus, the information that
is given to the customer is limited to the nearest stations to them. Thus, we begin with N infinite-server
queues operating in parallel, where customers make a choice of which queue to join by taking the size of
the queue length into account via a customer choice model. In addition to only being able to know the
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queue length of one’s k-nearest neighbors to the left and to the right, we also add the complication that
the queue length information that is given to the customer is delayed by a constant A for all of the queues.
Therefore, the queue length that the customer receives is not in real-time, which is commonly assumed. In
fact, the queue length information that a customer actually receives is the queue length A time units in
the past.

Thus, in a stochastic context with N queues, the probability of joining the i** queue is given by the
following expression

9(Qi(t — A))
Y E 1 9(Qimj(t = A)) + g(Qirj(t — A)) + g(Qilt — A))
where Q(t) = (Q1(t), Q2(t),...,Qn(t)). We also make the following assumptions regarding the function
g(z).
The function g(z) maps from Ry — R4 /{0} and is a continuously differentiable function with a uniformly
bounded derivative. Moreover, we assume the function is strictly non-increasing.
g <#> is bounded away from zero V k € N and k£ < %

(kT 1)
g (z) <0, Vo > 0.

pi(Q(t), A) =

(1)

It is evident from the above expression that if the queue length in station 7 is larger than the other
queue lengths, then the i*” station has a smaller likelihood of receiving the next arrival. This decrease in
likelihood as the queue length increases represents the disdain customers have for waiting in longer lines.
Using these probabilities for joining each queue allows us to construct the following stochastic model for
the queue length process of our N dimensional system for ¢ > 0

Qi(t) = Qi(0) + I} (/Ot A pi(Q(s), A)ds) — ¢ (/Ot uQ,(s)ds)

where each II(-) is a unit rate Poisson process and Q;(s) = ¢;(s) for all s € [-A,0]. In this model, for the
ith queue, we have that

e ([ nrs). s @)

counts the number of customers that decide to join the i queue in the time interval (0,¢]. Note that the
rate depends on the queue length at time t — A and not time ¢, hence representing the lag in information.

Similarly
t
HC.l( ; d)
: /O 1Qi(s)ds (3)

counts the number of customers that depart the i** queue having received service from an agent or server
in the time interval (0,¢]. However, in contrast to the arrival process, the service process depends on the
current queue length and not the past queue length.

2.1. Special Cases of the Model

In this section, we specify some forms for the function g(x). In the case that g(x) = e~"*, we have the choice
model is given by a k-nearest neighbor version of the multinomial logit choice model (MNL). In the MNL
choice model, there is an analagous utility perspective about the choices that customers make. In fact the
utility for being served in the i queue with delayed queue length Q;(t—A) is u;(Q;(t—A)) = —0Q;(t—A).
Thus, there is an economic interpretation of the MNL model. We should also mention that the MNL model
has two important asymptotic regimes, which are of independent interest. In the setting where we let the
sensitivity parameter § — 0, we find that our probabilities of choosing a queue to join converge to a uniform
distribution over the k-nearest neighbors. Moreover, in the setting where we let the sensitivity parameter
0 — oo, we find that our probabilities of choosing a queue to join converge to an indicator function for

—0
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Fig. 1. k-nearest neighbor queue with k =1 (left) and k = 2 (right).

shortest queue. If there is a tie, then it is uniform over those queues that are identical for the smallest
queue length. As a result, we can view the MNL model outside of those two extremes as a smoothed and
infinitely differentiable approximation of the join the shortest queue model.

Another function that could be used is the polynomial g(x) = . This function is commonly

ol
z%4-c)P
used in the context of utility maximization and is a version of the Colgb—Dc))uglas family of utlities used in
economics. The interested reader for additional functions can see the many references in Hassin and Haviv
[2003]; Hassin [2016].

Finally, we can also suggest that any tail cdf of a continuous non-negative distribution could also
work as a potential function for g(z). For example g(z) = e~@" is the tail cdf of a Weibull distribution.

Another distribution potentially is the folded normal distribution where the tail cdf is given by the function

g(z) =3 [erf (\Z%) + erf (%)} for x > 0 and where erf() is the error function.

2.2. Fluid Scaling and Fluid Limits

In many service systems, the arrival rate of customers is high. For example in Disneyland there are thou-
sands of customers moving around the park and deciding on which ride they should join. Motivated by the
large number of customers, we introduce the following scaled queue length process by a parameter n

@l = Qo)+ ( [ A (@), ays) =2t (o [ t Q)i ). ()

Note that we write @} (0) for the initial condition, however, it really should be interpreted as an initial
function since it will contain all of the information needed to know the queue length in the past A time
units. Now by letting the scaling parameter 1 go to infinity gives us our first result.

Theorem 1. Let v;(s) be a non-negative Lipschitz continuous function that knows all of the queue length
values on the interval [—A,0]. Then, if Q] (s) — vi(s) almost surely for all s € [-A, 0] and for all1 <i < N
, then the sequence of stochastic processes {Q"(t) = (Q1(t), Qa(t), ..., Q% (t) }nen converges almost surely
and uniformly on compact sets of time to (q(t) = (q1(t), q2(t), ..., qn(t)) where

Gi(t) = X pilq(t), A) — pgi(t) (5)
and q;(s) = vi(s) for all s € [-A,0] and for all1 <i < N.

Proof. See Appendiz. M

This result states that as we let n go towards infinity, the sequence of queueing processes converges
to a system of delay differential equations. Unlike ordinary differential equations, the existence and
uniqueness results for delay differential equations is much less well known. However, we provide the result
of existence and uniqueness for the delay differential system that we analyze in this paper below.
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Theorem 2. Given a non-negative Lipschitz continuous initial function @; : [—A,0] — Ry for all 1 <i <
N and a finite time horizon T > 0, there exists a unique Lipschitz continuous function q(t) = {q(t)}—a<i<T
that is the solution to the following delay differential equation

Gi(t) = A+ pila(t), A) — pai(t) (6)
and qi(s) = @i(s) for all s € [-A,0] and for all1 <i < N.

Proof. The proof of this result can be found in Hale [1971] as our model satisfies the Lipschitz continuity
conditions of the right-hand side. W

2.3. Oscillations in the k-Nearest Neighbor Model

Unlike ordinary differential equations, delay differential equations are truly infinite dimensional and the
smallest of delays can cause surprising dynamics. Recent work by Pender et al. [2017] explores a two
dimensional version of our fluid limit and uncovers that the two queues can oscillate in equilibrium when
the delay is large enough. Pender et al. [2017] also characterizes the threshold in terms of the model
parameters and provides an exact formula for the threshold in the two dimensional case. However, this
analysis is limited and does not immediately generalize to the multi-dimensional setting. The main goal of
this section is to generalize the critical delay analysis of Pender et al. [2017] and derive the exact threshold
for an arbitrary number of queues. Before we state the formal theorem, we will need a lemma, which is
stated below. This lemma provides an explicit expression for the sum of cosines in terms of the Dirichlet
kernel. We will need the lemma for analyzing the stability of the delay differential equations that arise
from our fluid model.

Lemma 1.
sin ((N + %) 0)
2sin ()

al 1
Z cos(nf) = —3 +
n=1

Proof. Start with the series

f@) = % +3 cos(ka) (8)
k=1

Then one should multiply both sides of the above by 2sin(xz/2) and use the trigonometric identity

cos(a) sin(b) = sin(a + b) ; sin(a — b) ()

to reduce the right-hand side to

sin((n + 1/2)z). (10)
This completes the proof. M

Lemma 2. The equilibrium for the delay differential system of equation given in Equation 6 is unique.

Proof. To mathematically verify that this is an equilibrium for the system of equations, one can substitute
N%L for qi(t) and ¢;(t — A) and make the observation that the time derivatives for all of the equations are
equal to zero. However, we may be unsure of whether the equilibrium is unique. We can show that the
equilibrium in our setting is unique by noting that

Gi(t) =0 (11)
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and setting the equilibrium q;(c0) = ¢;. Thus, for each i, we have that

Ap(ei, A) = p- . (12)
This implies that
9(e) = - 9le) = constant. (13)
¢ A Y5 gleig) +gleins) + glci)

Now we observe that the function on the left @ is a one-to-one function of ¢; > 0. Therefore, all of

g(ci)

the functions are equal tmplies that all of the ¢; terms are equal. This implies that our equilibrium is

unique. W

Theorem 3. For the constant delay choice queueing model given in Equation 6 with arbitrary N > 2, the
critical delay, Aer (A, p, N), is given by the following expression

arccos (m)
A )\7 7N, k = — 14
er(A 1 NS ) YV (mini <<y ;)% — p? h

where o 1s given by

(2141 - EERA) 2 ()

(2% + 1) (o)

(15)

ay; =

Proof.

The first part of the proof is to compute an equilibrium for the solution to the delay differential equa-
tions. In standard ordinary differential equations, one sets the time derivative of the differential equations
to zero and solve for the value of the queue length that makes it zero. This implies that we set

q;(t) = 0 (16)
This further implies that we need to solve the following N nonlinear delay equations
A pilg(t), A) — pgi(t) =0 (17)

Sometimes finding the equilibrium is non-trivial in many non-linear systems. In our system, we also have the
complication that the differential equations are delay differential equations and have an extra complexity.
However, in our case, the delay differential equations given in Equation 17 are symmetric and this simplifies
some of the analysis. In this case the N equations converge to the same point since in equilibrium each
queue will receive exactly 1/(2k + 1) of the arrivals and the service rates of all of the queues are the same.
Thus, we have in equilibrium that for all 1 <i < N

qi(t — A) =qi(t) = M as t — oo. (18)

To mathematically verify that this is an equilibrium for the system of equations, one can substitute m
for ¢;(t) and ¢;(t — A) and make the observation that the time derivative for all of the equations are equal
to zero.

Now that we have established the equilibrium for Equation 6, we need to understand the stability of
the delay differential equations near the equilibrium. The first step in doing this is to set each of the queue
lengths to the equilibrium points plus a perturbation. With this in mind, we substitute the following values
for each of the queue lengths

q(t) = p + (1) (19)

2k +1)
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In this substitution, the u;(t) are perturbations about the equilibrium point m By substituting
Equation 19 into Equation 6 we get the following equations

A A
pi | ————— +ult), A ) — pu;(t) — ———
p (g +u08) — ) -
Now if we linearize around the point u;(t) = 0, which is equivalent to performing a Taylor expansion and
keeping only the linear terms, we have that the linearized version of u;(t), which we now defined as w;(t)
solve the following linear delay differential equations

%)\_g/<m) [(k+1)/2]-1 Ag,(ﬁ)

Wi(t) = A (20)

wz(t) = -wi(t—A)— -wi_j(t—A)
(2k +1)%g (m) j=1 (2k 4+ 1)%g (ﬁ)
(k1201 y g (A
(2k+1)
- 5 §> cwigj(t— A) = pewilt)
! A k+1)/2|—1 L A

B A-g <(2k+1)u> wn(t— A) L(k+1)/2] A-g (‘(2k+1)u> wi(t— A)
- A 1—7

(2k3 + 1)9 ((gkﬁ) j=1 (2k + 1)29 ((2k—?—1)u)
[(B+D)/2]-1 ). ¢f <m)
=0 (2k+1)%g <‘(2kzif)u

This can be written as a matrix system by
. Ag (52—
b(t) = ((2’”1):‘) T-w(t - A) (21)
L A
- A-g ((2k+l)i> Cw(t — A) — - Tw(t)
(2k + 1)%g ((2k+1)u>

where 7 is an N dimensional identity matrix and C is a N dimensional symmetric circulant matrix. Circulant
matrices are ideal since much is known about their eigenvalues. Thus, C has the following representation

)-mﬂu—Awwrww>

_CO Cl... C Cl_
C1 Cy C1 C2

C= 26100'

e .'~"-Cl
LC1 C2 ... C1 CoJ

With the representation of our linearized system in Equation 22, we can now exploit the fact that both
C and 7 can be simultaneously diagonalized. Thus, we can write both C and Z in terms of the eigenvectors
of the matrix C. If we denote S as the orthogonal matrix of the eigenvectors of C and denote A as diagonal
matrix of the eigenvalues of C, then we have that C and Z can both be decomposed in terms of S, U1, and
A as

C=UAU"! (22)
IT=UzU L. (23)

The matrix C has rank N — k and therefore has N — k distinct eigenvalues. The eigenvalues of any
real symmetric matrix are real. Thus, the corresponding eigenvalues of our circulant matrix have explicit
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expressions in terms of the roots of unity i.e.

Aj = co + 2c1Rw; + 202§ij2- +...+ 2cn/2_18?w;7/2_1 (24)
+ Cn/QW?/Q
for n even, and
Aj = co + 2c1Rw; + 2023%)32» + ... (25)

+ 2y Ry

for odd n. This can be further simplified by using the roots of unity identity that
%wf = cos(2mjk/N). (26)
Thus, the j** eigenvalue of the circulant matrix is given by the following expression

sin ((k+ 3) - (2mj/N))
sin (7j/N)

k
Aj =1+ Z 2cos(2mjm/N) =

m=1

(27)

Using this knowledge of the eigenvalues of the matrix C, we now we define, v = U~!w or w = Uv and this
leads us to the following delay differential system for v

w(t) = Uo(t) (28)
_ A- g/ ((Qkil),u) ] Iw(t _ A) (29)
2k +1)g (w2 )

i ()
2k + 1% (5
M (i) Tw(t— A) (30)
2k +1)g (@ )
M ()
(2% + 1% (@)
__ e Caan) TUw(t — A) (31)
(2k +1)g (m)
i ()
2k + 1% (@)
\o (wng)

- Uo(t - A) (32)
2k +1)g (@ )

DN ——
- <(2’““)i> UMt — A) — - U(t).

Cw(t—A) — p - Zw(t)

CUANU Yw(t — A) — - Tw(t)

CUANU'WUu(t — A) — - TU (1)
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Now by multiplying both sides by U~! we have the following delay differential system for v
. )\ . g/ A
o(t) = ((2’““);‘) U Ut — A) (33)
)\ . gl A
- <‘2’““”;) UUA(E = A) — - U~ Un(t)
)\ . gl A
- ((Qk“’f) To(t — A) (34)
A - gl A
— ((%H)i) “Av(t — A) — - Zo(t).
(2k +1)2g (7(%“)#)

Thus, for the i*" entry of the vector v, we have the following delay differential equation
A
. Aog ((2k+l)u>
)= A
(2k+1)g ((2k+1)u)

Y D
B A-g ((2k+l)u> cAgi - vi(t— A) — - vi(t)

(2% + 1% ()

) 2k +1—Ai)-A-¢ <m> vt — A) — - vilt) (36)

2k + 1% (5 )

where A is the ¥ diagonal entry of the matrix A. One crucial observation is that this representation
shows that system of delay equations given in Equation 36 are uncoupled and can be analyzed individually
for stability purposes. To finish the proof, we observe that it only remains to analyze the stability of the
each equation for v;(t). To do this we make the ansatz v;(t) = e"* and derive an equation for the variable
r. This yields the following transcendental equations for r

vt — A) (35)

r=ap-e " — (37)

Note that this is the real difference between ordinary differential equations and delay differential
equations. These types of transcendental equations do not appear in ordinary differential equations because
A is typically equal to zero in the ordinary differential equation context. Now we complete the proof by
analyzing our transcendental equation for r. If we substitute » = iw, we obtain two equations for the real
and imaginary parts respectively using Euler’s identity

cos(wA) = £ (38)
(%
sin(wA) = Sl (39)
(%
Now by squaring both sides and adding the two equations together we arrive at the following equation
2 2
cos?(wA) + sin?(wA) =1 = M (40)
673

By moving all terms of Equation 40 that do not involve w to the right, we can isolate an expression for w.
Thus, solving for w, we arrive at the following expression

w=/a — u2. (41)
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Example with A = .45, N=5, k=1, } =10, p=1 Example with A = .48, N=5, k=1, } =10, p=1

solution y
solution y

Fig. 2. A = .468.

Using this expression for w, we can finally invert Equation 38 since it does not contain w on the right hand
side unlike Equation 39 to solve for the critical value of A. We find that our threshold A is equal to

iz
arccos (ai )

2 2
of —

AL (A, N k) = (42)

Thus our proof is complete. M

Theorem 3 provides a local characterization of the oscillation behavior of an arbitrary queueing system
with N queues. If the delay A is larger than the critical delay A, (A, u, N), then we should expect that
the N queues should oscillate in equilibrium. However, if the delay A is smaller than the critical delay
A (A, p, N), then we should expect that the N queues should converge to the equilibrium point ﬁ and
not oscillate around the equilibrium.

2.4. Numerical Results for Fluid Limaits

In this section, we describe some numerical results that compare the fluid limits before and after the
critical delay values. On the left of Figure 2, we plot an example of N=5 queues and we let k = 1. Since
A < A, = .468, we observe that the queues converge to the equilibrium and the initial oscillations vanish
over time. However, on the right of Figure 2, we observe that because A > A.. = .468, the queues oscillate
around the equilibrium. Moreover, it is important to note that even though each of the queue lengths
oscillate around the equilibrium, the size of the oscillations are not all equal. Thus, there is an asymmetry
in the size of the oscillations.

In Figure 3, we plot an example of N=5 queues and we let £ = 1, but we increase the arrival rate.
Since A < A, = .167, we observe that the queues converge to the equilibrium and the initial oscillations
vanish over time. However, inon the right of Figure 3, we observe that because A > A.. = .167, the queues
oscillate around the equilibrium. Moreover, it is important to note that even though each of the queue
lengths oscillate around the equilibrium, the size of the oscillations are all actually equal this time. Thus,
the size of the oscillations appears to be symmetric. This is a clear difference from the previous figures.

3. Conclusion and Future Research

In this paper, we analyze a new N-dimensional stochastic queueing model that incorporates customer choice
and delayed queue length information in a k-nearest neighbor fashion. Our model considers the customer
choice as a generalized multinomial logit choice model where the queue length information given to the
customer is delayed by an amount of size A. We prove fluid limit theorems for our queueing process and
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Example with A = .15, N=5, k=1, } =25, p=1 Example with A =.18 , N=5, k=1, } =25, p=1

y iy 0, o
ST SRR AR RV SARNCR]

YR
AT AR R
IS B

P TUREE TAEY TRAK TREL BRAN YRR BUER

'
|“‘0"
"l‘ ",‘,
il

solution y
solution y

—Q,

_Qa,
— Q,

— Q)

5

Fig. 3. A = .167.

show that the fluid limit is a system of delay differential equations. We also prove that the resulting fluid
limit can experience a Hopf bifurcation. Using the properties of circulant matrices, we compute exactly
when this Hopf bifurcation occurs in terms of our queueing model parameters and verify numerically our
results. Although we consider an infinite server system, the analysis of multiserver queues like the Erlang-A
queues can also be analyzed in an identical fashion yielding similar results. In fact, the results are identical
to the infinite server case as long as the equilibrium does not linger around the number of servers, see for
example Pender and Ko [2017]; Ko and Pender [2018].

There are many remaining questions for research. For one, what if the delay were non-stationary and
not a constant? What if the topology of the network is more complicated? What if each queue has a
different delay? We intend to answer these important questions in future work.
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Appendix

Before we begin the proof, we present two lemmas that are vital to understanding and constructing the
proof via strong approximation theory.

Lemma 3 [Kurtz 1978]. A standard Poisson process {IL(t)}+>0 can be realized on the same probability space
as a standard Brownian motion {W(t)}+>0 in such a way that the almost surely finite random variable

1I(t) —t = W(2)|
Z =su
tzg log(2V 1)

has finite moment generating function in the neighborhood of the origin and in particular finite mean.

Lemma 4 [Kurtz 1978]. For any standard Brownian motion {W(t)};>0 and any e >0, n € N, and T > 0

M= sup W{u) = W)l <00 a.s.
uw,<nel v/Ju —v| (1 + log (neT'/ |u — vl))

3.1. Proof of Fluid Limat

In this section we prove Theorem 1, which shows the convergence of the scaled queueing process to our
system of delay differential equations.
Proof of Theorem 1
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Proof.

Q0 =@+ 2t ( | A @), ayas) =1t (o [ t Q)i ). (43)

First we need to represent the difference of the scaled stochastic queue length minus the fluid limit.
This is given by the following expressions

Q) — ai(t) = QY(0) — 4:(0) +}7Hf (n /0 A-pi@"(s),mds) - /0 X+ pila(s), A)ds

a0 > L
nHZ <77/0 pQ; (s)ds +/0 1qi(s)ds

~ Q0 - q(0)+ 112 (v | tA-px@"(s),A)ds) = [ A n@is) A

0
/ N pi(Q(s), A)ds — / X-piq(s), A)ds
0 0

t t t t
ot (0 [ uQreas) + [ uieas = [ uQieias+ [ s

Now we have a representation of the queue length in terms of centered time changed Poisson processes
and a deterministic part, we can now apply the strong approximations theory to the absolute value of the
difference.

@20 - (0] < |QU(0) - 4(0)| +| 12 (77 /0 A-px@ﬁ(s),A)ds) - /0 A pi(Q7(s), A)ds

- /0 A-pi(Q”(s),A)dS—/o A-pi(q(s), A)ds

e (n [ t Qi) - [ 1@ e)ds / @ s)ds - / ua(s)ds

By the Lemma 3, we have the following strong approximation representation of the queue length as

+ +

QU0 = [ A n(@1s), s + =5 ([ A p(@0s). )i m
- [ - ot ([ wapieias) + 05

Using the strong approximation representation, we now have that the difference between the scaled
queue length and the fluid limit is bounded by

Q7 () — ai(t)| < |Q](0) — ¢i(0)| + \}773? </Ot>\-pi(Q"(8),A)d8> ‘

# [ A n(@). 25— [ 3 pitats) 2)ds
" ;EB? ( / tuQ?(S)d8> |/ QU (s)ds - / ' uai(s)ds +0=EL

Now it remains to show that

lim sup

N0 <T [4/T

}Bﬁ (/Ot A pi(Q(s), A)ds) ‘ ~0 (45)
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and

lim sup
nN—00 tST

\}ﬁBf (/Ot uQ?(S)d8> ‘ =0 (46)

For the first Brownian motion term we have that

1 t
lim sup |—B; /)\'i ns,Ads)
tim sup | =57 ([ @100 ‘
. 1
< lim |[—B}(\-T)
n—00 n
. 1
= lim Bf(-)vT)
n—00 n
=0.
For the second Brownian motion term we have that
li S 1Bd(/t Qﬂ( )d>
im sup |[—B; ; (s)ds
’7—>00t§IT)\/77 ou
1
< lim |—B(QMO0) + \) - pu- T
< fim | B! (@Q'0) 40 -T)
1
= lim B (= (Q"O0)+\)-pu-T
Jin z(n (Q1(0) +A) - )

=0.

Thus, for every € > 0 there exists an n* such that for all n > n*

Q{(0) — ¢i(0)| < €/4, (47)

flélg %Bf </0 )\'pi(Q”(s),A)ds) <e€/4, (48)
L p t T(s)ds €
sup| =8¢ ([ w0 ) | < fa (49)
and
logn
O " <e/4 (50)

so that we have

N0E) — g t D s s — t pilq(s s
Q) — ai(t)] < /OA p(Q(s), A)d /OA pia(s), A)d

+

</
0

+e€

/Ot nQ; (s)ds — /Ot 11g;(s)ds

A pi(Q7(s), A) — A pi(q(s), A) pQ7(s) — pgi(s)|ds + €

t
ds+/
0
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Since we assumed that the function g(x) was continuously differentiable with uniformly bounded first
derivatives, there exists a constant C' such that
Qi (r) —ai(r)

QU1 — alt)] < C /0 sup ds+ e (51)

—A<r<s

<C- (/0 021:28 QI(r) —qi(r) ds) (52)
+C - (t- sup |Q](r) — a(r) ) +e
—A<r<0

Now we exploit the fact that we assumed that Q7 (t) = ¢;(¢) for ¢t € [-A, 0] for our initial condition. This
assumption yields the following new bound for the difference of the scaled queue length and the fluid limit
by

t

1Q1(t) —qi(t)| < C [ sup
0 0<r<s

QI (r) — qi(r)|ds + e (53)

Note that the difference between the two equations above is the interval of the supremum inside the integral.
Now by invoking Gronwall’s lemma in Hale [1969], we have that

sup Q7 (t) — qi(t)] < e-e“T (54)
0<t<T

and since € is arbitrary, we can let it go towards zero and this proves the fluid limit. W
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