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Abstract

Many service systems use internet or smartphone app technology to notify cus-
tomers about their expected waiting times or queue lengths via delay announcements.
However, in many cases, either the information might be delayed or customers might
require time to travel to the queue of their choice, thus causing a lag in information.
The previous literature has analyzed these systems where the lag in information is a
fixed constant ∆; however, in this work, we generalize the previous work by allowing
the delay to be a random variable with a fixed probability distribution. Using Jensen’s
inequality, we prove the constant delay is the most unstable distribution for a given
fixed mean delay. Moreover, in the setting where the Laplace transform is unknown, we
provide a Taylor series approach that approximates the Hopf curves using the central
moments of the distribution. We prove for some distributions, that these central mo-
ment approximations converge uniformly and monotonically to the true Hopf curves.
Finally, we show an equivalence between delay differential equations with multiple de-
lays to distributed delay equations with a discrete distributions. Thus, we show the
power of our probabilistic perspective to solve open questions in the delay differential
equations literature. Although our methodology is applied to models from queueing
theory, our results are of general interest to anyone interested in distributed delay
equations and immediately generalize to other application domains as well.

Keywords: delay-differential equations, distributed delay equations, Hopf bifurca-
tion, perturbations method, operations research, queueing theory, fluid limits, delay
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1 Introduction

With more access to information, consumers are adjusting their behavior and expectations
of the services they select. More and more customers are actively seeking information about
competing businesses prior to choosing to receive service from a provider. Businesses that
boost short waiting times for service can attract potential clients to their service, however,
if the wait is too long, this can instead deter customers from joining the queue. Figuring
out the waiting time is often a trivial task for the customer, requiring nothing more than a
phone call or a quick peek at a mobile phone application (app). Services like the bike sharing
networks, U-Haul truck rental locations, hospital emergency rooms, amusement parks like
Disney World, and even restaurants, are often ready to provide such information to potential
customers. The phone application CycleFinder in Figure 1, for example, provides customers
a map of the bike-sharing racks and the number of available bikes at each location. This
helps bicyclists not waste their time checking empty stations or stations with a low number
of bikes.

Figure 1: Bike-sharing network app.

The availability of the waiting time information impacts the decision patterns of individ-
ual customers and the dynamics of the queueing system as a whole. In a multi-dimensional
system where each queue corresponds to a separate geographical location of the same service
(such as competing restaurants in a neighborhood, for example), customers can choose which
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queue to join giving a higher preference to the location with the shortest waiting time. Pre-
vious works have modeled this choice using choice models from the economics literature, see
for example McFadden [22], Marshall et al. [21], Train [35], Tao and Pender [34]. However,
many of these papers do not analyze the impact of delaying the information to customers.
This delayed information has two forms. The first type occurs when the customer com-
mits to a queue before joining. The second type occurs when there is a physical lag in the
information, for example when the information may need time to be processed correctly.

In Figure 2, we describe a possible situation of joining several queues where the customer
must commit before arriving. The customer, Mr. Green, in Figure 2, has to commute
to the service location. Mr. Green’s commute causes a time delay prior him securing his
physical spot in the queue. In the meantime, other travelling customers may have joined
the same queue, so the queue length as well as the waiting time may have changed. The
waiting time information used by customers is therefore somewhat outdated and unreliable,
causing ripple effects throughout the system. For example, it has been shown in Pender et al.
[28, 30], Novitzky et al. [26] that when all customers experience the same constant delay and
this delay becomes sufficiently large, the queueing system will bifurcate and the queues will
oscillate indefinitely. If in the same queueing system the delay is decreased enough, the
queues will stop oscillating over time and converge to an equilibrium queue length [29].

Figure 2: Mr. Green tries to join the shortest queue.

Accounting for the delay is clearly an important research question that deserves much
attention, however, it is still an open question of how to do so accurately. Moreover, in
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most physical systems, each customer takes a slightly different time to arrive to the queue
of their choice as seen in Figure 3. Thus, it is important to understand how the randomness
of the travel time to each queue or randomness in the delay might impact the underlying
dynamics of the queue length process. In this paper, we analyze queueing systems where the
individual’s travel time is modeled as a random variable from a known distribution. This
allows us to study the impact that the distribution of the delay has on the queueing system
dynamics.

Figure 3: An individual’s commute time can be modelled as a random variable.

1.1 Contributions of the Paper

• We formulate a new queueing model that captures customers’ preference for shorter
waiting times, as well as the delay in information caused by randomized travel time of
the customers to the queues.

• We study the asymptotic behavior of the generalized queueing system. In particular, we
show that there exists a unique equilibrium state. Regardless of the delay distribution,
the equilibrium is guaranteed to be locally stable when a certain relationship between
the system’s parameter is met. The equilibrium can become unstable only if a Hopf
bifurcation occurs.

• We derive the characteristic equation for this generalized model and use it to determine
the stability of the queueing systems for several specific distributions of the delay.

• In the case where the delay distribution might be unknown or difficult to calculate, we
develop a novel approximation technique based on Taylor expansions of the Laplace
transform to determine stability based on the central moments of the delay distribution.
Central moments can have the advantage of being easy to estimate by data from
service systems through sampling the travel times of the incoming customers. We
also show that central moment approximations are not equivalent to raw moment
approximations.

• Finally, our unique probabilistic perspective allows us to make an equivalence between
multi-delay systems and distributed delay systems with discrete distributions. This
equivalence is important for analysis of multi-delay systems, which has been intractable
until now.
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1.2 Organization of Paper

We begin by reviewing the relevant literature in Section 2. The generalized queueing model
is presented in Section 3, and its asymptotic behavior is studied. We show that, independent
of the delay distribution, there exists a unique equilibrium that is guaranteed to be stable
if a certain parameter relationship is met. Further, the equilibrium can become unstable
only if a Hopf bifurcation occurs. Unsurprisingly, whether or not a Hopf bifurcation occurs
depends on the system’s parameters as well as on the distribution of the delay. Section 4
proceeds to consider specific common distributions for the delay, and for each distribution we
map out the stability region in the model’s parameter space. The generalized model allows
us to look into queueing systems with a constant delay, multiple discrete delays, infinitely
many delays, as well as continuously distributed delays. Lastly, we consider in Section 5 the
case where the delay distribution is unknown to the service manager. By using information
that can be gathered by sampling the customers, such as the average delay and the central
moments of the delay distribution, we propose a technique that approximately determines
the stability region for a queueing system with unknown delay distribution.

2 Literature Review

In this section, we provide a review of the literature that is relevant to this work as the
delayed information space is relatively new in the context of this work. We highlight work
that is not only relevant from a queueing perspective, but also literature that has explored
distributed delay differential equations. There are several papers on distributed delay differ-
ential equations and we describe how our work is different and novel.

2.1 Delayed Information and Queueing Theory

There are several papers by the authors such as Pender et al. [29, 30], Novitzky et al. [25],
which have analyzed a similar model to the one presented in this paper. However, in each
of those papers, the delay is a constant and is not a non-degenerate random variable like in
this work. The first paper, Pender et al. [29] considered a two dimensional fluid model and
derived an explicit formula for the Hopf bifurcation under this constant delay setting. The
second paper Pender et al. [30] also analyzed a similar model to the first paper, however,
the second paper added the complexity of time varying arrival rates. This is a significant
difference since non-stationary arrival rates are much more complicated than their stationary
counterparts. One must distinguish the Hopf bifurcation oscillations from the time varying
dynamics of the arrival rate. We do not consider time varying arrival rates in this work.
Thus, the problem with random delay distributions and non-stationary arrival rates is still
an open problem for research.

A third paper Novitzky et al. [25] develops a statistical method to compute the amplitude
of the oscillations generated by the Hopf bifurcations. This method is called the ”Slope
Function Method” and the main idea is to use non-linear regression to learn the amplitude
from numerically integrating a few ddes and using their amplitudes as the data. It also
analyzes the constant delay model in the N-dimensional case, yielding a Hopf bifurcation
formula for N queues. Finally, Novitzky et al. [26] develops a new delay announcement by
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incorporating the velocity of the queue length into the delay announcement. Novitzky et al.
[26] shows that the velocity can help reduce the size of the oscillations created by the Hopf
bifurcation or can eliminate them altogether. However, Novitzky et al. [26] also assumes
that the delay is a constant and not a random variable as in this work.

In addition to work by the authors there are a few papers that also explore the impact
of delayed information in the context of queueing systems. The first paper by Lipshutz
and Williams [19] derives sufficient conditions for when oscillations will occur in reflected
delay differential equations when oscillations are present in non-reflected delay differential
equations. A second paper by Raina and Wischik [32] incorporates concepts from queueing
theory with delay differential equations and applies them to sizing router buffers in internet
infrastructure services. Raina and Wischik [32] uses a common technique named Lindstedt’s
method to construct estimates for the amplitude of oscillations created by Hopf bifurcations.
Finally, a recent paper by Lipshutz [20] proves heavy traffic limit theorems for queues with
delays in information. They show that they can eliminate oscillations by keeping track of
arrivals to each queue. This work is similar in spirit to Pender et al. [28], which proves fluid
and diffusion limit theorems for queues with delayed information.

Delayed information has also been studied empirically as well. In work by and Dong
et al. [9], the authors show that oscillations are present when information is given to cus-
tomers via mobile apps. Moreover, in work by Nirenberg et al. [24], the authors explore
applications of delayed information to amusement park queues and constructs a novel model
where the information itself is also rounded. Nirenberg et al. [24] shows that oscillations can
result either from delayed information or the rounding of the information as it is passed to
consumers. They also show that the mobile app induces oscillations in the real queue length
data. However, a common theme in all of the above papers is that the delay is a constant
and is not a random variable. We will show in the sequel that the delay being a random
variable is a significant challenge and is a much more difficult problem.

2.2 Distributed Delay Equations Literature

In addition to the work that has been applied on queueing theory and delayed information
there is also research that has explored the impact of the delay distribution on the delay
differential equations. For example in Bernard et al. [2], Braverman and Zhukovskiy [3],
Kiss and Krauskopf [17], Calleja et al. [5], Cooke and Grossman [7], Campbell and Jessop
[6], Breda et al. [4], Cuvas and Mondié [8], Bélair and Campbell [1], Yuan and Bélair [36],
Morărescu et al. [23], Rahman et al. [31], the authors study distributed delay equations.
Most of the applications are in biological settings and explore epidemic models or disease
models.

The work that has the most similarity to ours is Bernard et al. [2] and Yuan and Bélair
[36]. In these papers, the authors attempt to explore the impact that the probability dis-
tribution has on Hopf bifurcations and the underlying dynamics of the system. Unlike their
work, our work takes a purely probabilistic perspective on the distributed delay differential
equations. We also develop a novel Hopf bifurcation approximation approach based on a
centered moment expansion of the Laplace transform of the delay distribution. We will
show in this paper that our expansion is quite accurate and provides a way to approximate
Hopf bifurcations for distributed delay equations. Finally, we also show how recast delay
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differential equations with multiple delays as a distributed delay equation where the proba-
bility distribution is a discrete distribution. This perspective is new and provides a new way
of analyzing delay differential equations with multiple delays.

3 The Randomly Delayed Queueing Model

In this section, we describe the queueing model with randomly delayed information that
we intend to analyze. In Figure 4, we provide an illustration of the structure of the N -
dimensional queueing system. Customers arrive to the queue at a constant arrival rate λ > 0
to a system of N queues. Each customer selects one queue to join, and upon arrival receives
service at a rate µ > 0. The model assumes that the rate of departure is a linear function of
the queue length. This is equivalent to an infinite server queue which are quite important in
the operations research and applied probability literature [12, 18, 11, 14, 16, 33]. Although
an infinite server queue has no wait in reality, we consider this model because it actually
suffices to study this model for more complicated queues like the Erlang-A queueing model,
which do have waiting times. For a more detailed explanation of this reduction to infinite
server analysis, see Section 2 of Novitzky et al. [26]. We also think this model is relevant
because in reality, the customers have no idea of how the queue is implemented and the linear
departure rate is the simplest non-trivial model to consider. With these assumptions, the
queue lengths can be described by the following system of N functional differential equations

•
qi(t) = λpi(q1, . . . , qN)− µqi(t), ∀i ∈ {1, ..., N}, (3.1)

where pi is the proportion of customers that at a given time will join the ith queue.

queue 
1

λp1(q1,…qN)
service 
at rate μ

queue  
2

service 
at rate μ

DepartureArrival

 λ = arrival 
rate

λp2(q1,…qN)

queue 
N

service 
at rate μ

. .
 .

. .
 .

λpN(q1,…qN)

Figure 4: Customers going through a N-queue service system.

Here we assume that all queues offer identical service, but the queue length reported
may differ depending on the number of customers in each queue. Being informed of the
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current length of each queue, the customer decides which queue he or she is going to join
and gives higher preference to the shorter queue according to the multinomial logit choice
model (MNL) Train [35], which is a common choice model in a variety of application domains.
A customer who appears at time t−X will chose a queue, and then commuted to it for the
time X, and therefore at time t has the following probability of joining the ith queue.

Probability of joining the ith queue =
exp(−θqi(t−X))∑N
j=1 exp(−θqj(t−X))

. (3.2)

As desired, the probability that they join any of the N queues is
∑N

i=1
exp(−θqi(t−X))∑N

j=1 exp(−θqj(t−X))
=

1. The shorter a given queue is at time t−X, the more likely it is going to be chosen by the
customer. When customers’ individual commute time is a random variable X drawn from
a distribution with probability density function f(s), the proportion of all customers who
arrive to the ith queue at time t is given by the following equation

pi(q1, . . . , qN) =
exp

(
−θ
∫∞

0
qi(t− s)f(s)ds

)∑N
j=1 exp

(
−θ
∫∞

0
qj(t− s)f(s)ds

) . (3.3)

Thus, our queueing model described in Equation (3.1) solves the following system of
functional differential equations

•
qi(t) = λ ·

exp
(
−θ
∫∞

0
qi(t− s)f(s)ds

)∑N
j=1 exp

(
−θ
∫∞

0
qj(t− s)f(s)ds

) − µqi(t), ∀i ∈ {1, ..., N}. (3.4)

3.1 Equilibria and Stability

Now that we have a system of functional differential equations that describes our queueing
system, many interesting questions emerge. For example, we would like to know about the
equilibrium of Equation 3.4, is the equilibrium unique, and when is the queueing system
stable? One important observation about Equation 3.4 is that we can analyze many of these
questions without restricting our model to specific probability distribution functions f(s).
For example, we show in Theorem 3.1 that regardless of the delay distribution, there is a
unique equilibrium state. For convenience, we will reformulate Equation (3.4) as

•
qi(t) = λ ·

exp
(
− θg(qi(t)

)∑N
j=1 exp

(
− θg(qj(t)

) − µqi(t), (3.5)

where g(x) is a monotonically increasing function.

Theorem 3.1. The unique equilibrium to the system of equations (3.5) where g(x) is a
monotonically increasing function is given by qi(t) = q∗i = λ

Nµ
.

Proof. It is easy to check that if q∗i = λ
Nµ

, then
•
qi(t) = 0 for every i, so q∗i is indeed an

equilibrium. The uniqueness of the equilibrium can be verified by contradiction. We will
suppose that there is another distinct equilibrium state, q̄i for i = 1, . . . , N . We note that
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∑N
i=1

•
qi = 0 = λ − µ

∑N
i=1 q̄i, so

∑N
i=1 q̄i = λ

N
=
∑N

i=1 q
∗
i . Since the equilibrium state q̄i is

distinct from q∗i then q̄i cannot all be λ
Nµ

, and therefore for at least two indices k and l,
1 ≤ k, l ≤ N , without loss of generality the following inequalities below must hold

q̄k <
λ

Nµ
, and q̄l >

λ

Nµ
. (3.6)

We define q̄k to be the minimum equilibrium value and define q̄l to be the maximum equi-
librium value. Because the function g is monotonically increasing, −g(q̄k) > −g(q̄l) and

exp
(
− θg(q̄l)

)
exp

(
− θg(q̄k)

) < 1. (3.7)

Further,
•
qk(t) = 0 so

•
qk(t) = λ ·

exp
(
− θg(q̄k)

)∑N
j=1 exp

(
− θg(q̄j)

) − µq̄k(t) = 0 (3.8)

λ ·
exp

(
− θg(q̄k)

)∑N
j=1 exp

(
− θg(q̄j)

) = µq̄k(t) <
λ

N
(3.9)

N∑
j=1

exp
(
− θg(q̄j)

)
> N exp

(
− θg(q̄k)

)
. (3.10)

Finally, we use inequalities from Equation (3.7) and Equation (3.10) to show that
•
ql(t) 6= 0:

•
ql(t) = λ ·

exp
(
− θg(q̄l)

)∑N
j=1 exp

(
− θg(q̄j)

) − µq̄l(t) (3.11)

< λ ·
exp

(
− θg(q̄l)

)
N exp

(
− θg(q̄k)

) − λ

N
<

λ

N
− λ

N
= 0. (3.12)

Hence, q̄i is not an equilibrium state, so the equilibrium is unique. This completes the
proof.

3.1.1 Finding the characteristic equation

Now that we know that the queueing system has a unique equilibrium, we can use this to
study the stability of this equilibrium. Our analysis about the stability of the equilibrium can
help us understand the connection between the shape of the delay distribution and whether
or not the queueing network will oscillate indefinitely i.e. have a Hopf bifurcation. We start
with trying to determine when the queueing system is locally stable. To this end, we need
to derive the characteristic equation for the linearized version of the queueing network’s
functional differential system of equations. In order to do this, we will find an alternative
way to write the functional differential equations. Using some auxiliary variables, we can
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write the system of functional differential equations as the following 2N -dimensional system

•
qi(t) = λ ·

exp
(
− θmi(t)

)∑N
j=1 exp

(
− θmj(t)

) − µqi(t) (3.13)

mi(t) =

∫ ∞
0

qi(t− s)f(s)ds. (3.14)

Now by linearizing the above system of equations, we arrive at the following linearized system
of equations

•
qi(t) ≈ −λθ

N
mi(t) +

λθ

N2

N∑
j=1

mj(t)− µqi(t) (3.15)

•
mi =

d

dt

∫ ∞
0

qi(t− s)f(s)ds, (3.16)

which can be expressed in a vector form as

•
q̄(t) = −λθ

N
m̄(t) +

λθ

N2
Am̄(t)− µq̄(t) (3.17)

•
m̄ =

d

dt

∫ ∞
0

q̄(t− s)f(s)ds, (3.18)

where q̄ = [q̄1, . . . , q̄N ]T ∈ RN , m̄ = [m̄1, . . . , m̄N ]T ∈ RN , and A ∈ RN×N with Aij = 1 for
1 ≤ i, j ≤ N . The matrix can be diagonalized,

A = V DM, where D,M, V ∈ RN×N and Dij =

{
1 i = j = 1

0 otherwise
. (3.19)

Let q̄(t) = V w̄(t) and m̄(t) = V ū(t). Note that since VM = MV = I, we are guaranteed
that such vectors w̄ and ū exist. With this transformation of variables, the equations become

V
•
w̄(t) = −λθ

N
V ū(t) +

λθ

N2
V Dū(t)− µV w̄(t) (3.20)

V
•
ū(t) =

d

dt

∫ ∞
0

V w̄(t− s)f(s)ds. (3.21)

Once the two equations are pre-multiplied by M , we find

•
w̄(t) = −λθ

N
ū(t) +

λθ

N2
Dū(t)− µw̄(t) (3.22)

•
ū(t) =

d

dt

∫ ∞
0

w̄(t− s)f(s)ds. (3.23)

Only one element of the matrix D is nonzero, which simplifies our equations

•
w1(t) = −µw1(t) (3.24)

•
wi(t) = −λθ

N
ui(t)− µwi(t), i = 2, 3, . . . , N (3.25)

•
ui(t) =

d

dt

∫ ∞
0

wi(t− s)f(s)ds, i = 1, 2, . . . , N (3.26)
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All wi functions are now uncoupled, and w1 from Equation (3.24) has a solution that’s
always stable. To find the characteristic equation, we assume wi(t) = ert. Then ui(t) =∫∞

0
er(t−s)f(s)ds = ertF (r), where F (r) is the Laplace transform of the delay distribution

function f(t). Equation (3.25) yields the following characteristic equation

Φ(r,∆) = r + µ+
λθ

N
F (r) = 0. (3.27)

It is important to recognize that our linear algebra of reducing the N-dimensional system
to one eigenvalue equation is quite important. This reduction in dimensions will significantly
simplify our analysis going forward since it reduces an N-dimensional problem to a one
dimensional one. Moreover, understanding the roots of Equation 3.27 is critical to our
understanding of the stability of the functional differential system. It is clear that when the
Laplace transform of the probability distribution F (r) changes, the stability of the system
will change as well. Thus, it is important to understand the impact of the Laplace transform
F (r) on the stability of the queueing system. It turns out that when the arrival rate λ is
sufficiently small or the service rate µ is sufficiently high, the queueing system is guaranteed
to be stable. We formulate this result in the following theorem.

Theorem 3.2. If λθ < Nµ, then the equilibrium from Theorem (3.1) is locally stable.

Proof. The equilibrium is locally stable if every eigenvalue r that satisfies the characteristic
equation has a negative real part, i.e. Re[r] < 0. Plug in the explicit formulation for the
Laplace transform F (r) =

∫∞
0
e−rsf(s)ds into the characteristic equation, and rewrite the

eigenvalue as r = a+ ib where a, b ∈ R.

Φ(r,∆) = a+ ib+ µ+
λθ

N

∫ ∞
0

e−as
(

cos(bs)− i sin(bs)
)
f(s)ds = 0. (3.28)

Separating the real and imaginary parts we arrive at two equations

a+ µ+
λθ

N

∫ ∞
0

e−as cos(bs)f(s)ds = 0 (3.29)

b− λθ

N

∫ ∞
0

e−as sin(bs)f(s)ds = 0. (3.30)

To reach a contradiction, let us suppose that λ < Nµ/θ and there exists a ≥ 0 that
satisfies Equations (3.29) - (3.30). Since

∫∞
0
f(s)ds = 1, then∣∣∣∣∫ ∞

0

e−as cos(bs)f(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
0

e−asf(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
0

f(s)ds

∣∣∣∣ = 1. (3.31)

From Equation (3.29) it then follows that

a = −µ− λθ

N

∫ ∞
0

e−as cos(bs)f(s)ds (3.32)

≤ −µ+
λθ

N
< −µ+

Nµθ

Nθ
= 0, (3.33)

which contradicts our assumption that a can be non-negative. It follows that when λθ < Nµ
the real part any eigenvalue satisfying the characteristic equation must be negative, and
therefore the equilibrium from Theorem (3.1) is locally stable.
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When the system’s parameters change and the relationship λθ < Nµ is no longer true, the
equilibrium may become unstable. The next result proves that the equilibrium can become
locally unstable only if a pair of complex eigenvalues reaches the imaginary axis, since any
real eigenvalues are guaranteed to be negative regardless of the parameter values.

Lemma 3.3. Any real eigenvalue of the characteristic equation given in Equation (3.27) is
negative.

Proof. Suppose r ∈ R. Then F (r) =
∫∞

0
e−rsf(s)ds ≥ 0, and from Equation (3.27) it follows

that r must be negative

r = −µ− λθ

N
F (r) ≤ −µ < 0. (3.34)

Since the real-valued eigenvalues remain negative for all parameters λ, θ, µ, and N , the
queueing system can become unstable only if a complex-valued eigenvalue has a positive real
part. This can be caused by a Hopf bifurcation.

Theorem 3.4. If one pair of eigenvalues is purely imaginary, a Hopf bifurcation occurs as
λ increases or as µ decreases.

Proof. The infinite-dimensional version of the Hopf Theorem of Hale and Lunel [15] states
that a Hopf bifurcation occurs with respect to a parameter x at x = x∗ when the following
three conditions hold.

• When x = x∗, there must be a pair of purely imaginary eigenvalues r+ and r− that
satisfy the characteristic equation.

• Any other eigenvalue r 6= r+, r− is not an integer multiple of the imaginary eigenvalue,
so r 6= mr+,mr− for any m ∈ Z.

• The derivative of the real part of the eigenvalue with respect to the bifurcation param-
eter at the point of bifurcation is non-zero, i.e. d

dx
Re r+(x∗) 6= 0.

In the case of our queueing model, both λ and µ can be viewed as the bifurcation parameter
x. Suppose that for some given value of λ∗ and µ∗, one pair of eigenvalues is purely imaginary.
Thus if we think of the eigenvalue r as a function of λ and µ, r(λ, µ) = a(λ, µ) + ib(λ, µ)
where a and b are real-valued, then r(λ∗, µ∗) = ib(λ∗, µ∗). The other imaginary eigenvalue
must be its complex conjugate, r(λ∗, µ∗) = −ib(λ∗, µ∗). Without loss of generality, let us
assume that b(λ∗, µ∗) is positive. The equations (3.29)-(3.30) at (λ∗, µ∗) become

µ∗ +
λ∗θ

N

∫ ∞
0

cos(bs)f(s)ds = 0 (3.35)

b− λ∗θ

N

∫ ∞
0

sin(bs)f(s)ds = 0. (3.36)
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To show that the third condition of the Hopf Theorem of [15] is fulfilled, we differentiate
Equation (3.29) with respect to λ:

da

dλ
+

θ

N

∫ ∞
0

e−as cos(bs)f(s)ds+
λθ

N
· d
dλ

∫ ∞
0

e−as cos(bs)f(s)ds = 0. (3.37)

As long as the probability density function f(s) is continuous everywhere besides countably
many points, we can interchange the derivative and the integral,

da

dλ
+

θ

N

∫ ∞
0

e−as cos(bs)f(s)ds+
λθ

N

∫ ∞
0

(−s)e−as cos(bs)f(s)ds · da
dλ

= 0. (3.38)

When (λ, µ) = (λ∗, µ∗) we recall that a = 0 and by Equation (3.35) we find
∫∞

0
cos(bs)f(s)ds =

−Nµ∗

λ∗θ
. Substituting this into (3.38)

d

dλ
a(λ∗, µ∗)− µ∗

λ∗
− λ∗θ

N

∫ ∞
0

s cos(bs)f(s)ds · d
dλ
a(λ∗, µ∗) = 0 (3.39)

Since µ∗

λ∗
6= 0, it is evident that

d

dλ
Re[r(λ∗, µ∗)] =

d

dλ
a(λ∗, µ∗) 6= 0, (3.40)

so the third condition of the Hopf Theorem holds with respect to the parameter λ. Analo-
gously, it can be shown that d

dµ
Re[r(λ∗, µ∗)] 6= 0 as well.

For a fixed delay distribution, as the arrival rate of customers changes, the queueing
system can qualitatively change its behavior. When the condition (λθ < Nµ) holds, the
queue will stabilize over time and all queues will converge to the equilibrium queue length
of λ

Nµ
. However, when the condition does not hold i.e. λθ ≥ Nµ, the queueing system may

undergo a Hopf bifurcation, causing the queues to oscillate throughout time, never reaching
an equilibrium state. Whether or not a Hopf bifurcation occurs and the equilibrium becomes
unstable depends on the distribution of the delay. In the next section, we will consider several
common probability distributions and discuss how the queueing system behaves in each case.
In the cases that are possible, we describe exactly when a Hopf bifurcation will occur in terms
of the model parameters.

4 Explicit Analysis for Common Delay Distributions

Queueing systems may exhibit different behavior depending on the distribution of the delay.
Based on the results from Section 3.1, any queueing system of the form given by Equation
(3.4) is guaranteed to be stable unless a Hopf bifurcation occurs. Our goal for this section is
to do an extensive analysis on some common distributions for the time delay and determine
under what conditions (if ever) the resulting queueing systems become unstable. We will
begin by reviewing the simplest possible distribution, and then will gradually introduce more
complexity to get a better sense of how the distribution of the delay affects the underlying
dynamics of the queueing system.
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4.1 Constant Delay

For our first model, we will suppose that there is no variation in the commute time of the
customers. In this example, they all travel from the same population center to the queue of
their choice, where the queues are equidistant from the customers’ initial location. Figure
5 provides a geographical representation of such a queueing system. We will refer to this
system as the constant delay model since each customer’s delay is is given by a constant ∆.

Figure 5: All customers have the same commute time.

The system of differential equations from Equation (3.4) simplifies to

•
qi(t) = λ ·

exp
(
− θqi(t−∆)

)∑N
j=1 exp

(
− θqj(t−∆)

) − µqi(t) ∀i = 1, 2, . . . , N, (4.41)

where the parameter ∆ > 0 represents the time delay that the customers experience. The
delay distribution is a Dirac delta function f(s) = δ(s − ∆) with the Laplace transform
F (r) = exp(−r∆). Therefore, the characteristic equation given by Equation (3.27) becomes

Φ(r) = r + µ+
λθ

N
exp(−r∆) = 0. (4.42)

The queueing system in Equation (4.41) undergoes a Hopf bifurcation and the point of
bifurcation can be found analytically and in closed form. Like in Novitzky et al. [25], we set
the eigenvalue to be purely imaginary i.e. r = ib and separate the real and imaginary parts
of the characteristic equation to find

µ+
λθ

N
cos(b∆) = 0, b− λθ

N
sin(b∆) = 0. (4.43)

The trigonometric identity sin2(b∆) + cos2(b∆) = 1 gives expressions for b and ∆

b =

√
λ2θ2

N2
− µ2, ∆cr =

N arccos(−Nµ/ (λθ))√
λ2θ2 −N2µ2

. (4.44)

By Theorem (3.4), the queues undergo a Hopf bifurcation when the equations (4.44) hold.
In the parameter space λ and ∆, the Hopf curve is given by Figure 6. The queues are stable
in the region to the left of the Hopf curve, and unstable in the region to the right. However,
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this model has been analyzed before in Novitzky et al. [25]. We now will try to analyze a
more complex model that captures two delays.

Figure 6: Hopf curve given a constant delay.

4.2 Real-Time and Delay

Let us now slightly generalize the constant delay model, so that not all customers have the
same commute. Suppose now that some customers are located at a population center that
requires a fixed commute just like in the constant delay model, but now there is another
group of customers that are near the service and don’t require any commute. Figure 7 gives
a geographical picture for the resulting queueing system. There are two population centers
present, (i) and (ii), where the customers from (i) experience a delay ∆ while the customers
from (ii) have no delay. We will refer to this set-up as a real-time and delay model.
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Figure 7: Customers experience either a constant delay or no delay, depending on their initial
location.

When a proportion p of customers (0 ≤ p ≤ 1) have delay ∆ and the rest of the population
have no delay, the queueing system can be represented as

•
qi(t) = λ ·

exp
(
− θ(1− p)qi(t)− θpqi(t−∆)

)∑N
j=1 exp

(
− θ(1− p)qj(t)− θpqj(t−∆)

) − µqi(t), i = 1, 2, . . . , N. (4.45)

Here the delay distribution is a linear combination of Dirac delta functions, f(s) = pδ(s −
∆) + (1 − p)δ(s). The Laplace transform of the delay distribution is therefore F (r) =
p exp(−r∆) + (1− p), and the characteristic equation (3.27) becomes

Φ(r) = r + µ+
λθp

N
exp(−r∆) +

λθ

N
· (1− p) = 0. (4.46)

To determine when the queueing system becomes unstable, we solve the characteristic equa-
tion assuming a purely imaginary eigenvalue r = ib, 0 < b ∈ R. Using the same technique as
for the constant delay model, we find a closed-form expression for b and the delay ∆ where
a bifurcation occurs in the following Theorem.

Theorem 4.1. When the queueing model has the dynamics of Equation 4.45, then we have
the following expression for the Hopf bifurcation critical delay value for the real-time delay
model

∆cr =
Nµ arccos

(
− Nµ

λθp
− 1

p
+ 1
)

λθp

√
1−

(
− Nµ

λθp
− 1

p
+ 1
)2
. (4.47)

Moreover, the model is always stable when

p ≤ 1

2
+
Nµ

2λθ
. (4.48)
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Proof. The proof follows from the same reasoning in Novitzky et al. [25], however, we must
proof the later statement in Equation 4.48.

∆ =
arccos

(
− Nµ

λθp
− 1

p
+ 1
)

b
, b =

λθp

Nµ
·

√
1−

(
− Nµ

λθp
− 1

p
+ 1
)2

. (4.49)

The dynamics of this model are more interesting than in the constant delay case. Specif-
ically, the queues may remain stable for all values of λ and µ, and that the Hopf bifurcation
will never occur. To see this, notice that denominator from Equation (4.47) must be real
and positive, which imposes the condition i.e.

λθp

Nµ
·

√
1−

(
− Nµ

λθp
− 1

p
+ 1
)2

> 0 (4.50)(Nµ
λθp

+
1

p

)(
2− Nµ

λθp
− 1

p

)
> 0 (4.51)

p >
Nµ+ λθ

2λθ
=

1

2
+
Nµ

2λθ
. (4.52)

This completes the proof.

Figure 8: Hopf curve for different values of p.

Theorem 4.1 provides some important insights. The first insight implies that if at least
half of the customers experience no delay, then the queueing system will remain stable de-
spite all other factors. This condition is even stronger in the sense that strictly more than
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one half of all customers must be delayed in order to have a Hopf bifurcation. From a man-
ager perspective, this is encouraging as giving some bit of real-time information dramatically
improves the system and one can achieve local stability without everyone having real time
information. The second insight is that the queueing system can become unstable if the con-
dition (4.52) holds, meaning that a significant proportion of the population experienced the
constant delay ∆. In Figure 8, we plot the Hopf bifurcation curves for different proportions
of customers that experience the constant delay ∆. When the delay affects all customers
(p = 1), the Hopf curve becomes exactly the constant delay Hopf curve from Figure 5. This
implies that the formula for the Hopf bifurcation converges to the constant delay curve when
p → 1. As the proportion of the delayed customers shrinks (p decreases), the Hopf curve
moves to the right, increasing the region of the parameter space where the queueing system
is stable. One important thing to note that when p = .5, this is not equivalent to reducing
the delay ∆ to ∆/2. The fact that the system is completely stable when p = .5 implies that
the real-time information has a stronger affect on the stability than the delayed information
does.

4.3 M Discrete Delays

To further generalize the delay distribution, we will consider a queueing system where M
different constant delays are present, and each delay is experienced by some proportion of
the incoming customers. Thus, we analyze a finite discrete distribution as the distribution
of travel times. We know that the discrete distribution has the following probability mass
function (pmf) and is specified by the probabilities p1, p2, ..., pm and values ∆1,∆2, ...,∆m.
Thus, we have that

P (X = ∆k) = pk, (4.53)

and the discrete random variable has Laplace transform given by

F (r) =
m∑
k=1

pke
−r∆k . (4.54)

The eigenvalue equation then follows directly from Equation (3.27),

Φ(r) = r + µ+
λθ

N

m∑
k=1

pke
−r∆k = 0. (4.55)

Although this representation of the eigenvalue equation given in Equation 4.55 does not
give us any information on how to solve it at first. However, it does show us that delay
differential equations with multiple delays are equivalent to distributed delay differential
equations where the delay is random variable given by a discrete probability distribution.
Thus, if we can develop a framework for analyzing distributed delay equations, then it will
immediately provide us with a methodology for understanding ddes with multiple constant
delays. To the authors’ knowledge this observation appears to be a new connection between
distributed ddes and multi-delay ddes that has not been observed in the previous literature.
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Thus, getting approximate solutions to the Hopf curves for discretely distributed delays will
also yield approximate solutions to Hopf curves for multi delay systems.

Now that the delay distribution is more complicated, we cannot easily extract useful
closed-form expressions to determine where the system of queues becomes unstable as we
did before. In the next section, we will describe how to develop approximate analytical
formulas for the Hopf curves. Although we cannot develop exact Hopf curves for these
models, it is possible to solve (4.55) numerically. We will set r = ib in the characteristic
equation and separate the real and imaginary parts. The resulting system of two equations
can be solved for the unknown b and λ, given that the other parameters are known. Below
in Figure (9), we give an example of a Hopf curve resulting from a system with three delays.
A proportion p1 = 1/6 of the customers experience delay of ∆1 = 0.8, and p2 = 1/3 of the
customers have a delay of ∆2 = 0.9. The plot shows how large the final delay must be in
order for the queueing system to become unstable. On the left plot, we set µ = 0.5 and on
the right plot we set µ = 1.

Figure 9: Hopf curve for three discrete delays.

An interesting phenomenon to observe is that for a fixed arrival rate, the queueing system
can go from stable to unstable and then back to stable again as the average delay increases.
This phenomenon has been observed in delay differential equations with moving averages
before Novitzky et al. [25]. The intuition for the moving average case is that for small
delays, it is clear that the moving average model is stable. It then becomes unstable as
one increases the delay, however, the model becomes stable again. One explanation for the
stability for large ∆ is that the moving average becomes closer and closer to a constant as
the delay becomes larger. This is because for large values of ∆ the moving average does
not change much since it is averaging over a large interval. However, in the case of multiple
delays, it is not clear why the same behavior occurs.

4.4 Discrete Uniform On Bounded Interval

With M discrete delays, one particular distribution that one can analyze with our methodol-
ogy is the case when all of the delays are equidistant and have equal probability of occurring.

19



For example we let X be the following random variable where each outcome has the equal
probability i.e.

X =
2∆k

M
w.p.

1

M + 1
where k ∈ {0, 1, 2, ...,M}. (4.56)

Lemma 4.2. The Laplace transform for the random variable X above is equal to

FM
X (r) = E[e−rX ] =

1− e−2r∆M+1
M

(M + 1) · (1− e− 2r∆
M )

. (4.57)

Proof.

FM
X (r) = E[e−rX ] (4.58)

=
1

M + 1

M∑
k=0

e
−2r∆k

M (4.59)

=
1

M + 1

M∑
k=0

(
e

−2r∆
M

)k
(4.60)

=
1− e−2r∆M+1

M

(M + 1) · (1− e− 2r∆
M )

(by the truncated geometric sum). (4.61)

By Lemma 4.2, the characteristic equation becomes

Φ(r) = r + µ+
λθ

N
· 1− e−2r∆M+1

M

(M + 1) · (1− e− 2r∆
M )

= 0. (4.62)

As the number of delays goes to infinity, M → ∞, the Laplace transform of the discrete
uniform distribution converges to the Laplace transform of a continuous uniform distribution.
It follows from Lemma 4.3.

Lemma 4.3. As the number of points M tends to infinity, the Laplace transform for the
random variable X has the following expression

lim
M→∞

FM
X (r) =

1− e−2r∆

2r∆
(4.63)

Proof.

lim
M→∞

FM
X (r) = lim

M→∞

1− e−2r∆M+1
M

(M + 1) · (1− e− 2r∆
M )

(4.64)

=
1− e−2r∆

2r∆
. (4.65)
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Therefore, the characteristic equation of the discrete uniform delays converges to the
characteristic equation based on a uniformly distributed delay, which we will consider later
on in Section 4.5. Figure 10 shows the convergence as M → ∞ of the Hopf curves from
Equation 4.62 to the uniform distribution Hopf curve. One should also note that we do
not display the two delay case. In this case, the queueing system is completely stable sinde
it is identical to the real-time delay model where the fraction of customers with real-time
information is one half of the population. Thus, the most important situation is studying
when the number of delays is greater than two but not large.

Figure 10: Hopf curves for a discrete delay system converge to the Hopf curve of a uniformly
distributed delay. Uniform distribution yields the least stable system.

4.5 Uniform Distribution

When M discrete delays are weighed equally and M increases, the delay distribution begins
to resemble a continuous distribution. This serves as a motivation to study a queueing
system with uniformly distributed delay on an interval [0, 2∆], ∆ > 0. Figure 11 shows
a queueing system where customers’ commute to the queues may be approximated by a
uniform distribution. This model is the moving average model.
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Figure 11: Customers going through a N-queue service system.

The probability density function is f(s) =

{
1

2∆
0 ≤ s ≤ 2∆

0 otherwise
, with the Laplace trans-

form given by

F (r) =

∫ 2∆

0

e−rt · 1

2∆
dt =

1

2∆r

(
1− e−2r∆

)
. (4.66)

The characteristic equation (3.27) for the queueing system is therefore

Φ(r) = r + µ+
λθ

N · 2∆r
− λθ

N · 2∆r
· e−2r∆ = 0. (4.67)

We can determine when a Hopf bifurcation occurs by solving for a purely imaginary
eigenvalue, that is r = ib. By separating the real and imaginary parts of the characteristic
equation we find expressions for sine and cosine

sin(2b∆) = −4∆µb

λθ
, cos(2b∆) = 1− 4∆b2

λθ
. (4.68)

The trigonometric identity sin2(2b∆) + cos2(2b∆) = 1 produces a closed-form expression

b =

√
λθ

2∆
− µ2. (4.69)

When b is substituted into Equation (4.68), we get a transcendental equation for ∆,

sin
(

2∆ ·
√
λθ

2∆
− µ2

)
+

4µ∆

λθ
·
√
λθ

2∆
− µ2 = 0. (4.70)

When Equation (4.70) is solved numerically, the Hopf curve from Figure 12 can be found.
As with the three discrete delays from Figure 9, the Hopf curve is not necessarily uniquely
determined for a fixed customer arrival rate λ. As seen from plot on the right in Figure 12,
when λ = 15, the queueing system is stable when the average delay ∆ is below 0.5, unstable
roughly when the average delay is in the range [1, 6], and the stable again when ∆ > 7.
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Figure 12: Hopf curve for uniformly distributed delay on [0, 2∆]. The average delay is ∆.

Uniform distribution does not have to be restricted to the interval [0, 2∆]. A generalized
case can be considered, with the delay being distributed on the interval [∆− a,∆ + a]. The
parameter a ∈ R+ is no greater than ∆ so that ∆ − a ≥ 0. The characteristic equation is
then given by

Φ(r) = r + µ+
λθ

2arN
· e−r∆(era − e−ra) (4.71)

= r + µ+
λθ

arN
· e−r∆ sinh(ra) (4.72)

= 0. (4.73)

4.6 Gamma Distribution

Another continuous distribution of interest is the gamma distribution. Unlike the uniform
distribution, gamma distribution is unbounded and allows for more versatility in the actual
shape of the probability density function, as its shape is determined by two parameters k
and a.
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Figure 13: Customers going through a N-queue service system.

This density is specified by f(s) for s ≥ 0 as

f(s) =
ak

Γ(k)
sk−1e−as, (4.74)

with the Laplace transform F (r) = ak

(r+a)k
. The eigenvalue equation follows from (3.27),

Φ(r) = r + µ+
λθak

N(r + a)k
= 0. (4.75)

To determine where the queues may become unstable, we solve for λθ/N and µ at the point
where an eigenvalue is purely imaginary, so r = ib. We set tan(φ) = b

a
:

(ib+ µ)
(ib
a

+ 1
)k

+
λθ

N
= (ib+ µ)

(
i tan(φ) + 1

)k
+
λθ

N
= 0. (4.76)

This equation can be simplified through the de Moivre’s formula:

(ib+ µ)
(
i sin(φ) + cos(φ)

)k
= −λθ

N
cosk(φ) (4.77)

(ib+ µ)
(
i sin(kφ) + cos(kφ)

)
= −λθ

N
cosk(φ). (4.78)

Separating the real and the imaginary parts of the equation we find

−b sin(kφ) + µ cos(kφ) = −λθ
N

cosk(φ) (4.79)

µ sin(kφ) = −b cos(kφ), (4.80)

so µ and λθ
N

can be expressed as functions of b,

µ = −b cot(kφ) (4.81)

λθ

N
= (b sin(kφ) + b cot(kφ) cos(kφ))/ cosk(φ). (4.82)
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Based on these equalities, the Hopf curve can be found numerically. Figure 14, for example,
is a result of setting k = 2 and varying the other parameter a. This in turn changes the
average delay, which is given by E[f(s)] = k

a
.

Figure 14: Hopf curve for gamma distribution, given that k = 2.

4.6.1 Exponential Distribution

Exponential distribution is a special case of gamma distribution where k = 1. For exponen-
tially distributed delay, the queues are always stable as seen by the following proposition.

Proposition 4.4. When the delay distribution is given by an exponential distribution, the
queueing system given in Equation (3.4) is always stable.

Proof. The characteristic equation given in Equation (4.75) simplifies to a quadratic equation
with respect to the eigenvalue r, namely,

r2 + r(µ+ a) +

(
µa+

λθ

N
a

)
= 0, (4.83)

r =
1

2

(
−(µ+ a)±

√
(µ+ a)2 − 4a

(
µ+

λθ

N

))
. (4.84)

If the discriminant is non-positive, then Re[r] = −(µ + a) < 0 so the queues are locally
stable. If the discriminant is positive then

(µ+ a)2 − 4a

(
µ+

λθ

N

)
= (µ− a)2 − 4aλθ

N
< (µ− a)2, (4.85)

which reveals that the eigenvalue must be real and negative:

r =
1

2

(
−(µ+ a)±

√
(µ+ a)2 − 4a

(
µ+

λθ

N

))
(4.86)

<
1

2

(
− (µ+ a) + |µ− a|

)
< max[−µ,−a] < 0. (4.87)
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Hence when the delay is exponentially distributed, the queues are always stable. Figure
15 shows how the queueing model becomes more stable as k goes to 1.

Figure 15: As k → 1, gamma distribution model becomes more stable.

4.6.2 Gamma Distribution Converges to Constant Delay

When k →∞, a special scaling of the gamma distribution converges to a Dirac delta function,
and the delay becomes a deterministic value. Hence, the gamma distribution model converges
to the constant delay model. To show this, we rename the average delay to be ∆, or k

a
= ∆,

setting therefore a to be k/∆. The term from the characteristic equation (4.75) with k then
becomes

lim
k→∞

ak

(r + a)k
= lim

k→∞

(
k

r∆ + k

)k
= lim

k→∞
exp

(
k ln

(
k

r∆ + k

))
. (4.88)

The limit in the exponent can be evaluated by the L’Hopital’s rule

lim
k→∞

k ln

(
k

r∆ + k

)
= lim

k→∞

ln
(

k
r∆+k

)
1
k

= lim
k→∞

r∆+k
k
· r∆

(r∆+k)2

−k−2
(4.89)

= lim
k→∞
− r∆k

r∆ + k
= −r∆. (4.90)

Combining (4.90) with (4.88), we find that

lim
k→∞

ak

(r + a)k
= e−r∆, (4.91)
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which confirms that in the limit as k →∞ the characteristic equation of the gamma distribu-
tion model given in Equation (4.75) converges to the characteristic equation of the constant
delay model (4.42):

r + µ+
λθak

N(r + a)k
→ r + µ+

λθ

N
e−r∆. (4.92)

Figure 16: As k →∞, gamma distribution model converges to constant delay model.

4.7 Hyperexponential Distribution

Another continuous distribution of interest is the hyperexponential distribution. The hy-
perexponential distribution is a special case of a phase type distribution. Unlike the Erlang
distribution it allows for more variability and has more variance than the exponential dis-
tribution. Usually the hyperexponential distribution is determined by two M-dimensional
vectors of parameters (p1, p2, ..., pM) and (a1, a2, ..., aM). The vector (p1, p2, ..., pM) repre-
sents the probabilistic weights of each exponential distribution and the vector (a1, a2, ..., aM)
is the associated rate parameters of each exponential. Thus, the hyperexponential is a con-
vex combination of exponential distribution with potentially different rate parameters. The
density is specified by f(s) for s ≥ 0 as

f(s) =
M∑
j=1

pjaje
−ajs, (4.93)

with the Laplace transform

F (r) =
M∑
j=1

pjaj
r + aj

. (4.94)
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The eigenvalue equation follows from (3.27),

Φ(r) = r + µ+
M∑
j=1

λθpjaj
N(r + aj)

= 0. (4.95)

Here we specialize to the case of M = 2 since the case of M = 1 is an exponential
distribution that we already analyzed. When M = 2, we have that

Φ(r) = r + µ+
λθpa1

N(r + a1)
+
λθ(1− p)a2

N(r + a2)
(4.96)

= N(r + µ)(r + a1)(r + a2) + λθpa1(r + a2) + λθ(1− p)a2(r + a1) (4.97)

= N(r + µ)(r + a1)(r + a2) + λθ (pa1 + (1− p)a2) r + λθa1a2 (4.98)

= N(r3 + (a1 + a2 + µ)r2 + (a1a2 + a1µ+ a2µ)r + a1a2µ) (4.99)

+λθ (pa1 + (1− p)a2) r + λθa1a2

Theorem 4.5. Suppose that M = 2 and we assume the probability distribution is given by
the hyperexponential distribution, then for any set of model parameters the queueing model
given in Equation 3.4 is always stable.

Proof. Before we begin the proof, we want to note that it is impossible for the eigenvalue
equation to have a positive root since all of the coefficients are positive. Moreover, since the
equation is cubic, must have at least one negative root. Thus, it remains for us to show that
if the polynomial has complex roots, then the roots have negative real parts. We will exploit
the fact that the polynomial coefficients are positive and use the Routh-Hurwitz criterion for
the remainder of the proof. Since the polynomial is a cubic polynomial and the coefficients
are positive, it remains to show that

(a1 + a2 + µ) ·
(
a1a2 + µ(a1 + a2) +

λθpa1

N
+
λθ(1− p)a2

N

)
>

(
λθ

N
+ µ

)
a1a2. (4.100)

We will verify this condition below. We have that

(a1 + a2 + µ) ·
(
a1a2 + µ(a1 + a2) +

λθpa1

N
+
λθ(1− p)a2

N

)
(4.101)

≥ (a1 + a2 + µ) ·
(
a1a2 +

λθpa1

N
+
λθ(1− p)a2

N

)
(4.102)

≥ (a1 + a2 + µ) ·
(
a1a2 +

λθpa1

N
+
λθ(1− p)a2

N

)
(4.103)

≥ (a2 + µ) ·
(
a1a2 +

λθpa1

N
+
λθ(1− p)a2

N

)
(4.104)

≥ (a2 + µ) ·
(
a1a2 +

λθa1

N

)
(4.105)

= µa1a2 + a1a
2
2 +

λµθa1

N
+
λθ

N
a1a2 (4.106)

>

(
λθ

N
+ µ

)
a1a2. (4.107)
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This completes the proof.

We have shown that the hyperexponential distribution for M = 2 inherits the stability
property of the exponential distribution. We suspect that this is also true for M > 2,
however, we do not have a proof for this result as of now. The Routh-Hurwitz approach
should work for the case where M = 3, however, for higher dimensions it is not clear that it
will work since it involves analyzing the roots of higher order polynomials.

5 Data-Driven Central Moment Approximations

In a physical setting the service managers of a queueing system may not know the distribution
of their customers’ commute time. This motivates us to study the stability regions of a
queueing system with distributed delay based on the moments of the delay distribution,
which can be determined from physical setting.

First, we will summarize our findings about upper and lower bounds on the system’s
stability, based on the knowledge of the mean delay, symmetry of the distribution, and
whether or not it is bounded.

• If the average delay is known, any model with a symmetric distribution will be at
least as stable as the constant delay model with that average delay. This is proven in
Theorem 4.0.5 by Bernard, et al. [2]. So if

∫∞
0
sf(s)ds = ∆ and λθ > Nµ, the queues

are asymptotically stable when

∆ <
arccos(−Nµ/(λθ))√

λ2θ2/N2 − µ2
. (5.108)

The condition for ∆ is derived in Equation (4.44), and it provides a lower bound on
stability of a queueing system. Further, we hypothesize that the same bound holds for
non-symmetric delay distributions as well, but we have not been able to prove it.

• If the delay distribution is unbounded, the upper bound on stability based on the
average delay does not exist. This is evident from the following example. For any
average delay, one can consider the delay being exponentially distributed, which results
in a stable queueing system, as shown in Section 4.6.1.

• Even if the distribution is known to be bounded, an upper bound on stability is still not
guaranteed. One can consider the distribution from Section 4.2, where some customers
experience a fixed delay and the rest experience no delay. This delay distribution is
bounded, but still the queueing system is always stable if at least half of the customers
receive no delay.

Next, we propose a method that approximates the Hopf curve using the moments of
the delay distribution. The service manager has the freedom to choose how many (or how
few) moments to incorporate. Generally, higher moments will produce a more accurate
approximation, but it is sufficient to know just the average delay and its variance based
on sampling the customers in order to get a rough idea for when the queues will become
unstable.
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The approximation method relies on expanding the Laplace transform of the delay dis-
tribution in an infinite series, and then using the truncated series in order to find imaginary
eigenvalues of the characteristic equation (3.27). This allows us to avoid dealing with the
probability density function f(s), and instead use its moments. Lemma 5.1 below estab-
lishes the connection between the Laplace transform and the moments of a given probability
distribution.

Lemma 5.1. The Laplace transform of the non-negative random variable X can be expanded
in the following Taylor series around a generic point a

E[e−rX ] = F (r) = e−ra

(
∞∑
j=0

(−r)j · E[(X − a)j]

j!

)
. (5.109)

Moreover, when a = 0 we have

E[e−rX ] = F (r) =
∞∑
n=0

(−r)n

n!
· E[Xn]. (5.110)

and when a = E[X], we have

E[e−rX ] = F (r) = e−rE[X]

(
1 +

∞∑
j=2

(−r)j · E[(X − E[X])j]

j!

)
. (5.111)

Proof. This follows immediately from standard Taylor expansions.

The random variable X from Lemma 5.1 represents the delay of an individual customer,
and it is specified by the probability density function f(s). Therefore the average delay can
be found as ∆ = E[X] =

∫∞
0
sf(s)ds, and the j-th centered moment can be expressed as

E[(X −∆)j] =

∫ ∞
0

(s−∆)jf(s)ds, where ∆ =

∫ ∞
0

sf(s)ds. (5.112)

It follows that the characteristic equation (3.27) can be express as

Φ(r) = r + µ+
λθ

N
· e−r∆

(
1 +

∞∑
j=2

(−r)j · E[(X −∆)j]

j!

)
= 0. (5.113)

If the data about the first K central moments is available, then the characteristic equation
can be approximated by the truncated series

Φ(r) ≈ r + µ+
λθ

N
· e−r∆

(
K∑
j=0

(−r)j

j!

∫ ∞
0

(s−∆)jf(s)ds

)
, (5.114)

and solving numerically Φ(ib) = 0, b ∈ R, will produce an approximation to the Hopf curve.
Moreover, when r is not complex, we can use Jensen’s inequality to show that

F (r) = E[e−rX ] ≥ e−rE[X]. (5.115)
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This simple application of Jensen’s inequality provides much insight on why the constant
delay is the most unstable distribution for a fixed mean value of the delay. This result
also suggests that randomness helps the system be more stable. However, we still do not
understand what type of randomness leads to more stable distributions since in our examples.
It is clear from our previous examples that variance is not the lone quantity

We find it extremely important to note to readers that the central moments are critical as
opposed to the standard moments of the delay distribution. Using the central moments allows
us to use the constant delay model as a base model and expand around that. Expanding
around a base distribution is common in the probability literature when using orthogonal
polynomial expansions, see for example Dufresne [10], Pender [27], Engblom and Pender
[13]. It is also important to note that using the moments directly, one does not obtain sine
or cosine functions, which are used to compute the critical delay and frequency. Using a
centering point that is not equal to the mean will yield sine and cosine functions, however,
from our numerical experiments, it does not perform well unless it is near the mean. Thus,
using the central moments is vital to the analysis and our bounds that we derive in the
sequel.

When the distribution of the delay is symmetric, Equation (5.114) can be further simpli-
fied. The odd central moments are zero, E[(X−∆)2j+1] = 0, which so the Laplace transform
can be expressed as

F (r) = E[e−rX ] = e−r∆
(

1 +
∞∑
j=1

(−r)j

j!
E[(X −∆)j]

)
(5.116)

= e−r∆
(

1 +
∞∑
j=1

r2j

2j!
E[(X −∆)2j]

)
. (5.117)

At the point of a Hopf bifurcation when the eigenvalue r becomes purely imaginary, i.e.
r = ib, the expression for the Laplace transform takes the form of alternating series

F (r) =
(

cos(b∆)− i sin(b∆)
)
·
∞∑
j=0

(
(−1)j · b

2j

2j!
· E
[
(X −∆)2j

])
(5.118)

=
(

cos(b∆)− i sin(b∆)
)
·
∞∑
j=0

(−1)jkj, where kj =
b2j

2j!
· E
[
(X −∆)2j

]
. (5.119)

The characteristic equation at the Hopf takes the form

Φ(ib) = ib+ µ+
λθ

N
·
(

cos(b∆)− i sin(b∆)
)
·
∞∑
j=0

(−1)jkj = 0. (5.120)

Therefore, an approximation based on K central moments to where the Hopf bifurcation
occurs is given by the solution of the system of equations{

µ+ λθ
N
· cos(b∆) ·

∑K
j=0(−1)jkj = 0

b− λθ
N
· sin(b∆) ·

∑K
j=0(−1)jkj = 0.

(5.121)
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If the Taylor expansion of the Laplace transform consists of terms with decreasing magnitude,
then we can have an upper and a lower bound on the Laplace transform. Additionally, the
upper and the lower bound are guaranteed to be tighter as more terms of the truncated
Taylor series are included.

Theorem 5.2. Suppose X is a symmetric non-negative random variable and a = E[X].

Further, the terms kj = b2j

2j!
· E
[
(X − a)2j

]
are decreasing, or kj ≥ kj+1 for all j ≥ 0. Then

we can derive an upper and lower bound the Laplace transform F (r) at the bifurcation point
r = ib:

− sin(ba)
2N∑
j=0

(−1)jkj ≤ Im
(
F (r)

)
≤ − sin(ba)

2N+1∑
j=0

(−1)jkj (5.122)

cos(ba)
2N∑
j=0

(−1)jkj ≤ Re
(
F (r)

)
≤ cos(ba)

2N+1∑
j=0

(−1)jkj, (5.123)

where N ≥ 0 is an arbitrary integer. Furthermore, the bounds are guaranteed to be tighter
for larger N .

Proof. By Equation (5.119),

lim
n→∞

(
cos(ba)− i sin(ba)

)
· Sn = F (ib), (5.124)

where Sn =
n∑
j=0

(−1)jkj. (5.125)

For any n, Sn is a real quantity, so by separating the real and imaginary parts of (5.124),
we see that

lim
n→∞

cos(ba) · Sn = Re[F (ib)] (5.126)

lim
n→∞

− sin(ba) · Sn = Im[F (ib)] (5.127)

Since kn = b2n

2n!
· E
[
(X − a)2n

]
is nonnegative for all nonnegative integers n and {kn} is a

decreasing sequence by assumption, the sequence {S2n} is monotonically decreasing. Specif-
ically, for any n ≥ 0

S2(n+1) =

2(n+1)∑
j=0

(−1)jkj =
2n∑
j=0

(−1)jkj +
(
− k2n+1 + k2n+2

)
(5.128)

≤
2n∑
j=0

(−1)jkj = S2n. (5.129)

Similarly, the sequence of partial sums {S2n+1} is monotonically increasing,

S2(n+1)+1 =

2(n+1)+1∑
j=0

(−1)jkj =
2n+1∑
j=0

(−1)jkj +
(
k2n+2 − k2n+3

)
(5.130)

≥
2n+1∑
j=0

(−1)jkj = S2n+1. (5.131)
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Lastly, we note that b > 0 must satisfy the characteristic equation (3.27), meaning that{
µ+ Re

[
λθ
N
F (ib)

]
= 0

b+ Im
[
λθ
N
F (ib)

]
= 0,

(5.132){
µ+ λθ

N
· cos(ba)

∑∞
j=0(−1)jkj = 0

b− λθ
N

sin(ba)
∑∞

j=0(−1)jkj = 0.
(5.133)

The series
∑∞

j=0(−1)jkj > 0 since the sequence kj > 0 for every j and {kj} is decreasing,
which therefore dictates that

cos(ba) < 0 and sin(ba) > 0. (5.134)

Since cos(ba) < 0 and {S2n} is a decreasing sequence, we can conclude that for any n ≥ 0

cos(ba)S2n ≥ cos(ba)S2(n+1) ≥ Re[F (ib)] (5.135)

Further, since {S2n+1} is an increasing sequence, we prove the upper bound for Re[F (ib)]:

cos(ba)S2n+1 ≤ cos(ba)S2(n+1)+1 ≤ Re[F (ib)]. (5.136)

These inequalities state an upper and lower bound on the real part of the Laplace transform,
as given in Equation (5.123). Similarly, because sin(ba) > 0, we get the upper and lower
bounds on the imaginary part of the Laplace transform as in Equation (5.122):

− sin(ba)S2n ≤ − sin(ba)S2(n+1) ≤ Im[F (ib)] (5.137)

− sin(ba)S2n+1 ≥ − sin(ba)S2(n+1)+1 ≥ Im[F (ib)]. (5.138)

Note that Equations (5.135)-(5.138) also demonstrate that choosing a larger n provides
tighter bounds on both the real and the imaginary parts of F (r).

Since the exact point of the Hopf bifurcation is given by

µ+
λθ

N
Re(F (ib)) = 0 (5.139)

b− λθ

N
Im(F (ib)) = 0, (5.140)

or when the arrival rate of the customers satisfies the equation

λ = − µN

θ Re(F (ib))
> 0, (5.141)

then by Theorem 5.2 for every n ≥ 0 we have the following upper and lower bounds on λ:

λ ≥ − µN

θ cos(ba)
∑2(n+1)

j=0 (−1)jkj
≥ − µN

θ cos(ba)
∑2n

j=0(−1)jkj
, (5.142)

λ ≤ − µN

θ cos(ba)
∑2n+3

j=0 (−1)jkj
≤ − µN

θ cos(ba)
∑2n+1

j=0 (−1)jkj
. (5.143)

In other words, when the first 4n central moments are included to approximate λ where the
Hopf bifurcation occurs, we get a lower bound. When the first 4n + 2 central moments are
used, we get an upper bound. Additionally, these bounds get tighter as more moments are
incorporated.
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5.1 Examples Using the Approximation Method

We demonstrate numerically the performance of the approximation from Equations (5.121)
based on several delay distributions.

Discrete uniform delays on a bounded interval Recall the distribution from Section
4.4, where there are M + 1 evenly distributed discrete delays {0, 2∆

M
, 4∆
M
, . . . , 2∆} with equal

probability of occurring 1
M+1

. Since we already know how a queueing system behaves when
M = 1 from Section 4.2, we will assume that M ≥ 2 so there are three or more delays total.
The odd central moments are zero, while the even central moments are given by the formula

E[(X −∆)2n] =


2

M+1
·
∑M/2

j=1

(
2∆j
M

)2n

, M is even

2
M+1
·
∑(M−1)/2

j=1

(
2∆j
M
− ∆

M

)2n

, M is odd.
(5.144)

In Figure 17, we consider a distribution with six delays or M = 5 in the left plot, and ten
delays of M = 9 in the right plot. For each distribution, we include 2, 4, and 20 central
moments, and plot the Hopf curves resulting from the system of equations (5.121). The
second order approximation for both distributions predicts the queues to be more stable
than they actually are (for a fixed average delay), while the fourth order approximation
predicts the queues to be less stable. The twentieth order, however, approximates the Hopf
curve very accurately.

Figure 17: The approximation method applied to a system with 6 delays (on the left) and
10 delays (on the right).

Uniform distribution The uniform distribution on interval [0, 2∆] has even central mo-
ments given by

E[(X −∆)2n] =
∆2n

2n+ 1
. (5.145)
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Figure 18 shows the Hopf curve approximations when the two, four, six, and twenty central
moments are included in the system of equations (5.121). Based on the plot, as the number
of utilized moments increases, the approximation becomes more accurate and converges to
the true Hopf curve. Further, the second and the sixth order approximations give an upper
bound with respect to λ, whereas the fourth order gives a lower bound.

Figure 18: An approximation to a system with uniformly distributed delay on [0, 2∆].

If the delay is uniformly distributed on the interval [∆− a,∆ + a] where 0 < a ≤ ∆, the
even central moments are

E[(X −∆)2n] =
a2n

2n+ 1
. (5.146)

Below we consider a queueing system where the delay is distributed proportionally to the
average delay on the interval [0.5∆, 1.5∆] (so a = 0.5∆ from (5.146)). The left plot in
Figure 19 shows that the second, fourth, and twentieth order approximations are so close to
the true Hopf curve that is difficult to even distinguish the curves. The plot on the right
shows a zoomed in version of the same plot, where one can see the second and fourth order
approximations deviating from the true solution.
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Figure 19: An approximation to a system with uniformly distributed delay on [.5∆, 1.5∆].

6 Conclusion and Future Research

This paper formulates a fluid-like model for a system of N queues given in Equation (3.4),
where the incoming customers choose which queue to join based on the current queue lengths.
Our model accounts for the customers then travelling to the queue of their choosing thus
causing a random delay in information, where the individual’s travel time is represented by
a random variable drawn from a fixed distribution.

Despite the randomness in the delay distribution, we show that the queueing system has
a unique equilibrium state, which is guaranteed to be locally stable when the parameter
relationship λθ < Nµ is satisfied. The equilibrium can become unstable only if a Hopf bifur-
cation occurs, which we have shown depends significantly on the distribution of the customer
delay. Under certain distributions, such as the exponential distribution, hyperexponential,
or real-time and delay distribution, the queues may remain locally and asymptotically stable
regardless of the size of the delay and any other model parameters. For other delay distri-
butions, however, given that λθ ≥ Nµ, a Hopf bifurcation may occur and the equilibrium
may become unstable. Common delay distributions are considered in Section 4, where for
each distribution we study the stability region of the queues.

The stability is uniquely determined from the characteristic equation when the delay
distribution is known. However, we also consider the scenario when only certain moments
of the distribution are known. This is motivated by physical settings where the moments
can be approximated by sampling the incoming customers. We propose an approximation
method that utilizes the moments of the delay distribution in order to determine whether or
not the queues are stable.

A natural extension of this paper is to conduct further study the of queueing models with
specific distributions. For example, one can ask how does the delay distribution affect the
amplitude and frequency of the oscillations in queues that result from a Hopf bifurcation.
Moreover, when the queueing system is locally stable, what is the rate of convergence of the
queue lengths to the equilibrium? Conversely, when the system is unstable, how quickly do
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the oscillations converge to the equilibrium amplitude?
It would also be great to develop guarantees on the accuracy of our central moment

method for non-symmetric distributions. We noticed that the central moment method per-
forms much better for queueing systems with symmetric delay distributions. It would be
interesting to understand why the method loses accuracy when the distribution is non-
symmetric. We also noticed that the Taylor series around the average delay produce by far
the most accurate results, and we would like to learn why that is the case.

Finally, we suggest another interesting topic of future research is to explore delay differen-
tial equations with a countable number of constant delays. We have yet to find an application
for the countably infinite setting, however, it is an interesting mathematical question. Using
the probabilistic perspective, we can use countable discrete distributions like the Poisson,
negative binomial, and the geometric as examples to explore the stability of a dde system
with a countable number of delays. In particular the Poisson distribution is intriguing since
it is described solely by its mean parameter and its cumulant moments are all equal to its
mean.
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