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ABSTRACT

Lindley’s recursion is one of the foundational formula’s in queueing theory and applied probability. In
this paper, we leverage stochastic simulation and current machine learning methods to learn the Lindley
recursion directly from waiting time data of the G/G/1 queue. To this end, we use methods such as Gaussian
Processes, k-Nearest Neighbors and Deep neural networks to learn the Lindley recursion. We also analyze
specific parameter regimes for the G/G/1 to understand where learning the Lindley recursion may be easy
or hard. Finally, we compare the machine learning methods to see how well we can predict the Lindley
recursion multiple steps into the future with missing data.

1 INTRODUCTION

Lindley’s recursion is one of the foundational formula’s in queueing theory and applied probability. Lindley’s
recursion is an explicit recursive equation that describes the recursive relationship between consecutive
waiting times in a G/G/1 queue. It can also be modified to model the consecutive response times or departure
times in a G/G/1 queue as well. Its success lies in its simplicity and the recursion has been exploited to
derive various properties of performance measures for the G/G/1 queue. One such example is the derivation
of the G/G/1 waiting time distribution using the Lindley recursion Buzacott and Shanthikumar 1993. One
can also prove that the waiting time is convex with respect to the arrival and service parameters, see for
example Shaked and Shanthikumar 1988. Finally, the Lindley recursion has been exploited in optimization
and performance evaluation contexts in Glasserman and Ho 1991, Fu and Hu 2012, Kin and Chan 2010,
Baccelli and Brémaud 2013.

What makes the Lindley recursion attractive beyond its power to help prove structural insights about
queues is that is only uses simple arithmetic operations to relate the successive waiting times. In fact, it only
uses the addition and maximum operations, which provides much simplicity and scalability. Moreover, the
recursion is also exact and gives the sample path waiting times of any customer. Despite the simplicity
of the Lindley recursion, it has not been extensively studied in a data driven context. Even though the
queueing community has a rich history of using data to inform stochastic models, there are very few papers
that use data to construct actual stochastic models. There are some notable exceptions such as Sutton and
Jordan 2011, Sutton and Jordan 2010, Wang et al. 2016, Sutton and Jordan 2008, Kim et al. 2015, Bartel
et al. 2019, Armony et al. 2015. With this in mind, our goal is to understand the effectiveness of current
machine learning methods to recover Lindley’s recursion from waiting time data of the G/G/1 queue. To
this end, we combine stochastic simulation with machine learning to learn the Lindley recursion function.

Despite, the simplicity of the Lindley recursion in the single server setting the extension to the multi-
server setting is quite difficult and generally scales poorly with the number of servers. This scale issue
can be overcome if one can find a function that maps the previous waiting times to the next waiting time,
see for example Kin and Chan 2010. Finding simple ways to compute these waiting times, has important
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implications for various applications such as call centers, cloud computing centers, healthcare networks,
and even amusement parks, see for example Armony et al. 2015, Pender and Phung-Duc 2016, Delimitrou
and Kozyrakis 2013, Nirenberg et al. 2018, Brown et al. 2005, Koole and Mandelbaum 2002. Having
good solutions to this problem is of vital importance to the simulation community. Good solutions to this
problem would dramatically reduce the computational time to compute waiting times for queueing systems
with a large number of customers. Fortunately, in recent years machine learning and more specifically
deep learning has seen unprecedented success in a diverse number of applications. Thus, our idea is to use
machine learning methods to learn the Lindley recursion. We will restrict our analysis to the single server
case as it will serve as a base case for more complicated models. Moreover, if machine learning methods
cannot perform well on this simple model, then it implies that the study of more complicated models is
hopeless.

In this paper, our goal is to learn the Lindley recursion for the G/G/1 queue. Other than learning the
Lindley recursion from simulated waiting time data, we also aim to understand under what regimes is it
easy or hard to learn the Lindley recursion. For example, do current machine learning methods work well
when the queue is in light traffic or heavy traffic? We also compare various machine learning methods for
learning the Lindley recursion and understand their relative performance on in-sample and out of sample
waiting time data. To this end, we list the contributions of our work below.

1.1 Contributions of Our Work

By using stochastic simulation for the G/G/1 queue and leveraging machine learning methods, we provide
new insights to the following questions:

• What machine learning methods work well at learning the Lindley recursion for the G/G/1 queue?
• Is learning the Lindley recursion easier in the heavy traffic setting?
• How difficult is learning the Lindley recursion for increasing server utilization?
• How well can we predict Lindley’s recursion k steps into the future?

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the Lindley recursion and gives
a brief history of the formula. In Section 3, we present our simulation and machine learning results for
various methods. We also explain how various parameters of the queueing model affect the performance
of learning the Lindley recursion. Finally, a conclusion is given in Section 4.

2 LINDLEY’S RECURSION

Consider the G/G/1 queueing system model where the customer inter-arrival distribution is general, the
service distribution is general, and there is a single server. For a complete description of this queueing
system, see Shortle, Thompson, Gross, and Harris 2018. For the nth customer to arrive to the queue, we
define Wn to be the waiting time for that customer. We also define An to be the inter-arrival time between
the nth and the (n+1)th customers and Sn to be the nth customer’s service time. For the case of an infinite
buffer and a First Come First Served (FCFS) system, Lindley’s recursion was given by Kendall 1951,
Lindley 1952 is:

Wn+1 = max(Wn +Sn−An,0) . (1)

Previous analysis such as Konheim 1975 and Prabhu 1974 studies the steady state waiting time of the
G/G/1 queue and shows that the steady state waiting time satisfies the following integral equation, which
is known as Lindley’s integral equation
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F(x) =
∫

∞

0−
K(x− y)F(dy) x≥ 0 (2)

where K(x) is the distribution function of the random variable denoting the difference between the service
time of the nth customer and the inter-arrival time of the nth and n+1th customer. In fact the Wiener–Hopf
method can be used to solve this integral equation in closed form Prabhu 1974. In addition to the steady
state waiting time, one can also calculate the conditional waiting time of the (n+1)th customer given the
waiting time of the nth customer. In the Markovian single server queue setting, we have the following
theorem for the conditional mean waiting time.
Theorem 1 For the M/M/1 queue, the conditional mean waiting time of customer n+1 is equal to

E[Wn+1|Wn] = Wn +
λ −µ

λ µ
+

µe−λWn

λ +µ
. (3)

Proof.

E[Wn+1|Wn] = E[(Wn−An +Sn)
+|Wn] (4)

=
∫

∞

−∞

(Wn + x)+
λ µ

λ +µ
e−µmax(x,0)−λmax(−x,0)dx (5)

=
λ µ

λ +µ

(∫
∞

0
(Wn + x)+e−µxdx+

∫ 0

−∞

(Wn + x)+eλxdx
)

(6)

=
λ µ

λ +µ

(∫
∞

0
(Wn + x) · e−µxdx+

∫ 0

−Wn

(Wn + x) · e−λxdx
)

(7)

= Wn +
λ −µ

λ µ
+

µe−λWn

λ +µ
. (8)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

E[Wn+1|Wn] 0.284 0.101 0.0376 0.02 0.299 0.105 0.0434 0.0161

Table 1: Theoretical Expected Waiting Times

The result in Theorem 1 provides the solution to the conditional expected waiting time of the (n+1)th

customer given the current waiting time of the nth customer. One can view this conditional expectation as
the constant that minimizes the squared error when predicting the waiting time of the next customer with
information of the current customer. However, as seen in Table 1, the conditional mean of the waiting time
is not really a good way to understand the value of the next customer’s waiting time. Fortunately, we know
the mapping to get the next customer’s waiting time explicitly through Lindley’s recursion. However, this
made us ask the question if one can recover the Lindley equation directly from data without knowing the
form of the max plus mapping. That is, if I am given the previous waiting time Wn, the inter-arrival time
An+1 and the service time Sn, then I want to find a function f̂ such that

Ŵn+1 = f̂ (Wn,An+1,Sn)≈max(Wn +Sn−An+1,0) . (9)

This question is what we pursue in the remainder of the paper by leveraging simulation and machine
learning together.
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3 MACHINE LEARNING METHODS FOR LINDLEY’S RECURSION

Before we describe the methods that we use to learn the Lindley’s equation, we will describe how we
conduct our numerical experiments for the remainder of the paper. The experiments that follow were all
trained on 1000 simulated waiting time observations and are implemented or tested on 10 independent sets
for all methods and averaged. All numbers that are reported are based on the sample mean squared error
for the 1000 samples i.e.

MSE =
1
n

n

∑
i=1

(
Wi−Ŵi

)2
.

3.1 LINEAR AND QUADRATIC REGRESSION

In this section, we aim to understand how linear and quadratic regression will perform in learning the
Lindley recursion function. In the linear regression framework we need to find the coefficients β0,βW ,βA,βS
in order to minimize the following loss function

min
β0,βW ,βA,βS

n−1

∑
i=0

(Wi+1−β0−βWWi−βAAi−βSSi)
2 .

In the quadratic setting, we one will minimize a more complicated function, that will take into account the
squared terms and the cross terms of the independent variables (Wn,An,Sn).

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Linear 0.584 0.318 0.232 0.0367 0.00513 0.00365 0.00132 2.29e-4
Quadratic 0.134 0.118 0.128 0.0318 0.00123 0.00164 9.3e-4 2.01e-4

Table 2: Linear and Quadratic Regression One Step Prediction (Light Traffic) M/M/1 Queue. (In Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Linear 4.86e-5 3.69e-5 1.78e-5 1.26e-5 4.9e-7 3.34e-7 1.8e-7 1.03e-7
Quadratic 1.02e-5 1.51e-5 8.41e-6 6.71e-6 1.12e-7 9.98e-8 9.66e-8 6.61e-8

Table 3: Linear and Quadratic Regression One Step Prediction (Heavy Traffic) M/M/1 Queue. (In Sample)

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Linear 0.482 0.301 0.234 0.0163 0.00715 0.00414 0.00161 2.12e-4
Quadratic 0.124 0.117 0.168 0.0135 0.0056 0.00174 0.00113 3.74e-4

Table 4: Linear and Quadratic Regression One Step Prediction (Light Traffic) M/M/1 Queue. (Out of
Sample)
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µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Linear 5.03e-5 3.34e-5 2.0e-5 1.35e-5 4.71e-7 3.62e-7 2.35e-7 4.1e-8
Quadratic 1.59e-5 1.35e-5 1.21e-5 1.26e-5 1.1e-7 1.41e-7 1.18e-7 5.84e-8

Table 5: Linear and Quadratic Regression One Step Prediction (Heavy Traffic) M/M/1 Queue. (Out of
Sample)

3.1.1 Summary of Tables

In Tables 2 - 5, we demonstrate the performance of linear and quadratic regression. We find that the
quadratic regression performs better than the linear regression in the light traffic and heavy traffic settings.
We also observe that the performance of both the linear and quadratic regressions improve as the queueing
system moves into the heavy traffic regime. This is most likely because in the heavy traffic regime, the
waiting time spends less time at the origin than in the light traffic setting. Intuitively since the Lindley
Recursion is the max of two linear functions the learned linear and quadratic functions tend to approximate
the Lindley function better when the system is in heavy traffic. Finally, we also observe that the in-sample
performance is better, but not much better than the out of sample performance. This means that the
functional approximation can extend well to out of sample waiting time data sets.

3.2 K-NEAREST NEIGHBORS

The k-nearest neighbors (KNN) algorithm is a simple and easy to implement supervised machine learning
algorithm that can be used to solve both classification and regression problems. We will exploit KNN for
regression in this paper. The algorithm can be summed up by the phrase ”Birds of a feather flock together”.
This is because KNN exploits the idea of similarity or distance. In the context of the Lindley recursion, the
KNN approach is to find similar data values such that the distance from (Wn,An,Sn) is minimized. Then,
one can use these values as approximate values of our estimate of Wn+1. In some sense, KNN is finding
the closest data points that are similar to the one we want to estimate and using those close data points to
make that estimation. Below we use the k-nearest neighbors method for learning the Lindley recursion.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

k = 1 0.111 0.154 0.404 0.938 0.0125 0.00187 0.00336 0.27
k = 5 0.0805 0.109 0.233 0.485 8.95e-4 0.0014 0.00182 0.00192
k = 10 0.117 0.146 0.297 0.688 0.00119 0.00183 0.00252 0.00249
k = 25 0.226 0.242 0.545 1.17 0.00219 0.0039 0.00497 0.00494

Table 6: K-Nearest Neighbor One Step Prediction (Light Traffic) M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

k = 1 1.25e-5 1.83e-5 4.55e-5 2.93e-5 9.09e-8 1.75e-7 2.74e-7 5.91e-7
k = 5 7.07e-6 1.48e-5 1.53e-5 2.09e-5 5.82e-8 8.46e-8 1.28e-7 2.43e-7
k = 10 1.02e-5 2.47e-5 2.08e-5 2.57e-5 7.85e-8 1.05e-7 1.85e-7 3.3e-7
k = 25 1.84e-5 4.28e-5 3.84e-5 4.84e-5 1.57e-7 1.82e-7 3.62e-7 6.49e-7

Table 7: K-Nearest Neighbor One Step Prediction (Heavy Traffic) M/M/1 Queue.
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3.2.1 Discussion of Results for (KNN)

In Tables 6 - 7, we demonstrate the results of using kNN on the Lindley recursion with k = {1,5,10,25}
nearest neighbors. All experiments performed in the tables were done out of sample since the in-sample
results would result in a zero MSE in the case k = 1. We observe that using a high value of k does not
improve the results. Thus, the results are good for lower values of k, especially the case where k = 5.
Moreover, we observe that the k-nearest neighbor results work better in heavy traffic. One explanation
for this is that in heavy traffic, the inter-arrival and service times are small, so one does not expect much
change from a data point that is close to the one you want to predict.

3.3 GAUSSIAN PROCESSES

In this section, we apply Gaussian processes (GPs) to the Lindley recursion learning problem. Gaussian
processes provide a function space view of modelling, whereby one places a prior distribution over functions,
and reason about the properties of likely functions under this prior Williams and Rasmussen 1996. Given
data, one infers a posterior distribution over functions to make predictions. A key ingredient to GPs is the
kernel function, which measures similarity of new points with the training data. In general, we say that a
stochastic process f (x) is a Gaussian process (GP) if for any finite collection of inputs X = x1, . . . ,xn ∈Rd ,the
vector of function values [ f (x1), . . . , f (xn)] is is jointly Gaussian. In our context of Lindley’s recursion, we
use Gaussian processes to predict the one-step waiting times using the previous information.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Exponential 1.77e-6 1.12e-5 1.39e-4 4.95e-4 1.52e-8 2.14e-7 6.47e-7 4.66e-7
Squared Exponential 3.39e-4 8.37e-4 0.00472 0.0134 5.61e-6 1.64e-5 2.84e-5 1.07e-5

Matern 52 1.34e-4 3.85e-4 0.00271 0.0122 1.22e-6 7.3e-6 1.34e-5 7.72e-6
Rational Quadratic 1.62e-4 4.95e-4 0.00345 0.0133 1.43e-6 9.25e-6 1.75e-5 9.4e-6

Table 8: Gaussian One Step Prediction (Light Traffic) M/M/1 Queue. (In Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Exponential 1.84e-8 1.35e-8 1.24e-8 9.47e-9 1.6e-8 1.34e-8 1.08e-8 9.52e-9
Squared Exponential 2.47e-7 3.23e-7 1.97e-7 2.18e-7 2.86e-8 2.87e-8 3.09e-8 4.25e-8

Matern 52 1.33e-7 1.69e-7 1.27e-7 1.34e-7 1.99e-8 2.06e-8 2.51e-8 3.67e-8
Rational Quadratic 1.51e-7 2.07e-7 1.49e-7 1.64e-7 2.42e-8 2.87e-8 2.96e-8 4.2e-8

Table 9: Gaussian One Step Prediction (Heavy Traffic) M/M/1 Queue. (In Sample)

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Exponential 0.00303 0.00287 0.00847 0.0173 0.00581 7.05e-5 1.58e-4 0.209
Squared Exponential 0.0342 0.0157 0.00803 0.00817 0.0468 1.86e-4 1.71e-4 0.375

Matern 52 0.00236 0.00152 0.00437 0.00728 0.02 2.35e-5 4.32e-5 0.049
Rational Quadratic 0.00336 0.0021 0.0052 0.00789 0.0136 4.28e-5 7.66e-5 0.14

Table 10: Gaussian One Step Prediction (Light Traffic) M/M/1 Queue. (Out of Sample)
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µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Exponential 5.18e-7 1.42e-6 8.83e-7 1.4e-6 1.84e-8 4.64e-8 1.74e-8 2.88e-8
Squared Exponential 1.52e-6 2.02e-6 1.51e-6 7.75e-7 2.91e-8 3.78e-8 3.76e-8 3.07e-8

Matern 52 5.0e-7 8.44e-7 2.36e-7 2.58e-7 2.19e-8 2.74e-8 3.21e-8 2.47e-8
Rational Quadratic 5.46e-7 1.21e-6 3.69e-7 3.27e-7 2.55e-8 3.78e-8 3.64e-8 3.02e-8

Table 11: Gaussian One Step Prediction (Heavy Traffic) M/M/1 Queue. (Out of Sample)

3.3.1 Discussion of Results for (GPs)

In Tables 8 - 11, we demonstrate the results of using Gaussian processes on the Lindley recursion with four
different kernels. We see that the GPs work quite well at approximating the Lindley recursion for all of the
kernels. We see that the Matern 52 kernel performs the best out of all of the kerel used. We also observe
that the out of sample performance is worst than the in-sample performance. However, this gap disappears
when the queueing model has large rates. Unlike some of the other methods, the Gaussian processes do
not work as well when the system is in heavy traffic. It is not a large difference in performance, but we
do notice a small gap in performance in the heavy traffic regime.

3.4 DEEP NEURAL NETWORKS

In this section, we apply feed-forward deep neural networks to the Lindley recursion learning problem.
Deep neural networks have found tremendous success in a variety of disciplines as they are quite flexible
at representing any function, see for example Csáji et al. 2001. Our goal is to understand how deep neural
networks will help us approximate the Lindley recursion and also understand what activation functions
work well in approximating the Lindley recursion.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

ReLU 0.0603 11.3 67.9 0.919 0.00155 0.00352 0.0153 0.0287
Tanh 1.65 6.63 211.0 1620.0 0.00533 0.019 0.0251 0.0957

Sigmoid 3.18 13.4 266.0 1850.0 0.0309 0.231 0.706 0.653
Hard Sigmoid 3.69 14.3 266.0 1710.0 0.0297 0.247 0.669 0.631

Table 12: Deep Neural Network One Step Prediction (Light Traffic) M/M/1 Queue. (In Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

ReLU 1.3e-4 1.88e-4 2.56e-5 8.28e-5 3.28e-6 6.42e-6 1.99e-6 8.57e-6
Tanh 9.96e-5 1.14e-4 4.26e-5 3.33e-4 2.04e-6 5.31e-6 3.13e-6 1.49e-5

Sigmoid 2.61e-4 0.0019 0.0021 0.00412 8.3e-6 4.37e-5 4.85e-5 1.54e-4
Hard Sigmoid 3.36e-4 0.00214 0.00202 0.00508 2.53e-5 9.19e-6 9.77e-5 1.67e-4

Table 13: Deep Neural Network One Step Prediction (Heavy Traffic) M/M/1 Queue. (In Sample)
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µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

ReLU 0.0522 5.05 17.0 0.865 0.00661 0.00312 0.0163 0.0312
Tanh 0.878 2.19 42.9 2560.0 0.0132 0.0145 0.014 0.912

Sigmoid 1.96 5.67 66.3 2910.0 0.098 0.0638 0.327 2.25
Hard Sigmoid 2.34 5.83 66.4 2700.0 0.0928 0.0862 0.343 2.17

Table 14: Deep Neural Network One Step Prediction (Light Traffic) M/M/1 Queue. (Out of Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

ReLU 1.29e-4 1.62e-4 4.61e-5 6.52e-5 2.84e-6 7.36e-6 1.85e-6 7.43e-6
Tanh 1.04e-4 1.04e-4 4.33e-5 3.39e-4 1.95e-6 5.42e-6 2.88e-6 1.44e-5

Sigmoid 2.88e-4 0.00165 0.00334 0.00275 8.08e-6 4.45e-5 3.42e-5 1.33e-4
Hard Sigmoid 3.77e-4 0.00127 0.00333 0.0021 2.54e-5 1.04e-5 7.89e-5 1.7e-4

Table 15: Deep Neural Network One Step Prediction (Heavy Traffic) M/M/1 Queue. (Out of Sample)

3.4.1 Discussion of Results for (DNNs)

In Tables 12 - 15, we find that the deep neural networks are able to recover the Lindley recursion quite
well. We also observe that the function approximations improve as we scale the system larger. However, as
similar to the Gaussian process setting, as we let λ → µ we observe a slightly worse performance than the
light traffic settings. We use four different activation functions and we observe that the best one is the ReLU
activation function. We can explain this outstanding performance from the structure of the ReLU activation
function itself. The ReLU activation function is a maximum function and the Lindley recursion naturally
fits this activation function. Since we have only explored the one-step Lindley recursion in this section,
one can only wonder if the ReLU will also perform well for multiple steps since DNNs are convolutions
of the activation functions and the multi-step Lindley recursion is also of this form.

3.5 Multiple Step Predictions

In this section, we are concerned with multiple step predictions of the wait time in the G/G/1 queue. We
describe the multi-step problem as learning a max-plus convolution i.e.

Wn+m = max(Wn+m−1 +Sn+m−1−An+m−1,0) (10)
= max(max(Wn+m−2 +Sn+m−2−An+m−2,0)+Sn+m−1−An+m−1,0) (11)
= fn+m−1 ◦ fn+m−2(Xn+m−2) (12)
= fn+m−1 ◦ fn+m−2 ◦ · · · ◦ fn(Wn,An,Sn). (13)

We attempt to analyze the multi-step Lindley recursion only using the best functions from the one-step
and present their results below.
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µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

DNN (Relu) 1.74e-4 2.31e-4 7.78e-4 3.28e-4 5.1e-6 9.13e-6 5.6e-5 3.92e-6
DNN (Sigmoid) 4.38e-4 0.00112 0.00367 0.00814 2.42e-5 2.13e-5 8.95e-5 1.88e-4

GP (Squared Exp) 6.8e-5 1.27e-4 1.07e-4 1.33e-4 7.81e-7 1.08e-6 1.27e-6 1.12e-6
GP (Matern 52) 1.03e-4 1.73e-4 1.68e-4 1.94e-4 1.05e-6 1.47e-6 1.94e-6 1.85e-6

KNN (k = 5) 1.31e-4 2.39e-4 2.25e-4 2.51e-4 1.36e-6 1.89e-6 2.41e-6 2.4e-6
KNN (k = 10) 1.24e-4 2.22e-4 2.11e-4 2.39e-4 1.25e-6 1.73e-6 2.41e-6 2.37e-6

Table 16: Deep Neural Network Multiple Step (m=2) Prediction (Heavy Traffic) M/M/1 Queue. (In Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

DNN (Relu) 1.68e-4 2.53e-4 8.21e-4 3.9e-4 4.95e-6 4.35e-6 7.7e-6 1.32e-5
DNN (Sigmoid) 3.95e-4 5.63e-4 0.00371 0.00558 3.31e-5 1.3e-5 5.33e-5 4.05e-4

GP (Squared Exp) 1.37e-4 2.22e-4 3.47e-4 3.07e-4 1.58e-6 2.55e-6 4.07e-6 4.42e-6
GP (Matern 52) 1.36e-4 2.21e-4 3.42e-4 3.06e-4 1.57e-6 2.52e-6 4.07e-6 4.41e-6

KNN (k = 5) 1.74e-4 2.74e-4 4.2e-4 3.78e-4 1.96e-6 3.18e-6 5.23e-6 5.45e-6
KNN (k = 10) 1.59e-4 2.47e-4 3.97e-4 3.59e-4 1.85e-6 3.0e-6 4.82e-6 5.18e-6

Table 17: Deep Neural Network Multiple Step (m=3) Prediction (Heavy Traffic) M/M/1 Queue. (In Sample)

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

DNN (Relu) 1.42e-4 1.97e-4 0.00648 3.27e-4 4.84e-6 1.05e-5 8.63e-5 1.47e-5
DNN (Sigmoid) 3.42e-4 9.02e-4 0.0213 0.00563 2.37e-5 2.38e-5 7.97e-5 6.65e-4

GP (Squared Exp) 9.85e-5 1.61e-4 0.0012 1.89e-4 1.03e-6 1.69e-6 1.44e-6 1.31e-5
GP (Matern 52) 9.34e-5 1.55e-4 0.00125 1.87e-4 9.88e-7 1.63e-6 1.39e-6 1.91e-6

KNN (k = 5) 1.09e-4 1.87e-4 0.00135 2.38e-4 1.19e-6 2.08e-6 1.77e-6 1.45e-5
KNN (k = 10) 1.05e-4 1.75e-4 0.00144 2.28e-4 1.11e-6 1.94e-6 1.57e-6 1.55e-5

Table 18: Deep Neural Network Multiple Step (m=2) Prediction (Heavy Traffic) M/M/1 Queue. (Out of
Sample)
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µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

DNN (Relu) 1.47e-4 4.11e-4 0.00117 5.09e-4 4.67e-6 5.44e-6 7.67e-6 1.73e-5
DNN (Sigmoid) 2.96e-4 0.00106 0.00554 0.00507 3.1e-5 1.62e-5 3.33e-5 3.16e-4

GP (Squared Exponential) 1.37e-4 3.1e-4 4.1e-4 5.93e-4 1.59e-6 2.92e-6 3.4e-6 3.29e-6
GP (Matern 52) 1.37e-4 2.98e-4 4.02e-4 4.59e-4 1.59e-6 2.91e-6 3.43e-6 3.29e-6

KNN (k = 5) 1.6e-4 3.94e-4 5.61e-4 5.83e-4 1.86e-6 3.55e-6 4.25e-6 4.6e-6
KNN (k = 10) 1.46e-4 3.97e-4 5.19e-4 5.57e-4 1.71e-6 3.27e-6 3.93e-6 4.6e-6

Table 19: Deep Neural Network Multiple Step (m=3) Prediction (Heavy Traffic) M/M/1 Queue. (Out of
Sample)

3.5.1 Discussion of Results for Multi-step Predictions

In Tables 16 - 19, we analyze the multi-step problem of trying to recover the Lindley recursion. We apply
different machine learning methods to uncover the best method. We find that all of the method do quite
well, however, we observe that the best method uses Gaussian processes, especially with the Matern 52
kernel. We also observe that the function approximations improve as we scale the system larger and as we
let λ → µ we observe a slightly worse performance than the light traffic settings.

3.6 COMPARISON OF MACHINE LEARNING METHODS

Overall, we observe that by using current machine learning methods we can successfully replicate the
Lindley recursion in in-sample and out of sample experiments. We find that all of the machine learning
methods do quite well, however, Gaussian processes seems to outperform the other methods. This is
significant in the sense that as the number of training samples scales to be large, GPs become much more
intractable since they involve matrix inversions. However, in our setting where the number of samples is
1000, we are not spending much time computationally.

4 CONCLUSION

In this paper, we show the power of current machine learning methods to approximate the Lindley recursion.
We show that deep neural network methods work the best, especially with the ReLU activation function.
However, there remain many interesting questions that need to be explored in this domain.

First, although the Lindley recursion works for general service and general inter-arrival times, we were
unable to explore the impact of general distributions due to space constraints. This is still an open problem
to understand how the general distributions will affect the learning problem.

Second, although the Lindley equation does not directly apply in the multi-server setting, it still is an
interesting question to apply these techniques to multi-server systems and systems where there is blocking
such as Erlang-loss queues. As we have noticed that system performance is improved when the queues
are heavily loaded, it might be the case that the machine learning methods might not work well in queues
with blocking.

Lastly, there are many types of recursions beyond the Lindley recursion. For example, there is the
random sign Lindley recursion Vlasiou and Palmowski 2010 and the non-increasing Lindley equation
Vlasiou 2007 that could be studied from a simulation and machine learning perspective. We plan to work
on these generalizations in future work.
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