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Abstract

By adopting and extending lessons from the air traffic control system, we argue that a
nationwide remote monitoring system for driverless vehicles could increase safety
dramatically, speed these vehicles’ deployment, and provide employment. It is becoming
clear that fully driverless vehicles will not be able to handle “edge” cases in the near
future, suggesting that new methods are needed to monitor remotely driverless vehicles’
safe deployment. While the remote operations concept is not new, a super-human driver
is needed to handle sudden, critical events. We envision that the remote operators do
not directly drive the vehicles, but provide input on high level tasks such as
path-planning, object detection and classification. This can be achieved via input from
multiple individuals, coordinated around a task at a moment’s notice. Assuming a 10%
penetration rate of driverless vehicles, we show that one remote driver can replace
14,840 human drivers. A comprehensive nationwide interoperability standard and
procedure should be established for the remote monitoring and operation of driverless
vehicles. The resulting system has potential to be an order of magnitude safer than
today’s ground transportation system. We articulate a research and policy roadmap to
launch this nationwide system. Additionally, this hybrid human–AI system introduces a
new job category, likely a source of employment nationwide.

Introduction 1

By adopting and extending lessons from the air traffic control system, a nationwide 2

remote monitoring system for driverless vehicles could dramatically increase safety, 3

speed deployment of these vehicles, and provide a source of employment in this nascent 4

industry. In 2018, California became the first state in America to permit driverless 5
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vehicle testing on public roads. Sensibly, state law [1] requires a permit holder to certify 6

that: 7

“There is a communication link between the vehicle and the remote 8

driver to provide information on the vehicle’s location and status and allow 9

two-way communication between the remote driver and any passengers if 10

the vehicle experiences any failures that would endanger the safety of the 11

vehicle’s passengers or other road users, or otherwise prevent the vehicle 12

from functioning as intended, while operating without a driver.” 13

Furthermore, the permit holder must provide to remote drivers: 14

“Instruction on the automated driving system technology being tested, 15

including how to respond to emergency situations and hazardous driving 16

scenarios that could be experienced by the vehicle or the vehicle’s 17

occupants.” 18

Remote drivers play an important role as “traffic control” to monitor, plan, and 19

possibly actively support the safety of driverless vehicle passengers and other road users. 20

While we acknowledge possible security vulnerabilities of this approach, we call on the 21

research and technical communities to develop secure means to enable remote 22

monitoring and operations. Regrettably, recent legislation in Nebraska [2] and pending 23

legislation in Alabama [3] (although the proposed Alabama law explicitly allows for 24

teleoperations systems) and Missouri [4] do not require a remote driver for testing on 25

those states’ public roads, according to the National Conference of State Legislatures [5]. 26

“Edge cases” are widely recognized to exist, for which online back-up human assistance is 27

needed to guarantee safety [6,7]. A teleoperations system might have prevented the first 28

pedestrian fatality involving a self-driving vehicle. 29

On Sunday, March 18, 2018, at 10pm a self-driving vehicle operated by Uber struck 30

and killed 49-year-old Elaine Herzberg in Tempe, Arizona, as she walked across a lane of 31

traffic. A safety driver in the car, not attending to the road, was alerted of the pending 32

crash too late [8]. The vehicle’s light detection and ranging (LIDAR) system first sensed 33

the pedestrian 6 seconds before the fatal crash. At that time, the vehicle was travelling 34

43 miles per hour, approximately 378 feet from the pedestrian. Only 1.3 seconds before 35

impact, the vehicle engaged emergency braking. What was happening during the 36

intervening 4.7 seconds? According to the official National Transportation Safety Board 37

(NTSB) report, the vehicle object detection software could not confidently identify the 38

observation during that time interval. 39

We argue that a teleoperations system for a fleet of driverless vehicles would 40

efficiently use those 4.7 seconds to improve road safety and reduce crash severity. 41

Recent insights into human-assisted artificial intelligence (AI) systems establish the 42

feasibility of response times less than 0.3 seconds (roughly equivalent to the average 43

human reaction time, but more stable and less subject to distraction) by combining 44

reinforcement learning with crowd feedback [9]. The system we envisage will leverage a 45

call center staffed by skilled remote human drivers who monitor and assist autonomous 46

vehicles’ driving tasks. This includes both critical (emergency braking, lane departure, 47

etc.) and non-critical tasks (passenger pick-up and drop-off, navigating road 48

construction, etc.). The teleoperations system objective is to prevent such critical 49

crashes as well as to handle noncritical scenarios. 50

Remote operator and monitoring systems are already in common use. Figure 1 51

shows a typical setup. We envision that remote operators will provide control inputs to 52

the vehicles when a request is made to the teleoperations call center. A example of a 53

potential remote operator is given in Figure 1. On the left of Figure 1, we have a visual 54

of a remote agent being trained by a company Designated Driver. Our goal is 55
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understand how to staff and operate a teleoperations system with these remote 56

operators performing driving assistance tasks.

Fig 1. Teleoperations platform by the startup Designated Driver
(https://designateddriver.ai/). 57

Remote drivers as AI-coordinated groups 58

Automated vehicles promise a host of societal benefits, including dramatically improved 59

safety, increased accessibility, greater productivity, and higher quality of life. In order to 60

deliver on these promises, the vehicles must be able to operate and reason over a nearly 61

infinite number of known and unknown potential conflict situations. By adopting 62

lessons and experiences from the air traffic control system, we argue that using humans 63

to supervise driverless vehicles is 1) technically feasible, 2) necessary to achieve safety 64

goals, and 3) an available source of employment [10]. 65

Fully autonomous (Level 5) vehicle control is a relatively distant goal, as it requires 66

AI to both understand scenarios involving people and other objects in the environment 67

and know how to respond. Current autonomous vehicles (AVs) can drive quite well in 68

typical (frequently encountered) settings but fail in exceptional cases. Worse, these 69

exceptional cases are often the most dangerous and may arise suddenly, leaving human 70

drivers with only a couple of seconds, at most, to react—precisely a setting in which 71

people can be expected to perform worst. Compared to precautionary takeovers, these 72

sudden scenarios already comprise most of the disengagements that GM Cruise reported 73

in 2018, accounting for 53.5% of autonomous driving interruptions [11]. As self-driving 74

capabilities improve, non-time-critical disengagements should become increasingly rare. 75

For uncommon situations that are not time-critical (e.g., when the vehicle is stopped), 76

remote human drivers can navigate and return the AV to a setting from which it can 77

resume autonomous control. However, in critical settings where rapid response is needed 78

(e.g., sudden events that could result in collision), asking a remote human driver to step 79

in is not viable due to the latency period required for a driver to perceive/understand 80

the context of a scenario and react, as well as the network latency involved in 81

transmitting video and responses between safety drivers and vehicles. 82

Our team’s current work explores how AI-coordinated groups of remote drivers 83

might best attain superhuman collective performance, overcoming previously 84

insurmountable barriers of human and network latency. By leveraging AVs’ 85

“understanding” of the world (e.g., state space representation, transition model), human 86

effort/insight can be guided toward reachable future states of the world. This allows us 87

to simulate potential situations mere seconds or even fractions of a second before they 88

occur, and cache responses indicating to the AV how a human would respond locally in 89

such a situation—the result being an ability to leverage human responses in milliseconds 90

rather than seconds, opening a whole new frontier for possible applications to critical, 91

life-saving scenarios. See [9] for more details on the foundational techniques underlying 92

our approach. 93

Results: How many remote drivers are needed? 94

A naive approach to staffing remote drivers would dedicate one to each vehicle in the 95

fleet. Less extreme could be one agent per active vehicle. However, even this is quite 96

extreme: that all vehicles would require simultaneous assistance is highly unlikely. Thus, 97

we now demonstrate a staffing approach that is significantly more efficient without 98

taking on significant risk. Using the 2017 National Household travel survey (NHTS) [12] 99

and 2018 self-reported AV disengagements in California [11], we estimate the number of 100
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remote drivers needed to staff the teleoperations control system. The lowest reported 101

disengagement rate is 1 disengagement per 11,000 miles. In 2017, 2.1 trillion passenger 102

miles were driven nationwide. If we assume a 10% penetration rate of driverless vehicles 103

in the fleet of all vehicles traversing the nation, 6.25 million disengagements might occur 104

during peak hours each year, or roughly 17,000 disengagements during the busiest hour 105

each day. This is calculated by aggregating the average miles driven each hour across 106

the country as provided in [12], and then converting this number of miles to the number 107

of disengagements via the aforementioned disengagement rate. Our calculations are 108

described further in the Materials and Methods section. 109

Table 1 shows both the annual passenger miles driven and the estimated number of 110

remote drivers needed per hour to handle disengagements. The results suggest that one 111

agent is needed for approximately every 200 million miles driven annually (Fig 2). The 112

average American drives 13,476 miles each year. Thus one remote driver could replace 113

approximately 14,840 drivers if each disengagement task is assigned to a remote driver, 114

representing potentially massive savings in human time and attention. Details of this 115

calculation are shown in the Materials and Methods section of this paper. Because 116

initial deployments may opt for assigning multiple remote drivers to each 117

disengagement, these estimates for the number of remote drivers are a lower bound. 118

Furthermore, several remote drivers may be assigned the same task to ensure robust, 119

accurate decisions. For these reasons, remote support centers for AVs may actually 120

employ quite a large workforce. 121

Table 1. Estimated number of remote drivers needed during peak travel time under three arrival types.

Rank Metropolitan
area

Total annual
miles driven in
area (Millions)

Number of
remote drivers
needed (Stan-
dard arrivals)

Number
of remote
drivers needed
(Bursty ar-
rivals)

Number
of remote
drivers needed
(Highly bursty
arrivals)

1 New York, NY 93,512 103 111 122
2 Los Angeles, CA 71,791 83 89 100
3 Dallas, TX 50,231 62 67 76
4 Chicago, IL 49,348 61 66 75
5 Atlanta, GA 42,547 54 59 67
6 Houston, TX 42,431 54 59 67
7 Washington, DC 41,199 53 58 66
8 Minneapolis, MN 34,540 46 51 58
9 Philadelphia, PA 32,781 44 49 56
10 Phoenix, AZ 31,408 43 47 54

Fig 2. Estimated number of remote drivers needed across the United
States. Calculated by time of day in the Erlang-B model. All times normalized to
Eastern Standard Time.

Discussion: Building blocks of a teleoperations 122

system 123

An industry of AV software and hardware makers exists, as well as several startups 124

developing teleoperations systems for driverless vehicles. While remote operations itself 125
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is not a new concept, what is needed is a super-human driver for sudden, critical events. 126

This can be achieved via input from multiple individuals, coordinated around a task at 127

a moment’s notice. We now detail three key building blocks that are required to achieve 128

this vision: human-assisted AI, the human element, and system-level organization. 129

Human-assisted AI 130

With the rise of artificial intelligence as a service, human-backed algorithms at scale 131

have become the norm rather than the exception for intelligent systems. Google, 132

Facebook, Apple (Siri), Samsung, Bloomberg, and countless other organizations use 133

large groups of human annotators and checkers to ensure their intelligent services’ 134

quality and reliability. However, while reliability and accuracy are important in all these 135

settings, none of the prior methods has leveraged low-latency, real-time systems to 136

provide input faster than any one person alone could. 137

Here’s how it can work — within five seconds or less: 138

• Software in the autonomous vehicle would analyze real-time vehicle data and 139

electronically estimate the likelihood of “disengagement”—due to a situation in 140

which the car’s automated systems might need human help—10–30 seconds in the 141

future. 142

• If the likelihood exceeds a pre-set threshold, the system contacts a remotely 143

located control center, sending data from the car. One or more remote drivers are 144

assigned to resolve the pending disengagement. 145

• The control center’s system analyzes the car’s data, generates several possible 146

scenarios, and provides them to several human supervisors situated in driving 147

simulators. 148

• The remote drivers respond to the simulations and their responses are sent back 149

to the vehicle. 150

• The vehicle now has a library of human-generated responses that it can choose 151

from instantaneously, based on information from on-board sensors. 152

Previous work establishes the feasibility of this approach in low-latency environments. 153

Responses in < 0.3 s (roughly equivalent to the human reaction time, but more stable 154

and less subject to distraction) by combining reinforcement learning with crowd 155

feedback [9]. More work is needed to formally model collective input mediation 156

strategies that can optimize for either input reliability or low latency [13]. 157

The proposed system asks groups of remote drivers to help concurrently with a given 158

monitored or control task in as little as ∼ 350 ms of a need’s arising. With video-based 159

remote control latencies as low as 100 ms, total latency for control can be under 0.5 s. 160

Thus, in any environment where we can predict possible outcomes 0.5 s in the future, 161

“instant” responses become possible. This scope of settings is far larger than those we 162

can observe prior to deployment. Prior work learned how to effectively interleave and 163

combine groups’ input over short time spans [9]. More work is needed to modify these 164

approaches to workloads with short, sudden bursts of requests. 165

To improve response speed, methods are needed to directly leverage the AV’s ability 166

to understand possibilities that may arise in real settings (even when the system does 167

not know how to respond to a possible setting) to pre-fetch possible configurations of 168

the world. Using these future states, remote drivers can (in parallel) provide feedback 169

before a system needs to know what action to take. What makes this possible is the 170

speed of existing real-time staffing approaches. While 0.5 s may be a relatively slow 171

response time for an engaged driver to respond to an event (usually accomplished 172
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within 200-300 ms), an ability to respond this quickly means that we need only 173

pre-fetch future states of the world. 174

Recent work has shown that just-in-time (JIT) training can result in an average 175

response time below 3.5 ms, reducing latency by three orders of magnitude [9]. Further, 176

the collective response is more likely to be correct than a single person’s (i.e., a local 177

driver’s) response [14]. The remaining challenge is to scale up from laboratory settings 178

(simple, fully controlled problems) to real-world settings with massive state spaces. To 179

improve scalability, research is needed on workload, arousal levels, and task routing 180

optimization to utilize remote drivers’ time and attention effectively and efficiently. 181

This work must cost-effectively optimize the next selected set of states, as well as 182

worker availability and response speed to reduce the horizon needed to train a system 183

for an event. Improved machine learning algorithms are also required to integrate task- 184

and scenario-specific knowledge, to form teams of remote drivers who have performed 185

well in similar settings (e.g., navigating a front-wheel drive car in the rain with minor 186

driver distraction). More generally, this building block is concerned with group 187

efficiency, collective human performance on critical tasks, and ad hoc team formation to 188

do highly skilled work. 189

The human element 190

Air traffic controllers are well known to have one of the most stressful jobs in the 191

world [15]. The job is both cognitively and physically challenging, as they are 192

responsible for maintaining and managing all incoming and outgoing air traffic, which 193

requires highly sustained concentration and decision making. We expect the role of 194

remote driver will be similarly demanding and challenging to deal with all routine and 195

unexpected situations. In general, under stress, human cognitive and perceptual motor 196

performance are both impaired [16]. Human memory, especially the encoding and 197

maintenance processes, are very sensitive to stress effects, due to reduced resource 198

capacity [16]. Negative effects of stress on perceptual and psycho-motor tasks have also 199

been reported consistently. For example, Scerbo [17] examined human sustainable 200

attentional processes and suggested that vigilance under stress can lead to decremental 201

motor performance accuracy and increased response time. Although they constitute 202

distinct processes and outcomes, both human judgment and decision making under 203

generally stressful conditions tend to become less flexible, with fewer alternatives 204

considered [18,19]. 205

While much research has been done on air traffic controllers, more will be needed to 206

understand how remote drivers perform on monitoring and operating tasks. 207

Performance measures should include evaluating accuracy, service time, cognitive load, 208

and fatigue resulting from processing service requests. Understanding interactions of the 209

above factors within a single person or team is critical to the safety performance of the 210

teleoperations system. The findings of the human factors research should inform a 211

licensing standard for remote drivers. The state of California statute requires the 212

testing permit holder to document and certify that the remote drivers have adequate 213

training and education. Such an approach creates standards of safety and certification 214

needed to create a professional job category for remote drivers. Further research is 215

needed to estimate the number of available workers with requisite cognitive and 216

emotional skills, and judgement to become remote drivers. 217

System operations and industrial organization 218

This teleoperations system might have several possible operating models. In one, private 219

companies who own or operate driverless vehicles would also own and operate remote 220

assistance centers. This model is similar to the current GM OnStar system, in which 221
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only GM-equipped vehicles can access OnStar. This approach would allow the industry 222

to compete on safety. The teleoperations system would be a feature that users or fleet 223

purchasers can choose much like adaptive cruise control (ACC). However, this approach 224

would likely lead to balkanized teleoperations systems that do not talk to each other. 225

Standards groups like the Society of Automotive Engineers (SAE) or the International 226

Organization for Standardization (ISO) would need to set standards to promote 227

interoperability and communication between teleoperations systems. Additionally, this 228

approach would require employing more drivers, due to a scale smaller than a 229

centralized system. 230

Another model resembles the air traffic control system operated by the Federal 231

Aviation Administration (FAA). Vehicle support tasks are split between workers at 232

various local, regional, and national centers. As a vehicle moves between various 233

locations, oversight is handed off between centers. A private firm under contract with 234

the federal government could operate this system. If an example is wanted, a private 235

nonprofit runs the nationwide air traffic control system in Canada [20]. This type of 236

arrangement, under which oversight is handed off between different regions, can be 237

modeled in a way that is similar to wireless communication networks [21,22]. In this 238

type of model, one separates the state space into two parts: One dimension consists of 239

those drivers on the road who need no assistance; the other dimension consists of drivers 240

who do assistance. This type of model has also been used in the context of healthcare, 241

to model emergency-room patients in critical and stable conditions [23]. 242

Materials and methods 243

We base the staffing estimates on 2017 nationwide passenger vehicle driving statistics 244

and the disengagements generated from daily passenger travel in the United States. The 245

National Household Travel Survey (NHTS) provides the annual miles driven for each 246

hour of the day. We aggregate all the demand by shifting times to Eastern Standard 247

Time (EST), and focus this analysis on the 52 metropolitan statistical areas (MSA) 248

with more than 1 million people. We develop two queueing models to estimate the 249

remote driver staffing levels. One model is a blocking model; the other is a delay model. 250

In the blocking model, service requests to the remote driver system are denied and 251

immediately leave the system if all remote drivers are servicing other requests. In the 252

delay model, service requests wait their turn in a queue if all remote drivers are 253

occupied. All of the numerical results are based on a scenario with 10 percent 254

penetration rate of driverless vehicles, 1 disengagement per 11,000 miles, and a 255

10-minute average service time per disengagement. 256

Blocking model perspective 257

We model the number of remote drivers needed as an Erlang-loss queueing system. We
assume, for the sake of simplicity, that requests for service to our dynamic queueing
system is driven by a stationary Poisson process with rate λ. This allows us to perform
staffing calculations for peak hour demand. In the subsequent subsection we discuss
how to extend these computations to time-varying staffing settings, but for now let us
consider the peak hour. Each driver request is handled by one remote agent and takes a
random amount of time to resolve completely. We assume, for tractability, that each
request follows an exponential distribution with rate µ. However, if all drivers are busy
with other requests, then an arriving request is blocked or lost and leaves the system
unresolved. Thus, the resulting queueing model is an M/M/C/C queue [24,25], also
known as the Erlang-loss or Erlang-B model. Since we have assumed that the arrival
and service rates are both constants, we can derive an exact expression for the
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steady-state probability that all drivers are busy. This steady-state probability is known
as the Erlang-B formula, given by the following expression:

BC(q) =
qC

C!∑C
i=0

qi

i!

=
P (Q∞ = C)

P (Q∞ ≤ C)
. (1)

In this formula, the offered load q is defined as the arrival rate λ of requests for
assistance divided by the rate of service µ. Moreover, the blocking probability can be
calculated as the conditional probability of an infinite server queue’s being in state C
given that the queue length never exceeds C. Using this formula, one observes that in
order to satisfy 1− ε fraction of all service requests immediately, a minimum number of
drivers (C) is needed such that BC(q) ≤ ε. Finding such a C normally would be
difficult numerically because of the factorial in the blocking probability expression. A
method exists, however, to solve for the number of drivers recursively. Known as the
Erlang-B recursion, an expression for this method is shown below:

BC(q) =
qBC−1(q)

C + qBC−1(q)
. (2)

In addition to the recursion, one can derive simple, accurate approximations for the
number of drivers needed to satisfy 1− ε of all service requests immediately. Also of
note: the Erlang-B formula is valid for the M/G/C/C queue, where the service time
distribution is general, since the Erlang-B formula is beautifully insensitive to the
distribution of this random variable. However, insensitivity is not true for the vehicle
arrival process. Thus, for the G/G/C/C queue, the Erlang-B formula needs not hold, so
approximations are needed to compute the number of drivers necessary to immediately
satisfy percent of all service requests. When inter-arrival and service time distributions
are exponential, an approximation of the minimum number of required drivers [26,27]
equals

C = q + x
√
q, (3)

in which x satisfies the following inequality

1
√
q

φ(x)

Φ(x)
= ϕ(x) ≤ ε. (4)

This formula relies on the probability density function (PDF), φ(·), and the cumulative
distribution function (CDF), Φ(·), of a standard normal random variable, which can be
quickly calculated. To derive this formula, we start with the Erlang-B formula in terms
of the infinite server queue. Note that when the arrival rate is large or demand for
servers is sufficient, the infinite server queue can be approximated by a Gaussian
distribution. The distribution of the infinite server queue in steady state is Poisson,
satisfying the condition that all of its cumulant moment equal the offered load [25]. In
particular, the mean equals the variance, which implies that Q∞ ≈ N(q, q). Using this
Gaussian approximation, we can derive an approximate formula for the number of
drivers needed to satisfy the blocking probability requirements:

BC(q) =
P (Q∞ = C)

P (Q∞ ≤ C)
≈ P (N(q, q) = C)

P (N(q, q) ≤ C)
=

φ
(
C−q√
q

)
Φ
(
C−q√
q

)√
q

= ϕ

(
C − q
√
q

)
≤ ε. (5)

Now, by inverting the function ϕ(x), we see that the number of drivers needed to satisfy
our blocking probability is approximately equal to:

C ≈ q + ϕ−1(ε)
√
q. (6)
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When the mean does not equal the variance, Q∞ ≈ N(q, v), which yields a slightly
different formula for the approximate number of drivers needed to satisfy the blocking
probabilities. Following the same approach as above, we find:

BC(q) =
P (Q∞ = C)

P (Q∞ ≤ C)
≈ P (N(q, v) = C)

P (N(q, v) ≤ C)
=

φ
(
C−q√
v

)
Φ
(
C−q√
v

)√
q

= ϕv

(
C − q
√
q

)
≤ ε. (7)

By inverting this new function ϕ(x), we find that the number of drivers needed to
satisfy our blocking probability is now approximately equal to:

C ≈ q + ϕ−1v (ε)
√
v. (8)

This expression is equivalent to the Hayward approximation [27–30]. Why does the 258

Erlang-B formula need to be so modified? For one thing, inter-arrival times and service 259

times are not expected to be independent and identically distributed. Imagine a fallen 260

tree blocking the road: The first vehicle whose driver observes the downed tree might 261

disengage or need assistance. However, vehicles close behind might also require 262

assistance, for the same reason. Thus, arrivals might tend to cluster during events and 263

require similar service times since they reference the same type of disengagement. 264

Extension to Time-Varying Calculations 265

In this section, we will discuss the generalization to non-stationary arrival rates. In
doing so, we derive closed form formulas for mean queue length of the Mt/G/∞
queueing model. These results are not new as they were derived in [31,32] for the time
varying infinite server queue. Eick et al. use the properties of the Poisson arrival
process and use Poisson random measure arguments to show that the Mt/G/∞ queue
Q∞(t), has a Poisson distribution with time varying mean q(t) that is known [32]. The
infinite server queue is an important model to study despite it having an infinite
number of servers since it represents the queueing process as if there were an unlimited
amount of resources to satisfy the demand process. In fact, [32] show that q(t) has the
following probabilistic representation

q(t) = E[Q∞(t)] =

∫ t

−∞
G(t− u)λ(u)du = E

[∫ t

t−S
λ(u)du

]
= E[λ(t− Se)]E[S], (9)

where λ(u) is the time varying arrival rate at time u, S represents a service time with 266

distribution G, G(x) = 1−G(x) = P(S > x), and Se is a random variable with 267

distribution that follows the stationary excess of residual-lifetime CDF Ge, defined by 268

Ge(t) ≡ P(Se < t) =
1

E[S]

∫ t

0

G(u)du =
1

E[S]

∫ t

0

P(S > u)du, t ≥ 0. (10)

When the service time distribution is exponential, we know that the mean queue length, 269

q(t), solves the ordinary differential equation 270

d

dt
q(t) = λ(t)− µ · q(t). (11)

In fact, since the differential equation is linear non-homogeneous ordinary differential 271

equation, the solution is given by 272

q(t) = q0e
−µt + e−µt

∫ t

0

λ(s)eµsds (12)
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Moreover, from the standard theory of infinite server queues, the distribution of the 273

queue length process is Poisson with mean q(t) when initialized with a Poisson number 274

customers or initialized at zero. 275

Recent work by [33] and [34] uses the infinite server queue to develop staffing 276

algorithms for multi-server queues. Like in the stationary case, the number of servers 277

needed to achieve a blocking probability of ε is given by the time varying function 278

C(t) ≈ q(t) + ϕ−1(ε)
√
q(t). (13)

From [35] and [34], it has been shown that Equation 13 can be used to stabilize the 279

blocking and delay probabilities regardless of the arrival rate and in some cases the 280

arrival and service rate distributions. We find it also important to make the comment 281

that it clearly suffices to analyze a stationary model for staffing purposes if the arrival 282

rate is given by λ = sup0≤s≤T λ(s). One can observe the similarity between Equation 13 283

and Equation 6. Using this arrival rate will certainly produce an overestimate of the 284

number of servers needed, however, it will most definitely satisfy the probabilistic 285

constraints. Thus, this both justifies our peak hour analysis and demonstrates how it 286

can be extended to time-varying settings. 287

Delay Model Perspective 288

In addition to the Erlang-B model, we can also use the Erlang-C model for situations in
which vehicles wait for an agent to provide service. In this section, we assume the
inter-arrival and service time distributions are exponential, with rates λ and µ,
respectively. Under these assumptions, the probability of delay is given by the following
expression:

P (Wait > 0) = P (Q ≥ C) =

qC

C!(1− q
C )

qC

C!(1− q
C )

+
∑C−1
k=0

qk

k!

=
BC(q)

1− q
C (1−BC(q))

. (14)

We can exploit our knowledge of the M/M/C queue by using its conditional waiting
time distribution, which we know to be exponential. Thus, we can also know that:

P (Wait > w |Wait > 0) = P (Wait > x | Q ≥ C) = e−(Cµ−λ) ≤ ε. (15)

Solving for the number of drivers to satisfy the excessive wait probability yields:

C = q − log(ε)

µw
(16)

Similarly, we can use the expected delay formula for the M/M/C queue to derive the
number of drivers that would satisfy a bound on the expected delay for a driver
experiencing disengagement:

E [Wait |Wait > 0] = w =
1

µC − λ
. (17)

Solving for the number of drivers to satisfy the expected conditional delay yields:

C = q +
1

µw
. (18)
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Calculating Staffing Levels from Data 289

Table 2 shows both the annual passenger miles driven and the estimated number of 290

remote drivers needed per hour to handle disengagements under different staffing models. 291

As discussed at the beginning of this Materials and Methods section, the data in this 292

table were sourced from the 2017 National Household Travel Survey (NHTS). The rate 293

of one disengagement per 11,000 miles is based on 2018 California disengagement 294

reports. Table 2 differs from Table 1 in presenting the number of remote drivers for 295

some of the largest cities in the nation for a greater variety of staffing models. From left 296

to right, we have the city name, annual number of miles driven, percent of miles driven 297

nationwide, remote drivers given by the Erlang-B model (with blocking probability 298

0.001), remote drivers given by the probability of delay in the Erlang-C model (with 299

delay probability 0.001), remote drivers given by the conditional mean wait of the 300

Erlang-C model (with a target wait of 20 s), remote drivers given by the conditional 301

excessive wait of the Erlang-C model (with only 0.1% of waiting times exceeding 60 s), 302

and conditional Gaussian approximation using peakedness (variance to mean ratio) 303

parameters {0.25, 0.5, 1, 2, 4}. Because the ratio of the variance to the mean serves as a 304

measure of under- or over-dispersion, cases in which the peakedness parameter is greater 305

than one approximate models with bursts of arrivals [36–39]. Table 2 indicates that 306

most of the queueing models suggest staffing a similar number of remote drivers. The 307

largest differences in number of remote servers occur in our Gaussian approximation for 308

different peakedness parameters. Thus, we see that if the variance of disengagement 309

interarrival times is high, then a larger number of remote drivers is needed. 310
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