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Abstract

We propose and analyze a multi-server queueing model that captures a performance
trade-off between customers valuing flexibility (join the shortest of d queues) or wanting
dedicated service (join a specific queue). We are motivated by healthcare platforms
like ZocDoc where patients may choose to see a dedicated physician or choose among
the readily available physicians. In our stylized model, a fraction p of the customers
are flexible and are willing to join the shortest of d queues and the remaining fraction
1-p will only join the queue of their choice. We prove both fluid and diffusion limits for
the queueing model for the transient and steady state dynamics. In the fluid model,
the steady state distribution satisfies a nonlinear recursion. Thus, we derive its closed
form solution and show the sequence of fluid scaled queue length processes converges
to a unique invariant state. Moreover, we prove that the diffusion scaled queue length
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process converges to an infinite dimensional OU process and its steady state limit
coincides with the steady state of the OU process. Our analysis indicates that even a
small number of flexible customers can have a large benefit on the system.

1 Introduction

Imagine a patient who has an undiagnosed health concern and would like to see a physician.
Oftentimes a patient’s Primary Care Physician (PCP) is the first medical practitioner that
she will contact to address her concern. Suppose that, unfortunately, the PCP is fully booked
for the next couple of weeks and the patient will have to wait for a prolonged period of time
to see the PCP. This long of a wait is not an uncommon scenario in the United States’
healthcare system. According to a recent survey, the average wait time for a patient to see
a doctor for non-emergency issues can be as long as 66 days in a large city [2]. Thus, the
patient, in need of seeing a medical professional, might choose to forgo a visit with their
PCP to see the next available physician and resolve their medical concern sooner. To this
end, a patient would choose to use a patient platform such as ZocDoc where they can choose
among a large set of available doctors who specialize in their health issue.

Figure 1: Example of ZocDoc platform where doctors are listed by earliest available appoint-
ment time and quality.

ZocDoc is a two-sided medical platform that allows patients to search and view the
available appointment times of doctors online and make appointments instantly. ZocDoc’s
sync technology [1] allows patients to search based on the doctor’s location, medical specialty,
insurance coverage, and patient ratings. On the ZocDoc patient platform, there are typically
10 doctors listed per page. In Figure 1, we provide an example of the ZocDoc platform where
doctors are listed by earliest available appointment time and perceived quality. Appointment
booking is not just online, but also can be made via smartphone devices as well. Doctors
can also choose to be listed on ZocDoc and allow the platform to access and integrate with
their appointment calendars so that their updated calendars can be viewed by patients in
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real-time. From a patient perspective, using a service like ZocDoc can help patients book
appointments sooner. Earlier appointments typically result in earlier detection of illnesses,
which can affect the final cost of healthcare expenses. Thus, we ask the question, what is
the value of being able to see another physician on a patient platform like ZocDoc if one is
flexible?

In this paper, we abstract the above scenario and model it as a multi-server queueing
system under heavy traffic and partial load balancing. Similar types of queueing systems
have been studied in the literature, see for example Aghajani et al. [3], Bramson et al.
[5, 6], Dai et al. [10], Foley et al. [17], Foss and Stolyar [18], Graham [20, 21, 22, 23], He and
Down [24], Lin and Raghavendra [28], Lu et al. [29], Mitzenmacher [30, 31], Mukherjee et al.
[32], Tao and Pender [37], Tsitsiklis and Xu [38], Vvedenskaya et al. [40], Whitt [41].

Figure 2: Success of ZocDoc in reducing wait lead times for patients.

However, we analyze the performance of the multi-server queue with the addition of a
key feature: patient types, where patients of different types react differently to waiting to see
their PCP. For example, some patients are quite particular about only being seen by their
PCP for various reasons. These reasons might include familiarity, ease of communication,
and accessibility of location. On the other hand, there also exist flexible patients who are
willing to see another physician other than their PCP if they can have access to a medical
professional within a shorter time frame. In fact, these flexible patients might be willing
to call several physician’s offices, observe waiting times for each physician, and finally join
the queue by scheduling an appointment with the physician that offers the shortest wait
time among those contacted or listed on the ZocDoc platform. In the context of ZocDoc,
this flexibility decreases the booking lead time significantly for those who are willing to be
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flexible [1]. In Figure 2, we observe that the introduction of ZocDoc as a patient platform
has reduced the wait lead time significantly by offering substitute doctors that are willing
to see the patient in a earlier time frame. By doing so, flexible patients will acquire queue
length information that dedicated patients do not have access to. The question we aim to
address in this paper is, how does the overall system perform if only a fraction p ∈ [0, 1] of
the patients are flexible and would be willing to use a platform like ZocDoc?

The model that we consider is highly stylized. We consider a system of N physicians and
assume that patients who arrive to the system are one of two types: flexible or dedicated.
We fix a flexibility parameter p ∈ [0, 1], which denotes the probability with which each
arriving patient is flexible. We further assume that each patient type has a different policy
for joining a physician’s queue. The dedicated patients join their designated PCP’s queue
regardless of queue length i.e. they join one of the N queues uniformly at random. In other
words, these patients either have no information and do not use a platform like ZocDoc to
search for earlier appointments. Hence, they are in some sense loyal to their PCP regardless
of the wait they might experience. Flexible patients, on the other hand, are willing to see
any physician that reduces their waiting time and are considered impatient. In our model,
flexible patients choose d physicians, independently and uniformly at random, and observe
the queue lengths of each. Flexible patients subsequently respond to this newly obtained
information by joining the shortest queue among the d physician queues sampled. In some of
the current literature, the parameter d scales with the number of servers N , see for example
Dieker and Suk [13]. However, we assume that d is a fixed constant since the ZocDoc patient
platform displays 10 physicians at once on one page and therefore, the value d = 10 is a
reasonable value for the purposes of our work.

Our goal is to study the performance of the system for varying degrees of “flexibility” and
“power of choices”, as expressed by parameters p and d, respectively. In doing so, we use a
fluid approximation where the queue length dynamics are approximated with a deterministic
fluid model as N → ∞ and the fluid model behaves according to an infinite dimensional
system of non-linear ordinary differential equations. We are especially interested in studying
and deriving an upper bound for the average queue length in the system, which, as we will
see, also has some interesting interpretations.

In addition to the healthcare motivation presented by the ZocDoc platform, one can also
imagine a supermarket where customers join lines independently without any knowledge of
the number of customers at each cashier. Our model is equivalent to having a proportion of
informed customers who have the ability to look at d queues and join the shortest among
those queues. Thus, our goal is to understand the value that a few “informed” customers
can have on the system. We will show in the sequel that even when the proportion of
flexible patients is small, these flexible patients can have a large impact on the overall system
performance.

1.1 Related Work

There has been a lot of activity in the recent years of researchers analyzing a number of
variants of the join the shortest queue model, see for example recent work by Banerjee et al.
[4], Braverman [7], Eschenfeldt and Gamarnik [15], Mukherjee et al. [33]. Despite, the large
amount of activity in this area, there are relatively few papers that explore the impact of
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flexibility or information on the underlying system. In this work, we are inspired by the work
by Tsitsiklis and Xu [38] where they explicitly study the trade-off between centralized and
distributed processing. In their work, they consider an N -station system where their system
designer is given a total amount N of divisible computing resources. Moreover, the system
designer in their work can allocate resources to local and central servers. More specifically,
for some fraction p ∈ (0, 1), local servers process tasks at a maximum rate of 1− p tasks per
second, while the centralized server, at rate of pN tasks per second. Our work is different
from theirs in two main ways. First, we consider a different model where we are joining
the shortest of d queues. Second, we do not assume a centralized server processes tasks.
In our setting, flexibility can be viewed as information each arrival has about the system.
Some customers have some partial information about the system and the others do not
have any information about the system and join uniformly at random. We also differ from
Tsitsiklis and Xu [38] since we also analyze the diffusion scaled system. By studying the
diffusion scaled process, we can gain important insights on how the flexibility impacts the
fluctuations or variance of the queueing system. This is also helpful in building confidence
intervals around the fluid limit.

1.2 Main Contributions of Our Work

The contributions that we make in this work are:

• We develop a new stochastic queueing model that incorporates the structure of dedi-
cated and flexible customers. We explore the trade-off between these types of customers
through the parameters p and d, which represent flexibility and the amount of partial
information about the system.

• We prove fluid and diffusion limit theorems for the queueing process, thus showing
that the fluid limit is an infinite dimensional system of non-linear odes and that the
diffusion limit is an infinite dimensional Ornstein-Uhlenbeck process.

• We prove an interchange of limits for the fluid and diffusion scaled processes, thereby
showing that the steady state fluid and diffusion limits are good approximations for the
original fluid and diffusion scaled processes. In fact, we derive a closed form expression
for the steady state distribution using a non-linear recursion. This recursion also allows
us to derive new upper and lower bounds on the first and second moments of the queue
length in steady state, which converge to each other as p→ 0 or p→ 1.

• From a mathematical perspective, we derive a new method for proving the global
stability of the steady state fluid limit by using a comparison approach. Our approach
exploits the fact that if the integral of the difference of two solutions are bounded,
then the two solutions converge to the same point. We also derive new infinite horizon
bounds for the diffusion scaled process, which are important ingredients for establishing
tightness for steady state diffusion limits. The infinite horizon bounds are in general
difficult to prove because they must be proved in the appropriate functional space when
the sub-generator of an associated birth-death process is not self-adjoint. Moreover,
proving these infinite horizon bounds is difficult in our model because the self-adjoint
property of the sub-generator depends on the flexibility parameter p.
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1.3 Organization of the Paper

The remainder of the paper is as follows. In Section 2, we describe the stochastic model
of our paper. In Section 3, we present a fluid model for the tail distribution of the queue
length. We prove both a transient and a steady state fluid limit for our stochastic model. The
transient fluid limit is proved using martingale techniques and the steady state fluid limit
is proved using a new comparison approach. We also prove an interchange of limits result,
which shows in a rigorous sense that the steady state limit can be used as an approximation
for our stochastic model. In Section 4, we present a diffusion model for the tail distribution
of the queue length and prove a transient diffusion limit, a steady state diffusion limit and
an interchange of limits for the stochastic model. In Section 5, we prove that the steady
state fluid limit can be written in closed form using a nonlinear recursion. We also prove
tight upper and lower bounds on the first and second moments of the queue length. We also
demonstrate through numerical examples that small values of p can have a large impact on
the behavior the system. Finally, in Section 6, we conclude the paper and we move most of
the proofs to the Appendix in Section 7.

1.4 Notation

Below in Table 1, we provide a list of the notations that we will use throughout the rest of
the paper.

Table 1: Notation

N # of physicians
λ Arrival rate of patients
p Fraction of flexible patients
d # of physicians flexible patients sample

QN
i (t) Number of patients at physician i at time t

SNi (t) Fraction of queues with at least i patients at time t
si(t) The fluid limit of process SNi (t)
sI The steady state of fluid limit s(t)

DN(t) The fluctuation of SN(t) around its fluid limit s(t)
D(t) The diffusion limit of process DN(t)
`1 The space of sequences whose series is absolutely convergent
`2 The space of square-summable sequences
S {s ∈ [0, 1]Z+ : 1 ≥ s0 ≥ s1 ≥ · · · ≥ 0,

∑∞
i=0 si <∞}

1.5 Preliminaries of Weak Convergence

In this paper, we assume that all random variables are defined on a common probability
space (Ω,F ,P). Moreover, for all positive integers k, we let D([0,∞),S) be the space of
right continuous functions with left limits (RCLL) in S that have a time domain in [0,∞).
As is usual, we endow the space D([0,∞),S) with the usual Skorokhod J1 topology, and
let M be defined as the Borel σ-algebra associated with the J1 topology. We also assume
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that all stochastic processes are measurable functions from our common probability space
(Ω,F ,P) into (D([0,∞),S),M). Thus, if {ζ}∞n=1 is a sequence of stochastic processes, then
the notation ζn → ζ implies that the probability measures that are induced by the ζn’s
on the space (D([0,∞),S),M) converge weakly to the probability measure on the space
(D([0,∞),S),M) induced by ζ. For any x ∈ (D([0,∞),S),M) and any T > 0, we define

||x||`2 ≡
∞∑
i=0

x2i (1.1)

and note that ζn converges almost surely to a continuous limit process ζ in the J1 topology
if and only if

||ζn − ζ||`2 → 0 a.s. (1.2)

2 The Stochastic Queueing Model

In this section, we present a stochastic queueing model that has N physicians. Each physician
operates a single server queue of scheduled patients who are seen in a first in first out manner.
We denote the queue length for physician n at time t with Qn(t) where n ∈ {1, 2, · · · , N}
and t ≥ 0. Each physician processes the work of their current patients at rate 1 if there are
patients in their queue.

For the patients, we assume there are two types of patients: dedicated and flexible. The
two types of patients are split into according to our flexibility parameter p. A patient is
flexible with fixed probability p ∈ [0, 1]. We assume that flexible patients are willing to
sample d physician queues, independently and uniformly at random, and join the shortest-
of-d queues at their time of arrival. This is an abstraction of patients choosing among the
available physicians on the ZocDoc platform. Dedicated patients, on the other hand, are only
willing to see their designated PCP and are not flexible. Thus, assuming equal popularity
among all physicians, this is equivalent to saying that they join any queue at random. Finally,
we assume that once a patient joins a queue, the patient is completely locked in and cannot
switch to another queue.

Each of the N physicians has a stream of dedicated patients arriving according to inde-
pendent Poisson processes with a common rate λ(1 − p), where λ ∈ [0, 1]. Thus, the total
arrival rate of dedicated patients to the system is λ(1− p)N . In addition, the overall system
also has a stream of flexible patients arriving according to an independent Poisson process
with rate λpN .

Once patients are routed to the appropriate physician queue (dedicated patients to their
PCP queues and flexible patients to the shortest-of-d physician queues), each physician queue
operates as an M/M/1 queue. The queue length vector at time t, (Q1(t), Q2(t), · · · , QN(t)),
is a Markov process. In addition, the system is fully symmetric and exchangeable in that
the arrival of dedicated patients and patient services are independent and identical, and the
arrival of flexible patients depends solely on the length of the physician queues, and not on
the specific identity of physicians. Thus, we can use a Markov process {SNi (t)}∞i=0 to describe
the evolution of the system, where we defined SNi (t) as
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SNi (t) =
1

N

N∑
n=1

1{Qn(t) ≥ i}. (2.3)

Here SNi (t) represents the fraction of queues with at least i patients. By definition, SN0 (t) = 1
for all values of N and t ≥ 0. Furthermore, SNi (t) is a non-increasing process in the variable
i, meaning that

1 ≥ SNi (t) ≥ SNi+1(t) ≥ 0

for all values of i, N and t ≥ 0. We define the infinite dimensional vector of this queueing
process as SN(t) = (SN0 (t), SN1 (t), · · · , SNn (t), · · ·SN∞(t)). Our goal is to study the process
SN(t) in two scenarios. The first is in the transient setting where we let N → ∞ and the
second is in the steady state setting where we let both N →∞ and t→∞.

3 Fluid Model

Here we summarize the results in this section, which are related to the fluid model of the
queueing process SN(t). For our first result, Theorem 3.1, we prove a functional law of large
numbers (LLN) in the transient case for process SN(t) to its fluid limit s(t). For our second
result, Theorem 3.8), we prove an interchange of limits results for the stochastic process
model. We use a compactness-uniqueness approach, which show that the limiting point sI

of the fluid limit s(t) is also the limit of the invariant measure SN(∞) of SN(t).

3.1 Transient Analysis of the Fluid Limit

We start with the functional law of large numbers in the transient case for the fluid limit.

Theorem 3.1 (Functional Law of Large Numbers). Assume that (SN(0))N≥d converges in
distribution to s(0) in S. Then, (SN(t))N≥d converges in probability to the unique solution
s = (s(t))t≥0 i.e. on any compact time interval t0 > 0 and ε > 0, we have

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖`2 > ε

)
= 0. (3.4)

Moreover, s(t) has initial condition s(0) and is the solution to the following infinite dimen-
sional system of differential equations

dsi
dt

= λ(1− p)(si−1 − si)︸ ︷︷ ︸
arrival of dedicated patients

+ λp
(
sdi−1 − sdi

)︸ ︷︷ ︸
arrival of flexible patients

− (si − si+1)︸ ︷︷ ︸
departure of patients

i ≥ 1. (3.5)

Proof. We prove this result using Doob’s inequality for martingales and Gronwall’s lemma.
We use Proposition 3.2, and Lemma 4.7 in the proof, and they are stated after the proof
of Theorem 3.1. To give readers a high-level understanding of the proof idea, we list the
essential steps and related theorem numbers below.
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1. We decompose queueing process SN(t) into three parts. The first is the initial condition
SN(0), the second is a martingale MN(t) term and the final term is an integral of the
drift term

∫ t
0
FN(SN(u))du. (Equation 3.7)

2. We bound the difference between SN(t) and its fluid limit s(t) on any finite interval
[0, T ] by difference in their initial conditions ‖SN(0)− s(0)‖, the supremum of martin-

gale supu≤T ‖MN(t)‖, the difference in drift function and its limit
∫ T
0
‖FN(SN(u)) −

F (SN(u))‖du, and finally the difference in limiting drift function evaluated at SN(t)

and s(t) i.e.
∫ T
0
‖F (SN(u))− F (s(u))‖du. (Inequality 3.10)

3. We show Lipschitz property of limiting drift function F . (Proposition 3.2)

4. We apply Gronwall’s lemma to the difference. (Inequality 3.12)

5. We apply Doob’s L2 martingale inequality toMN(t) and bounds on quadratic variation.
(Inequality 3.19, Lemma 4.7)

6. We prove existence and uniqueness of the fluid limit s(t). (Proposition 3.3)

To start with the proof, we introduce the falling factorial notation (x)k = x(x − 1) · · · (x −
k + 1) for x ∈ R, and define the following mappings for s in c0 by

F+(s)(i) = λ(1− p)(si−1 − si) + λp(sdi−1 − sdi ),
F−(s)(i) = (si − si+1),

FN
+ (s)(i) = λ(1− p)(si−1 − si) + λp

(Nsi−1)d − (Nsi)d
(N)d

, i ≥ 1,

FN(s) = FN
+ (s)− F−(s),

F (s) = F+s)− F−(s). (3.6)

Then, the nonlinear differential equation can be written as ṡ = F (s), and it is easy to show
that SN(t) is a Markov process, that when in state s, has jump in the ith coordinate of size
+1/N with rate NFN

+ (s)(i) and size −1/N with rate NF−(s)(i), for all i ≥ 1. Since SN(t)
is a semi-martingale, we have the following decomposition of SN(t),

SN(t) = SN(0)︸ ︷︷ ︸
initial condition

+ MN(t)︸ ︷︷ ︸
martingale

+

∫ t

0

FN(SN(u))︸ ︷︷ ︸
drift term

du, (3.7)

where SN(0) is the initial condition and MN(t) is a independent family of martingales.
Moreover,

∫ t
0
FN(SN(u))du is the integral of the drift term where the drift term is given by

FN : S → RZ+ or

FN(s)(k) =
∑
x 6=s

(x− s)QN(s, x)(k)

= λ(1− p)(sk−1 − sk) + λp
(Nsk−1)d − (Nsk)d

(N)d
− (sk − sk+1),
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where QN(s, x)(k) represents the transition rate from state s to x on the kth coordinate.
Now we want to compare SN(t) with its fluid limit s(t) defined by

s(t) = s(0) +

∫ t

0

F (s(u))du. (3.8)

If we let ‖ · ‖ denote the `2 norm in RZ+ , then

∥∥SN(t)− s(t)
∥∥ =

∥∥∥∥SN(0) +MN(t) +

∫ t

0

FN(SN(u))du− s(0)−
∫ t

0

F (s(u))du

∥∥∥∥
=

∥∥∥∥SN(0)− s(0) +MN(t) +

∫ t

0

(
FN(SN(u))− F (SN(u))

)
du

+

∫ t

0

(F (SN(u))− F (s(u)))du

∥∥∥∥ . (3.9)

Now we define the random function fN(t) = supu≤t
∥∥SN(u)− s(u)

∥∥, and by the triangle
inequality we have

fN(t) ≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+

∫ t

0

‖F (SN(u))− F (s(u))‖du. (3.10)

By Proposition 3.2, F (s) is Lipschitz with respect to `2 norm. Let L be the Lipschitz constant
of F (s), then

fN(t) ≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+

∫ t

0

‖F (SN(u))− F (s(u))‖du

≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+L

∫ t

0

‖SN(u)− s(u)‖du

≤ ‖SN(0)− s(0)‖+ sup
u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du

+L

∫ t

0

fN(u)du. (3.11)

By Gronwall’s lemma,

fN(t) ≤
(
‖SN(0)− s(0)‖+ sup

u≤t
‖MN(u)‖+

∫ t

0

‖FN(SN(u))− F (SN(u))‖du
)
eLt. (3.12)
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Now we proceed to bound fN(t) term by term. To this end, we define function α : S → RZ+

as

α(s)(k) =
∑
x 6=s

‖x− s‖2QN(s, x)(k)

=
1

N

[
FN
+ (s)(k) + F−(s)(k)

]
=

1

N

[
λ(1− p)(sk−1 − sk) + λp

(Nsk−1)d − (Nsk)d
(N)d

+ (sk − sk+1)

]
. (3.13)

By Lemma 4.7, we have that ‖α(s)‖`2 = 1
N
O(‖s‖`2). Thus, there exist a constant C > 0

such that ‖α(s)‖`2 ≤ C
N

for any s. Now consider the following four sets

Ω0 = {‖SN(0)− s(0)‖ ≤ δ}, (3.14)

Ω1 =

{∫ t0

0

‖FN(SN(t))− F (SN(t))‖dt ≤ δ

}
, (3.15)

Ω2 =

{∫ t0

0

‖α(SN(t))‖dt ≤ A(N)t0

}
, (3.16)

Ω3 =

{
sup
t≤t0
‖MN(t)‖ ≤ δ

}
, (3.17)

where δ = εe−Lt0/3. Here the set Ω0 is for bounding the initial condition, the set Ω1 is for
bounding the drift term FN and the limit of the drift term F , and the sets Ω2,Ω3 are for
bounding the martingale MN(t). Therefore, on the event Ω0 ∩ Ω1 ∩ Ω3,

fN(t0) ≤ 3δeLt0 = ε. (3.18)

Consider the stopping time

T = t0 ∧ inf

{
t ≥ 0 :

∫ t

0

α(SN(u))du > A(N)t0

}
,

by Doob’s `2 martingale inequality,

E
(

sup
t≤T
‖MN(t)‖2

)
≤ 4E‖MN(T )‖2 = 4

∫ T

0

‖α(SN(u))‖du. (3.19)

On Ω2, we have T = t0, so Ω2 ∩ Ωc
3 ⊂ {supt≤T ‖MN(t)‖ > δ}. By Chebyshev’s inequality,

P(Ω2 ∩ Ωc
3) ≤ P

(
sup
t≤T
‖MN(t)‖ > δ

)
≤

E
(
supt≤T ‖MN(t)‖2

)
δ2

≤ 4A(N)t0/δ
2. (3.20)

Thus, by Equation (3.18), we have the following result,

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
≤ P(Ωc

0 ∪ Ωc
1 ∪ Ωc

3)

≤ P(Ω2 ∩ Ωc
3) + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

≤ 4A(N)t0/δ
2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

= 36A(N)t0e
2Lt0/ε2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2).

(3.21)
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Let A(N) = C
N

, then Ωc
2 = ∅. And since SN(0)

p−→ s(0), limN→∞ P(Ωc
2) = 0. Therefore we

have

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
= lim

N→∞
P(Ωc

1).

By Lemma 4.7, limN→∞ P(Ωc
1) = 0. Thus, we proved the final result

lim
N→∞

P
(

sup
t≤t0
‖SN(t)− s(t)‖ > ε

)
= 0.

Proposition 3.2 (Lipschitz bound on drift functions). The mappings F, F+, F− are Lipschitz
with respect to the `2 norm.

Proof. See Appendix for details of the proof.

Proposition 3.3 (Existence and Uniqueness of the fluid limit). There exists a unique solu-
tion (s(t))t≥0 ∈ S to the differential equation (3.5) and s(t) is continuous in t.

Proof. This is a direct application from the Lipschitz property of F in Proposition 3.2 and
Gronwall’s lemma.

3.2 Steady State Analysis of Fluid Limit

In addition to understanding the transient behavior of the fluid model, it is important to
understand the steady state behavior as well. In this section, we outline the steady state
analysis of the stochastic queueing model. To begin, we denote the steady state of the
queueing model as sI . Then, sI satisfies the following equation,

λ(1− p)(sIi−1 − sIi ) + λp
(
(sIi−1)

d − (sIi )
d
)
− (sIi − sIi+1) = 0, i ≥ 1 (3.22)

Theorem 3.4. The steady state of the queueing model sI has a unique solution given by the
following recursion

sI0 = 1,

sI1 = λ,

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d for all i ≥ 2.

Proof. We prove the result by induction. For i = 1,

sI1 =
∞∑
i=1

(sIi − sIi+1)

=
∞∑
i=1

[
λ(1− p)(sIi−1 − sIi ) + λp

(
(sIi−1)

d − (sIi )
d
)]

= λ(1− p)sI0 + λp(sI0)
d

= λ.
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Now for i ≤ k, we assume that

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d.

Then, for i = k + 1,

sIk+1 = sIk − λ(1− p)(sIk−1 − sIk)− λp
(
(sIk−1)

d − (sIk)
d
)

= λ(1− p)sIk + λp(sIk)
d.

Remark: Note that the existence and uniqueness of the equilibrium point sI is obtained
from the fact that sIi is completely determined by sIi−1 and we have the initial condition
sI0 = 1 holds.

3.3 Interchanging Limits of Fluid Limit

In this section, we prove an interchange of limits result for the fluid model, i.e. the limiting
point sI of the fluid limit s(t) is also the limit of the invariant measure SN(∞) of SN(t).
A visual interpretation of the interchange of limits result corresponds to showing that the
following diagram commutes.

SN(t)N→∞ //

t→∞
��

s(t)

t→∞
��

SN(∞)
N→∞

// sI

We have already proved in Section 3 that SN(t)
p−→ s(t) and the existence and uniqueness

of sI . Now we will show the other two directions of the diagram, which are the existence
of invariant measure SN(∞) for each N ≥ 1, and the convergence of the invariant measure
SN(∞) to sI . Our method of proof is a modification of the compactness-uniqueness method
pioneered by Graham [20]. We can decompose the compactness uniqueness method into
three essential steps.

1. Show that the fluid limit (Equation (3.5)) has a globally attractive stable point sI .
(Lemma 3.5, Theorem 3.6)

2. Show that there exists an invariant measure SN(∞) for SN for each N ≥ 1. (Proposi-
tion 3.7, Theorem 3.8 (1))

3. Show that these invariant measures (SN(∞))N≥1 are tight in S. (Theorem 3.8 (2))

In order to prove that the fluid limit has a globally attractive stable point, we will use
a comparison result for finiite dimensional ordinary differential equations. This result is
outlined below.

Lemma 3.5 (Comparison Result). Let u and v be two solutions for Equation (3.5) such
that u(0) ≤ v(0). Then u(t) ≤ v(t) for all t ≥ 0.

13



Proof. We first consider the finite dimensional case. For any fixed constant K ∈ N, we
assume WLOG that uk(0) < vk(0), k = 1, · · · , K, and that uK+1(t) < vK+1(t) for all t ≥ 0.
We aim to show that uk(t) < vk(t) for all t ≥ 0 and k = 1, · · · , K.

Assume that u(t) < v(t) for t ∈ [0, t0) but ui(t0) = vi(t0) for some i ∈ {1, · · · , K}. Then
we know that uj(t0) ≤ vj(t0) for all j ∈ {1, · · · , K}. Now from the fluid limit equation (3.5)
we have that

u̇i(t0) = λ(1− p)(ui−1(t0)− ui(t0)) + λp(udi−1(t0)− udi (t0))− (ui(t0)− ui+1(t0))

≤ λ(1− p)(vi−1(t0)− vi(t0)) + λp(vdi−1(t0)− vdi (t0))− (vi(t0)− vi+1(t0))

= v̇i(t0), (3.23)

suggesting that ui(t) ≤ vi(t) for t ≥ t0.
Now for any s(0) ∈ S, there exists a unique solution s(t) ∈ S for (3.5). We will show

that the solution s(t) can be obtained as the limit of solutions {sK(t)}∞K=1 to (3.5) with
sK+1(t) = 0.

Denote sK(t) as the solution to (3.5) with sKK+1 = 0. Then we have sK+1
K+1(t) ≥ sKK+1(t) = 0.

By the previous argument, we have that for fixed t and i ≤ K, sK+1
i (t) ≥ sKi (t). Then there

exists the limit limK→∞ s
K
i (t) = si(t) for each i and s(t) = {si(t)}∞i=0 ∈ S̄. Notice that si(t)

satisfies the fluid limit equation (3.5). It follows by uniqueness of the solution that the limit
limK→∞ s

K(t) = s(t) is the solution to fluid limit Equation (3.5). Finally, combining the two
previous arguments, we conclude the comparison theorem for infinite dimensional case.

Theorem 3.6 (Global Stability of Fluid Limit). The fluid limit equation (3.5) has globally
attractive stable point sI . That is, starting from any initial condition s(0) ∈ S,

lim
t→∞

s(t) = sI

Proof. The proof is given in the Appendix.

Now we will construct a coupling which compares the behavior of the system SN(t) when
d = 1 vs. d > 1. When d = 1, the fluid limit equation becomes

ṡi(t) = λ(si−1(t)− si(t))− (si(t)− si+1(t)),

which is a system of N i.i.d M/M/1 queues. And we know that if and only if λ < 1, when
such system is positive recurrent, with a geometric stationary distribution being

sIk = λk, k ∈ N.

Let’s consider coupling three systems with choices between 1 queue, d queues and with
probability p of being flexible respectively, and we call them system 0, system 1 and system
p. We use σ = {0, 1, p} to denote quantities related to system σ by superscript σ. We use
cN,σm (t) to denote the number of patients which have at least m patients queueing in front of
then at time t ≥ 0, which can be written as

cN,σm (t) = N
∑

k≥m+1

SN,σk (t), m ∈ N.

14



We will first focus on comparing system 0 and system p. We use a single Poisson process
of rate Nλ for arrivals for both systems. At each jump time, we generate a random variable
with Bernoulli(p) distribution to decide whether the patient is flexible or not. If he/she is
flexible, we choose uniformly jp1 < · · · < jpd among 1, · · · , N and then j0 among jp1 < · · · < jpd ,
and set jp = jpd . If the patient is not flexible, we simply choose uniformly j among {1, · · · , N}
and set jp = j0 = j. In system σ, we order the queues by decreasing length (ties are resolved
with uniform probability), and let the task join the queue ranking jσ in this order. Note
that j0 ≤ jp.

We use a single Poisson process of rate N for potential departures for both systems.
At each jump time, we choose j uniformly in {1, · · · , N}. In system σ, we again order the
queues by decreasing length, and remove a task from the jth queue in this order if that queue
is not empty.

Our goal is to show that performance is ranked as follows ( system 1 ≤ system p ≤ system
0 ) with respect to the number of patients in the system. Our proof of this coupling is a
modification of the proof given in Theorem 4 of Turner [39].

Proposition 3.7 (Coupling Result). For N ∈ N, if cN,1m (0) ≤ cN,pm (0) ≤ cN,0m (0) for all
m ∈ N, then

cN,1m (t) ≤ cN,pm (t) ≤ cN,0m (t), m ∈ N, t ≥ 0.

Proof. See Appendix for details of the proof.

Theorem 3.8 (Convergence of Stationary Distributions).

1. The Markov process SN(t) is positive recurrent for all N , and therefore has a unique
stationary distribution πN ∈ P(S̄) for each N .

2. The sequence of stationary distribution πN of process SN(t) converges weakly to the
Dirac mass at sI as N →∞.

Proof. By Theorem 3.7, the system 1 is empty whenever system 0 is. Therefore system 1
is also positive recurrent when λ < 1 and have a stationary distribution πN . Irreducibility
implies the uniqueness of the stationary distribution.

Since S̄ is compact, so is the set P(S̄) of the probability measures on S̄. Therefore the
sequence of probability measures {πN}∞N=1 is tight and has limit points. We aim to show
that any limit point of {πN}∞N=1 is the Dirac mass at sI .

Assume that SN(0) has the same distribution as the stationary distribution πN , for each
N . By Theorem 3.1, let π∞(0) be the limiting distribution of a subsequence of (SN(0))N≥1,
and let π∞(t) be the limiting distribution for the same subsequence of (SN)N≥1. For t ≥ 0
and N ≥ 1, since the process started with its stationary distribution, we have that SN(t)
also follows distribution πN . Applying Theorem 3.1, we have that the fluid limit s(t) =
limN→∞ S

N(t) has the same distribution as π∞(0).
Now let ε > 0 and V be an open neighborhood of sI . For j ∈ N, let Pj be the set of all

a in P(S) such that the solution for the (3.5) starting at a is in V for all times t ≥ j. Since
Pj is measurable, Pj ⊂ Pj+1, and by the fact that sI is a globally attractive point (Theorem
3.6), we have P(S) = ∪jPj, therefore there exists k such that P (π∞(0) ∈ Pk) > 1− ε. Then

P (π∞(0) ∈ V ) = P (π∞(k) ∈ V ) ≥ P (π∞(0) ∈ Pk) > 1− ε.
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Since ε and V arbitrary, we have P (π∞(0) = sI) = 1. Hence (SN(0))N≥1 converges in
distribution to the Dirac mass at sI , and the limiting distribution of (SN)N≥1 is the constant
sI .

4 Diffusion Model

In this section, we analyze a diffusion scaled version of the queueing process. Since the fluid
limit does not capture stochastic fluctuations, the diffusion model can help us gain important
insights on the fluctuations of the system, which can be used to build confidence intervals for
various performance measures. To do this, we first prove a functional central limit theorem
(CLT) in the transient case for the scaled diffusion process DN(t) =

√
N(SN(t) − s(t))

to its limit D(t). We identify D(t) as an infinite dimensional Ornstein Uhlenbeck (OU)
process. By computing the variance of D(t), we can construct rigorous confidence intervals
for characterizing the deviations from the fluid limit in the transient setting. Second, we
prove the functional CLT in the equilibrium setting, thereby establishing an interchange of
limits result for the diffusion scaled empirical process. We prove the interchange by showing
convergence in the appropriate Hilbert spaces and deriving novel infinite horizon bounds for
the diffusion scaled process.

4.1 Transient Analysis of the Diffusion Limit

In this section, we derive the diffusion limit of our stochastic queueing model in the transient
setting. We define our scaled diffusion process as

DN(t) =
√
N(SN(t)− s(t)). (4.24)

Theorem 4.1 (Functional Central Limit Theorem). Consider `2 with its weak topology and
D(R+, `2) with corresponding Skorokhod topology. Let s(0) be in S

⋂
`1, S

N(0) in SN . If
(DN(0))N≥d converges in distribution to D(0) and is tight, then (DN(t))N≥d is tight and
converges in distribution to the unique OU process

D(t) = D(0) +

∫ t

0

K(s(u))D(u)du+M(t) (4.25)

where the infinite dimensional matrix K(s) is given by

K(s) =


−λ(1− p)− λpdsd−11 − 1 1 0 · · ·
λ(1− p) + λpdsd−11 −λ(1− p)− λpdsd−12 − 1 1 · · ·

0 λ(1− p) + λpdsd−12 −λ(1− p)− λpdsd−13 − 1 · · ·
...

...
...

. . .


and the martingale M(t) is defined by the following Doob-Meyer brackets

< Mk(t) > =

∫ t

0

[F+(s(u))(k) + F−(s(u))(k)] du. (4.26)
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Consider a linearization of Equation (3.5) around a particular solution g, i.e.,

d(t) = g(t)− s(t), (4.27)

where g is a generic solution to Equation (3.5). Then we have

ḋ(t) = K(s(t))d(t), (4.28)

where K is a matrix in Z+ × Z+,

K(s) =


−λ(1− p)− λpdsd−11 − 1 1 0 · · ·
λ(1− p) + λpdsd−11 −λ(1− p)− λpdsd−12 − 1 1 · · ·

0 λ(1− p) + λpdsd−12 −λ(1− p)− λpdsd−13 − 1 · · ·
...

...
...

. . .

 .

Let (Mk(t))k∈N be a family of independent, real, continuous centered Gaussian martin-
gales, determined in law by their deterministic Doob-Meyer brackets given by

< Mk(t) > =

∫ t

0

[
λ(1− p)(si−1(u)− si(u)) + λp

(
si−1(u)d − si(u)d

)
+ (si(u)− si+1(u))

]
du

=

∫ t

0

[F+(s(u))(k) + F−(s(u))(k)] du. (4.29)

for t ≥ 0.
To give readers a high-level understanding of the proof idea, we summarize the following list
of steps for showing the functional CLT in the transient case,

1. Prove the Lipschitz property for the mappings F, F+, F− in `2. (Theorem 3.2)

2. Prove the Gaussian martingale M(t) is square-integrable in `2. (Theorem 4.2)

3. Prove the existence and uniqueness of the diffusion limit D(t) by using steps 1 and 2
to show that Equation (4.31) is well-defined and solves the SDE.

4. Show the difference between the drift function FN(s) and the limiting drift function
F (s) is 1

N
O(s). (Lemma 4.7)

5. Show the finite horizon bound

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞⇒ lim sup

N→∞
E
(

sup
t≤T
‖DN(t)‖2`2

)
<∞

using Doob’s inequality, Gronwall’s lemma and steps 1,2, and 4 .

6. Use step 5 to show the tightness of the diffusion process. (Lemma 4.9).

7. Use steps 1-6 to show the functional CLT, i.e. when initial condition converges, the
diffusion process DN converges to the unique OU process solving Equation (4.31).
(Theorem 4.1)
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Theorem 4.2. Assume s(0) to be in S. Then, the Gaussian martingale M(t) is square-
integrable in `2.

Proof. The proof is provided in the Appendix.

Let D(t) be the diffusion limit for the fluctuations DN(t), which is a Gaussian perturba-
tion of Equation (4.28), then D(t) satisfies the following SDE for any given t ≥ 0,

D(t) = D(0) +

∫ t

0

K(s(u))D(u)du+M(t). (4.30)

Theorem 4.3 (Existence and Uniqueness of Diffusion Limit). 1. For s in S, the opera-
tor K(s) is bounded in `2 with operator norm uniformly bounded in s.

2. Let s(0) be in S
⋂
`1. Then there exists a unique strong solution to Equation (4.30) in

`2

D(t) = exp

{∫ t

0

K(s(u))du

}
D(0) +

∫ t

0

exp

{∫ t

u

K(s(r))dr

}
dM(u), (4.31)

and

E
(
‖D(0)‖2`2

)
<∞⇒ E

(
sup
t≤T
‖D(t)‖2`2

)
<∞.

Proof. The proof is provided in the Appendix.

For the following Lemma 4.4 and Theorem 4.1, the proofs are detailed in subsections
4.1.1 and 4.1.2.

Lemma 4.4 (Finite Horizon Bound). Let s(0) be in S
⋂
`1 and SN(0) be in SN . Then for

any T ≥ 0,

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞⇒ lim sup

N→∞
E
(

sup
t≤T
‖DN(t)‖2`2

)
<∞.

Theorem 4.5. Define the two matrices A(t) = K(s(t)), B(t) =
(
d
dt
〈Mi(t),Mj(t)〉

)
ij

, then

the expectation E(D(t)) is

E[D(t)] = e
∫ t
0 A(s)dsE[D(0)], (4.32)

and the covariance matrix Σ(t) = Cov[D(t), D(t)] is

Σ(t) = e
∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds. (4.33)

Moreover, differentiation with respect to t yields

dE[D(t)]

dt
= A(t)E[D(t)], (4.34)

dΣ(t)

dt
= Σ(t)A(t)> +A(t)Σ(t) + B(t). (4.35)
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Componentwise, we have

dΣi,i(t)

dt
= 2

[
λ(1− p) + λpdsd−1i−1

]
Σi,i−1 − 2

[
λ(1− p) + λpdsd−1i + 1

]
Σi,i + 2Σi,i+1

+λ(1− p)(si−1 − si) + λp(sdi−1 − sdi ) + si − si+1, (4.36)

dΣi,j(t)

dt
=

[
2λ(1− p) + λpd(sd−1i−1 + sd−1j−1)

]
Σj,i−1 −

[
2λ(1− p) + λpd(sd−1i + sd−1j ) + 2

]
Σj,i

+2Σj,i+1. (4.37)

Proof. The proof is provided in the Appendix.

4.1.1 The Derivation of the Ornstein-Uhlenbeck Process

In this subsection, we introduce a few lemmas which help show the final functional CLT
result in the transient case.

Lemma 4.6. Let SN(0) be in SN , s solves Equation (3.5) with s(0) ∈ S. Then

DN(t) = DN(0) +

∫ t

0

√
N(FN(SN(u))− F (s(u)))du+MN(t) (4.38)

defines an independent family of square-integrable martingales MN independent of SN(0)
with Doob-Meyer brackets given by

< MN
k (t) >=

∫ t

0

(
FN
+ (SN(u)(k)) + F−(SN(u))(k)

)
du. (4.39)

Proof. This follows from a classical application of Dynkin’s formula.

Lemma 4.7. Define function AN(a) for a ∈ R and N ≥ d ≥ 1 as

AN(a) ,
(Na)d
(N)d

− ad. (4.40)

Then, AN(a) = 1
N
O(a) uniformly on 0 ≤ a ≤ 1 and AN(k/N) ≤ 0 for k = 0, 1, · · · , N .

Proof. See Appendix for details of the proof.

Lemma 4.8. For d ≥ 1 and a, h ∈ R, define

B(a, h) , (a+ h)d − ad − dad−1h =
d∑
i=2

(
d

i

)
ad−ihi. (4.41)

Then B(a, h) = 0 for d = 1 and B(a, h) = h2 for d = 2. For d ≥ 2 we have 0 ≤ B(a, h) ≤
hd + (2d − d− 2)ah2 for a, a+ h ∈ [0, 1].

Proof. See Appendix for details of the proof.
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4.1.2 Proof of the functional CLT

Now consider the mapping GN : S → c00 given by

GN(s)(k) = λp
(
AN(sk−1)− AN(sk)

)
, k ≥ 1 (4.42)

and H : S × c00 → c00 given by

H(s, x)(k) = λp(B(sk−1, xk−1)−B(sk, xk)), k ≥ 1 (4.43)

so that for s+ x ∈ S, we have

FN = F +GN , F (s+ x)− F (s) = K(s)x+H(s, x). (4.44)

Proof of Lemma 4.4 (Finite-horizon bound). By Equations (4.38) and (4.44), we have

DN(t) = DN(0)+MN(t)+
√
N

∫ t

0

GN(SN(u))du+

∫ t

0

√
N(F (SN(u))−F (s(u)))du. (4.45)

Since Lemma 4.7 indicates that

GN(SN(u))(k) = λp
(
AN(SN(u)(k − 1))− AN(SN(u)(k)

)
=

1

N
O
(
SN(u)(k − 1) + SN(u)(k)

)
,

we can conclude that

‖GN(SN(u))‖`2 =
1

N
O
(
‖SN(u)‖`2

)
. (4.46)

By definition of the diffusion process we have

‖SN(u)‖`2 ≤ ‖s(u)‖`2 +
1√
N
‖D(u)N‖`2 . (4.47)

Since mappings F+, F−, F are Lipschitz with respect to `2 norm, Gronwall’s lemma yields
that

‖s(u)‖`2 ≤ LT‖s(0)‖`2 (4.48)
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for some constant LT <∞. Then

‖DN(t)‖`2 ≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
√
N

∫ t

0

‖GN(SN(u))‖`2du

+

∫ t

0

√
N(‖F (SN(u))− F (s(u))‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
√
N

∫ t

0

1

N
O
(
‖SN(u)‖`2

)
du

+

∫ t

0

√
NL(‖SN(u)− s(u)‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +

∫ t

0

1√
N
O

(
‖s(u)‖`2 +

1√
N
‖D(u)N‖`2

)
du

+

∫ t

0

L(‖D(u)N‖`2)du

≤ ‖DN(0)‖`2 + ‖MN(t)‖`2 +
1√
N
O (LT‖s(0)‖`2) (4.49)

+

∫ t

0

(
L+O

(
1

N

))
‖D(u)N‖`2du.

(4.50)

By Gronwall’s lemma we have

sup
0≤t≤T

‖DN(t)‖`2

≤ exp

{(
L+O

(
1

N

))
T

}(
‖DN(0)‖`2 + sup

0≤t≤T
‖MN(t)‖`2 +

LT√
N
O (‖s(0)‖`2)

)
.

(4.51)

Using Doob’s `2 inequality we know that,

E
(

sup
0≤t≤T

‖MN(t)‖`2
)
≤ 2E

(
‖MN(T )‖`2

)
. (4.52)

By Lemma 4.6 and Lipschitz property of F+, F−,

‖MN
T ‖`2 =

∫ T

0

‖FN
+ (SN(u)) + F−(SN(u))‖`2du

(Equation (4.44)) =

∫ T

0

‖F+(SN(u)) +GN(SN(u)) + F−(SN(u))‖`2du

(Equation (4.46)) ≤
∫ T

0

(
2L‖SN(u)‖`2 +

1

N
O(‖SN(u)‖`2)

)
du

(Equation (4.47)) ≤
∫ T

0

O

(
‖s(u)‖`2 +

1√
N
‖D(u)N‖`2

)
du

(Equation (4.48)) = KTO(‖s(0)‖`2). (4.53)
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Finally combining all the above equations, we conclude that when

lim sup
N→∞

E
(
‖DN(0)‖2`2

)
<∞,

we have

lim sup
N→∞

E
(

sup
0≤t≤T

‖DN(t)‖`2
)

≤ exp {O(T )}
(

lim sup
N→∞

E
(
‖DN(0)‖`2

)
+ lim sup

N→∞
E
(

sup
0≤t≤T

‖MN(t)‖`2
)

+
LT√
N
O (‖s(0)‖`2)

)
≤ exp {O(T )}

(
lim sup
N→∞

E
(
‖DN(0)‖`2

)
+ lim sup

N→∞
2E
(
‖MN(T )‖`2

)
+

LT√
N
O (‖s(0)‖`2)

)
≤ exp {O(T )}

(
lim sup
N→∞

E
(
‖DN(0)‖`2

)
+

(
2KT +

LT√
N

)
O (‖s(0)‖`2)

)
< ∞. (4.54)

Lemma 4.9 (Tightness of the Process). Consider `2 with its weak topology and D(R+; `2)
with the corresponding Skorokhod topology. Assume s(0) ∈ S ∩ `1 and SN(0) ∈ SN , and DN

as defined in the beginning of the section. If (DN(0))N≥d is tight, then (DN)N≥d is tight and
its limit points are continuous.

Proof. Since D(R+; `2) is a reflexive Banach space, relatively compact sets are the bounded
sets for the norm `2. Then here a process DN is tight if and only if for any ε > 0 there exists
rε <∞ such that P(DN ∈ B(rε)) > 1− ε for N ≥ 1. We refer to Ethier and Kurtz [16] the
tightness criteria for showing that (DN)N≥d is tight. That is, (DN)N≥d is tight if

1. For each T ≥ 0 and ε > 0 there is a bounded subset KT,ε ∈ `2 such that P(DN ∈
D([0, T ];KT,ε)) > 1− ε for N ≥ d.

2. For each k ≥ 1, the k-dimensional process (DN
1 , D

N
2 , · · · , DN

k )N≥d are tight.

For Condition 1, it is easy to see that using finite-horizon bound in Lemma 4.4 and
Markov inequality, we can derive the tightness of process DN on D([0, T ];KT,ε).

For Condition 2, we refer to Graham [23] for the fact that bounds in Lemma 4.4 and that
DN
k has jump size of 1√

N
classically imply the tightness of the finite-dimensional process.

Proof of Theorem 4.1 (Functional CLT). Using Lemma 4.9, we know that any subsequence
of DN has a further subsequence that converges to some limit D∞ with continuous sample
path. D∞(0) should have the same distribution as D(0). We can rewrite Equation (4.45) as

DN(t) = DN(0) +MN(t) +

∫ t

0

K(s(u))DN(u)du

+
√
N

∫ t

0

(
GN(SN(u)) +H

(
s(u), DN(u)/

√
N
))

du. (4.55)
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Using Equations (4.46), (4.47), we have that
√
N‖GN(SN(u))‖`2 = 1√

N
O(‖SN(u)‖`2) → 0

as N →∞. Using Lemma 4.8, we have
√
N‖H(s(u), DN(u)/

√
N)‖`2

≤
√
Nλp

[
1

Nd/2
‖(DN(u))d‖`2 +

1

N
(2d − d− 2)‖s(u)‖`2 · ‖DN(u)‖2`2

]
→ 0 (4.56)

as N →∞. We also have the martingale brackets

< MN
k (t) > =

∫ t

0

(
FN
+ (SN(u))(k) + F−(SN(u))(k)

)
du

→
∫ t

0

(F+(s(u))(k) + F−(s(u))(k)) du

= < Mk(t) > (4.57)

as N →∞.
By Theorem 4.1 in Ethier and Kurtz [16], together with Lipschitz property of F in Lemma

3.2, finite horizon bounds in Lemma 4.4 and tightness results in Lemma 4.9, we deduce by
a martingale characterization that D∞ has the distribution of the OU process which is the
unique solution for (4.30) in `2 starting at D∞(0). Thus, this distribution D∞ is the unique
accumulation point for the relatively compact sequence of distributions of (DN)N≥1, therefore
itself must then converge to it, proving Theorem 4.1.

4.2 Steady State Analysis of Diffusion Limit

In this section, we analyze the steady state of the diffusion model. This allows us to gain
insights about the long-time behavior of the nonlinear system dynamics appearing at the
large N limit. Assume we have λ < 1, and that s(0) = sI . Define the infinite-dimensional
matrix K = K(sI). Then we have

K =


−λ(1− p)− λpd(sI1)

d−1 − 1 1 0 · · ·
λ(1− p) + λpd(sI1)

d−1 −λ(1− p)− λpd(sI2)
d−1 − 1 1 · · ·

0 λ(1− p) + λpd(sI2)
d−1 −λ(1− p)− λpd(sI3)

d−1 − 1 · · ·
...

...
...

. . .

 .

Note that K = A∗ where A is the generator of a sub-Markovian birth-death process. We
use π = (πk)k≥1 to denote the tail cdf of the the stationary distribution to A. Then, π solves
the following balance equations

π1 = 1,

πk+1 =
[
λ(1− p) + λpd(sIk)

d−1] πk, k ≥ 1. (4.58)

Consider the independent and centered Brownian motions B(t) = (Bk(t))k≥0 such that
B(0) = 0, and for k ≥ 1

υk , Var(Bk(1)) = E(Bk(1)) = 2(sIk − sIk+1)
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and B has an infinitesimal covariance matrix diag(υ). The OU process D(t) = (Dk(t))k∈N
solves the affine SDE given for t ≥ 0 by

D(t) = D(0) +

∫ t

0

KD(s)ds+B(t) (4.59)

which is a Brownian perturbation of the following differential equation

ḋ(t) = Kd(t). (4.60)

Our ultimate goal is to show the interchanging of limits for the diffusion model. However,
a main difficulty is that the scalar product for which the operator K is self-adjoint is too
strong for the limit dynamical system and the invariant measures for finite N . Thus, we
need to consider appropriate Hilbert spaces in which the operator K is not self-adjoint and
prove the exponential stability of the fluid limit in the newly introduced space. As a result,
we introduce the following weighted Hilbert space

L2(w) ,

{
x ∈ RN : x(0) = 0, ‖x‖2L2(w)

=
∑
k≥1

x(k)2w(k)−1 <∞

}
.

We also consider the following `1 space with same weights

L1(w) ,

{
x ∈ RN : x(0) = 0, ‖x‖2L1(w)

=
∑
k≥1

|x(k)|w(k)−1 <∞

}
.

For easier notation, we denote the sequence gθ = (θk)k≥1. WLOG we assume that d ≥ 2 and
p ∈ (0, 1) since otherwise the system goes back to JSQ(d) (refer to Graham [23] for their
results). Notice that by induction we can show that for k ≥ 2,

λk(1− p)k−1 < sIk < λk (4.61)

λk−1(1− p)k−1 < πk < λk−1 (4.62)

which means that both sI and π have exponential decay. In the rest of the paper, we assume
that w satisfies the following condition,

∃c, d > 0,∀k ≥ 1, 0 < cw(k + 1) ≤ w(k) ≤ dw(k + 1). (4.63)

This condition implies w(1)d(1/d)k ≤ w(k) ≤ w(1)c(1/c)k, which means w is bounded by
geometric sequences.

Theorem 4.10 (Functional Central Limit Theorem in Equilibrium). Let w satisfies condi-
tion (4.63), then

1. In L2(w), the operator K is bounded, and Equation (4.60) has a unique solution dt =
eKtd(0). The assumptions and conclusions hold for w = π and w = gθ for θ > 0.
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2. In addition, let w be such that sI is in L1(w). The SDE (4.59) has a unique solution

D(t) = eKtD(0) +

∫ t

0

eK(t−s)dB(s)

in L2(w). This is the case for w = gθ for θ ≥ λ when d ≥ 2.

Proof. Using the condition in Equation (4.63) and our convexity bounds, we have

‖Kx‖L2(w) =
∑
k≥1

[
(λ(1− p) + λpd(sIk−1)

d−1)xk−1 − (λ(1− p) + λpd(sIk)
d−1 + 1)xk + xk+1

]2
w(k)−1

≤ 3

(∑
k≥1

(λ(1− p) + λpd(sIk−1)
d−1)2x2k−1w(k)−1 + (λ(1− p) + λpd(sIk)

d−1 + 1)2x2kw(k)−1

+x2k+1w(k)−1
)

≤ 3

(∑
k≥1

(λ(1− p) + λpd)2x2k−1dw(k − 1)−1 + (λ(1− p) + λpd+ 1)2x2kw(k)−1

+x2k+1c
−1w(k + 1)−1

)
≤ 3(d(λ(1− p) + λpd)2 + (λ(1− p) + λpd+ 1)2 + c−1)‖x‖L2(w). (4.64)

Then by applying Gronwall’s lemma we have the uniqueness result. When B is an Hilbertian
Brownian motion, the formula for D(t) yields a well-defined solution.

4.3 Interchanging limits of Diffusion Limit

Our goal in this section is to prove the following diagram commutes.

DN(t) N→∞ //

t→∞
��

D(t)

t→∞
��

DN(∞)
N→∞

// D(∞)

We have showed in Section 4.1 that DN(t)
d−→ D(t), and the existence and uniqueness of

D(t). Now we will show the existence and uniqueness of the equilibrium point D(∞) of the
diffusion limit, and show the weak convergence of invariant measure DN(∞) to D(∞). The
proof idea of the interchanging limits of diffusion limits takes the following list of steps:

1. Prove the equilibrium operator K has bounded spectral gap in the self-adjoint space
L2(π), which implies exponential stability of linearized solution dt in L2(π). (Theorem
4.12)

2. Prove exponential stability of fluid limit s(t) in non self-adjoint space L2(g(θ)), by
constructing a specific birth-death process and obtain exponential stability of its solu-
tion z(t) via step 1, then bounding the difference between the fluid limit s(t) and z(t).
(Theorem 4.15, Lemma 4.13, Lemma 4.14)
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3. Show the infinite horizon bound in space L2(g(θ)) using the exponential stability result
of s(t) in step 2. (Theorem 4.16)

4. Show the weak convergence of stationary distributions DN(∞) to the equilibrium point
D(∞) of the diffusion limit D(t). (Theorem 4.17).

Consider A = K∗, the infinitesimal generator of the sub-Markovian birth death process
with birth rates λk = λ(1 − p) + λpd(sIk)

d−1 and death rates µk = 1 for k ≥ 1. Let
Q(x) = (Qn(x))n≥1 denote an eigenvector for A of eigenvalue −x. Then, we have λ1Q2(x) =
(λ1 + µ1 − x)Q1(x) and λnQn+1(x) = (λn + µn − x)Qn(x) − µnQn−1(x) for n ≥ 2. Such a
sequence of polynomials is orthogonal with respect to a probability measure ψ on R+ such
that

diag(π−1) =

∫ ∞
0

Q(x)Q(x)∗ψ(dx).

Such a probability measure is called the spectral measure, with its support S called the
spectrum. We denote the spectral gap γ = minS. The representation formula of Karlin and
McGregor [25, 26] yields

eKt = diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx). (4.65)

Therefore, we have the following lemma which gives the solution of the unique equilibrium
point of the OU process.

Lemma 4.11. The OU process D(t) in Theorem 4.10, its equilibrium point D(∞), and its
covariance matrix Σ(∞) can be written as

D(t) = diag(π)

∫
S

e−xtQ(x)∗
(
D(0) +

∫ t

0

exsdB(s)

)
Q(x)ψ(dx) (4.66)

D(∞) = diag(π)

∫
S

(
Q(x)∗

∫ ∞
0

e−xtdB(t)

)
Q(x)ψ(dx) (4.67)

Σ(∞) = diag(π)

∫
S2

Q(x)∗diag(v)Q(y)

x+ y
Q(x)Q(y)∗ψ(dx)ψ(dy)diag(π). (4.68)

Proof. The proof is provided in the Appendix.

Theorem 4.12 (Spectral Gap for self-adjoint case). The operator K is bounded self-joint in
L2(π). The least point γ of the spectrum of K is such that 0 < γ ≤ (

√
λ(1− p) − 1)2. The

solution d(t) = eKtd(0) for Equation (4.60) in L2(π) satisfies ‖d(t)‖L2(π) ≤ e−γt‖d(0)‖L2(π).

Proof. The potential coefficients π solve the detailed balance equations for A and hence
K = A∗ is self-adjoint in L2(π). It is established in Theorem 5.1 and Theorem 5.3 in Doorn
[14] that γ > 0 if and only if

σ =

(√
lim
k
λk −

√
lim
k
µk

)2

=
(√

λ(1− p)− 1
)2
> 0.

26



For exponential stability, we have ‖d(t)‖2L2(π)
=
(
eKtd(0), eKtd(0)

)
L2(π)

and the fact that eKt

is self-adjoint in L2(π) and the spectral representation yield(
eKtd(0), eKtd(0)

)
L2(π)

=
(
d(0), e2Ktd(0)

)
L2(π)

=

∫
S

e−2xtd(0)∗Q(x)Q(x)∗d(0)ψ(dx)

≤ e−2γt
∫
S

d(0)∗Q(x)Q(x)∗d(0)ψ(dx) = e−2γt(d(0), d(0))L2(π).

(4.69)

For the proof of exponential stability for non self-adjoint case, we modify an argument
of Graham [23]. We first consider the centered dynamical system y(t) = s(t) − sI , then y
solves the centered equation

ẏ(t) = F (sI + y) = Ky(t) +H(sI , y(t)),

or

ẏk(t) = [λ(1− p) + λpd(sIk−1)
d−1]yk−1(t) + λpB

(
sIk−1, yk−1(t)

)
−[λ(1− p) + λpd(sIk)

d−1 + 1]yk(t)− λpB
(
sIk, yk(t)

)
+ yk+1(t). (4.70)

We also have

ẏk(t) + ẏk+1(t) + · · · = [λ(1− p) + λpd(sIk−1)
d−1]yk−1(t) + λpB

(
sIk−1, yk−1(t)

)
− yk(t).

Lemma 4.13. Let Â be the generator of the sub-Markovian birth and death process with
birth rate λ̂k ≥ 0 and death rate 1 for k ≥ 1. Assume supk λ̂k <∞. Let z(t) solves ż = Â∗z
in `01. Let h(t) be given in `01 by

hk(t) =
∑
i≥k

(zi(t)− yi(t)), k ≥ 1

Then,

(1) Let λ̂k ≥ [λ(1 − p) + λpd(sIk)
d−1] + λp(1 + (2d − d − 2)sIk) for k ≥ 1, y(0) ≥ 0 and

h(0) ≥ 0. Then h(t) ≥ 0 for t ≥ 0.

(2) Let λ̂k ≥ [λ(1− p) + λpd(sIk)
d−1] for k ≥ 1, y(0) ≤ 0 and h(0) ≤ 0. Then h(t) ≤ 0 for

t ≥ 0.

Proof. The proof is provided in the Appendix.

Lemma 4.14. For any 0 ≤ θ < 1 there exists Kθ <∞ such that for x in L2(gθ) ⊂ `01

‖(xk + xk+1 + · · · )k≥1‖L2(gθ) ≤ Kθ‖x‖L2(gθ).

Proof. The proof is provided in the Appendix.
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Now we finish the proof of Theorem 4.15 using the previous two lemmas.

Theorem 4.15 (Exponential stability for non self-adjoint case). Let λ ≤ θ < 1 and s be the
solution to Equation (3.5) starting at s(0) in S ∩ L2(gθ). There exists γθ > 0 and Cθ < ∞
such that

‖s(t)− sI‖L2(gθ) ≤ e−γθtCθ‖s(0)− sI‖L2(gθ).

Proof. The proof is given in the Appendix.

Theorem 4.16 (Infinite Horizon Bound). Assume λ ≤ θ < 1, then

lim sup
N→∞

E
(
‖DN(0)‖2L2(gθ)

)
<∞⇒ lim sup

N→∞
sup
t≥0

E
(
‖DN(t)‖2L2(gθ)

)
Proof. The proof is given in the Appendix.

We now prove that the interchanging of limits is valid, through the following steps:

1) The sequence (DN(∞), N ≥ 1) is tight.

2) There is a unique possible limit to any convergent subsequence of (DN(∞), N ≥ 1).

Theorem 4.17. The stationary distribution DN(∞) of the diffusion process DN(t) converges
weakly to the equilibrium point of the diffusion limit D(∞), whose explicit form is specified
in Equation (4.67).

Proof. Since for any K > 0, using Markov inequality we have

P (‖DN(∞)‖L2(gθ) > K) = lim
t→∞

P (‖DN(t)‖L2(gθ) > K)

= lim
t→∞

E[‖DN(t)‖2L2(gθ)
]

K2

= O

(
1

K2

)
. (4.71)

This shows that (DN(∞), N ≥ 1) is tight. Now we only need to prove that there is a unique
possible limit to any convergent subsequence of (DN(∞), N ≥ 1). We still denote by DN(∞)
such a converging subsequence. Its limit is denoted by ν. By properties of Markov processes,
DN(t) with initial condition DN(0) = DN(∞) is a stationary process, hence D(t) = ν for
any t. Then D(∞) = ν, which proved that any convergent subsequence of DN(∞) converge
to D(∞).
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Figure 3: Green dotted line indicates 1 standard deviation computed according to 4.5 with
a cut off at 1000 iterations
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Figure 4: The pdf and cdf of the queue length with d = 2, λ = .99, and p ∈
{0, .01, .1, .5.9, .99, 1}.

Now that we have proved both fluid and diffusion limits for the queue length process, we
can apply those results to some numerical examples. In Figure 3, we provide five plots where
the flexibility parameter p changes throughout each plot. From Figure 3, we observe that p
has a large effect on the shape of the distribution. In fact, by increasing p, the distribution
develops an inflection point. Moreover, we observe that by having ten percent of flexible
customers reduces the max queue length by an order of 10. As one continues to increase p,
the max queue length decreases, but not as much as the initial few flexible customers.

In Figure 4, we plot the probability density function and the cdf of the queue length for
a variety of values of p. On the left of Figure 4, we observe that as we increase p, the pdf
mode moves to the left. Moreover, as p decreases, the pdf becomes more flat. On the right
of Figure 4, we see that flat behavior of systems with small p is confirmed since the cdf of
the queue length appears to have a linear shape.

5 Insights on Dependence on p and d

In this section, we provide new insights about our model with flexible customers. To this
end, we prove two new results and also provide numerical experiments that validate our
fluid and diffusion approximations. The first result shows that we can obtain a closed form
solution for the tail cdf of the queue length distribution. The second result proves upper and
lower bounds on the mean, second moment, and variance of the queue length process. We
first start with a closed form solution of the steady state tail cdf.

5.1 Steady State Fluid Limit Solution

The steady state of the fluid limit admits a unique closed-form solution for the tail cdf. In
order to show this result, we exploit a similar argument used by Rabinovich et al. [36].

Proposition 5.1 (Closed-form Solution of the Steady State). The steady state solution of
the queueing model sI satisfies a nonlinear recursion

sIi = λ(1− p)sIi−1 + λp(sIi−1)
d for all i ≥ 2.
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λ(1− p)
(
sIi−1 − sIi

)
+ λp

((
sIi−1

)d − (sIi )d)− (sIi − sIi+1

)
= 0

and has a unique closed-form solution given by

sIi =
d∑

k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
(λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1 .

(5.72)

Proof. See Appendix for proof.

Now that we have a closed form expression for the tail cdf of the queue length process, this
result allows us to write the expected queue length E[Q] explicitly as well.

E[Q]

=
∞∑
i=1

d∑
k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
(λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

≈
i∗∑
i=1

d∑
k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
(λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

where i∗ is the smallest x such that P (Q ≥ x) < ε.
In Figure 5, we provide a table of mean queue lengths as a function of the flexibility

parameter p and the choice parameter d. We observe that for d = 2, the mean queue is
decreased by 30% by having 1% of the customers be flexible and a 75% reduction in mean
queue length for 10 % of the customers being flexible. Thus, just a small amount of flexibility
can go a long way. We also observe that these dramatic improvements are only strengthened
when we increase the choice parameter d.

To study the impact of the flexibility and choice parameters on the fluctuations, we
provide a table in Figure 5 that describes the variance of the queue length as a function
of the flexibility parameter p and the choice parameter d. We observe that for d = 2, the
variance of the queue length is decreased by 65% by having 1% of the customers be flexible
and a 97% reduction in variance queue length for 10 % of the customers being flexible. Thus,
the reduction in variance is even better than the mean. Once again just a small amount of
flexibility can significantly impact the performance of the system. We also observe for the
variance that performance improvements increase when we increase the choice parameter d.

5.2 First and Second Moment Bounds

In this section, we prove upper and lower bounds for the mean, variance, and second moment
of the queue length. We show numerically, that these bounds (especially the lower bounds)
are quite accurate at approximating the queue length dynamics.

Proposition 5.2 (Moment Estimates). Let E[Q] denote the expected queue length, then

λ
(

1 + pλd

1−λd(1−p)d

)
1− λ+ λp

< E[Q] <
λ
(

1 + pλd
(

1−p
1−λd + p

1−λd2

))
1− λ+ λp

. (5.73)
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Figure 5: Mean queue length for various values of p and d given λ = 0.99

Figure 6: The variance of the queue length for various values of p and d given λ = 0.99

Let E[Q2] denote the the second moment of queue length, then

E[Q]2 >

2λd+1p
(1−λd(1−p)d)2 + (1 + λ(1− p))

λ

(
1+ pλd

1−λd(1−p)d

)
1−λ+λp

1− λ+ λp
, (5.74)

E[Q2] <
2λd+1

(
1−p

(1−λd)2 + p

(1−λd2 )2

)
+ (1 + λ(1− p))

λ

(
1+pλd

(
1−p
1−λd

+ p

1−λd2

))
1−λ+λp

1− λ+ λp
. (5.75)

Moreover, let W be the patient waiting time, then

1 + pλd

1−λd(1−p)d

1− λ+ λp
< E[W ] <

1 + pλd
(

1−p
1−λd + p

1−λd2

)
1− λ+ λp

. (5.76)

In Figure 8, we plot E[Q],E[Q2],Var[Q] as well as their upper and lower bounds obtained
from Proposition 5.2. We note that our upper and lower bounds are quite accurate at
approximating the moment behavior as a function of the flexibility parameter p. In Figure
7, we observe that the compare the wait times of dedicated patients, flexible patients, the
average patients, and the system where all the flexible patients are not present. It is clear
from Figure 7, that the average wait time decreases by adding flexible patients and the
flexible patients benefit themselves from being flexible. Throughout our analysis, one might
be tempted to approximate the queue length and waiting time with a model where the
flexible patients disappeared i.e. a non-flexible queue where the arrival rate is λ(1 − p).
However, we observe that the wait time is very much under-approximated if one pretends
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the flexible patients are not there. Thus, it is still important to capture the flexible patients
and they cannot be simply ignored from the performance analysis.

Figure 7: The waiting times by patient type given λ = 0.99, d = 2, p = 0.2
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Figure 8: Upper and lower bounds for mean (top), 2nd moment (middle), and variance
(bottom).
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6 Conclusion

In this paper, we construct a stochastic queueing model that captures the performance trade-
off between customers valuing flexibility (or time) vs. customers wanting dedicated services,
through setting a fraction p of all customers to be flexible via joining the shortest of d
queues. First, we prove the fluid model results in both transient and steady-state behaviors.
We show that the scaled queue-length process converges to a unique fluid trajectory on any
finite time interval, and that this fluid trajectory converges to a unique steady state sI , for
which a closed-form expression is obtained. We also show that the steady state distribution
of the N -physicians system concentrates on sI as N goes to infinity. Second, we prove the
diffusion model results in both transient and steady-state behaviors. We shows that the
scaled diffusion process converges to a unique Ornstein-Uhlenbeck process, and that the
interchanging of limits limt→∞ limN→∞ = limN→∞ limt→∞ holds for the diffusion limit in
equilibrium. Finally, we prove an upper and lower bound for the first and second moment
of the expected queue length of the system, and show through numerical examples that
having just a small fraction of flexible customers can benefit the system tremendously, both
in lowering the mean queue length as well as its variance.
Despite our analysis, there are many future directions for research.

1. The first direction would be to generalize the arrival rate of dedicated patients to
each physician to be non-uniform, i.e. taking into account the popularity of different
physicians.

2. A second direction would be to generalize our results for non exponential arrival and
service distributions, like in the work of Aghajani et al. [3], Bramson et al. [5].

3. It would also be interesting to generalize the work to system of M/M/c queues or
system of M/M/∞ queues, and derive new limit theorems in those regimes. One could
also incorporate the impact of delayed information to model delays in communicating
the queue length to customers. Recent work by Nirenberg et al. [34], Novitzky et al.
[35] could help in this regard.

4. Finally, there is recent work that analyzes self-exciting point processes as arrival pro-
cesses to queues, see for example Castellanosa et al. [8], Chen [9], Daw and Pender
[11, 12], Gao and Zhu [19], Koops et al. [27]. It would be interesting to analyze similar
JSQ models with Hawkes arrival processes.

We intend to pursue these extensions in future work.
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7 Online Appendix

7.1 Proof of Proposition 3.2

Proof. By the identity ud − vd = (u− v)(ud−1 + ud−2v + · · ·+ vd−1) ≤ d(u− v), we have the
Lipschitz bound

‖F+(u)− F+(v)‖2`2 ≤
∞∑
i=1

(
‖λ(1− p)(ui−1 − vi−1)‖2 + ‖λ(1− p)(ui − vi)‖2

+ ‖λp(udi−1 − vdi−1)‖2 + ‖λp(udi − vdi )‖2
)

≤ 4
∞∑
i=0

[
λ2(1− p)2‖ui − vi‖2 + (λpd)2‖ui − vi‖2

]
≤ 8λ2d2‖u− v‖2`2 .

Similarly we can show that

‖F−(u)− F−(v)‖2`2 ≤ 2‖u− v‖2`2 .

Thus, the mappings F, F+, F− are Lipschitz with respect to the `2 norm.

7.2 Proof of Theorem 3.6

Proof. It is sufficient to show that the conclusion limt→∞ s(t) = sI holds for any s(0) ∈ S
for which either s(0) ≤ sI or s(0) ≥ sI , since Lemma 3.5 implies that

s(t,min[s(0), sI ]) ≤ s(t, s(0)) ≤ s(t,max[s(0), sI ])

where we use s(t, u) to denote the solution to Equation (3.5) with initial condition u.
Since the derivative of sk(t, s(0)) is bounded for all k, the convergence of s(t, s(0))→ sI

will follow from ∫ ∞
0

[sk(u, s(0))− sIk]du <∞, where s(0) ≥ sI (7.77)

and from ∫ ∞
0

[sIk − sk(u, s(0))]du <∞, where s(0) ≤ sI . (7.78)

The proof is similar for both cases so here we only discuss (7.77).
Define vk(s(t)) =

∑∞
i=k sk(t), and v(s) = {vi(s)}∞i=0. Then we have for any k ∈ N and fix

t ≥ 0,

0 ≤ vk(s(t)) ≤ v1(s(t)) =
∞∑
i=1

si(t) <∞.

We also know that

d(v1(s(t))− v1(sI))
dt

= λ(1− p)s0 + λpsd0 − s1(t) = λ− s1(t) = sI1 − s1(t) ≤ 0, (7.79)
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which implies that v1(s(t)) does not increase with t. Thus, v1(s(t)) is uniformly bounded for
all t ≥ 0. Notice that

dvk(s(t))

dt
= λ(1− p)sk−1(t) + λpsk−1(t)

d − sk(t)

= λ(1− p)(sk−1(t)− sIk−1) + λp((sk−1(t))
d − (sIk−1)

d)− (sk(t)− sIk),(7.80)

which implies that

vk(s(t))− vk(s(0))

=

∫ t

0

[
λ(1− p)(sk−1(u)− sIk−1) + λp((sk−1(u))d − (sIk−1)

d)− (sk(u)− sIk)
]
du.(7.81)

By the uniform boundedness of vk(s(t))− vk(s(0)), we know that∫ ∞
0

[
λ(1− p)(sk−1(u)− sIk−1) + λp((sk−1(u))d − (sIk−1)

d)− (sk(u)− sIk)
]
du <∞.

Using an induction argument, we can assume that the integral converges for all i ≤ k − 1,
i.e. ∫ ∞

0

(si(t)− sIi )dt <∞, i ≤ k − 1.

Then for i = k, again by the uniform boundedness of vk(s(t))− vk(s(0)) we have that∫ ∞
0

(sk(t)− sIk)dt <∞,

which completes the proof of global stability of the fluid limit limt→∞ s(t) = sI for any initial
condition s(0).

7.3 Proof of Proposition 3.7

Proof. Let τ be a jump time of the Poisson processes used for arrivals and departures. We
first compare system p with system 0. Our goal is to show that assuming

cN,pm (τ−) ≤ cN,0m (τ−), m ∈ N, (7.82)

then we have
cN,pm (τ−) ≤ cN,0m (τ), m ∈ N.

Since we know that

cN,σm (t) = cN,σm+1(t) +NSN,σm+1(t), m ≥ 0, t ≥ 0.

Applying (7.89) to m = n− 1 and m = n implies

cN,1n (τ−) = cN,0n (τ−)⇒ SN,1n (τ−) ≤ SN,0n (τ−) and SN,1n+1(τ−) = SN,0n+1(τ−).
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When τ represent a departure time, let xσ denote the respective lengths of the queue
chosen for potential departure. A patient will depart from the system σ if and only if xσ > 0,
and there will be one less patient with exactly xσ − 1 patients in front of them, therefore

cN,σm (τ) = cN,σm (τ−)− 1, m < xσ, (7.83)

and
cN,σm (τ) = cN,σm (τ−), m ≥ xσ. (7.84)

Assume that there exists n ≥ 0 such that cN,pn (τ) > cN,0n (τ), then (7.89), (7.83) and (7.84)
imply that it is true if and only if

cN,pn (τ) = cN,1n (τ), xp ≤ n < x0. (7.85)

Now let j ∈ {1, · · · , N} denotes the rank in decreasing order chosen for departures, then

NSN,σxσ+1(τ−) < j ≤ NSN,σxσ (τ−)

which yields in particular that

SN,px1+1(τ−) < SN,px1 (τ−) ≤ SN,0x0 (τ−).

Then combining (7.83), (7.84) and (7.85) yields

SN,0n+1(τ−) ≤ SN,pn+1(τ−) ≤ SN,px1+1(τ−) < SN,0x0 (τ−) ≤ SN,0n+1(τ−)

which is a contradiction. Thus cN,pm (τ) ≤ cN,0m (τ), m ∈ N holds.
When τ represent an arrival time, let xσ denote the respective lengths of the queues

chosen for either patient. There is a new patient in either system with xσ patients in front
of him, therefore

cN,σm (τ) = cN,σm (τ−) + 1, m ≤ xσ (7.86)

and
cN,σm (τ) = cN,σm (τ−), m > xσ (7.87)

Assume that there exists n ≥ 0 such that cN,pn (τ) > cN,0n (τ), then (7.89), (7.86) and (7.87)
imply that it is true if and only if

cN,0n (τ) = cN,pn (τ), x0 ≤ n < xp (7.88)

Now let jσ ∈ {1, · · · , N} denotes the rank in decreasing order of the queue joined by the
patient in system σ, then

NSN,σxσ+1(τ−) < jσ ≤ NSN,σxσ (τ−)

which yields in particular that

SN,0x0+1(τ−) < j0 ≤ jp ≤ SN,pxp (τ−).

Then combining (7.86), (7.87) and (7.88) yields

SN,pn (τ−) ≤ SN,0n (τ−) ≤ SN,0x0+1(τ−) < SN,pxp (τ−) ≤ SN,pn (τ−)
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which is a contradiction. Thus cN,pm (τ) ≤ cN,0m (τ), m ∈ N holds.
Similar techniques apply to the case of comparing system 0 and system p, and we have

that if
cN,1m (τ−) ≤ cN,pm (τ−), m ∈ N, (7.89)

then
cN,1m (τ−) ≤ cN,pm (τ), m ∈ N.

7.4 Proof of Theorem 4.2

Proof. Because of the Lipschitz property of mappings F+, F−, we have

‖M(t)‖`2 =

∫ t

0

‖F+(s(u)) + F−(s(u))‖`2du ≤
∫ t

0

(2
√

2λd+
√

2)‖s(u)‖`2du

By Gronwall’s lemma, we know that ‖s(u)‖`2 is uniformly bounded on 0 ≤ u ≤ t. Thus,
M(t) is square-integrable in `2.

7.5 Proof of Theorem 4.3

Proof. Consider s ∈ S, we have

‖K(s)x‖2`2 =
∑
k≥1

[
λ(1− p)(xk−1 − xk) + λpd

(
sd−1k−1xk−1 − s

d−1
k xk

)
+ xk − xk+1

]2
≤

∑
k≥1

(
(λ(1− p) + λpd)2 + (λ(1− p) + λpd+ 1)2 + 1)2 + 12

)
(x2k−1 + x2k + x2k+1)

≤ 6(λ(1− p) + λpd+ 1)2‖x‖2`2 .

Then (1) follows. For (2), since the martingale M(t) is square-integrable in `2 by Theorem
4.2, if E

(
‖D(0)‖2`2

)
< ∞, then the formula (4.31) for D(t) is well-defined, solves the SDE,

and using Gronwall’s lemma yields E
(
supt≤T ‖D(t)‖2`2

)
<∞.

7.6 Proof of Lemma 4.7

Proof. Since

(Na)d
(N)d

=
d−1∏
i=0

Na− i
N − i

(7.90)

=
d−1∏
i=0

(
a+ (a− 1)

i

N − i

)
(7.91)

=
d−1∑
j=1

ad−j(a− 1)j
∏

1≤i1<···<ij≤d−1

i1 · · · ij
(N − i1) · · · (N − ij)

(7.92)
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It is obvious that AN(a) is 1
N
O(a). For a = k

N
where k = 0, 1, · · · , N ,

d−1∏
i=0

Na− i
N − i

=
d−1∏
i=0

k − i
N − i

(7.93)

≤
d−1∏
i=0

k

N
= ad (7.94)

The inequality comes from the fact that each term k−i
N−i is either bounded by a or the product

contains a term exactly equal to 0. Thus AN(k/N) ≤ 0.

7.7 Proof of Lemma 4.8

Proof. For a, a+ h ∈ [0, 1],

B(a, h) ≤ hd +
d−1∑
i=2

ah2 = hd + (2d − d− 2)ah2

7.8 Proof of Theorem 4.5

Proof. Take expectation on both sides of Equation (4.31), since

E
[∫ t

0

e
∫ t
s K(s(u))dudM(s)

]
= 0,

we have
E[D(t)] = e

∫ t
0 A(s)dsE[D(0)].

Therefore

D(t)− E[D(t)] = e
∫ t
0 A(s)ds(D(0)− E[D(0)]) +

∫ t

0

e
∫ t
s A(u)dudM(s), (7.95)

and

Σ(t) = E[(D(t)− E[D(t)])(D(t)− E[D(t)])>]

= e
∫ t
0 A(s)dsE[(D(0)− E[D(0)])(D(0)− E[D(0)])>]

(
e
∫ t
0 A(s)ds

)>
+

(∫ t

0

e
∫ t
s A(u)dudM(s)

)(∫ t

0

e
∫ t
s A(u)dudM(s)

)>
= e

∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds. (7.96)
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7.9 Proof of Lemma 4.11

Proof. We have the unique solution D(t) as

D(t) = eKtD(0) +

∫ t

0

eK(t−s)dB(s)

= diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx)D(0) +

∫ t

0

(
diag(π)

∫ ∞
0

e−x(t−s)Q(x)Q(x)∗ψ(dx)

)
dB(s)

= diag(π)

∫ ∞
0

e−xtQ(x)∗D(0)Q(x)ψ(dx) + diag(π)

∫ ∞
0

e−xtQ(x)∗
(∫ t

0

exsdB(s)

)
Q(x)ψ(dx)

= diag(π)

∫
S

e−xtQ(x)∗
(
D(0) +

∫ t

0

exsdB(s)

)
Q(x)ψ(dx). (7.97)

Note that here we define Q(x) = (Q1(x), Q2(x), · · · , Qn(x), · · · )>, which is a infinite dimen-
sional column vector of polynomials. Thus Q(x)∗D(0) and Q(x)∗dB(s) are 1-dimensional
numbers and are exchangeable with Q(x) in matrix multiplication.

For the equilibrium point D(∞) of the OU process, we have

D(∞) =

∫ ∞
0

eKtdB(t)

=

∫ ∞
0

(
diag(π)

∫ ∞
0

e−xtQ(x)Q(x)∗ψ(dx)

)
dB(t)

= diag(π)

∫
S

(
Q(x)∗

∫ ∞
0

e−xtdB(t)

)
Q(x)ψ(dx), (7.98)

and its covariance matrix Σ(∞) is as follows,

Σ(∞) =

∫ ∞
0

eKtE[B(1), B(1)∗]eK
∗tdt

=

∫ ∞
0

eKtdiag(v)eK
∗tdt

=

∫ ∞
0

[∫
S

(
diag(π)e−xtQ(x)Q(x)∗ψ(dx)

)
diag(v)

∫
S

(
diag(π)e−ytQ(y)Q(y)∗ψ(dy)

)]
dt

= diag(π)

∫
S2

(∫ ∞
0

e−(x+y)tdt

)
Q(x)(Q(x)∗diag(v)Q(y))Q(y)∗ψ(dx)ψ(dy)diag(π)

= diag(π)

∫
S2

Q(x)∗diag(v)Q(y)

x+ y
Q(x)Q(y)∗ψ(dx)ψ(dy)diag(π). (7.99)

7.10 Proof of Theorem 4.13

Proof. We first prove (1). We can assume WLOG that λ̂k > [λ(1−p) +λpd(sIk)
d−1] +λp(1 +

(2d − d− 2)sIk) for k ≥ 1. Since z(t) = eÂ
∗tz(0) depends continuously on z(0) in `01, we may
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assume h(0) > 0. Let τ = inf{t ≥ 0 : {k ≥ 1 : hk(t) = 0} = ∅} be the first time when hk = 0
for some k ≥ 1. We know that τ > 0 and the result holds when τ =∞.

If τ <∞, we have

ḣk(τ) = λ̂k−1yk−1(τ)− [λ(1− p) + λpd(sIk−1)
d−1]yk−1(τ)− λpB

(
sIk−1, yk−1(τ)

)
+λ̂k−1(zk−1(τ)− yk−1(τ))− (zk(τ)− yk(τ)). (7.100)

Lemma 3.5 and y(0) ≥ 0 implies that y(t) ≥ 0 for all t ≥ 0. Any by Lemma 4.8 we have
that

B
(
sIk−1, yk−1(τ)

)
≤ ydk−1 + (2d − d− 2)sIk−1y

2
k−1 ≤

(
1 + (2d − d− 2)sIk−1

)
yk−1.

Therefore by the assumption that λ̂k ≥ [λ(1− p) + λpd(sIk)
d−1] + λp(1 + (2d − d− 2)sIk) we

have that

λ̂k−1yk−1(τ)− [λ(1− p) + λpd(sIk−1)
d−1]yk−1(τ)− λpB

(
sIk−1, yk−1(τ)

)
≥ 0,

and equality holds only when yk−1 = 0. For k ∈ Z = {k ≥ 1 : hk(τ) = 0} we have

zk−1(τ)− yk−1(τ) = hk−1(τ)− hk(τ) = hk−1(τ) ≥ 0,

zk(τ)− yk(τ) = hk(τ)− hk+1(τ) = −hk+1(τ) ≤ 0,

hence ḣk(τ) ≥ 0 with equality only when k − 1 ∈ Z ∪ {0} and k + 1 ∈ Z. We also know
that hk(t) > 0 for t < τ and hk(τ) = 0 which implies ḣk(τ) ≤ 0. Thus ḣk(τ) = 0 and
zk−1(τ) = yk−1(τ) = 0 and k − 1 ∈ Z ∪ {0} and k + 1 ∈ Z. By induction we have that
zk(τ) = yk(τ) = 0 for all k ≥ 1, which means z(t) = y(t) = 0 for all t ≥ τ , thus h(t) ≥ 0 for
t ≥ 0. The proof for (2) follows similarly.

7.11 Proof of Theorem 4.14

Proof.

‖(xk + xk+1 + · · · )k≥1‖L2(gθ)

=
∑
k≥1

(xk + xk+1 + · · · )2θ−k

≤
∑
k≥1

n
(
x2k + x2k+1 + · · ·+ x2k+n−2 + (xk+n−1 + xk+n + · · · )2

)
θ−k

≤ n(1 + θ + · · ·+ θn−2)
∑
k≥1

x2kθ
−k + nθn−1

∑
k≥1

(xk + xk+1 + · · · )2θ−k. (7.101)

Since this holds for any n ≥ 1 we can choose n large enough such that nθn−1 < 1, then

(1− nθn−1)‖(xk + xk+1 + · · · )k≥1‖L2(gθ) ≤ n(1 + θ + · · ·+ θn−2)‖x‖L2(gθ). (7.102)

Let Kθ = n(1 + θ + · · ·+ θn−2)/(1− nθn−1) we proved the lemma.
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7.12 Proof of Theorem 4.15

Proof. Assume s(0) ∈ S is in L2(gθ). Denote s+(0) = max{s(0), sI} and s−(0) = min{s(0), sI},
and s+, s− as the corresponding solution to 3.5 with such initial condition. Then by the com-
parison lemma 3.5 we have that s+(t) ≤ s(t) ≤ s−(t) and s+(t) ≤ sI ≤ s−(t) for all t ≥ 0.
Again we use y(t) = s(t) − sI to denote the solution to the recentered equation, and that
y+(t) = s+(t)− sI , y−(t) = s−(t)− sI . We also have

|y(0)| = max{y(0)+, y(0)−}, |y(t)| ≤ max{y(t)+,−y(t)−}, t ≥ 0.

Now consider a birth death process with generator Â where birth rate λ̂k is as follows,

λ̂k = max{[λ(1− p) + λpd(sIk)
d−1] + λp(1 + (2d − d− 2)sIk), θ}, k ≥ 1.

For λ ≤ θ < 1, we know that for large enough k λ̂k is equal to θ. Using the same method
as in the proof of theorem 4.12, we have that the spectral gap γ̂ for the birth death process
with generator Â satisfies that 0 < γ̂ ≤ σ̂ = (

√
θ− 1)2. This means that the solution z(t) to

ż = Â∗z has exponential stability, i.e.

‖z(t)‖L2(π̂) ≤ e−γ̂t‖z(0)‖L2(π̂), t ≥ 0

where π̂ is the stationary distribution to Â∗.
We know that

π̂k =
k−1∏
i=1

λ̂k = θk−1
k−1∏
i=1

max{θ−1[λ+ λpd(sIk)
d−1 + λp(2d − d− 2)sIk], 1} ≥ θk−1

and the product converges. Thus π̂k = O(θk) and θk = O(π̂k) and therefore the two norm
L2(π̂) and L2(gθ) is equivalent, and we have that there exists c, d > 0 such that

‖z(t)‖L2(gθ) ≤ d‖z(t)‖L2(π̂) ≤ de−γ̂t‖z(0)‖L2(π̂) ≤ cde−γ̂t‖z(0)‖L2(gθ).

Let z+, z− be the corresponding solutions to z+ = Â∗z+ and z− = Â∗z− starting y(0)+ ≥ 0
and y(0)− ≤ 0 respectively. Then by lemma 4.13 and lemma 4.14, we have

‖y+(t)‖L2(gθ) ≤ ‖(y+k (t) + y+k+1(t) + · · · )k≥1‖L2(gθ)

≤ ‖(z+k (t) + z+k+1(t) + · · · )k≥1‖L2(gθ)

≤ Kθ‖z+(t)‖L2(gθ)

≤ cdKθe
−γ̂t‖y+(0)‖L2(gθ), (7.103)

and similarly ‖y−(t)‖L2(gθ) ≤ cdKθe
−γ̂t‖y−(0)‖L2(gθ). Thus let γθ = γ̂ and Cθ = c2d2K2

θ we
have

‖y(t)‖2L2(gθ)
≤ ‖y+(t)‖2L2(gθ)

+ ‖y−(t)‖2L2(gθ)
≤ e−2γθtCθ

(
‖y+(0)‖2L2(gθ)

+ ‖y−(0)‖2L2(gθ)

)
= e−2γθtCθ‖y(0)‖2L2(gθ)

. (7.104)
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7.13 Proof of Theorem 4.16

Proof. We consider the case when s(0) = sI . Since sI is the equilibrium, we have s(t) = sI

for all t ≥ 0. Let s(ν, h) be the solution of Equation (3.5) at time h ≥ 0 with initial value
ν. For t0 ≥ 0 let DN(t0, h) =

√
N(SN(t0 + h)− s(SN(t0), h)). Then we have DN(t0 + h) =

DN(t0, h) +
√
N
(
s(SN(t0), h)− sI

)
. By Lemma 4.15,

‖DN(t0 + h)‖L2(gθ) ≤ ‖D
N(t0, h)‖2 + Cθe

−γθh‖DN(t0)‖L2(gθ). (7.105)

The conditional distribution of DN(t0, h) given SN(t0) = s is the distribution of DN

started with SN(t0) = s(0) = s. In particular, DN(t0) = DN(t0, 0) = 0.
Following a similar argument as in Equation (4.51), we have that there exists constant

CT > 0 such that

sup
0≤h≤T

‖DN(t0, h)‖L2(gθ) ≤ CT

(
1√
N
‖sI‖L2(gθ) +

1

N
Cθ‖DN(t0)‖L2(gθ)

+ sup
0≤h≤T

∥∥MN(t0 + h)−MN(t0)
∥∥
L2(gθ)

)
. (7.106)

Combined with (7.105), we have that for some LT > 0 and 0 ≤ h ≤ T ,

E
(
‖DN(t0 + h)‖2L2(gθ)

)
≤ LT + 2

(
CT
N

+ e−γθh
)2

C2
θE
(
‖DN(t0)‖2L2(gθ)

)
. (7.107)

Now for fixed T large enough we have 8e−2γθTC2
θ ≤ ε < 1. Then uniformly for N ≥ CT e

γθT ,
for m ∈ N, we have

E
(
‖DN((m+ 1)T )‖2L2(gθ)

)
≤ LT + εE

(
‖DN(mT )‖2L2(gθ)

)
. (7.108)

By induction,

E
(
‖DN(mT )‖2L2(gθ)

)
≤ LT

m∑
j=1

εj−1 + εmE
(
‖DN(0)‖2L2(gθ)

)
≤ LT

1− ε
+ E

(
‖DN(0)‖2L2(gθ)

)
.(7.109)

From (7.107), we know that

sup
0≤h≤T

E
(
‖DN(mT + h)‖2L2(gθ)

)
≤ LT + 8C2

θE
(
‖DN(mT )‖2L2(gθ)

)
, (7.110)

hence we have the infinite horizon bound

sup
t≥0

E
(
‖DN(t)‖2L2(gθ)

)
≤ LT + 8C2

θE
(

LT
1− ε

+ E‖DN(0)‖2L2(gθ)

)
. (7.111)

Ergodicity and the Fatou Lemma yield that for DN(∞)

E(‖DN(∞)‖2L2(gθ)
) ≤ lim inf

t≥0
E(‖DN(t)‖2L2(gθ)

) ≤ sup
t≥0

E(‖DN(t)‖2L2(gθ)
) <∞. (7.112)
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7.14 Proof of Theorem 5.1

Proof. By Rabinovich et al. [36], the solution to any first-order recursion equation given by

si+1 = P (si)

can be written as
si = 〈e|T i|s〉.

Here |s〉 =
{
sj0
}∞
j=0

and 〈e| = [δj1]
∞
j=0 where δjk is the Kronecker symbol. T is a transfer

matrix that transforms the column
{
sji
}

to a column
{

[P (si)]
j
}

.

In our case,

P
(
sIi
)

= λ(1− p)sIi + λp
(
sIi
)d

and
{[
P
(
sIi
)]j}

can be expanded as the following:

[
λ(1− p)sIi + λp

(
sIi
)d]j

=

j∑
l=0

(
j

l

)
(λp)l

(
(sIi )

d
)l

(λ(1− p))j−l
(
sIi
)j−l

=

j∑
l=0

(
j

l

)
(λp)l (λ(1− p))j−l

(
sIi
)j+(d−1)l

.

Denoting k = j + (d− 1)l so that l = k−j
d−1 , we have

dj∑
k=j

(
j
k−j
d−1

)
(λp)

k−j
d−1 (λ(1− p))j−

k−j
d−1
(
sIi
)k
. (7.113)

Thus the matrix elements Tjk are

Tjk =

(
j
k−j
d−1

)
(λp)

k−j
d−1 (λ(1− p))j−

k−j
d−1 . (7.114)

Given sI0 = 1, the solution to our nonlinear recursion sIi = 〈e|T i|sI〉 is the sum of all
elements in the first row of T i:

sIi =
di∑
ki=0

(
T i
)
1,ki

=
di∑
ki=0

di∑
ki−1=0

· · ·
di∑

k1=0

T1,k1Tk1,k2 · · ·Tki−1,ki

=
di∑
ki=0

di∑
ki−1=0

· · ·
di∑

k1=0

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
(λ(1− p))1+k1+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1

=
d∑

k1=1

dk1∑
k2=k1

dk2∑
k3=k2

· · ·
dki−1∑
ki=ki−1

(
1

k1−1
d−1

)(
k1

k2−k1
d−1

)
· · ·
(

ki−1
ki−ki−1

d−1

)
(λ(1− p))1+k1+k2+···+ki−1−

ki−1

d−1 (λp)
ki−1

d−1 .
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7.15 Proof of Theorem 5.2

Proof. Since we have the following bounds of the equilibrium sI for p ∈ (0, 1) and d ≥ 2,

λk(1− p)k−1 < sIk < λk, k ≥ 1. (7.115)

Applying the above inequality to the recursion again, we get

sIk < λ(1− p)λk−1 + λpλ(k−1)d = (1− p)λk + pλ(k−1)d+1. (7.116)

We can also bound the expected queue length the same way. Denote xi = si − si+1 as
the pdf of queue length Q, then

E[Q] =
∞∑
i=1

ixi =
∞∑
i=1

i(sIi − sIi+1) =
∞∑
i=1

sIi

=
∞∑
i=0

[
λ(1− p)sIi + λp(sIi )

d
]

= λ(1− p)(E[Q] + 1) + λp

(
1 +

∞∑
i=1

(sIi )
d

)
,

which implies that

E[Q] =
λ(1 + pZ)

1− λ+ λp
(7.117)

where Z =
∑∞

i=1(s
I
i )
d. Thus, we can obtain an upper bound for Z,

Z =
∞∑
i=1

(sIi )
d

(Inequality (7.116)) <
∞∑
i=1

((1− p)λi + pλ(i−1)d+1)d

(Jensen’s Inequality) ≤ (1− p)
∞∑
i=1

λid + p
∞∑
i=1

λ((i−1)d+1)d

= λd
(

1− p
1− λd

+
p

1− λd2
)
. (7.118)

Similarly we can obtain an lower bound for Z,

Z =
∞∑
i=1

(sIi )
d

(Inequality (7.115)) >

∞∑
i=1

(
λi(1− p)i−1

)d
=

λd

1− λd(1− p)d
. (7.119)
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Combined with equation (7.117), we obtain the upper and lower bound for E[Q] as follows,

λ
(

1 + pλd

1−λd(1−p)d

)
1− λ+ λp

< E[Q] <
λ
(

1 + pλd
(

1−p
1−λd + p

1−λd2

))
1− λ+ λp

. (7.120)

For the second moment, similarly we have that

E[Q2] =
∞∑
i=1

i2xi =
∞∑
i=1

i2(sIi − sIi+1)

=
∞∑
i=1

(i2 − (i− 1)2)sIi

= 2
∞∑
i=1

isIi − E[Q]

= 2
∞∑
i=0

(i+ 1)
[
λ(1− p)sIi + λp(sIi )

d
]
− E[Q]

= 2λ(1− p)

(
∞∑
i=0

isIi

)
+ 2E[Q] + 2λp

(
∞∑
i=1

i(sIi )
d

)
− E[Q]

which implies that

E[Q2] = 2
∞∑
i=1

isIi − E[Q], (7.121)

and
∞∑
i=1

isIi =
λpZ2 + E[Q]

1− λ+ λp
(7.122)

where Z2 =
∑∞

i=1 i(s
I
i )
d. We can obtain an upper bound for Z2,

Z2 =
∞∑
i=1

i(sIi )
d

(Inequality (7.116)) <

∞∑
i=1

i((1− p)λi + pλ(i−1)d+1)d

(Jensen’s Inequality) ≤ (1− p)
∞∑
i=1

iλid + p

∞∑
i=1

iλ((i−1)d+1)d

= λd
(

1− p
(1− λd)2

+
p

(1− λd2)2

)
. (7.123)
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Similarly we can obtain an lower bound for Z2,

Z2 =
∞∑
i=1

i(sIi )
d

(Inequality (7.115)) >

∞∑
i=1

i
(
λi(1− p)i−1

)d
=

λd

(1− λd(1− p)d)2
. (7.124)

Combined with Equations (7.121) and (7.122), we obtain the upper and lower bound for
E[Q2] as follows,

E[Q2] = 2 · λpZ2 + E[Q]

1− λ+ λp
− E[Q] =

2λpZ2 + (1 + λ(1− p))E[Q]

1− λ+ λp
(7.125)

and

E[Q2] >

2λd+1p
(1−λd(1−p)d)2 + (1 + λ(1− p))

λ

(
1+ pλd

1−λd(1−p)d

)
1−λ+λp

1− λ+ λp
, (7.126)

E[Q2] <
2λd+1

(
1−p

(1−λd)2 + p

(1−λd2 )2

)
+ (1 + λ(1− p))

λ

(
1+pλd

(
1−p
1−λd

+ p

1−λd2

))
1−λ+λp

1− λ+ λp
. (7.127)

If we use subscript U to denote upper bound and subscript L to denote lower bound,
then we can obtain an upper bound for Var[Q],

Var[Q] < VarU [Q] = EU [Q2]− EL[Q]. (7.128)

Similarly we can also obtain a lower bound for Var[Q],

Var[Q] > VarL[Q] = EL[Q2]− EU [Q], (7.129)

References

[1] https://www.zocdoc.com/about/blog/tech/how-zocdoc-improves-patient-wait-times/.

[2] https://money.cnn.com/interactive/economy/average-doctor-wait-times,
2018.

[3] Reza Aghajani, Xingjie Li, and Kavita Ramanan. The pde method for the analysis
of randomized load balancing networks. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):38, 2017.

48

https://www.zocdoc.com/about/blog/tech/how-zocdoc-improves-patient-wait-times/
https://money.cnn.com/interactive/economy/average-doctor-wait-times


[4] Sayan Banerjee, Debankur Mukherjee, et al. Join-the-shortest queue diffusion limit in
halfin–whitt regime: Tail asymptotics and scaling of extrema. The Annals of Applied
Probability, 29(2):1262–1309, 2019.

[5] Maury Bramson, Yi Lu, Balaji Prabhakar, et al. Decay of tails at equilibrium for fifo
join the shortest queue networks. The Annals of Applied Probability, 23(5):1841–1878,
2013.

[6] Maury Bramson et al. Stability of join the shortest queue networks. The Annals of
Applied Probability, 21(4):1568–1625, 2011.

[7] Anton Braverman. Steady-state analysis of the join the shortest queue model in the
halfin-whitt regime. arXiv preprint arXiv:1801.05121, 2018.

[8] Antonio Castellanosa, Andrew Dawb, Jamol J Penderb, and Galit B Yom-Tova. The co-
production of service: Modeling service times in contact centers using hawkes processes.

[9] Xinyun Chen. Perfect sampling of hawkes processes and queues with hawkes arrivals.
arXiv preprint arXiv:2002.06369, 2020.

[10] JG Dai, John J Hasenbein, and Bara Kim. Stability of join-the-shortest-queue networks.
Queueing Systems, 57(4):129–145, 2007.

[11] Andrew Daw and Jamol Pender. Exact simulation of the queue-hawkes process. In
Proceedings of the 2018 Winter Simulation Conference, pages 4234–4235. IEEE Press,
2018.

[12] Andrew Daw and Jamol Pender. Queues driven by hawkes processes. Stochastic Systems,
8(3):192–229, 2018.

[13] AB Dieker and Tonghoon Suk. Randomized longest-queue-first scheduling for large-scale
buffered systems. Advances in Applied Probability, 47(4):1015–1038, 2015.

[14] Erik A. Van Doorn. Conditions for exponential ergodicity and bounds for the decay
parameter of a birth-death process. Advances in Applied Probability, 17(3):514–530,
1985. ISSN 00018678. URL http://www.jstor.org/stable/1427118.

[15] Patrick Eschenfeldt and David Gamarnik. Join the shortest queue with many servers. the
heavy-traffic asymptotics. Mathematics of Operations Research, 43(3):867–886, 2018.

[16] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and con-
vergence, volume 282. John Wiley & Sons, 2009.

[17] Robert D Foley, David R McDonald, et al. Join the shortest queue: stability and exact
asymptotics. The Annals of Applied Probability, 11(3):569–607, 2001.

[18] Sergey Foss and Alexander L Stolyar. Large-scale join-idle-queue system with general
service times. Journal of Applied Probability, 54(4):995–1007, 2017.

49

http://www.jstor.org/stable/1427118


[19] Xuefeng Gao and Lingjiong Zhu. Functional central limit theorems for stationary hawkes
processes and application to infinite-server queues. Queueing Systems, 90(1-2):161–206,
2018.

[20] Carl Graham. Chaoticity on path space for a queueing network with selection of the
shortest queue among several. Journal of Applied Probability, 37(1):198–211, 2000.

[21] Carl Graham. Kinetic limits for large communication networks. In Modeling in Applied
Sciences, pages 317–370. Springer, 2000.

[22] Carl Graham. Chaoticity results for” join the shortest queue”. CONTEMPORARY
MATHEMATICS, 275:53–68, 2001.

[23] Carl Graham. Functional central limit theorems for a large network in which customers
join the shortest of several queues. Probability Theory and Related Fields, 131(1):97–
120, Jul 2004. ISSN 1432-2064. doi: 10.1007/s00440-004-0372-9. URL http://dx.doi.

org/10.1007/s00440-004-0372-9.

[24] Yu-Tong He and Douglas G Down. Limited choice and locality considerations for load
balancing. Performance Evaluation, 65(9):670–687, 2008.

[25] Samuel Karlin and James McGregor. The classification of birth and death processes.
Transactions of the American Mathematical Society, 86(2):366–400, 1957.

[26] Samuel Karlin and James L McGregor. The differential equations of birth-and-death
processes, and the stieltjes moment problem. Transactions of the American Mathemat-
ical Society, 85(2):489–546, 1957.

[27] David T Koops, Mayank Saxena, Onno J Boxma, and Michel Mandjes. Infinite-server
queues with hawkes input. Journal of Applied Probability, 55(3):920–943, 2018.

[28] Hwa-Chun Lin and Cauligi S Raghavendra. An approximate analysis of the join the
shortest queue (jsq) policy. IEEE Transactions on Parallel and Distributed Systems, 7
(3):301–307, 1996.

[29] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R Larus, and Albert Greenberg.
Join-idle-queue: A novel load balancing algorithm for dynamically scalable web services.
Performance Evaluation, 68(11):1056–1071, 2011.

[30] Michael Mitzenmacher. Studying balanced allocations with differential equations. Com-
binatorics, Probability and Computing, 8(5):473–482, 1999.

[31] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[32] Debankur Mukherjee, Sem Borst, Johan Van Leeuwaarden, and Phil Whiting. Univer-
sality of power-of-d load balancing schemes. ACM SIGMETRICS Performance Evalu-
ation Review, 44(2):36–38, 2016.

50

http://dx.doi.org/10.1007/s00440-004-0372-9
http://dx.doi.org/10.1007/s00440-004-0372-9


[33] Debankur Mukherjee, Sem C Borst, Johan SH Van Leeuwaarden, and Philip A Whiting.
Universality of power-of-d load balancing in many-server systems. Stochastic Systems,
8(4):265–292, 2018.

[34] Samantha Nirenberg, Andrew Daw, and Jamol Pender. The impact of queue length
rounding and delayed app information on disney world queues. In 2018 Winter Simu-
lation Conference (WSC), pages 3849–3860. IEEE, 2018.

[35] Sophia Novitzky, Jamol Pender, Richard H Rand, and Elizabeth Wesson. Nonlinear
dynamics in queueing theory: Determining the size of oscillations in queues with delay.
SIAM Journal on Applied Dynamical Systems, 18(1):279–311, 2019.

[36] S Rabinovich, G Berkolaiko, and S Havlin. Solving nonlinear recursions. Journal of
Mathematical Physics, 37(11):5828–5836, 1996.

[37] Shuang Tao and Jamol Pender. A stochastic analysis of bike sharing systems. arXiv
preprint arXiv:1708.08052, 2017.

[38] John N. Tsitsiklis and Kuang Xu. On the power of (even a little) resource pooling.
Stochastic Systems, 2(1):1–66, 2012.

[39] Stephen R.E. Turner. The effect of increasing routing choice on resource pooling. Prob-
ability in the Engineering and Informational Sciences, 12(1):109–124, 1998.

[40] Nikita Dmitrievna Vvedenskaya, Roland L’vovich Dobrushin, and Fridrikh Izrailevich
Karpelevich. Queueing system with selection of the shortest of two queues: An asymp-
totic approach. Problemy Peredachi Informatsii, 32(1):20–34, 1996.

[41] Ward Whitt. Blocking when service is required from several facilities simultaneously.
AT & T Technical journal, 64(8):1807–1856, 1985.

51


	Introduction
	Related Work
	Main Contributions of Our Work
	Organization of the Paper
	Notation
	Preliminaries of Weak Convergence

	The Stochastic Queueing Model
	Fluid Model
	 Transient Analysis of the Fluid Limit
	Steady State Analysis of Fluid Limit
	Interchanging Limits of Fluid Limit

	Diffusion Model
	 Transient Analysis of the Diffusion Limit
	The Derivation of the Ornstein-Uhlenbeck Process
	Proof of the functional CLT 

	Steady State Analysis of Diffusion Limit
	Interchanging limits of Diffusion Limit

	Insights on Dependence on p and d
	Steady State Fluid Limit Solution
	First and Second Moment Bounds

	Conclusion
	Online Appendix
	Proof of Proposition 3.2
	Proof of Theorem 3.6
	Proof of Proposition 3.7
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Lemma 4.7
	Proof of Lemma 4.8
	Proof of Theorem 4.5
	Proof of Lemma 4.11
	Proof of Theorem 4.13
	Proof of Theorem 4.14
	Proof of Theorem 4.15 
	Proof of Theorem 4.16 
	Proof of Theorem 5.1
	Proof of Theorem 5.2


