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Abstract

Fundamental stochastic models for studying the dynamics of bike sharing systems
can be found within the transient behavior of the M/M/1/k queue and related stopped
processes. We develop new techniques involving group symmetries and complex anal-
ysis to obtain exact solutions for their transition probabilities. These methods are
based on the underlying Markovian structure of these random processes and do not
involve any indirect analysis from using generating functions or Laplace transforms.
Our techniques exploit the intrinsic group symmetries for both the state spaces and
the Markov generators for all these queueing systems related to the M/M/1/k queue.
Our results complement and extend the previous M/M/1/k transient solutions given
by Takács [44].
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1 Introduction

One of the simplest, fundamental, stochastic queueing models, that describes the random
dynamics of a single server with a limited waiting customer capacity, is the M/M/1/k queue.
These features are common to communication systems as well as services that include com-
munication, healthcare, and retail. Examples of telecommunication applications for these
queues can be found in Altman and Jean-Marie [1], Pender [35], Hautphenne and Haviv
[19], Upton and Tripathi [48], Gouweleeuw [17], and Righter [38]. Moreover, M/M/1/k
queueing analytical models of the distributed coordination function (DCF), have had nu-
merous applications in the performance analysis of IEEE 802.11 networks Kosek-Szott [22],
including approximating the loss probabilities for wireless networks Altman and Jean-Marie
[1]. Finally, the simplicity of the M/M/1/k queue makes it useful in a classroom setting
Mathers [31] as a classical model for studying the queueing behavior of barbershops.

The steady state behavior of the M/M/1/k queue is simply a truncated geometric dis-
tribution. Moreover, its transient behavior is not as well know but it can easily be expressed
as a sum of exponential and trigonometric functions. Lajos Takács [44] was one of the first
to reveal this queueing transient behavior in his pioneering book. His approach was to use
techniques from linear algebra to solve for the transition probabilities. His analysis exploits
finite dimensional tri-diagonal matrices and their eigenvalues. An important consequence of
this work is that we can also derive the transition probabilities for the M/M/1/∞ queue by
taking the finite capacity queueing limit of k → ∞. These limiting results reveal a connec-
tion to sums of modified Bessel functions. This limiting model also corresponds to having
an unlimited number of parking docks for bikes along with impatient customers. They do
not wait for future bike rental opportunities when all the docks are currently empty.

Other transient performance characteristics of the M/M/1/k queue studied include Co-
hen [10] for the busy periods and the maximum number of customers simultaneously present
in the queue during this same period for an M/G/1/k queue. Moreover, Cohen [9] com-
putes the bivariate transform of the number of customers served and number of blocked
customers due to capacity constraints during a busy period. Here, they use complex anal-
ysis to represent the joint transform as a fraction of two contour integrals that involve the
Laplace–Stieltjes transform of the customers’ service time. This work was generalized by
Rosenlund [39] by computing the trivariate transform of the busy period length, the number
of customers served and the number of blocked customers during a busy period.

Currently, the M/M/1/k queue has emerged as an important model for transportation
systems such as bike sharing networks, see for example Faghih-Imani et al. [13], Hampshire
and Marla [18], Nair et al. [32], O’Mahony and Shmoys [33], Pan et al. [34], Pender et al.
[36], Tao [45], Tao and Pender [46], Vogel et al. [49], Chemla et al. [6], Raviv and Kolka
[37], Li et al. [25, 26], Samet et al. [40], Li et al. [27], Calafiore et al. [5], Li et al. [28], Legros
[23], Biondi et al. [4], Chung et al. [8], Huang et al. [20], Li and Fan [24]. One of the most
important works in this area is Schuijbroek et al. [42], where they analyze the Mt/M/1/k
as a canonical model for bike sharing systems by using the differential equations given by
the Mt/M/1/k Kolmogorov forward equations. In particular they are interested in the
probability the queue is empty, where no bikes are available, or the system is full, where
no bike returns are possible. These probabilities provide insight on how often one must
rebalance the system. We can then attempt to maximize the time period where customers
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have bikes available to pick up and docks available for dropping off a bike. Other recent
work in the context of bike sharing is by Fricker et al. [16], Fricker and Gast [15], Tao and
Pender [47], where they analyze a network of M/M/1/k through the lens of empirical process
theory. Instead of studying the network at a station level, Fricker et al. [16], Tao and Pender
[47] both propose using an empirical process perspective to look at how many stations have
exactly k bikes. This reduces the complexity from looking at the number of stations, which
is roughly 800 in NYC to looking at the maximum dock capacity, which is roughly 50.

We are inspired by these bike sharing applications to study the transient behavior of the
M/M/1/k queue. The goal of this paper is to give readers a thorough and complete treatment
of this stochastic model. Moreover, this transient analysis can be used for the optimization of
such systems as seen in [7, 41, 50]. If viewed through the lens of bike sharing applications, our
work provides many new types of queueing performance measures and explicit expressions
for them. Our work complements that of Takács in that we primarily use complex analysis
and place much less emphasis on linear algebraic techniques. Our strategy marries complex
contour integration with standard probabilistic tools such as martingales, stopping times,
and the Kolmogorov forward equations. This type of analysis grows organically out of the
sample path behavior of the underlying Markovian queueing process. Using these methods,
we avoid the use of classical generating functions and Laplace transforms. In the next
subsection, we describe the main contributions of our work and how the rest of the paper is
organized.

1.1 Main Contributions of the Paper

We make the following contributions in this work:

• We derive the transient behavior of the M/M/1/k queue by applying new complex
analytic and group symmetry methods directly to the underlying Markov process.

• Our derivation methods are a direct analysis of the transition probabilities that avoid
the use of generating functions and Laplace transforms.

• Bike sharing stations provide a context for studying M/M/1/k models of balanced
systems. These are the transient states where the system station is neither empty nor
full.

1.2 Organization of Paper

The rest of the paper is organized as follows. In Section 2, we show how the classical
M/M/1/k queue models an autonomous bike sharing station. We also discuss how modern
systems, where managers intervene to rebalance the number of bikes in the station, corre-
spond to stopped versions of this queueing process. Moreover, to solve for the M/M/1/k
transition probabilities, we first solve for a simpler queueing model where rental customers
patient wait to instantly take a bike that is returned later. We also assume an unlimited
parking docks so there is room for every returned bike. In Section 3, we call the resulting
queueing model the free process.
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Assuming a finite number of bike docks corresponds to confining this free process to the
state space for the M/M/1/k queue. In general, bike station managers may intervene when
the system reaches one of the extreme states of an empty or full bike station. In Section 4,
we model the dynamics of the system before we reach one of these states by studying the
associated absorbing process. This corresponds to constructing a random stopping time for
the free process. We can then compute the transition probabilities for this stopped process
by applying state space symmetry methods to the free process transition probabilities.

Finally, in Section 5 we apply Markov generator symmetry methods to solve for the
M/M/1/k transition probabilities as a reflecting version of the free process. This is the
stochastic model for an autonomous bike station. Finally, given all the derivations of the
formulas, we summarize them in Section 6 and make our final comments on all these results
in Section 7.

2 Modeling Autonomous Bike Sharing Stations

We begin by restricting ourselves to discussing the features of autonomous bike stations.
These are the relevant dynamic actions that are purely customer driven where the manager
does not intervene. We can then construct a simple queueing model that summarizes the
dynamics of a bike service station.

1. One group of arriving customers rent bikes that are currently parked in one of the
station docks.

2. Another group of arriving customers return their bikes if they can park them into
some empty station dock.

3. There are only a fixed number of bike station docks.

4. All customers instantly leave the bike station. This includes all customers who suc-
cessfully rent or return a bike.

2.1 Markov Model for the Number of Occupied Docks

Let {Qk(t) | t ≥ 0 } be an M/M/1/k queueing process. We define it here as the stochastic
evolution of the population for this specific Markovian birth-death process :

1. The number of bike parking docks k corresponds to a fixed threshold or upper bound
on the integer population size.

2. The bike return rate corresponds to a constant birth rate λ, whenever the integer
population size is strictly less than k. Otherwise, the rate is zero.

3. The bike rental rate corresponds to a constant death rate µ, whenever the integer
population size is non-zero. Otherwise, the rate is zero.
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Qk(t)

l{Qk(t) < k} m {Qk(t) > 0}

Figure 1: The M/M/1/k Queue as a Bike Sharing Station Model.

The process { k −Qk(t) | t ≥ 0 } is also an M/M/1/k queueing process, where the roles of λ
and µ are reversed. This models the number of empty docks in the same bike station.

Algebraically, this new queueing process is a special case of a spectral conjugate to the
original Markov process. This terminology refers to a Markov generator matrix that is similar
to some sub-Markov generator matrix (where there may be visible or concealed absorbing
states) or its transpose. This is an equivalence relation where all the sub-Markov generator
conjugates for a given generator have the same set of eigenvalues. Special cases of this
spectral symmetry include:

1. The time reversal of a Markov process.

2. The stochastic dual of a Markov process on an ordered state space.

3. The “particle - anti-particle” duality for a finite capacity queue.

We summarize our discussions by the following diagram:

Bike Station Notation M/M/1/k Queue
Initial Bike Number Qk(0) Initial Queueing State

Bike Return Rate λ Arrival Rate
Bike Rental Rate µ Service Rate

Dock Number k System Capacity
Docked Bike Numbers {Qk(t) | t ≥ 0 } Queueing Process
Empty Dock Numbers { k −Qk(t) | t ≥ 0 } Conjugate Queueing Process

Rebalance Time T = min{ t |Qk(t) = 0 or k } First Time to State 0 or k

Table 1: Notation in Bike Sharing and Queueing Perspectives.

2.2 Stopping Time Model for the Time to Station Rebalance

A Markovian model has a simple descriptor for the dynamics of what happens next. We call
this the state of the system. For our model, the state is the current number of bikes parked
in one of the k docks. Customers arriving to the station are successful when they either
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choose to return a bike to an empty dock or rent a some bike parked in occupied dock. All
such bike station states are said to be balanced.

When the station is in an empty state, then a bike rental is not possible. When it is in a
full state, then another bike return is not possible. For a non-autonomous bike station, these
are times when a station manager might intervene and add or subtract bikes to rebalance
the station.

We can model the time to rebalance as a random stopping time defined by the sample
paths of our M/M/1/k queueing process. This is the first time that the queueing process
visits state 0 or state k. We can then determine the probability distribution for the time to
rebalance by finding the exact solution for the transient distribution to the stopped version
of the queueing process.

Deriving an a exact formula for the transient distribution of this time restricted process
is actually simpler than deriving the transition probabilities for M/M/1/k queueing process.
In fact, we do the latter by showing that it has a spectral conjugate that is a variant of this
stopped process.

3 Free Process Analysis

Suppose that our bike sharing station has an unlimited number of parking docks. This
would make all customers returning a bike successful. If all the arrival rental customers were
infinitely patient, they would just wait outside the station until a new bike is returned.

Starting with a finite number of bikes waiting for customers always yields a finite number
of bikes available for rentals or a finite number of customers waiting for bikes to rent. We
call the corresponding birth-death model a free process. This gives us a sense of the customer
demand for both bikes and bike docks.

Viewing a waiting customer at the station as a “negative bike” our state space is the
entire set of integers Z. Moreover, this transforms the probabilistic dynamics of the free
process into the difference of two independent Poisson processes

Z(t) ≡ Z(0) + Π1(λt)− Π2(µt), (1)

where we let {Π1(λt)| t ≥ 0} be a rate λ Poisson process that models the bike-return counting
process and {Π2(µt)| t ≥ 0} is an independent, rate µ Poisson process that models the for
bike-rental counting process, and Z(0) some integer constant.

This process is also called a “randomized random walk” on the integers according to
Feller [14]. Moreover, when the free process is initialized at zero, the probability distribution
of the free process is also called a Skellam distribution named after statistician John Gordon
Skellam who first derived its formula Skellam [43].

We provide a Markovian state-transition diagram for the free process in Figure 2. Every
integer value state for this process has two competing exponential clocks. This means that
every state has two clocks set where their times to alarm are independent and exponentially
distributed. Their two distinct rates are λ and µ. If the alarm with rate λ goes off first, then
the process at some state n makes a transition to state n+1 that is labeled by λ. Otherwise,
a transition from state n to state n− 1 occurs with rate label µ.
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Our M/M/1/k queueing model is the double barrier reflected version of this free process,
where the lower barrier state is 0 and the upper barrier state is k. The time to rebalance
is the first time the queueing process visits either barrier. Moreover, this random stopping
time is stochastically equivalent to the first time that the free process hits either the lower or
upper barrier. A more realistic, non-autonomous bike sharing system rebalances the stations
when they are empty or full of bikes. This makes the resulting stopped queueing process
with absorbing states a more natural model for bike sharing stations.

3.1 Free Process Forward and Backward Equations

0 1

l

m

l

m

-1

l

m

l

m

:Z

Figure 2: State Transition Diagram for the Free Process.

By differentiating the probabilities for Poisson process with respect to t, we have

d

dt
P {Π (λt) = n} = λ · (P {Π (λt) = n− 1} − P {Π (λt) = n}) (2)

and call them the Kolmogorov forward equations for the Poisson process.
We have a similar set of equations for the transition probabilities of the free process. For

all initial states m and terminal states n, we have

d

dt
Pm{Z(t) = n} = λ·Pm{Z(t) = n− 1}+µ·Pm{Z(t) = n+ 1}−(λ+µ)·Pm{Z(t) = n} (3)

for all t > 0.
These equations are equivalent to functional versions of the forward equations which are

of the form

d

dt
Em [f (Z(t))] = λ · Em [f (Z(t) + 1)] + µ · Em [f (Z(t)− 1)]− (λ+ µ) · Em [f (Z(t))] , (4)

for all polynomial functions f on the integers. Transforming the Kolmogorov forward equa-
tions into the functional version can be obtained by summing over the probabilities to obtain
the expectations. Assuming the functional version gives us the forward equations for the
transition probabilities when we set f(Z(t)) equal to the indicator function {Z(t) = n}
which is

{Z(t) = n} ≡
{

1 when Z(t) = n,
0 when Z(t) 6= n.

(5)
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Hence {Z(t) = n} is like a conditional programming statement that has the value one when
the statement Z(t) = n is true and zero when Z(t) = n is false.

To give an explicit formula for the free process transition probabilities, we start by defin-
ing the following constants α, β, and γ:

α =
λ+ µ

2
, β =

√
λ

µ
, γ =

√
λµ, (6)

where α and γ, respectively, are the arithmetic and geometric means of λ and µ. Moreover,
we define the complex function δ, where1

δ(w) =
1

2
·
(
w +

1

w

)
, (7)

for all w ∈ C∗ ≡ C \ {0}. Moreover, δ satisfies the identities

δ(eiθ) = cos θ, δ(w) = δ

(
1

w

)
, and α = γ · δ(β). (8)

Since the arithmetic mean always exceeds its corresponding geometric mean, we always have
δ(β) ≥ 1 for all real values β > 0 since δ(1) = 1.

3.2 Free Transience Using Contour Integration

Theorem 3.1. Using the constant β and the symmetric complex function δ gives us

E

[(
w

β

)Z(t)]
= E

[(
w

β

)Z(0)]
· e−2γ·(δ(β)−δ(w))t. (9)

For all real values r > 0, we now have

Pm {Z(t) = n} =
βn−m

2πi
·
∮
|w|=r

wm−n · e−2γt·(δ(β)−δ(w)) dw
w
. (10)

Proof. This follows from using the functional Kolmogorov forward equations combined with
the simple polynomial

f(n) =

(
w

β

)n
, (11)

where w ∈ C∗ and so

d

dt
E

[(
w

β

)Z(t)]
= λ · E

[(
w

β

)Z(t)+1
]

+ µ · E

[(
w

β

)Z(t)−1]
− (λ+ µ) · E

[(
w

β

)Z(t)]

=

(
λ · w

β
+ µ · β

w
− (λ+ µ)

)
· E

[(
w

β

)Z(t)]

= −2γ · (δ(β)− δ(w)) · E

[(
w

β

)Z(t)]
.

1The generalization of this function in Baccelli et al. [3] uses ε instead of δ.
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The unique solution to this differential equation is Equation (9).
Using complex contour integration, the identity

1

2πi

∮
|w|=r

wn · dw
w

=

{
1 when n = 0,
0 otherwise.

(12)

for all real r > 0, gives us

{Z(t) = n} =
1

2πi

∮
|w|=r

wZ(t)−n · dw
w
. (13)

Taking expectations of both sides, we get

Pm {Z(t) = n} =
1

2πi

∮
|w|=r

Em

[(
w

β

)Z(t)−n]
dw

w
=

1

2πi

∮
|w|=r

(
w

β

)m−n
· e−2γ·(δ(β)−δ(w))t dw

w
.

(14)
Now we switch from contour integration over C to line integration over R2 in polar coordi-
nates centered at (0, 0). The contour curve is a circle, so the radius r is fixed. Since the
contour integral has the same value for all non-zero radii, we choose r = 1 or w = eiθ =
(cos θ, sin θ) for all −π < θ < π. We now have

Pm {Z(t) = n} =
βn−m

2π
·
∫ π

−π
cos ((m− n) · θ) · e−2γ·(δ(β)−cos θ)t dθ

= e−2γ·δ(β)tβn−m · 1

π

∫ π

0

cos ((m− n) · θ) · e−2γt·cos θ dθ

= e−2αtβn−m · In−m(2γt),

where In(·) is the nth modified Bessel function, which is defined to be

In(x) =
∞∑
m=0

1

m! · (m+ n)!

(x
2

)2m+n

=
1

π

∫ π

0

cos ((m− n) · θ) · e−x·cos θ dθ. (15)

As shown in Feller [14], these transition probabilities can be solved with modified Bessel
functions. A multi-dimensional analogue to these functions were introduced in Massey [29]
for free processes on the d dimensional integer lattice Zd.

3.3 Free Process Action Symmetry

Given that the cosine function is even, we have the following group symmetry for the free
process transition probabilities:

Pm {Z(t) = n}
βn−m

=
Pσ(m) {Z(t) = σ(n)}

βσ(n)−σ(m)
, (16)

for all invertible, state space transformations σ ∈ G, where

G ≡ {σ |σ(n) = n+ ` or σ(n) = −n+ ` for some ` ∈ Z and all n ∈ Z.} (17)
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From a geometric perspective, the graphs of all the functions in G are lines whose set of
slopes equal {−1, 1} and whose y-intercepts are all integers in Z. One should also notice
that algebraically, G has the following key property:

The invertible mappings of G are closed with respect to functional composition
as an operation and functional inverses.

Since the composition of functions is always an associative operation, any set G with this
property is called a group that acts on the state space. The set of slopes {−1, 1} also form
a multiplicative group. Moreover, the set of y-intercepts Z form an additive group. The
construction that builds G out of these two simpler groups is called the semi-direct product
that we denote as G = {−1, 1} ×s Z. If we liken G to a discrete version of “Euclidean rigid
motions”, then G decomposes into a multiplicative group of one-dimensional “rotations”
{1,−1} and an additive group of integer “translations” Z.

For modelling bike sharing systems, G is a set of action symmetries that preserve the
actions or operations of the bike sharing system. A bike return action, for example, is either
transformed by a given σ ∈ G into a rental action, with σ(n + 1) = σ(n)− 1 for all n, or it
stays a return action, where σ(n + 1) = σ(n) + 1. Our group symmetry relationship is now
equivalent to the identity

βσ
−1(m)−m · Pσ−1(m) {Z(t) = n} = βn−σ(n) · Pm {Z(t) = σ(n)} (18)

for all σ ∈ G.
Although the state space for the free process is Z, the state space for both the single-

barrier absorbing and reflecting processes is the positive integers Z+ ≡ {0, 1, 2, . . .}. Notice
that all elements of Z are of the form n or −n for some n ∈ Z+. This is the multiplicative
group of slopes {1,−1} acting on every n ∈ Z+. We can summarize this result in terms of
group actions as

Z/{1,−1} ∼= Z+ (19)

where we define an equivalence class that equates an integer with its own negative or additive
inverse. Moreover, note that for all n ∈ Z, we have n = −n if and only if n = 0, which is
our unique single-barrier state. We call {0} the boundary for the state space Z+.

– m

0 = – 0 Fundamental Domain

m

Figure 3: Single Barrier Symmetry Group: m→ ±m.

This also shows us that Z+ is a minimal subset of Z whose group orbit reconstructs Z.
Such a subset is called a fundamental domain with respect to the group action {1,−1}. If we
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think of multiplication by −1 as a reflection about the zero state {0}, then all these results
are summarized geometrically in Figure 3.

The state space for both the two-barrier absorbing and reflection processes related to
M/M/1/k queueing is the finite set {0, 1, . . . , k} where 0 and k are the two boundary states.
Now define Gk to be a subgroup of G, where

Gk ≡ {1,−1} ×s 2kZ. (20)

Proposition 3.2. Our M/M/1/k state space is a fundamental domain with respect to the
group action of Gk on Z or

Z/Gk = (Z/2kZ) /{−1, 1} ∼= {0, 1, . . . , k}. (21)

Also note that for all integers n, we have n = −n if and only if n = 0 and n = 2k−n if and
only if n = k.

Proof. This follows from the argument

(Z/2kZ) /{−1, 1} ∼= {−k + 1, . . . ,−1, 0, 1, . . . , k}/{−1, 1} ∼= {0, 1, . . . , k}. (22)

All these symmetry results are summarized in Figures 3 and 4.

m– mm – 2k – m + 2k– m – 2k m + 2k

0 = – 0 k = – k + 2k

Fundamental
Domain

Figure 4: Double Barrier Symmetry Group: m→ ±m+ 2k` for all ` ∈ Z.

4 Absorption Process Analysis

Now that we have given a thorough analysis of the free process, we show how to use the free
process to study other quantities and performance measures of interest to related queueing
systems. We can model the autonomous evolution of a bike sharing station until it becomes
balanced as a stopped version of both the queueing and free processes {Q∗k(t) | t ≥ 0}, where

Q∗k(t) ≡ Qk (T0,k ∧ t) where T0,k ≡ min {t |Qk(t) = 0 or k} . (23)
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We call this stopped process our absorbing process. The transition probabilities for this
absorbing process decompose as follows:

Pm {Q∗k(t) = n} =


Pm {Qk(t) = n, T0,k > t} when 0 < m < k and 0 < n < k,
0 when m = 0 or m = k but m 6= n,
Pm {Qk(T0,k) = n, T0,k ≤ t} when m 6= n but n = 0 or n = k,
1 when m = n = 0 or m = n = k.

(24)
The first case gives the transition probabilities for the transient states. The third case gives
the transitions from the transient states to the absorbing states. These are also referred to
as exit probabilities. We provide a visualization of the absorbing process in Figure 5 where
we see that there are no arrows that flow outward of the states {0, k}.

4.1 Absorption Process Forward and Backward Equations

l l

k-1 k0 1

m m m

l

* :
k
Q

Figure 5: State Transition Diagram for the Absorbing Process with Capacity k.

Since the absorbing states for this process are the boundary states {0, k}, for all states
0 < m < k and 0 < n < k and t ≥ 0, the forward equations for the absorbing process are

d

dt
Pm{Q∗k(t) = n}=λ·Pm{Q∗k(t) = n− 1}+µ·Pm{Q∗k(t) = n+ 1}−(λ+µ)·Pm{Q∗k(t) = n} ,

(25)
and the backward equations for the absorbing process are

d

dt
Pm{Q∗k(t) = n}=λ · Pm+1{Q∗k(t) = n}+ µ · Pm−1{Q∗k(t) = n} − (λ+ µ) · Pm{Q∗k(t) = n} ,

(26)
since

Pm {Qk(t) = 0, T0,k > t} = Pm {Qk(t) = k, T0,k > t} = 0 (27)

and
P0 {Qk(t) = n, T0,k > t} = Pk {Qk(t) = n, T0,k > t} = 0. (28)

4.2 Absorption Transience Using Action Symmetries

We can give an exact solution for the transition probabilities of the absorbing process in
terms of the solution we have for the free process. We do this by using the group symmetry

13



property for the free process. We begin by working out the case of k =∞, which is absorbing
process for the M/M/1/∞ queue. The forward equations are the same are for the free process
for all positive integers m and n with m+ n > 0 and the boundary conditions

Pm {Q∞(t) = 0, T0 > t} = P0 {Q∞(t) = n, T0 > t} = 0 (29)

where T0 ≡ T(0,∞).

Proposition 4.1. For all positive integers m and n we have

Pm {Q∗∞(t) = n} = Pm {Z(t) = n} − β−2m · P−m {Z(t) = n} (30)

and

Pm {Q∗∞(t) = n} = Pm {Z(t) = n} − β2n · Pm {Z(t) = −n} . (31)

Proof. Using our group symmetry properties, we can verify these formulas in 3 steps:

1. Show that these expressions solve the same set of forward equations for the free process.

This follows from the linearity of these differential equations and Equation (30).

2. Show that when only the terminal value equals 0, then the expression equals zero.

As a special case of Equation (31). we have

Pm {Q∗∞(t) = 0} = Pm {Z(t) = 0} − Pm {Z(t) = 0} = 0 (32)

3. Show that when t = 0, the expression equals one instead of zero if and only if the initial
state equals the terminal state.

This follows from our state space being a fundamental domain for the group multipli-
cation action of {1,−1}. Moreover, all the interior states are fixed points only for the
identity mapping of multiplication by 1.

After observing that 0 = n−n and 2n = n− (−n), we can apply these arguments to the
M/M/1/k queue absorbing process. Below is a simplified version of an argument given for
closed cyclic Jackson networks in Baccelli et al [3].

Proposition 4.2. For all integers 0 < m < k and 0 < n < k we have

Pm {Q∗k(t) = n} =
∑
σ∈Gk

sgn(σ) · βσ(m)−m · Pσ(m) {Z(t) = n} (33)

and

Pm {Q∗k(t) = n} =
∑
σ∈Gk

sgn(σ) · βn−σ(n) · Pm {Z(t) = σ(n)} . (34)

14



Proof. Using our group symmetry properties, we show this by proving that

Pm {Q∗k(t) = n} =
∞∑

`=−∞

β2k` · Pm+2k` {Z(t) = n} − β−2m+2k` · P−m+2k` {Z(t) = n} (35)

and

Pm {Q∗k(t) = n} =
∞∑

`=−∞

β−2k` ·Pm {Z(t) = n+ 2k`}−β2n−2k` ·Pm {Z(t) = −n+ 2k`} . (36)

We can verify these formulas in 3 steps:

1. Show that these expressions solve the same set of forward equations for the free process.

This follows from the linearity of these differential equations and Equation (33).

2. Show that when only the terminal value equals 0 or k, then the expression equals zero.

As special cases of Equation (34). we have

Pm {Q∗k(t) = 0} =
∑
σ∈Gk

sgn(σ) · β−2k` · Pm {Z(t) = σ(0)} (37)

=
∞∑

`=−∞

β−2k` · Pm {Z(t) = 2k`} −
∞∑

`=−∞

β−2k` · Pm {Z(t) = 2k`} (38)

= 0 (39)

and

Pm {Q∗k(t) = k} =
∑
σ∈Gk

sgn(σ) · βk−σ(k) · Pm {Z(t) = σ(k)} (40)

=
∞∑

`=−∞

β−2k` · Pm {Z(t) = k + 2k`} (41)

−
∞∑

`=−∞

β−2k(`−1) · Pm {Z(t) = k + 2k · (`− 1)}

= 0. (42)

3. Show that when t = 0, the expression equals one instead of zero if and only if the initial
state equals the terminal state.

This follows from our state space being a fundamental domain for the group action of
Gk. Moreover, all the interior states are fixed points only for the identity mapping.
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4.3 Absorption Transience Using Contour Integration

Now we transform the solution for the transition probabilities for the absorbing process
from an infinite sum over the transition probabilities for the free process to a finite sum of
exponential and trigonometric terms.

Theorem 4.3. For all positive integers m and n we have

Pm {Q∗k(t) = n} =
2βn−m

k
·
k−1∑
`=1

sin
`mπ

k
· sin `nπ

k
· e−2γ·(δ(β)−cos

π`
k )t. (43)

This is a special case of higher dimensional closed cyclic networks as found in Baccelli
et al. [3].

Proof. We have already defined α, β, γ, and δ(w). Now we introduce the anti-symmetric
function εn(w), where2

εn(w) ≡ wn − w−n

2
, εn(w) = −εn(w−1) and εn(eiθ) = −i · sinnθ (44)

for all −π < θ ≤ π and w ∈ C.
Combining Equation (34) or (36) with the contour integral representations for the free

process transition probabilities gives us

Pm {Q∗k(t) = n} =
∞∑

`=−∞

β−2k` ·
(
Pm {Z(t) = n+ 2k`} − β2n · Pm {Z(t) = −n+ 2k`}

)
=
βn−m

2πi
·
∞∑

`=−∞

∮
|w|=r(`)

(
wm−2k`−n − wm−2k`+n

)
· e−2γ·(δ(β)−δ(w))t dw

w

=
βn−m

πi
·
∞∑

`=−∞

∮
|w|=r(`)

wm−2k` · εn(w−1) · e−2γ·(δ(β)−δ(w)t) dw
w

Since we are free to choose any radius value r(`) > 0 for the contour integral indexed by the
integer `, we select two values r+ > 1 and r− < 1 that allow us the pass their respective
summations inside of their corresponding contour integrals. Using this technique allows us

2The generalization of this function in Baccelli et al. [3] uses δ instead of ε.
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to collapse this infinite sum into a finite sum of contour integrals.

Pm {Q∗k(t) = n} =
βn−m

πi

∮
|w|=r+>1

wm ·
∞∑
`=0

w−2k` · εn(w−1) · e−2γ·(δ(β)−δ(w)t) dw
w

+
βn−m

πi

∮
|w|=r−<1

wm ·
−1∑

`=−∞

w−2k` · εn(w−1) · e−2γ·(δ(β)−δ(w)t) dw
w

=
βn−m

πi

∮
|w|=r+>1

wm+2k · εn(w−1) · e−2γ·(δ(β)−δ(w))t

w2k − 1

dw

w

− βn−m

πi

∮
|w|=r−<1

wm+2k · εn(w−1) · e−2γ·(δ(β)−δ(w))t

w2k − 1

dw

w

=
βn−m

k
·
2k−1∑
`=0

1

2πi

∮
|w−w`2k|=η

wm · εn(w−1) · e−2γ·(δ(β)−δ(w))t · 2k · w2k−1

w2k − 1
dw,

where
w2k ≡ e2πi/2k = eπi/k (45)

and all 2k new contours are circles of some sufficiently small radii η > 0 uniquely centered
about each 2k-th root of unity. Figure 6 reveals the underlying geometry and topology of the
technique. The difference of the red contour integrals is equivalent to integrating counter-
clockwise around the radius r+ circle centered at zero minus the integrating counter-clockwise
around the radius r− circle. In effect, we are integrating clockwise around the circle of radius
r−. The union of these oriented circles is the boundary of the annulus {w | r− < |w| < r+ }.
We then deform this boundary to the 2k radius η blue circles about the roots of unity. The
resulting residue is the same as long as the deformations do not cross any singularities.

The rest follows from using the logarithmic derivative to show that

w2k − 1 =
k∏

`=−k+1

(w − w`2k) ⇐⇒
2k · w2k−1

w2k − 1
=

d

dw
log(w2k − 1) =

k∑
`=−k+1

1

w − w`2k
. (46)

Now we make repeated use of the Cauchy integral formula around the smaller contour circles
about the 2k roots of unity. Finally, we have

Pm {Q∗k(t) = n} =
βn−m

k
·
k−1∑
`=−k

(w`2k)
m · εn(w−`2k ) · e−2γ·(δ(β)−δ(w`2k))t (47)

=
2βn−m

k
·
k−1∑
`=1

εm(w`2k) · εn(w−`2k ) · e−2γ·(δ(β)−δ(w`2k))t (48)

=
2βn−m

k
·
k−1∑
`=1

sin
`mπ

k
· sin `nπ

k
· e−2γ·(δ(β)−cos

π`
k )t. (49)

17



Real
Axis

Imaginary Axis

 2 2 1

2 2 2, , ,1 , k

k k k   −=

Figure 6: Contour Integrals and their Resulting Residues.

4.4 Absorbing States and Times

Now we give an exact formula for the probability of staying balanced at time t.

Theorem 4.4. For all positive integers m, the probability of the time to rebalance exceeding
time t equals

Pm {T0,k > t} =
β−m

k
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
δ(β)− cos `π

k

· e−2γ·(δ(β)−cos
`π
k )t. (50)

Moreover, we have

Em [T0,k ∧ t] =
β−m

2kγ
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
(
δ(β)− cos `π

k

)2 ·
(

1− e−2γ·(δ(β)−cos
`π
k )t
)
, (51)

which yields a formula for the mean time to rebalance, which is

Em [T0,k] =
β−m

2kγ
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
(
δ(β)− cos `π

k

)2 . (52)

Proof. Our absorbing time T0,k for the M/M/1/k queue corresponds to the time of balance
for a bike sharing station. Thus the event {T0,k > t} is equivalent to the stopped queueing
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Figure 7: State Transition Diagram for the Sub-Markovian Absorbing Process with State k
Concealed.

process belonging to one of the balanced or transient states found in the set {1, . . . , k − 1}.
Figure 8 identifies the rate of flow out of the set of balanced states. This equals the sum
of the bike return rate times the probability that the station has k − 1 bikes plus the bike
rental rate times the probability that the station has only 1 bike. This gives us

− d

dt
Pm {T0,k > t} = λ · Pm {Q∗k(t) = k − 1}+ µ · Pm {Q∗k(t) = 1} . (53)

Now when we integrate from t to ∞, we obtain

l l

k-1 k0 1

m m m

l

* :
k
Q

Figure 8: Net Flow for the Absorbing Process out of the Transient States.

Pm {T0,k > t} = λ ·
∫ ∞
t

Pm {Q∗k(s) = k − 1} ds+ µ ·
∫ ∞
t

Pm {Q∗k(s) = 1} ds (54)

=
λβk−1−m

γk
·
k−1∑
`=1

sin `mπ
k
· sin (k−1)`π

k

δ(β)− cos π`
k

· e−2γ·(δ(β)−cos
`π
k )t (55)

+
µβ1−m

γk
·
k−1∑
`=1

sin `mπ
k
· sin `π

k

δ(β)− cos `π
k

· e−2γ·(δ(β)−cos
π`
k )t (56)

=
1

kβm
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
δ(β)− cos `π

k

· e−2γ·(δ(β)−cos
`π
k )t. (57)
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Setting t = 0, gives us the identity

1

kβm
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
δ(β)− cos `π

k

= 1. (58)

Integrating over time from 0 to t, gives us the mean time to rebalance before time t. Taking
the limit of t→∞ gives us a formula for the mean time to rebalance.

Now we derive the probability distribution for being unbalanced i.e. the queue is absorbed
into the empty state {0} or the full state {k}.

Proposition 4.5. For all integers 0 < m < k, we have

Pm {Qk (T0,k) = k} =
βk−m

k
·
k−1∑
`=1

sin `mπ
k
· sin (k−1)`π

k

δ(β)− cos `π
k

(59)

and

Pm {Qk (T0,k) = 0} =
β−m

k
·
k−1∑
`=1

sin `mπ
k
· sin `π

k

δ(β)− cos `π
k

. (60)

Proof. We have

d

dt
Pm {Q∗k(t) = 0} = µ ·Pm {Q∗k(t) = 1} =

2γ

kβm
·
k−1∑
`=1

sin
`mπ

k
· sin `π

k
·e−2γ·(δ(β)−cos

`π
k )t. (61)

A similar argument gives us

d

dt
Pm {Q∗k(t) = k} =

2γβk

kβm
·
k−1∑
`=1

sin
`mπ

k
· sin (k − 1)`π

k
· e−2γ·(δ(β)−cos

`π
k )t. (62)

Integrating over the positive reals gives us the exit probability from the transient states to
either the absorbing full state or the absorbing empty state.

By definition, the M/M/1/k queueing process before the time of rebalance behaves just
like the free process. A special case of a martingale argument that was used for higher
dimensional networks in Baccelli and Massey Baccelli and Massey [2] gives us the following
expression

Em [Q∗k(t)] = m+ (λ− µ) · Em [T0,k ∧ t] . (63)

4.5 Quasi-Steady State Absorption Distributions and Means

Now we study the long term state of the system, given that the rare event that absorption
has not yet happened.
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Theorem 4.6. The following limiting distribution exists,

p∗(n) ≡ lim
t→∞

Pm {Q∗k(t) = n |T0,k > t} =
2βn ·

(
δ(β)− cos π

k

)
· sin nπ

k

(1 + βk) · sin π
k

. (64)

Moreover, initializing with this distribution gives us

P∗ {Q∗k(t) = n} = p∗(n) · e−2γ·(δ(β)−cos
π
k )t and P∗ {T0,k > t} = e−2γ·(δ(β)−cos

π
k )t (65)

for all t > 0, where

E∗T0,k =
1

2γ ·
(
δ(β)− cos π

k

) . (66)

Finally, we have

E∗ [Q∗k(t)] =
kβk

1 + βk
− 2 ε1(β) · e−2γ·(δ(β)−cos πk )t

δ(β)− cos π
k

. (67)

This limit is called the quasi-steady state distribution for the transient states of the
M/M/1/k queue with respect to the time to rebalance T0,k.

Proof. For all 0 < n < k, we now have

P∗ {Q∗k(t) = n} =
k−1∑
m=1

p∗(m) · Pm {Q∗k(t) = n}

=
k−1∑
m=1

p∗(m) · 2βn−m

k
·
k−1∑
`=1

sin
`mπ

k
· sin `nπ

k
· e−2γ·(δ(β)−cos

π`
k )t

=
p∗(m)

sin mπ
k

·
k−1∑
`=1

sin
`nπ

k
· e−2γ·(δ(β)−cos

π`
k )t · 2

k
·
k−1∑
m=1

sin
mπ

k
sin

`mπ

k
.

This gives us the quasi-stationarity result since the ratio p∗(m)/ sin mπ
k

is independent of m
and

P` {Q∗k(0) = 1} =
2

k
·
k−1∑
m=1

sin
mπ

k
sin

`mπ

k
=

{
1 when ` = 1,
0 when ` 6= 1,

(68)

Moreover, since

E∗ [Q∗k(t)] = E∗ [Q∗k(t), T0,k > t] + E∗ [Q∗k (T0,k) , T0,k ≤ t] , (69)

we then have

E∗[Q
∗
k(t)] =

k−1∑
n=1

n · P∗ {Q∗k(t) = n}+ kλ ·
∫ t

0

P∗ {Q∗k(s) = k − 1} ds

=
k−1∑
n=1

n · p∗(n) · e−2γ·(δ(β)−cos
π
k
)t + kλ · p∗(k − 1) ·

∫ t

0

e−2γ·(δ(β)−cos
π
k
)s ds

=
2
(
δ(β)− cos π

k

)
(1 + βk) · sin π

k

·

(
k−1∑
n=1

n · βn · sin nπ
k

)
· e−2γ·(δ(β)−cos

π
k
)t

+
kβk

1 + βk
·
(
1− e−2γ·(δ(β)−cos

π
k
)t
)
.
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Since the quasi-steady state distribution sums to one, we have the identity

k−1∑
m=1

βm · sin mπ
k

=
(1 + βk) · sin π

k

2
(
δ(β)− cos π

k

) . (70)

Differentiating with respect to β and then multiplying by β gives us

k−1∑
m=1

mβm · sin mπ
k

=
(1 + βk) · sin π

k

2
(
δ(β)− cos π

k

) · ( kβk

1 + βk
− β − 1/β

δ(β)− cos π
k

)
. (71)

Finally, we have

E∗ [Q∗k(0)] =
2
(
δ(β)− cos π

k

)
(1 + βk) · sin π

k

·

(
k−1∑
m=1

mβm · sin mπ
k

)
=

kβk

1 + βk
− β − 1/β

δ(β)− cos π
k

(72)

and

E∗ [Q∗k(t)] = E∗ [Q∗k(0)] · e−2γ·(δ(β)−cos
π
k
)t +

kβk

1 + βk
·
(
1− e−2γ·(δ(β)−cos

π
k
)t
)

(73)

=

(
kβk

1 + βk
− β − 1/β

δ(β)− cos π
k

)
· e−2γ(δ(β)−cos

π
k
)t +

kβk

1 + βk
·
(
1− e−2γ·(δ(β)−cos

π
k
)t
)

(74)

=
kβk

1 + βk
− 2 ε1(β) · e−2γ·(δ(β)−cos πk )t

δ(β)− cos π
k

. (75)

This completes the proof.

5 Reflection Process Analysis

In this section, we exploit the free process and absorbed process analysis of the previous
sections to develop new results for the doubly reflected M/M/1/k queue. In Figure 9, we
provide a state transition diagram for the M/M/1/k queue.
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Figure 9: State Transition Diagram for the Reflecting Process with Capacity k.
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5.1 Reflection Process Forward and Backward Equations

First, we start off with the Kolmogorov forward equations for the states of the M/M/1/k
queue. The Kolmogorov forward equations, for all states 0 < n < k, are

d

dt
Pm {Qk(t) = n} = λ · Pm{Qk(t) = n− 1}+ µ · Pm{Qk(t) = n+ 1} (76)

− (λ+ µ) · Pm{Qk(t) = n} .

Moreover, on the boundary we have that

d

dt
Pm{Qk(t) = k} = λ · Pm{Qk(t) = k − 1} − µ · Pm{Qk(t) = k} , (77)

and
d

dt
Pm {Qk(t) = 0} = µ · Pm {Qk(t) = 1} − λ · Pm {Qk(t) = 0} . (78)

5.2 Action Expansion for a Markov Queueing Generator

We can give a matrix summary for the forward and backward equations as

d

dt
P(t) = P(t) ·A = A ·P(t). (79)

with k + 1-dimensional operators or square matrices

P(t) =


P0{Qk(t) = 0} P0{Qk(t) = 1} · · · P0{Qk(t) = k}
P1{Qk(t) = 0} P1{Qk(t) = 1} · · · P1{Qk(t) = k}

...
...

. . .
...

Pk{Qk(t) = 0} Pk{Qk(t) = 1} · · · Pk{Qk(t) = k}

 (80)

and

A =



−λ λ 0 · · · 0 0

µ −(λ+ µ) λ
. . . 0 0

0 µ −(λ+ µ)
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . −(λ+ µ) λ

0 0 0 · · · µ −µ


(81)

We call A the Markov generator for the Markovian M/M/1/k queueing process. We can
express this generator more compactly in terms of more fundamental operators, namely

A = λR + µL− λRL− µLR. (82)
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We call this the action expansion for A, where R is the right-shift operator on row vectors
with

R ≡



0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . 0 1

0 0 0 · · · 0 0


⇐⇒ ejR =

{
ej+1 when j = 0, 1, . . . , k − 1,
0 when j = k,

(83)

and {e0, e1, . . . , ek} is defined to be the set of unit basis vectors for the states {0, 1, . . . , k}
respectively. Note that they form an orthonormal basis for a k+ 1 dimensional vector space.

Similarly, we define L to be the left-shift operator where

L =



0 0 0 · · · 0 0

1 0 0
. . . 0 0

0 1 0
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . 0 0

0 0 0 · · · 1 0


⇐⇒ ejL =

{
0 when j = 0,
ej−1 when j = 1, 2, . . . , k.

(84)

The operators R and L have the following set of algebraic relations

Lk+1 = Rk+1 = 0, LRL = L, RLR = R, and LT = R (85)

We call R and L action operators. In terms of how they act on unit basis vectors, they
encode our M/M/1/k transitions for bike returns (arrivals) and bike rentals (departures)
respectively. Observe that both products LR and RL are both projection operators, since
(LR)2 = LR and (RL)2 = RL. The projection operator LR validates all states that are
non-empty. These are the same states where a service departure is possible and e0LR = 0.
Similarly, RL validates all the non-full states, which excludes state k and is equivalent to
having ekRL = 0.

5.3 Spectral Symmetry for a sub-Markov Generator

For our specific Markov generator, we use its action expansion to construct an invertible
transformation where the resulting matrix is a sub-Markov generator and it has the same
set of eigenvalues. We call this new matrix the spectral conjugate of the original Markov
generator.
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Lemma 5.1. The M/M/1/k Markov generator has a spectral conjugate Â where

Â =



0 0 0 · · · 0 0

λ −(λ+ µ) µ
. . . 0 0

0 λ −(λ+ µ)
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . −(λ+ µ) µ

0 0 0 · · · λ −(λ+ µ)


. (86)

Moreover, we can show that for all 0 ≤ m ≤ k and 0 ≤ n ≤ k we have

Pm{Qk(t) ≥ n} = Pk+1−n{Q∗k+1(t) ≥ k + 1−m}. (87)

The operator Â is a sub-Markovian generator for an M/M/1/k+1 absorbing process, where
the roles of λ and µ are reversed. Here the return rate is µ and the rental rate is λ. The
balanced or transient states here belong to the set {1, . . . , k}, the absorbing state explicitly
shown is 0, and the concealed absorbing state is k + 1. The result is a k + 1 dimensional
square matrix for its generator. Also note that the “particle, anti-particle” dual to this
process is

{
Q∗k+1(t) |t ≥ 0

}
, where we conceal the empty state 0.

Proof. From our action decomposition for M/M/1/k generators, we have

A = (λR−µLR) · (I−L) and Â ≡ λL+µLR2− (λ+µ)LR = (λL−µLR) · (I−R). (88)

We now see that
Â =

(
(I− L) ·A · (I− L)−1

)T
. (89)

Finally note that similarity transformations and transposes are both invertible and spectral
preserving.

For the second result, we construct the following operators

(I− L)−1 =
∞∑
j=0

Lj =
k∑
j=0

Lj =



1 0 0 · · · 0 0

1 1 0
. . . 0 0

1 1 1
. . . 0 0

...
. . . . . . . . . . . .

...

1 1 1
. . . 1 0

1 1 1 · · · 1 1


(90)

and

(I−R)−1 =
∞∑
j=0

Rj =
k∑
j=0

Rj =



1 1 1 · · · 1 1

0 1 1
. . . 1 1

0 0 0
. . . 1 1

...
. . . . . . . . . . . .

...

0 0 0
. . . 1 1

0 0 0 · · · 0 1


. (91)
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If X is a random variable with values from our state space {0, 1, . . . , k}, define eX to be
the following random vector of indicator functions

eX ≡
k∑
j=0

{X = j} ej. (92)

This gives us

eX · (I− L)−1 ≡
k∑
j=0

{X ≥ j} ej and eX · (I−R)−1 ≡
k∑
j=0

{X ≤ j} ej. (93)

If we take expectations and use the identity E{X = j} = P{X = j} then

E [eX ] ≡
k∑
j=0

P {X = j} ej, (94)

which encodes the distribution for X as a probability vector. Moreover, we also get

E [eX ] · (I− L)−1 ≡
k∑
j=0

P {X ≥ j} ej and E [eX ] · (I−R)−1 ≡
k∑
j=0

P {X ≤ j} ej. (95)

The similarity and transpose relationships between A and Â now give us

exp(tA) · (I− L)−1 =
(

exp(tÂ) · (I−R)−1
)T

, (96)

This encodes the relationship between the probability distributions Qk(t) and k+1−Q∗k+1(t).

We now conclude this section with simple consequence of this lemma.

Corollary 5.2. Since a tail distribution is a decreasing function of the state space, then for
all 0 ≤ m < k and 0 ≤ m ≤ k, we have

Pm {Qk(t) ≤ n} ≤ Pm+1 {Qk(t) ≤ n} . (97)

Any process that has this specific type of a spectral conjugate is said to be Möbius
monotone, see [30] for more details. These properties hold for all birth-death processes.

5.4 Reflection Transience Using Spectral Symmetry

Using spectral symmetry, we can derive reflection transience in terms of absorbing transience.
We begin with a useful εm function identity.

Lemma 5.3. For all complex constants a and w such that δ(a) 6= δ(w), we have

2
n∑
j=1

aj · εj(w) =
ε1(w) + an · (a · εn(w)− εn+1(w))

δ(a)− δ(w)
. (98)
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Figure 10: State Transition Diagram for the Sub-Markovian, Absorbing Conjugate with
Capacity k + 1 to the Reflecting Process with Capacity k.

Proof. Observing that ε0(w) = 0 and

δ(w) · εn(w) =
εn+1(w) + εn−1(w)

2
, (99)

it follows that

2 δ(w) ·
n∑
j=1

ajεj(w) =
n∑
j=1

aj · (εj+1(w) + εj−1(w))

=
1

a
·

n∑
j=1

aj+1 · εj+1(w) + a ·
n∑
j=1

aj−1 · εj−1(w)

= 2 δ(a) ·
n∑
j=1

aj · εj(w) +
1

a
· an+1 · εn+1(w)− ε1(w)− a · an · εn(w)

and the rest follows.

Now we give the exact solution to the transition probabilities for the M/M/1/k queueing
or reflecting process:

Theorem 5.4. For all integers 0 ≤ m ≤ k and 0 ≤ n ≤ k, we have

Pm{Qk(t) = n} =
(1− ρ) · ρn

1− ρk+1

+
βn−m

k + 1
·

k∑
`=1

(
sin `nπ

k+1
− β · sin `·(n+1)π

k+1

)
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t

(100)

This is the formula given in Takács [44].

Proof. Since
Pm{Qk(t) = n} = Pm{Qk(t) ≥ n} − Pm{Qk(t) ≥ n+ 1}, (101)
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we need only show that

Pm{Qk(t) ≥ n} (102)

=
ρn − ρk+1

1− ρk+1
+
βn−m

k + 1
·

k∑
`=1

sin `nπ
k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t.

Using the 2k + 2 roots of unity or

w2k+2 = e2πi/(2k+2) = eπi/(k+1), (103)

we can rewrite these transient tail distributions as

Pm{Qk(t) ≥ n} (104)

=
ρn − ρk+1

1− ρk+1
+
βn−m

k + 1
·

k∑
`=1

εn(w`2k+2) ·
(
εm(w−`2k+2)− β · εm+1(w

−`
2k+2)

)
β ·
(
δ(β)− δ(w`2k+2)

) · e−2γ·(δ(β)−cos
`π
k+1

)t.

Now we use our spectral conjugate generator Â, which gives us

Pm{Qk(t) ≥ n} = Pk+1−n{Q∗k+1(t) ≥ k + 1−m}

= Pk+1−n{Q∗k+1(t) = k + 1}+
m∑
j=1

Pk+1−n{Q∗k+1(t) = k + 1− j} (105)

= λ ·
∫ t

0

Pk+1−n{Q∗k+1(t)(s) = k} ds+
m∑
j=1

Pk+1−n{Q∗k+1(t) = k + 1− j}.

(106)

Next, we replace all the absorbing probabilities by their spectral expansions. We then use
the identities

εm
(
w`2k
)

= (−1)`+1 · εk+1−m
(
w`2k
)

=⇒ εm
(
w`2k
)
· εn
(
w−`2k

)
= εk+1−m

(
w`2k
)
· εk+1−n

(
w−`2k

)
.

(107)
Combining these results, we now have

Pm{Qk(t) ≥ n} = λ ·
∫ t

0

2βn−1

k + 1
·

k∑
`=1

εk+1−n(w`2k+2) · εk(w−`2k+2) · e
−2γ·(δ(β)−δ(w`2k+2))s ds

(108)

+
m∑
j=1

2βn−j

k + 1
·

k∑
`=1

εk+1−n(w`2k+2) · εk+1−j(w
−`
2k+2) · e

−2γ·(δ(β)−δ(w`2k+2))t

= λ · 2βn−1

k + 1
·

k∑
`=1

εn(w`2k+2) · ε1(w−`2k+2)

2γ ·
(
δ(β)− δ(w`2k+2)

) · (1− e−2γ·(δ(β)−δ(w`2k+2))t
)

(109)

+
2βn

k + 1
·

k∑
`=1

εn(w`2k+2) ·

(
m∑
j=1

β−j · εj(w−`2k+2)

)
· e−2γ·(δ(β)−δ(w`2k+2))t.
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Applying Lemma 5.3, this simplifies to

Pm{Qk(t) ≥ n} =
βn

k + 1
·

k∑
`=1

εn(w`2k+2) · ε1(w−`2k+2)

δ(β)− δ(w`2k+2)
·
(

1− e−2γ·(δ(β)−δ(w`2k+2))t
)

(110)

+
βn

k + 1
·

k∑
`=1

εn(w`2k+2) · ε1(w−`2k+2)

δ(β)− δ(w`2k+2)
· e−2γ·(δ(β)−δ(w`2k+2))t

+
βn−m

k + 1
·

k∑
`=1

εn(w`2k+2) ·
(
β−1 · εm(w−`2k+2)− εm+1(w

−`
2k+2)

)
δ(β)− δ(w`2k+2)

· e−2γ·(δ(β)−δ(w`2k+2))t

=
βn

k + 1
·

k∑
`=1

εn(w`2k+2) · ε1(w−`2k+2)

δ(β)− δ(w`2k+2)
(111)

+
βn−m

k + 1
·

k∑
`=1

εn(w`2k+2) ·
(
β−1 · εm(w−`2k+2)− εm+1(w

−`
2k+2)

)
δ(β)− δ(w`2k+2)

· e−2γ·(δ(β)−δ(w`2k+2))t.

Since we know the steady state distribution for the M/M/1/k queue, then we must have

βn

k + 1
·

k∑
`=1

εn(w`2k+2) · ε1(w−`2k+2)

δ(β)− δ(w`2k+2)
=

(1− ρ) · ρn

1− ρk+1
(112)

and this completes the proof.

5.5 Mean Reflection Transience

Using the functional version of the Kolmogorov forward equations gives us the following
expression for the mean transient queue length.

d

dt
Em [Qk(t)]

= λ · Pm {Qk(t) < k} − µ · Pm {Qk(t) > 0}

= λ ·

 1− ρk

1− ρk+1
− βk−m

k + 1
·

k∑
`=1

sin k`π
k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t


− µ ·

ρ− ρk+1

1− ρk+1
+
β1−m

k + 1
·

k∑
`=1

sin `π
k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t

 .

Now observe that in steady state, the flow into a queue equals the flow out or

λ ·
(

1− ρk

1− ρk+1

)
= µ · ρ− ρ

k+1

1− ρk+1
. (113)
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Combining this with λ = γβ and µ = γ/β gives us

d

dt
Em [Qk(t)]

= γβ · β
k−m

k + 1
·

k∑
`=1

(−1)` · sin `π
k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t

− γ

β
· β

1−m

k + 1
·

k∑
`=1

sin `π
k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t

=
γβ−m

k + 1
·

k∑
`=1

(
βk+1 · (−1)` − 1

)
· sin `π

k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · ·e−2γ·(δ(β)−cos
`π
k+1

)t.

Integrating from t to infinity and taking the negative, we have

Em[Qk(t)] =
ρ

1− ρ
− (k + 1) · ρk+1

1− ρk+1
(114)

+
β−m

k + 1
·

k∑
`=1

(
1− βk+1 · (−1)`

)
· sin `π

k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
2β ·

(
δ(β)− cos `π

k+1

)2 · e−2γ·(δ(β)−cos
`π
k+1

)t,

where we now have the identity

m =
ρ

1− ρ
− (k + 1) · ρk+1

1− ρk+1

+
β−m

k + 1
·

k∑
`=1

(
1− βk+1 · (−1)`

)
· sin `π

k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
2β ·

(
δ(β)− cos `π

k+1

)2 . (115)

5.6 Moments for Reflection Transience

Using the proof technique from computing the mean, we show how to use the same technique
to derive expressions for any moment of the queue length. We first start with deriving
expressions for the functional Kolmogorov forward equations below.

Lemma 5.5. Let the time derivative of a function of the transient queue length have the
following representation

d

dt
Em [f(Qk(t))] =

k−1∑
j=1

aj · e−bjt where lim
t→∞

Em [f(Qk(t))] = E [f(Qk)] (116)

and bj > 0 for all j = 1, . . . , k − 1. Then we have

Em [f(Qk(t))] = f(m) +
k−1∑
j=1

aj
bj
· (1− e−bjt) = E [f(Qk)]−

k−1∑
j=1

aj
bj
· e−bjt, (117)
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where
k−1∑
j=1

aj
bj

= E [f(Qk)]− f(m). (118)

Proof. The proof follows immediately from integration of the time derivative from 0 to t.

The above result is useful as it shows that a nice recursion can be developed for higher
moments in terms of lower moments and the distribution of the queue length at 0 and
k. Thus, we can use this to derive a new recursion for the scaled factorial moments of
the M/M/1/k queue. The following expression derives a recursion for the scaled factorial
moments of the M/M/1/k queue.

Theorem 5.6. The time derivative of the lth scaled factorial moment of the M/M/1/k queue
is given by

d

dt
Em

[(
Qk(t)

`

)]
= λ · Em

[(
Qk(t)

`− 1

)]
+ µ ·

`−1∑
j=0

(−1)`−j · Em

[(
Qk(t)

j

)]
− λ ·

(
k

`− 1

)
· Pm{Qk(t) = k}+ µ · (−1)`−1 · Pm{Qk(t) = 0}. (119)

Proof. Using the generalized binomial coefficient identities,(
n

`

)
=

(
n− 1

`

)
+

(
n− 1

`− 1

)
and

(
−1

`

)
= (−1)`, (120)

gives us

d

dt
Em

[(
Qk(t)

`

)]
= λ · Em

[(
Qk(t) + 1

`

)
−
(
Qk(t)

`

)
;Qk(t) < k

]
+ µ · Em

[(
Qk(t)− 1

`

)
−
(
Qk(t)

`

)
;Qk(t) > 0

]
= λ · Em

[(
Qk(t)

`− 1

)
;Qk(t) < k

]
− µ · Em

[(
Qk(t)− 1

`− 1

)
;Qk(t) > 0

]
and finally

d

dt
Em

[(
Qk(t)

`

)]
= λ · Em

[(
Qk(t)

`− 1

)]
− µ · Em

[(
Qk(t)− 1

`− 1

)]
− λ ·

(
k

`− 1

)
· Pm{Qk(t) = k}+ µ · (−1)`−1 · Pm{Qk(t) = 0}

= λ · Em

[(
Qk(t)

`− 1

)]
+ µ ·

`−1∑
j=0

(−1)`−j · Em

[(
Qk(t)

j

)]
− λ ·

(
k

`− 1

)
· Pm{Qk(t) = k}+ µ · (−1)`−1 · Pm{Qk(t) = 0}.
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We can use these results to obtain a differential equation for the variance.

Corollary 5.7. For all t, we have

d

dt
Varm [Qk(t)] = − 2 (λ · Em [k −Qk(t)] · Pm {Qk(t) = k}+ µ · Em [Qk(t)] · Pm {Qk(t) = 0})

+ λ · Pm {Qk(t) < k}+ µ · Pm {Qk(t) > 0} .

Proof. For the cases of ` = 1 and ` = 2, we have

d

dt
Em [Qk(t)] = λ · Pm {Qk(t) < k} − µ · Pm {Qk(t) > 0} (121)

and

d

dt
Em

[(
Qk(t)

2

)]
= λ · Em [Qk(t);Qk(t) < k]− µ · Em [Qk(t)− 1;Qk(t) > 0] (122)

This leads us to an equation for the variance

d

dt
Varm [Qk(t)] = 2λ · Covm [Qk(t), {Qk(t) < k}]− 2µ · Covm [Qk(t), {Qk(t) > 0}]

+ λ · Pm {Qk(t) < k}+ µ · Pm {Qk(t) > 0} , (123)

since

d

dt
Varm[Qk(t)] =

d

dt
Em

[
2

(
Qk(t)

2

)
+Qk(t)

]
− 2 Em [Qk(t)] ·

d

dt
Em [Qk(t)]

= 2λ · Em [Qk(t); {Qk(t) < k}]− 2µ · Em [Qk(t)− 1; {Qk(t) > 0}]
+ λ · Pm {Qk(t) < k} − µ · Pm {Qk(t) > 0}
− 2 · Em [Qk(t)] · (λ · Pm {Qk(t) < k} − µ · Pm {Qk(t) > 0}) .

We can then combine the first and third lines as covariances to obtain

d

dt
Varm [Qk(t)] = 2λ · Covm [Qk(t), {Qk(t) < k}]− 2µ · Covm [Qk(t), {Qk(t) > 0}]

+ λ · Pm {Qk(t) < k}+ µ · Pm {Qk(t) > 0}
= 2λ · (Em [Qk(t)]− k) · Pm {Qk(t) = k} − 2µ · Em [Qk(t)] · Pm {Qk(t) = 0}

+ λ · Pm {Qk(t) < k}+ µ · Pm {Qk(t) > 0} .

The transient recursion for the moments relies on knowing the transient behavior of the queue
length distribution at the empty state {0} and the full state {k}. Unlike in the infinite server
case, the M/M/1/k moments are not a closed system of differential equations.

6 Summary of Results

In this section, we provide a summary of the results obtained in the paper. This provides
a thorough collection of results and provides a complete list of formulas for the transient
analysis of the M/M/1/k queue.
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6.1 Free Transience

For all integers m and n, we have

Pm {Z(t) = n} =
βn−m

π
·
∫ π

0

cos ((m− n) · θ) · e−2γ·(δ(β)−cos θ)t dθ. (124)

6.2 Absorbing Transience for the Transient States

For all states 0 < m < k and 0 < n < k, we have

Pm {Qk (t) = n, T0.k > t} =
2βn−m

k
·
k−1∑
`=1

sin
`mπ

k
· sin `nπ

k
· e−2γ·(δ(β)−cos

π`
k )t. (125)

After summing over all the transient states of 0 < n < k, we have

Pm {T0,k > t} =
β−m

k
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
δ(β)− cos `π

k

· e−2γ·(δ(β)−cos
`π
k )t (126)

and

Em [T0,k ∧ t] =
β−m

k
·
k−1∑
`=1

sin `mπ
k
·
(

sin `π
k

+ βk · sin (k−1)`π
k

)
(
δ(β)− cos `π

k

)2 ·
(

1− e−2γ·(δ(β)−cos
`π
k )t
)
. (127)

This also gives us a formula for the mean of the absorbing process since

Em [Q∗k (t)] = m+ (λ− µ) · Em [T0,k ∧ t] . (128)

6.3 Absorbing Transience for the Absorbing States

For all integers 0 < m < k, we have

Pm {Qk (T0,k) = 0, T0.k ≤ t} =
β−m

k
·
k−1∑
`=1

sin `mπ
k
· sin `π

k

δ(β)− cos `π
k

·
(

1− e−2γ·(δ(β)−cos
`π
k )t
)
. (129)

and

Pm {Qk (T0,k) = k, T0.k ≤ t} =
βk−m

k
·
k−1∑
`=1

sin `mπ
k
· sin (k−1)`π

k

δ(β)− cos `π
k

·
(

1− e−2γ·(δ(β)−cos
`π
k )t
)
. (130)

This gives us

Pm {Qk (T0,k) = 0} =
β−m

k
·
k−1∑
`=1

sin `mπ
k
· sin `π

k

δ(β)− cos `π
k

. (131)

and

Pm {Qk (T0,k) = k} =
βk−m

k
·
k−1∑
`=1

sin `mπ
k
· sin (k−1)`π

k

δ(β)− cos `π
k

. (132)

33



6.4 Quasi-Steady State Absorbing Transience

The quasi-steady state distribution for the absorbing process is

lim
t→∞

Pm {Qk(t) = n |T0,k > t} =
2βn ·

(
δ(β)− cos π

k

)
· sin nπ

k

(1 + βk) · sin π
k

. (133)

Initializing with this distribution gives us

P∗ {Qk(t) = n |T0,k > t} =
2βn ·

(
δ(β)− cos π

k

)
· sin nπ

k

(1 + βk) · sin π
k

, (134)

for all t ≥ 0. We also have

P∗ {T0,k > t} = e−2γ·(δ(β)−cos
π
k )t and E∗ [T0,k ∧ t] =

1− e−2γ·(δ(β)−cos
π
k )t

2γ ·
(
δ(β)− cos π

k

) . (135)

Combining these results also gives us the following mean behavior

E∗ [Qk (T0,k ∧ t)] =
kβk

1 + βk
− 2 ε1(β) · e−2γ·(δ(β)−cos πk )t

δ(β)− cos π
k

. (136)

This formula leads to two special cases:

E∗ [Qk (0)] =
kβk

1 + βk
− 2 ε1(β)

δ(β)− cos π
k

and E∗ [Qk (T0,k)] =
kβk

1 + βk
. (137)

6.5 Reflection Transience

For all integers 0 ≤ m ≤ k and 0 ≤ n ≤ k, we have

Pm{Qk(t) = n} =
(1− ρ) · ρn

1− ρk+1

+
βn−m

k + 1
·

k∑
`=1

(
sin `nπ

k+1
− β · sin `·(n+1)π

k+1

)
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
β ·
(
δ(β)− cos `π

k+1

) · e−2γ·(δ(β)−cos
`π
k+1

)t

(138)

and

Em [Qk(t)] =
ρ

1− ρ
− (k + 1) · ρk+1

1− ρk+1
(139)

+
β−m

k + 1
·

k∑
`=1

(
1− βk+1 · (−1)`

)
· sin `π

k+1
·
(

sin `mπ
k+1
− β · sin `·(m+1)π

k+1

)
2β ·

(
δ(β)− cos π`

k+1

)2 · e−2γ·(δ(β)−cos
`π
k+1

)t.
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For binomial coefficient moments of the reflection process, we have the following set of
differential equations

d

dt
Em

[(
Qk(t)

`

)]
= λ · Em

[(
Qk(t)

`− 1

)]
+ µ ·

`−1∑
j=0

(−1)`−j · Em

[(
Qk(t)

j

)]
(140)

− λ ·
(

k

`− 1

)
· Pm{Qk(t) = k}+ µ · (−1)`−1 · Pm{Qk(t) = 0}.

As special cases, we then have

d

dt
Em [Qk(t)] = λ · Pm {Qk(t) < k} − µ · Pm {Qk(t) > 0} (141)

and

d

dt
Varm[Qk(t)] = − 2 (λ · Em [k −Qk(t)] · Pm{Qk(t) = k}+ µ · Em [Qk(t)] · Pm{Qk(t) = 0})

+ λ · Pm{Qk(t) < k}+ µ · Pm{Qk(t) > 0} . (142)

7 Conclusion

This paper develops a unified framework of techniques for deriving a complete transient
analysis of the M/M/1/k queue. Our methodology is based on the Markovian behavior of
the queuing process and augmented by group theoretic and complex analytic techniques.
Many of our new performance measures are inspired by bike sharing services and systems.
The results have applications to other types of resource-sharing services.

A natural area of interest is to extend our results to networks of M/M/1/k queues to
apply them to a bike sharing systems with large numbers of stations. Our analysis can extend
to those systems, by using multi-dimensional complex integrals. The absorbing process in
this multi-dimensional case now reflects the time to rebalance over this larger system. It is
also of interest to extend our work to queues where the arrivals could be self-exciting or time
varying. In this context, the work of [11, 12, 21] would be helpful in defining and analyzing
such systems.
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