
A Stochastic Analysis of Bike Sharing Systems

Shuang Tao
School of Operations Research and Information Engineering

Cornell University
293 Rhodes Hall, Ithaca, NY 14853

st754@cornell.edu

Jamol Pender
School of Operations Research and Information Engineering

Cornell University
228 Rhodes Hall, Ithaca, NY 14853

jjp274@cornell.edu

March 17, 2020

Abstract

As more people move back into densely populated cities, bike sharing is emerging
as an important mode of urban mobility. In a typical bike sharing system, riders arrive
at a station and take a bike if it is available. After retrieving a bike, they ride it for a
while, then return it to a station near their final destinations. Since space is limited in
cities, each station has a finite capacity of docks, which cannot hold more bikes than
its capacity. In this paper, we study bike sharing systems with stations having a finite
capacity. By an appropriate scaling of our stochastic model, we prove a mean field
limit and a central limit theorem for an empirical process of the number of stations
with k bikes. The mean field limit and the central limit theorem provides insight on
the mean, variance, and sample path dynamics of large scale bike sharing systems.
We also leverage our results to estimate confidence intervals for various performance
measures such as the proportion of empty stations, the proportion of full stations, and
the number of bikes in circulation. These performance measures have the potential to
inform the operations and design of future bike sharing systems.

1 Introduction

Bike sharing is an emerging mode of eco friendly transportation that have launched in over
400 cities around the world (Nair and Miller-Hooks [19]). In the United States, we are wit-
nessing a transition where more people are deciding to live in large and densely populated
cities. As more people transition from the sprawling suburbs into densely populated cities,
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bike sharing programs will continue to grow in popularity since they provide easy transporta-
tion for citizens of these large cities. As more people use these bike sharing systems(BSS),
less people will drive motor vehicles on the road. This reduction of vehicles on the road due
to BSS has the potential to also reduce the growing traffic congestion in these growing cities.
BSS also promote healthy living as biking is a great form of exercise. They are environmen-
tally friendly and they have the potential to reduce carbon emissions if operated correctly
and efficiently, see for example Hampshire and Marla [13], Nair and Miller-Hooks [19], Nair
et al. [21], Nair and Miller-Hooks [20], O’Mahony and Shmoys [24], O’Mahony [25], Jian
et al. [14], Freund et al. [9] and their references within for more information on BSS.

For a typical system, riders simply arrive at a station and select a bike if there is one
available for them to take. If there is no bike available for the rider, the rider will leave the
system. Otherwise, the rider will take a bike and ride it for a while before returning it to
another station near their final destination, if there is available space. If no space is available,
the rider must find a nearby station to return the bike. If there were an infinite supply of
docks to store the bikes, then our model would be reduced to a network of infinite server
queues, which is more tractable to analyze. However, since the number of bike docks have
finite capacity, the model become less tractable especially for systems with a large number
of stations.

Much of the complexity inherent in BSS lies in the scarcity of resources to move all riders
around each city at all times of the day. Riders can encounter the scarcity of resources in two
fundamental ways. First, a rider can encounter insufficient resources by finding an empty
station with no bikes when a rider needs one. Secondly, a rider can find a station full with
bikes when attempting to return a bike. Thus, from a managerial point of view, having
stations with no bikes or too many bikes are both problematic for riders. There are several
reasons why bike stations either have no or too many bikes. One main reason why stations
might have too many bikes or too few bikes is that the system is highly inhomogeneous.
Not only is the arrival rate a non-constant function of the time of day (see Figure 1), but
also riders do not evenly distribute themselves amongst the available stations. For example,
many stations that are located in residential areas have fewer bikes available for riding as
many riders take bikes to more commercial areas. Another example that illustrates the
inhomogeneous dynamics is that riders tend to take bikes from up-hill stations to go to
down-hill stations, however, very few riders take bikes from down-hill stations to go up-hill.
Thus, as more bikes flow from residential to commercial areas during rush hours, or up-hill
to down-hill stations, this causes the system to be more imbalanced over time.

Since BSS are quite complex, researchers have been inspired to study these systems in
great depth. The subsequent analysis of BSS has generated many insights on these systems,
especially for rebalancing the fleet of bikes. Although there is a large community that studies
these systems, few analytical models have been proposed, especially stochastic analytical
models. This is primarily because the stochastic models for BSS are often very complex
and are rather intractable to analyze without making strong assumptions. Nevertheless, the
analysis of such stochastic and mathematical models could provide insights on the behavior
of these BSS and how to manage them effectively. In fact, a deeper analysis of stochastic
models for such systems could help researchers understand the impact of different incentive
algorithms for taking or returning bikes, which can lead to significant improvements in the
overall system performance.
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Most BSS can be viewed as closed queueing networks. One of the first papers to model
the bike sharing system as a closed queueing network is by George and Xia [11]. However,
in the bike sharing context, the customers are replaced by bikes. The number of bikes, also
known as the fleet size, is fixed and remains constant. In this model, the bikes can go to two
types of stations. The first type of station is a single-server queue where the service times
are the user inter-arrival times to this station. The second type of station is an infinite-server
queue where the service times are the trip times on a route from station i to station j. The
main drawback of the model by George and Xia [11] is that it is based on infinite capacity
queues. This means that the model does not take into account the finite capacity of the
stations and the related strategies of the users to return their bikes. To overcome this major
drawback, the model proposed in this paper allow the finite capacity at stations. Thus, we
are able to model the real system where customers are blocked from returning bikes to the
stations that is nearest to their destination.

In our model, we model the bike sharing system as state dependent M/M/1/Ki queueing
networks. When joining a saturated single-server queue, the user reattempts in another
queue, after a time with the same distribution as the trip time, until he returns his bike.
Although this model seems to model the behavior of the network, it is not practical since it
scales with the number of stations. Thus, we follow an approach developed by Fricker et al.
[10] to study the bike sharing network’s empirical process instead. The empirical process
still allows us to derive important performance measures of the original system, however, it
scales with the maximum station capacity and not the number of stations, which is more
practical for large networks like Citi Bike.

Figure 1: Citi Bike average number of trips during each 5 minutes (Jan 1st-Dec 31st, 2015).
The red line represents the average number of trips that started during each 5 minutes.
The blue line represents the average number of trips that ended during each 5 minutes.

1.1 Main Contributions of Paper

The contributions of this work can be summarized as follows:
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• We construct a stochastic bike sharing queueing model that incorporates the finite
capacity of stations. Since our model is difficult to analyze for a large number of
stations, we propose to analyze an empirical process that describes the proportion of
stations that have a certain number of bikes.

• We prove a mean field limit and a central limit theorem for our stochastic bike sharing
empirical process, showing that the mean field limit and the variance of the empirical
process can be described by a system of 1

2
(K + 4)(K + 1) differential equations where

K is the maximum station capacity.

• Using the mean field limit of the empirical process, we are able to approximate the mean
proportion of empty and full stations. Furthermore, with the central limit theorem of
the empirical process, we are able to construct confidence intervals around the mean
field limit for the same performance measures.

• We compare the mean field limit and the central limit theorem to a simulation and
show that the differential equations approximate the mean and variance of the empirical
process extremely well.

1.2 Organization of Paper

The remainder of this paper is organized as follows. Section 2 provides a brief history
of bike sharing programs and a literature review on the research streams concerning BSS.
Section 3 introduces our bike sharing model and notation of the paper. In Section 4, we
derive amd prove the mean field limit of the empirical measure process of the distribution
of stations with different bikes and utilization rate. In Section 5, we derive the diffusion
limit and prove a functional CLT for our model. We show that the diffusion process is a
centered Gaussian OU process and we also obtain a closed form expression of the diffusion
limit process. In Section 6, we extend our analysis in Section 3 to a broader case with non-
uniform routing probabilities and capacities, and derive the mean field limit and diffusion
limit in this extended case. In Section 7, we discuss the simulation results of our model, with
both stationary and non-stationary arrival processes. We also give a comparison between
real Citi Bike empirical measure and simulated ones using our model to show how well our
model is in capturing reality. Finally, in Section 9, we give concluding remarks and provide
some future directions of research that we intend to pursue later.

2 History and Literature Review

The literature that focuses on the analysis and operations of BSS is increasing rapidly. Early
research that studied the history of BSS includes Shaheen et al. [35], Hampshire and Marla
[13], Nair et al. [21], Schuijbroek et al. [34], and DeMaio [6]. These papers provide a history
of bike sharing and how it has evolved over time. The beginning of bike sharing can be traced
back to the first generation of white bikes (or free bikes) in Amsterdam, The Netherlands
as early as 1965. However, this first generation of BSS failed due to a large amount of bike
theft. The launch of Bycyklen in Copenhagen in 1995 marked the second generation of
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BSS. Bycyklen was the first BSS to implement docking stations and coin-deposit systems
to unlock bikes. These coin-deposit systems helped with the bike theft problem and thus
made the BSS more reliable. However, even with these improvements, the Bycyklen could
not eliminate bike thefts mainly due to the fact that customer still remained anonymous and
there were no time limits on how long a customer could use a bike.

The failures of the second generation of BSS inspired the present-day or the third genera-
tion of BSS by combining docks with information technology. These new systems incorporate
information technology for bicycle reservations, pickups, and drop-offs. This new technology
has enabled many BSS to keep better track of bicycles and the users that use them, thus
eliminating virtually all bike theft. One example of a third generation BSS is the Paris bike
sharing program Velib. Velib was launched in Paris in July 2007 and has emerged as the most
prominent example of a succesful bike sharing program in the modern world. As a result of
the success of Velib, many cities like New York City (Citi Bike), Chicago (Divvy), and even
Ithaca (Big Red Bikes) have implemented large-scale BSS and bike sharing has become a
widely used form of transportation in these cities. For the interested reader, Laporte et al.
[17] provides a comprehensive survey of the vehicle/bike sharing literature.

Rebalancing is currently the biggest stream of research concerning BSS. In rebalancing
operations, there are two methods of rebalancing: (1) deploying a truck fleet or (2) providing
user incentives, where deploying a truck fleet is often referred to as bike repositioning. Both
methods involve static and dynamic cases. Static repositioning usually is moving bikes during
the night when traffic flow is low, while dynamic repositioning is moving bikes during the
day based on current state of the system. Most research on this area focuses on the static
case, partly because it is easier to model and also because the impact of repositioning is
more important during the night (Jian et al. [14]). Raviv et al. [33] is one of the first papers
to study static repositioning of BSS, using mixed integer linear programming by maximizing
customer demand satisfaction. Benchimol et al. [2] consider a similar problem, where a
single truck repositions bikes to bring the inventory of each station to a predetermined
value. However, their objective is to minimize the routing cost as opposed to maximizing
customer satisfaction. In the case of dynamic repositioning, Chemla et al. [3] and Pfrommer
et al. [32] consider the case when the trucks respond in real time to the current state of the
system. However, Contardo et al. [4] and Ghosh et al. [12] consider the situation where the
time-dependent demand is known a priori and the rebalancing operations are computed in
an off-line fashion. Yet, none of these papers really explore stochastic dynamics and they
for the most part mainly exploit optimization techniques to tackle the problem.

Unlike the rebalancing literature, our paper falls into the performance analysis literature
with an emphasis in supply analysis. We focus on analyzing the most salient performance
measures such as the mean, variance, covariance and sample path dynamics of the bike
distributions in a large-scale BSS. There is not much literature that explores the fluctuations
of BSS around the mean field limit. In this paper, we prove a mean field limit and a functional
central limit theorem under some smoothness conditions and show that the diffusion limit
is characterized by a multi-dimensional Ornstein-Uhlenbeck (OU) process. The functional
central limit theorem not only gives us information about the sample path fluctuations of
the queue length process, but it also allows us to construct approximate confidence intervals
for various performance measures such as the proportion of empty stations, the proportion
of full stations, and the mean number of bikes in circulation. Unlike the previous literature,
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our paper also considers non-stationary arrivals to stations, which is much more realistic
given the user patterns we observe in the historical data from Citi Bike. In Figure 1, we
plot the empirical mean of the number of trips (5 minute intervals) during the week for
the time period Jan 1st-Dec 31st, 2015. We observe from Figure 1 that the arrival rate
is non-stationary and clearly reflects the morning rush and evening rush during the peak
times. Thus, analyzing the non-stationary dynamics is crucial for understanding the impact
of system inhomogeneity since it can provide useful guidelines for rebalancing operations.

3 Bike-Sharing Queueing Model

Figure 2: Figure of a typical Citi Bike Station.

In this section, we construct a Markovian bike sharing queueing model where customers
can pick-up and drop-off bikes at each station if there is available capacity. Figure 2 provides
an illustration of a typical Citi Bike station in New York City (NYC). As one can see in
Figure 2, the bikes are attached to docks and the number of docks is finite with roughly 40
docks. Figure 3 shows a map of Citi Bike stations, the nation’s largest bike sharing program,
with over 10,000 bikes and 600 stations across Manhattan, Brooklyn, Queens and Jersey
City. Citi Bike was designed for quick, affordable and convenient trips, and has become an
essential part of the transportation infrastructure in NYC.

Motivated by the Citi Bike bike sharing system, we consider a bikes sharing system with
N stations and a fleet of M bikes in total. We assume that the arrival of customers to
the stations are independent Poisson processes with rate λi for station i. When a customer
arrives at a station, if there is no bikes available, they will then leave the system and are
immediately blocked and lost. Otherwise, the customer will take a bike and ride to station j
with probability Pj. We assume that the travel time of the rider is exponentially distributed
with mean 1/µ, for every transition from one station to another. Since we are concerned
with finite capacity stations, we assume that station i has a bike capacity of Ki, which is
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Figure 3: Citi Bike stations map

assumed to be finite for all stations. Thus, when a customer arrives at station j, if there
are less than Kj bikes in this station, he returns his bike and leaves the system. If there are
exactly Kj bikes (i.e. the station is full), the customer randomly chooses another station k
with probability Pk and goes to that station to drop the bike off. As before, it takes a time
that is exponentially distributed with mean 1/µ. Finally, the customer rides like this again
until he can return his bike to a station that is not full.

Below, we provide Table 1 for the reader’s convenience so that they understand the
notation that we will use throughout the paper.

Table 1: Notation

N Number of stations
M Total number of bikes
Ki Capacity at station i
λi Arrival rate at station i

1/µ Mean travel time
Pi Routing probability to station i

Xi(t) Number of bikes at station i at time t
Ri = µPi/λi Utilization at station i

ri = Ri/maxiRi Relative utilization at station i
γ Average number of bikes at each station

To avoid cumbersome notation, throughout Sections 3, 4 and 5, we assume without
loss of generality that the service rate µ is equal to 1 and that the routing probability
from each station is uniform, i.e. Pi = 1/N . We also assume that capacities across all
stations are equal, i.e. Ki = K, for i = 1, ..., N . With our notation in hand, we are
ready to develop our stochastic model for our bike sharing network. At first glance, these
assumptions seem restrictive, however, we explain in Section 6.1 how our model can be
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extended seamlessly to more complex settings with non-uniform routing probabilities and
capacities. We should mention, however, the extension to interstation transition probabilities
i.e probabilities that depends on the departing station as well as the returning station are
non-Markovian models. In Section 6.2 we discuss more in detail how one can extend the
state space, by tracking the number of in-transit bikes coming from each station, to make
the queueing model Markovian, however this extended model makes the problem even more
high-dimensional and adds difficulty to the analysis.

We define X(t) = (X1(t), · · · , XN(t)), where Xi(t) is the number of bikes at station i
at time t. Then Xi(t) is a continuous time Markov chain(CTMC), in particular a state
dependent M/M/1/Ki queue. In this model, the rate of dropping off bikes at station i is

equal to µPi

(
M −

∑N
k=1 Xk(t)

)
1{Xi(t) < Ki}, and the rate of retrieving bikes at station

i is equal to λi1{Xi(t) > 0}. Using these rates, we can construct the functional forward
equations for our stochastic bike sharing model. This construction is given below in the
following proposition:

Proposition 3.1. For any integrable function f : ZN+ → R, the CTMC X(t) satisfy the
following functional forward equation,

•
E[f(X(t))|X(0) = x] ≡ d

dt
E[f(X(t))|X(0) = x]

=
N∑
i=1

E
[
(f(X(t)− 1i)− f(X(t))λi1{Xi(t)>0}

]
+

N∑
i=1

E

[
(f(X(t) + 1i)− f(X(t))µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t)<Ki}

]
. (3.1)

Proof. The proof is found in the Appendix.

Corollary 3.2. The time derivatives of the mean, variance, and covariance of X(t) are
given by

•
E[Xi(t)] = E

[
µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t) < Ki}

]
− λiP [Xi(t) > 0] , (3.2)

•
Var[Xi(t)] =

•
E[X2

i (t)]− 2
•
E[Xi(t)]E[Xi(t)]

= 2Cov

[
Xi(t), µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t) < Ki}

]
− 2Cov [Xi(t), λi1{Xi(t) > 0}]

+ E

[
µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t) < Ki}

]
+ λiP [Xi(t) > 0] , (3.3)
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•
Cov[Xi(t), Xj(t)] = Cov

[
µPj

(
M −

N∑
k=1

Xk(t)

)
1{Xj(t)<Kj} − λj1{Xj(t)>0}, Xi(t)

]

+ Cov

[
µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t)<Ki} − λi1{Xi(t)>0}, Xj(t)

]
,

(3.4)

for i, j = 1, · · · , N and i 6= j.

3.1 Intractability of Individual Stations Model

Although the functional forward equations given in Corollary 3.2 describe the exact dynam-
ics of the mean, variance and covariance of the bike sharing system, the system of differential
equations are not closed. This non-closure property of the functional forward equations in
this model arises from the fact that the bike sharing system has finite capacity. More im-
portantly, it also implies that we need to know a priori the full distribution of the whole
stochastic process X(t) in order to calculate the mean or variance or any moment for that
matter. Work by Massey and Pender [18], Pender [26, 27], Engblom and Pender [7], Pender
[28] could yield useful and accurate closure approximations for making the system closed.
Moreover, withe exception of Engblom and Pender [7], there are no error bounds on the
accuracy of various closure approximations. Thus, it is not clear how well the closure ap-
proximations would perform over a variety of parameter settings. Finally if we even wanted
to solve these equations and knew the entire distribution of X(t) a priori, there are still
O(N2) differential equations(around 180,900 equations in the Citi Bike case) that would
need to be numerically integrated. This is very computationally expensive and thus, we
must take a different approach to analyze our bike sharing system.

Moreover, if we want to analyze the limiting behavior of {Xi}Ni=1 as CTMCs, as we let N
go to∞, the mean field limit would become infinite dimensional, which is quite complicated.
However, if we instead analyze an empirical measure process for X(t), we can use the finite
capacity nature of the bike sharing system to our advantage and have a finite dimensional
CTMC for the empircal measure process.

3.2 An Empirical Measure Model

Following the model of Fricker et al. [10], we construct an empirical measure process that
counts the proportions of stations with n bikes and utilization r. This empirical measure
process is given below by the following equation:

Y N
t (r, n) =

1

N

N∑
i=1

1{rNi = r,XN
i (t) = n}. (3.5)

We further define that Y N
t (n) =

∑
r Y

N
t (r, n). By observing the empirical measure

process, we notice that Y N
t = (Y N

t (0), · · · , Y N
t (K)) ∈ [0, 1]K+1. Thus, for our empirical
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measure process, we only need to solve O(K2) differential equations for understanding the
mean and variance dynamics of the bike sharing system, where K << N . More importantly,
the empirical measure will also allow us to obtain salient performance measures such as
Y N
t (0) (the proportion of stations with no bikes), Y N

t (K) (the proportion of stations that
are full of bikes), M −

∑K
j=0 j · Y N

t (j)N (the number of bikes in circulation), among others.

Conditioning on Y N
t (r, n) = y(r, n) and given our assumptions that µ = 1 and Pi = 1/N ,

the transition rates of y are specified as follows:
When a customer arrives to a station with n bikes and relative utilization r to retrieve a
bike, the proportion of stations having n bikes goes down by 1/N , the proportion of stations
having n− 1 bikes goes up by 1/N , and the transition rate QN is

QN

(
y, y +

1

N
(1(r,n−1) − 1(r,n))

)
= y(r, n)λrN1n>0

= y(r, n)
µPi
R
N1n>0

= y(r, n)
1

NR
N1n>0

=
y(r, n)

rRN
max

1n>0. (3.6)

When a customer returns a bike to a station with n bikes and relative utilization r, the
proportion of stations having n bikes goes down by 1/N , the proportion of stations having
n+ 1 bikes goes up by 1/N , and the transition rate QN is

QN

(
y, y +

1

N
(1(r,n+1) − 1(r,n))

)
= y(r, n) · µ ·

(
M −

∑
n′

∑
r′

n′y(r′, n′)N

)
1n<K

= y(r, n)N

(
M

N
−
∑
n′

∑
r′

n′y(r′, n′)

)
1n<K . (3.7)

Similarly, we have the functional forward equations for Y N
t (r, n).

Proposition 3.3. For any integrable function f : [0, 1]K+1 → R, Y N
t (r) = (Y N

t (r, 0), · · · , Y N
t (r,K))

satisfies the following functional forward equation,

•
E(f(Y N

t (r))|Y N
0 (r) = y0(r)]

=
K∑
n=0

E
[(
f

(
Y N
t (r) +

1

N
(1r,n−1 − 1r,n)

)
− f(Y N

t (r))

)
Y N
t (r, n)

rRmax

1n>0

]

+
K∑
n=0

E
[(
f

(
Y N
t (r) +

1

N
(1r,n+1 − 1r,n)

)
− f(Y N

t (r))

)
Y N
t (r, n)N

(
M

N

−
∑
n′

∑
r′

n′Y N
t (r′, n′)

)
1n<K

]
(3.8)

Proof. The proof is similar to the proof of Proposition 3.1.
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Corollary 3.4. The time derivative of the mean of Y N
t (r, n) is given by

•
E[Y N

t (r, n)] = E
[

1

rNRN
max

(
Y N
t (r, n+ 1)1n<K − Y N

t (r, n)1n>0

)]
+E

[(
M

N
−
∑
n′

∑
r′

n′Y N
t (r′, n′)

)(
Y N
t (r, n− 1)1n>0 − Y N

t (r, n)1n<K
)]
.

(3.9)

for n = 0, · · · , K. Denote ΣN
i,j(r, t) = Cov[Y N

t (r, i), Y N
t (r, j)]. When i = j, the time deriva-

tive of the variance term Var[Y N
t (r, i)] is given by

•
Var[Y N

t (r, i)] =
•
E[Y N

t (r, i)2]− 2
•
E[Y N

t (r, i)]E[Y N
t (r, i)]

=
2

rNRN
max

(
ΣN
i,i+1(r, t)1i<K − ΣN

i,i(r, t)1i>0

)
+

2M

N

(
ΣN
i,i−1(r, t)1i>0 − ΣN

i,i(r, t)1i<K
)

−2
∑
n′

∑
r′

n′
(
Cov

[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, i− 1)

]
1i>0

−Cov
[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, i)

]
1i<K

)
+

1

rN2RN
max

(
E
[
Y N
t (r, i+ 1)

]
1i<K + E

[
Y N
t (r, i)

]
1i>0

)
+
M

N2

(
E
[
Y N
t (r, i− 1)

]
1i>0 + E

[
Y N
t (r, i)

]
1i<K

)
− 1

N

∑
n′

∑
r′

n′
(
E
[
Y N
t (r′, n′)Y N

t (r, i− 1)
]
1i>0 + E

[
Y N
t (r′, n′)Y N

t (r, i)
]
1i<K

)
.

(3.10)

When |i− j| > 1, the time derivative of the covariance term Cov[Y N
t (r, i), Y N

t (r, j)] is given
by

•
Cov[Y N

t (r, i), Y N
t (r, j)]

=
•
E[Y N

t (r, i)Y N
t (r, j)]−

•
E[Y N

t (r, i)]E[Y N
t (r, j)]−

•
E[Y N

t (r, j)]E[Y N
t (r, i)]

=
1

rNRN
max

[
ΣN
i+1,j(r, t)1i<K + ΣN

i,j+1(r, t)1j<K − ΣN
i,j(r, t) (1j>0 + 1i>0)

]
+
M

N

[
ΣN
i−1,j(r, t)1i>0 + ΣN

i,j−1(r, t)1j>0 − ΣN
i,j(r, t) (1i<K + 1j<K)

]
−
∑
n′

∑
r′

n′
(
Cov

[
Y N
t (r, j), Y N

t (r′, n′)Y N
t (r, i− 1)

]
1i>0 − Cov

[
Y N
t (r, j), Y N

t (r′, n′)Y N
t (r, i)

]
1i<K

)
−
∑
n′

∑
r′

n′
(
Cov

[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, j − 1)

]
1j>0 − Cov

[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, j)

]
1j<K

)
.

(3.11)

and when j = i+ 1, the time derivative of the covariance term Cov[Y N
t (r, i), Y N

t (r, i+ 1)] is
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given by
•

Cov[Y N
t (r, i), Y N

t (r, i+ 1)]

=
•
E[Y N

t (r, i)Y N
t (r, i+ 1)]−

•
E[Y N

t (r, i)]E[Y N
t (r, i+ 1)]−

•
E[Y N

t (r, i+ 1)]E[Y N
t (r, i)]

=
1

rNRN
max

[
ΣN
i+1,i+1(r, t) + ΣN

i,i+2(r, t)1i<K−1 − ΣN
i,i+1(r, t) (1 + 1i>0)

]
+
M

N

[
ΣN
i−1,i+1(r, t)1i>0 + ΣN

i,i(r, t)− ΣN
i,i+1(r, t)(1 + 1i<K−1)

]
−
∑
n′

∑
r′

n′
(
Cov

[
Y N
t (r, i+ 1), Y N

t (r′, n′)Y N
t (r, i− 1)

]
1i>0

−Cov
[
Y N
t (r, i+ 1), Y N

t (r′, n′)Y N
t (r, i)

])
−
∑
n′

∑
r′

n′
(
Cov

[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, i)

]
− Cov

[
Y N
t (r, i), Y N

t (r′, n′)Y N
t (r, i+ 1)

]
1i<K−1

)
−
E
[
Y N
t (r, i+ 1)

]
rN2Rmax

− M

N2
E
[
Y N
t (r, i)

]
+

1

N

∑
n′

∑
r′

n′E
[
Y N
t (r′, n′)Y N

t (r, i)
]
.

(3.12)

Proof. The time derivatives of E[Y N
t (r, i)] and Var[Y N

t (r, i)] come directly from applying
Proposition 3.3 with f(Yt(r)) = Yt(r, i), Y

2
t (r, i) respectively. For the covariance term, we let

f(Y N
t (r)) = f(Y N

t (r, i), Y N
t (r, j)) to prove the result.

Although we have equations for the moments of the empirical process and individual
stations, it is still difficult to analyze them and gain insights from them directly. One reason
is that even though we have reduced the dimensionality of the analysis significantly, we have
not removed the non-closure property of the differential equations. Thus, we need to develop
a new approach that will allow us to get around this complication. The method that we
choose to use is asymptotic analysis and will be described in more details in the sequel.
However, before we get to the asymptotic analysis we state some technicalities about weak
convergence.

3.3 Preliminaries of Weak Convergence

Following Ko and Pender [15], we assume that all random variables in this paper are de-
fined on a common probability space (Ω,F ,P). Moreover, for all positive integers k, we let
D([0,∞),Rk) be the space of right continuous functions with left limits (RCLL) in Rk that
have a time domain in [0,∞). As is usual, we endow the space D([0,∞),Rk) with the usual
Skorokhod J1 topology, and let Mk be defined as the Borel σ-algebra associated with the J1

topology. We also assume that all stochastic processes are measurable functions from our
common probability space (Ω,F ,P) into (D([0,∞),Rk),Mk). Thus, if {ζ}∞n=1 is a sequence
of stochastic processes, then the notation ζn → ζ implies that the probability measures that
are induced by the ζn’s on the space (D([0,∞),Rk),Mk) converge weakly to the probability
measure on the space (D([0,∞),Rk),Mk) induced by ζ. For any x ∈ (D([0,∞),Rk),Mk)
and any T > 0, we define

||x||T ≡ sup
0≤t≤T

max
i=1,2,...,k

|xi(t)| (3.13)

12



and note that ζn converges almost surely to a continuous limit process ζ in the J1 topology
if and only if

||ζn − ζ||T → 0 a.s. (3.14)

for every T > 0.

4 Mean Field Limit

In this section, we prove the mean field limit for our bike sharing model. A mean field
limit describes the large station dynamics of the bike sharing network over time. Deriving
the mean field limit allows us to obtain new insights on average system dynamics, when
the demand for bikes and the number of stations are very large. Thus, we avoid the need
to study an N -dimensional CTMC and compute its steady state distribution in this high
dimensional setting.

First, we state the important assumptions that will be used through out the paper, to
ensure the existence of a mean field limit of our model.

Assumption 4.1. There exists a probability measure I(r, k) on ]0, 1]×N with finite support
and Λ > 0 such that, as N tends to infinity, we have

i) 1
N

∑N
i=1 1(rNi ,K

N
i ) ⇒ I(r, k),

ii) NRN
max → Λ−1,

iii) M
N
→ γ.

Now we state the main theorem in this section that proves the convergence of empirical
process to its mean field limit.

Theorem 4.1 (Functional Law of Large Numbers). Let | · | denote the Euclidean norm in

RK+1. Under Assumption 4.1, suppose that Y N
0

p−→ y0, then we have for any ε > 0 and
t0 > 0,

lim
N→∞

P

(
sup
t≤t0
|Y N
t − yt| > ε

)
= 0.

Here yt = (yt(0), · · · , yt(K)), where yt(k) =
∫ 1

0
dyt(r, k) for k = 0, · · · , K. And yt is the

unique solution to the following differential equation starting at y0

•
yt = b(yt) (4.15)

where b : [0, 1]K+1 → RK+1 is a vector field satisfies

b(yt) =

∫∫
]0,1]×[0,...,K]

[
Λ

r
(1(r,n−1) − 1(r,n))1n>0 +

(
γ −

∑
n

∫ 1

0

ndyt(r, n)

)
(1(r,n+1) − 1(r,n))1n<K

]
dyt(r, n),

(4.16)
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or componentwise

b(yt)(0) = −
∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)

)
dyt(r, 0)︸ ︷︷ ︸

return a bike to a no-bike station

+

∫ 1

0

Λ

r
dyt(r, 1)︸ ︷︷ ︸

retrieve a bike from a 1-bike station

,

b(yt)(k) =

∫ 1

0

Λ

r
dyt(r, k + 1)︸ ︷︷ ︸

retrieve a bike from a k + 1-bike station

−
∫ 1

0

(
Λ

r
+ γ −

∑
n

∫ 1

0

ndyt(r, n)

)
dyt(r, k)︸ ︷︷ ︸

retrieve and return a bike to a k-bike station

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)

)
dyt(r, k − 1)︸ ︷︷ ︸

return a bike to a k − 1-bike station

,

for k = 1, ..., K − 1, and

b(yt)(K) = −
∫ 1

0

Λ

r
dyt(r,K)︸ ︷︷ ︸

retrieve a bike from a K-bike station

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)

)
dyt(r,K − 1)︸ ︷︷ ︸

return a bike to a K − 1-bike station

.

Proof. A similar theorem is given in the paper of Fricker et al. [10], however, a proof is not
given in their work. Thus, to make our paper self contained, we provide a full proof of the
mean field limit for the convenience of the reader as it is essential for our future results. Our
proof exploits Doob’s inequality for martingales and Gronwall’s lemma. Moreover, we use
Proposition 4.2, Proposition 4.3, and Proposition 4.4 in the proof, and they are stated after
the proof of Theorem 6.11.

Since Y N
t is a semi-martingale, we have the following decomposition of Y N

t ,

Y N
t = Y N

0︸︷︷︸
initial condition

+ MN
t︸︷︷︸

martingale

+

∫ t

0

β(Y N
s )︸ ︷︷ ︸

drift term

ds (4.17)

where Y N
0 is the initial condition and MN

t is a family of martingales. Moreover,
∫ t

0
β(Y N

s )ds
is the integral of the drift term where the drift term is given by β : [0, 1]K+1 → RK+1 or

β(y) =
∑
x6=y

(x− y)Q(y, x)

=
∑
n,r

[
1

rNRmax

(1(r,n−1) − 1(r,n))1n>0 +

(
M

N
−
∑
n′

∑
r′

n′y(r′, n′)

)
(1(r,n+1) − 1(r,n))1n<K

]
y(r, n).

We want to compare the empirical measure Y N
t with the mean field limit yt defined by

yt = y0 +

∫ t

0

b(ys)ds. (4.18)

The remaining of the proof of this theorem can be found in the Appendix.
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Proposition 4.2 (Bounding martingales). For any stopping time T such that E(T ) < ∞,
we have

E
(

sup
t≤T
|MN

t |2
)
≤ 4E

∫ T

0

α(Y N
t )dt. (4.19)

Proof. The proof is found in the Appendix.

Proposition 4.3 (Asymptotic Drift is Lipschitz). The drift function b(y) given in Equation
(6.55) is a Lipschitz function with respect to the Euclidean norm in RK+1.

Proof. The proof is found in the Appendix.

Proposition 4.4 (Drift is Asymptotically Close to a Lipschitz Drift). Under Assump-
tion 4.1, we have for any ε > 0 and s ≥ 0,

lim
N→∞

P(|β(Y N
s )− b(Y N

s )| > ε) = 0.

Proof. The proof is found in the Appendix.

We have proved mean field limit for our bike sharing model. Our analysis yields that
as the number of stations goes towards infinity, we can solve a set of ordinary differential
equations to obtain important performance measure information. The performance measures
that we can approximate are the mean proportion of empty or saturated stations, and the
average number of bikes in circulation. Moreover, we can analyze how factors such as fleet
size and capacity change the value of the performance measures.

However, just knowing the mean field limit is not enough. One reason is that we would
like to know more about the stochastic variability of the system, i.e. the fluctuations around
the mean field limit. The mean field limit cannot explain the stochastic fluctuations of the
BSS and therefore, we need to analyze the BSS in a different way. Thus, in the subsequent
section we develop a functional central limit theorem for our bike sharing model, and explain
why it is important for understanding stochastic fluctuations of bike sharing networks.

5 Diffusion Limit

In this section, we derive the diffusion limit of our stochastic empirical process bike sharing
model. Diffusion limits are critical for obtaining a deep understanding of the sample path
behavior of stochastic processes. One reason is that diffusion limits describe the fluctuations
around the mean field limit and can help understand the variance or the asymptotic distri-
bution of the stochastic process being analyzed. We define our diffusion scaled bike sharing
model by substracting the mean field limit from the empirical measure process and rescaling
it by

√
N . Thus, we obtain the following expression for the diffusion scaled bike sharing

empirical process
DN
t =

√
N(Y N

t − yt). (5.20)

Unlike many other ride-sharing systems such as Lyft or Uber, bike sharing programs
cannot use pricing as a mechanism for redistributing bikes to satisfy demand in real-time.
For this reason, it is essential to understand the dynamics and behavior of DN

t . DN
t can
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be useful for describing the probability that the proportion of stations with i bikes exceeds
a threshold i.e. P(Y N

t > x) for some x ∈ [0, 1]K+1. It also describes this probability in a
situation where there is no control or rebalancing of bikes in the system. This knowledge of
the uncontrolled system is especially important for newly-started bike sharing systems who
are still in the process of gathering information about the system demand. The diffusion
limit helps managers of BSS to understand the system dynamics and stability, which in turn
helps them make short term and long term managerial decisions. It is also helpful in the case
when the operators of the bike sharing system have no money for rebalancing the system to
meet real-time demand.

Using the semi-martingale decomposition of Y N
t given in Equation (4.17), we can write

a similar decomposition for DN
t as follows:

DN
t =

√
N(Y N

0 − y0) +
√
NMN

t +

∫ t

0

√
N [β(Y N

s )− b(ys)]ds

= DN
0 +
√
NMN

t +

∫ t

0

√
N [β(Y N

s )− b(Y N
s )]ds+

∫ t

0

√
N [b(Y N

s )− b(ys)]ds.
(5.21)

Define

Dt = D0 +

∫ t

0

b′(ys)Dsds+Mt (5.22)

where b′(y) =
(
∂b(y)(i)
∂y(j)

)
ij
∈ R(K+1)×(K+1) and Mt = (Mt(0), · · · ,Mt(K)) ∈ RK+1 is a real

continuous centered Gaussian martingale, with Doob-Meyer brackets given by

〈M(k)〉t =

∫ t

0

(b+(ys)(k) + b−(ys)(k))ds,

〈M(k),M(k + 1)〉t = −
∫ t

0

[∫ 1

0

Λ

r
dys(r, k + 1)

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndys(r, n)

)
dys(r, k)

]
ds for k < K,

〈M(k),M(j)〉t = 0 for |k − j| > 1. (5.23)

Here b+(y) = max(b(y), 0) and b−(y) = −min(b(y), 0) denote the positive and the negative
parts of function b(y) respectively.

Now we state the functional central limit theorem for the empirical measure process as
follows,

Theorem 5.1 (Functional Central Limit Theorem). Consider DN
t in D(R+,RK+1) with the

Skorokhod J1 topology, and suppose that

1) lim supN→∞
√
N
(
mini λ

N
i − Λ

)
<∞,

2) lim supN→∞
√
N
(
M
N
− γ
)
<∞.

Then if DN
0 converges in distribution to D0, then DN

t converges to the unique OU process
solving Dt = D0 +

∫ t
0
b′(ys)Dsds+Mt in distribution.
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To prove Theorem 5.1, we take the following 4 steps,

1).
√
NMN

t is a family of martingales independent of DN
0 with Doob-Meyer brackets given

by 〈√
NMN(k)

〉
t

=

∫ t

0

(β+(Y N
s )(k) + β−(Y N

s )(k))ds,〈√
NMN(k),

√
NMN(k + 1)

〉
t

= −
∫ t

0

∑
r

[
1

rNRmax

Y N
s (r, k + 1)

+

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)
Y N
s (r, k)

]
ds for k < K,〈√

NMN(k),
√
NMN(j)

〉
t

= 0 for |k − j| > 1. (5.24)

2). For any T ≥ 0,

lim sup
N→∞

E(|DN
0 |2) <∞⇒ lim sup

N→∞
E( sup

0≤t≤T
|DN

t |2) <∞.

3). If (DN
0 )∞N=1 is tight then (DN)∞N=1 is tight and its limit points are continuous.

4). If DN
0 converges to D0 in distribution, then DN

t converges to the unique OU process
solving Dt = D0 +

∫ t
0
b′(ys)Dsds+Mt in distribution.

Lemma 5.2.
√
NMN

t is a family of martingales independent of DN
0 with Doob-Meyer brack-

ets given by 〈√
NMN(k)

〉
t

=

∫ t

0

(β+(Y N
s )(k) + β−(Y N

s )(k))ds,〈√
NMN(k),

√
NMN(k + 1)

〉
t

= −
∫ t

0

∑
r

[
1

rNRmax

Y N
s (r, k + 1)

+

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)
Y N
s (r, k)

]
ds for k < K,〈√

NMN(k),
√
NMN(j)

〉
t

= 0 for |k − j| > 1. (5.25)

Proof. The proof is found in the Appendix.

Proposition 5.3. For any s ≥ 0,

lim sup
N→∞

√
N
∣∣β(Y N

s )− b(Y N
s )
∣∣ <∞. (5.26)

Proof. The proof is found in the Appendix.
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Lemma 5.4 (Finite Horizon Bound). For any T ≥ 0, if

lim sup
N→∞

E
(
|DN

0 |2
)
<∞,

then we have

lim sup
N→∞

E
(

sup
0≤t≤T

|DN
t |2
)
<∞.

Proof. The proof is found in the Appendix.

Lemma 5.5. If (DN
0 )∞N=1 is tight then (DN)∞N=1 is tight and its limit points are continuous.

Proof. The proof is found in the Appendix.

Proposition 5.6. b(y) is continously differentiable with the derivatives ∂b(y(r,i))
∂y(r,j)

as follows,

∂b(y(r, 0))

∂y(r, j)
= j · y(r, 0) +

Λ

r
1{j=1} −

(
γ −

K∑
n=0

n

(∑
r′

y(r′, n)

))
1{j=0},

∂b(y(r, k))

∂y(r, j)
= j · (y(k)− y(k − 1)) +

Λ

r

(
1{j=k+1} − 1{j=k}

)
+

(
γ −

K∑
n=0

n

(∑
r′

y(r′, n)

))(
1{j=k−1} − 1{j=k}

)
for 0 < k < K,

∂b(y(r,K))

∂y(r, j)
= −j · y(K − 1)− Λ

r
1{j=K} +

(
γ −

K∑
n=0

n

(∑
r′

y(r′, n)

))
1{j=K−1}.

(5.27)

Proof. The above equations can be obtained by directly taking derivatives to Equation (6.55).
We can see that the derivatives of b(y) are linear in y. Thus we can conclude that b(y) is
continuously differentiable with respect to y.

Proof of Theorem 5.1. By Theorem 4.1 in Chapter 7 of Ethier and Kurtz [8], it suffices to
prove that the following condition holds

sup
t≤T

∣∣∣∣∫ t

0

{√
N [b(Y N

s )− b(ys)]− b′(ys)DN
s

}
ds

∣∣∣∣ p−→ 0.

By Proposition 5.6, we know that b(yt) is continuously differentiable with respect to yt. By
the mean value theorem, for every 0 ≤ s ≤ t there exists a vector ZN

s in between Y N
s and ys

such that
b(Y N

s )− b(ys) = b′(ZN
s )(Y N

s − ys).

Therefore ∫ t

0

{√
N [b(Y N

s )− b(ys)]− b′(ys)DN
s

}
ds =

∫ t

0

[b′(ZN
s )− b′(ys)]DN

s ds.
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We know that
lim
N→∞

sup
t≤T
|b′(ZN

s )− b′(ys)| = 0 in probability

by the mean field limit convergence and the uniform continuity of b′. By applying Chebyshev
inequality we have that DN

s is bounded in probability, then by Lemma 5.6 in Ko and Pender
[15],

sup
t≤T

∣∣∣∣∫ t

0

{√
N [b(Y N

s )− b(ys)]− b′(ys)DN
s

}
ds

∣∣∣∣ p−→ 0.

Theorem 5.7 (Solution of the OU Process). The SDE (5.22) has a unique solution

Dt = e
∫ t
0 b
′(ys)dsD0 +

∫ t

0

e
∫ t
s b
′(yu)dudMs. (5.28)

Define A(t) = b′(yt), B(t) =
(
d
dt
〈M(i),M(j)〉t

)
ij

, then the expectation E(Dt) is

E[Dt] = e
∫ t
0 A(s)dsE[D0], (5.29)

and the covariance matrix Σ(t) = Cov[Dt, Dt] is

Σ(t) = e
∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds. (5.30)

Moreover, differentiation with respect to t yields

dE[Dt]

dt
= A(t)E[Dt], (5.31)

dΣ(t)

dt
= Σ(t)A(t)> +A(t)Σ(t) + B(t). (5.32)

Proof. The proof is found in the Appendix.

6 Extensions

In Section 3, we assumed WLOG that the routing probabilities and capacities are uniform
throughout all stations. If one views our statement as assumptions, then it seems like
our model is limiting, however, we emphasize that these are not assumptions and that our
analysis extends to the broader case of non-uniform routing probabilities and capacities.
Thus, in the non-uniform setting, we are still able to prove the same fluid and diffusion
limits and more importantly reduce the dimensionality of the bike sharing network.
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6.1 Extensions to non-uniform routing probabilities and capacities

The first possible extension of our current model is to incorporate non-uniform routing
probabilities, and take into account the origin-destination pairs. That is, after a customer
picks up a bike from station i, the probability that he will drop off at station j is equal to Pij.
However, to preserve the Markovian property of the queueing process, we also need to track
the number of bikes in use which originated from station i, denoted as UN

t (i), in addition
to the empirical measure process Y N

t . As the scale of the system N goes to infinity, the
dimensionality of the new queueing process (Y N

t , U
N
t ) will also go to infinity, therefore we

are back to the same infinite-dimensionality problem with XN(t), which is illustrated more
in details in Section 3.1, and lose the benefit of finite-dimensionality we get by studying the
empirical measure Y N

t .
However, we can still extend our model to non-uniform routing probabilities and capaci-

ties without considering the origin-destination pairs. In particular, we assume the probability
that a bike being dropped off at station i is equals to Pi, and the capacity at station i is
equal to Ki.

We define relative routing probability at station i as

pi =
Pi

maxi Pi
. (6.33)

We consider the empirical measure process Y N
t (r, n, p, k) that counts the proportion of

stations that have n bikes, relative utilization r, routing probability p, and capacity k,

Y N
t (r, n, p, k) =

1

N

N∑
i

1{XN
i (t) = n, rNi = r, pNi = p,KN

i = k}. (6.34)

Conditioning on Y N
t (r, n, p, k) = y(r, n, p, k), the transition rates of y are specified as

follows:
When a customer arrives to a station with n bikes, relative utilization r, relative routing
probability p, and capacity k, to retrieve a bike, the proportion of stations having n bikes
goes down by 1/N , the proportion of stations having n − 1 bikes goes up by 1/N , and the
transition rate QN is

QN

(
y, y +

1

N
(1(r,n−1,p,k) − 1(r,n,p,k))

)
= y(r, n, p, k)λrN1n>0

= y(r, n, p, k)
µP

R
N1n>0

= y(r, n, p, k)
pPN

max

rRN
max

N1n>0. (6.35)

When a customer returns a bike to a station with n bikes , relative utilization r, relative
routing probability p, and capacity k, to retrieve a bike,, the proportion of stations having
n bikes goes down by 1/N , the proportion of stations having n + 1 bikes goes up by 1/N ,
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and the transition rate QN is

QN

(
y, y +

1

N
(1(r,n+1,p,k) − 1(r,n,p,k))

)
= y(r, n, p, k)N · µ · P

(
M −

∑
n′

∑
r′,p′,k′

n′y(r′, n′, p′, k′)N

)
1n<k

= y(r, n, p, k)N2pPN
max

(
M

N
−
∑
n′

∑
r′,p′,k′

n′y(r′, n′, p′, k′)

)
1n<k.

(6.36)

We have the following functional forward equations for Y N
t (r, n, p, k).

Proposition 6.1. For any integrable function f : [0, 1]k+1 → R, and
Y N
t (r, p, k) = (Y N

t (r, 0, p, k), · · · , Y N
t (r, k, p, k)) satisfies the following functional forward

equation,

•
E(f(Y N

t (r, p, k))|Y N
0 (r, p, k) = y0(r, p, k)]

=
k∑

n=0

E
[(
f

(
Y N
t (r, p, k) +

1

N
(1r,n−1,p,k − 1r,n,p,k)

)
− f(Y N

t (r, p, k))

)
Y N
t (r, n, p, k)

NpPN
max

rRN
max

1n>0

]

+
k∑

n=0

E
[(
f

(
Y N
t (r, p, k) +

1

N
(1r,n+1,p,k − 1r,n,p,k)

)
− f(Y N

t (r, p, k))

)
Y N
t (r, n, p, k)N2pPN

max

(
M

N

−
∑
n′

∑
r′,p′,k′

n′Y N
t (r′, n′, p′, k′)

)
1n<k

]
(6.37)

6.1.1 Mean Field Limit

We first state the following assumptions that we use throughout this section,

Assumption 6.1. There exists a probability measure I(r, p, k) on [0, 1] × [0, 1] × N and
Λ > 0 such that, as N tends to infinity, we have

i) 1
N

∑N
i=1 1(rNi ,p

N
i ,K

N
i ) ⇒ I(r, p, k),

ii) PN
max/R

N
max → Λ, NPN

max → P , M
N
→ γ,

iii) The set K =
⋃∞
N=1{KN

i , i = 1, ..., N} is finite.

Now we state the main theorem in this section that proves the convergence of empirical
process to its mean field limit.

Theorem 6.2. Let | · | denote the Euclidean norm in RKmax+1. Under Assumption 6.1,

suppose that Y N
0

p−→ y0, then we have for any ε > 0 and t0 > 0,

lim
N→∞

P
(

sup
t≤t0
|Y N
t − yt| > ε

)
= 0.
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Here yt = (yt(0), · · · , yt(Kmax)), where yt(j) =
∑

k∈K
∫ 1

0

∫ 1

0
dyt(r, j, p, k) for j = 0, · · · , Kmax.

And yt is the unique solution to the following differential equation starting at y0

•
yt = b(yt) (6.38)

where b : [0, 1]K+1 → RKmax+1 is a vector field satisfies

b(yt) =
∑
k∈K

k∑
n=0

∫∫
]0,1]×[0,1]

[
pΛ

r
(1(r,n−1,p,k) − 1(r,n,p,k))1n>0+

pP

(
γ −

∑
n

∑
k≥n

∫∫
]0,1]×[0,1]

ndyt(r, n, p, k)

)
(1(r,n+1,p,k) − 1(r,n,p,k))1n<k

]
dyt(r, n, p, k),

(6.39)

or componentwise

b(yt)(0) = −
∑
k∈K

∫∫
]0,1]×[0,1]

pP

γ −∑
n

∑
k∈K

∫∫
]0,1]×[0,1]

ndyt(r, n, p, k)

 dyt(r, 0, p, k)

︸ ︷︷ ︸
return a bike to a no-bike station

+
∑
k∈K

∫∫
]0,1]×[0,1]

pΛ

r
dyt(r, 1, p, k)

︸ ︷︷ ︸
retrieve a bike from a 1-bike station

, (6.40)

b(yt)(j) =
∑
k∈K

∫∫
]0,1]×[0,1]

pΛ

r
dyt(r, j + 1, p, k)

︸ ︷︷ ︸
retrieve a bike from a j + 1-bike station

−
∑
k∈K

∫∫
]0,1]×[0,1]

pΛ
r

+ pP

γ −∑
n

∑
k∈K

∫∫
]0,1]×[0,1]

ndyt(r, n, p, k)


 dyt(r, j, p, k)

︸ ︷︷ ︸
retrieve and return a bike to a j-bike station

+
∑
k∈K

∫∫
]0,1]×[0,1]

pP

γ −∑
n

∑
k∈K

∫∫
]0,1]×[0,1]

ndyt(r, n, p, k)

 dyt(r, j − 1, p, k)

︸ ︷︷ ︸
return a bike to a j − 1-bike station

,

(6.41)
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for j = 1, ..., Kmax − 1, and

b(yt)(Kmax) = −
∑
k∈K

∫∫
]0,1]×[0,1]

pΛ

r
dyt(r,Kmax, p, k)

︸ ︷︷ ︸
retrieve a bike from a Kmax-bike station

+
∑
k∈K

∫∫
]0,1]×[0,1]

pP

γ −∑
n

∑
k∈K

∫∫
]0,1]×[0,1]

ndyt(r, n, p, k)

 dyt(r,Kmax − 1, p, k)

︸ ︷︷ ︸
return a bike to a Kmax − 1-bike station

.

(6.42)

Proof. The only things we need to prove in this extension case are that b(y) is Lipschitz and

that β(Y N
t )

p−→ b(Y N
t ) for any t ≥ 0. The rest of the proof stays the same as in Section 4.

Proposition 6.3 (Asymptotic Drift is Lipschitz). The drift function b(y) given in Equation
(6.39) is a Lipschitz function with respect to the Euclidean norm in RKmax+1.

Proof. The proof is found in the Appendix.

Proposition 6.4 (Drift is Asymptotically Close to a Lipschitz Drift). Under Assump-
tion 6.1, we have for any ε > 0 and s ≥ 0,

lim
N→∞

P(|β(Y N
s )− b(Y N

s )| > ε) = 0.

Proof. The proof is found in the Appendix.

6.1.2 Diffusion Limit

Now we state the functional central limit theorem for the empirical measure process in the
extension case as follows,

Theorem 6.5. Consider DN
t in D(R+,RKmax+1) with the Skorokhod J1 topology, and suppose

that

1) lim supN→∞
√
N
(
PN
max

RN
max
− Λ

)
<∞,

2) lim supN→∞
√
N
(
M
N
− γ
)
<∞,

3) lim supN→∞
√
N
(
NPN

max − P
)
<∞.

Then if DN
0 converges in distribution to D0, then DN

t converges to the unique OU pro-

cess solving Dt = D0 +
∫ t

0
b′(ys)Dsds + Mt in distribution. Here b′(y) =

(
∂b(y)(i)
∂y(j)

)
ij
∈
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R(Kmax+1)×(Kmax+1) and Mt = (Mt(0), · · · ,Mt(Kmax)) ∈ RKmax+1 is a real continuous cen-
tered Gaussian martingale, with Doob-Meyer brackets given by

〈M(k)〉t =

∫ t

0

(b+(ys)(k) + b−(ys)(k))ds,

〈M(k),M(k + 1)〉t = −
∫ t

0

[∑
K∈K

∫∫
]0,1]×[0,1]

pΛ

r
dys(r, k + 1, p,K)

+
∑
K∈K

∫∫
]0,1]×[0,1]

pP

(
γ −

∑
n

∑
K∈K

∫∫
]0,1]×[0,1]

ndys(r, n, p,K)

)
dys(r, k, p,K)

]
ds

for k < Kmax,

〈M(k),M(j)〉t = 0 for |k − j| > 1. (6.43)

Here b+(y) = max(b(y), 0) and b−(y) = −min(b(y), 0) denote the positive and the negative
parts of function b(y) respectively.

Proof. The only things we need to prove in this extension case are listed as propositions
below. The rest of the proof stays the same as in Section 5.

Lemma 6.6.
√
NMN

t is a family of martingales independent of DN
0 with Doob-Meyer brack-

ets given by

〈M(k)〉t =

∫ t

0

(b+(ys)(k) + b−(ys)(k))ds,

〈M(k),M(k + 1)〉t = −
∫ t

0

[∑
K∈K

∫∫
]0,1]×[0,1]

pΛ

r
dys(r, k + 1, p,K)

+
∑
K∈K

∫∫
]0,1]×[0,1]

pP

(
γ −

∑
n

∑
K∈K

∫∫
]0,1]×[0,1]

ndys(r, n, p,K)

)
dys(r, k, p,K)

]
ds

for k < Kmax,

〈M(k),M(j)〉t = 0 for |k − j| > 1. (6.44)

Proposition 6.7. For any s ≥ 0,

lim sup
N→∞

√
N |β(Y N

s − b(Y N
s )| <∞ (6.45)

Proof. The proof is found in the Appendix.

Proposition 6.8. For k < Kmax

lim
N→∞

P
(

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ > ε

)
= 0 (6.46)

Proof. The proof is found in the Appendix.
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Proposition 6.9. b(y) is continously differentiable with the derivatives ∂b(y(r,i,p,K))
∂y(r,j,p,K)

as fol-
lows,

∂b(y(r, 0, p,K))

∂y(r, j, p,K)
= pPj · y(r, 0, p,K) +

pΛ

r
1{j=1} − pP

(
γ −

Kmax∑
n=0

n

( ∑
r′,p′,K′

y(r′, n, p′, K ′)

))
1{j=0},

∂b(y(r, k, p,K))

∂y(r, j, p,K)
= pPj · (y(r, k, p,K)− y(r, k − 1, p,K)) +

pΛ

r

(
1{j=k+1} − 1{j=k}

)
+pP

(
γ −

Kmax∑
n=0

n

( ∑
r′,p′,K′

y(r′, n, p′, K ′)

))(
1{j=k−1} − 1{j=k}

)
for 0 < k < Kmax,

∂b(y(r,K, p,K))

∂y(r, j, p,K)
= −pPj · y(Kmax − 1)− pΛ

r
1{j=Kmax}

+pP

(
γ −

Kmax∑
n=0

n

( ∑
r′,p′,K′

y(r′, n, p′, K ′)

))
1{j=Kmax−1}.

(6.47)

Proof. The above equations can be obtained by directly taking derivatives to Equation (6.39).
We can see that the derivatives of b(y) are linear in y. Thus we can conclude that b(y) is
continuously differentiable with respect to y.

6.2 Extensions to adding bike repositioning

We can also extend our model to incorporate repositioning of bikes, which is adopted by
most bike-sharing companies to rebalance the network over time. To avoid cumbersome
notations, we restrict ourselves to the uniform routing probabilities and capacities scenario
for the model discussed in this section.

We may assume that ”rebalancers” will arrive to the system according to a independent
Poisson process with rate λRY

N
t (K)N , where λR > 0 is a constant and Y N

t (K) is the
proportion of full stations at time t. They pick a full station uniformly at random among all
full stations, and remove a certain number C of the bikes from that station.

In terms of repositioning these bikes, we assume that C number of bikes are being put
back to stations with bikes ranging from 0 to K − C. The probablity of repositioning

to a station with j bikes is equal to
Y N
t (j)gj∑K−C

i=0 Y N
t (i)gi

, where {gi}i are positive constants and

g0 >> g1 >> g2 · · · >> gK−C > 0. This is a smoothed version of choosing the station
with minimum number of bikes when repositioniong, and it preserves the Lipschitz property
of the drift function, which is essential for deriving the fluid limit and the diffusion limit.
We assume additionally that M < N(K − C) to avoid the case where the denominator∑K−C

i=0 Y N
t (i)gi can be 0. This can be easily shown through a proof by contradiction. For

simplicity of the model, we assume repositioning time are exponentially distributed with
rate µR. Finally, we use RN

t to denote the number of bikes currently in repositioning by the
rebalancers at time t.

Conditioning on (Y N
t (r, n), RN

t ) = (y(r, n), R), , we have the following transition rate for
the four types of events:
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When a customer arrives to a station with n bikes, relative utilization r, to retrieve a
bikes, the proportion of stations having n bikes goes down by 1/N , the proportion of stations
having n− 1 bikes goes up by 1/N , and the transition rate QN is

QN

(
(y,R),

(
y +

1

N
(1(r,n−1) − 1(r,n)), R

))
=

y(r, n)

rRN
max

1n>0. (6.48)

When a customer returns a bike to a station with n bikes and relative utilization r, the
proportion of stations having n bikes goes down by 1/N , the proportion of stations having
n+ 1 bikes goes up by 1/N , and the transition rate QN is

QN

(
(y,R),

(
y +

1

N
(1(r,n+1) − 1(r,n)), R

))
= y(r, n) · µ ·

(
M −

∑
n′

∑
r′

n′y(r′, n′)N −R

)
1n<K .

(6.49)

When a rebalancer arrives to a station with K bikes, relative utilization r, to retrieve
C bikes, the proportion of stations having K bikes goes down by 1/N , the proportion of
stations having K − C bikes goes up by 1/N , and the transition rate QN is

QN

(
(y,R),

(
y +

1

N
(1(r,K−C) − 1(r,K)), R + C

))
= y(r,K)λRN. (6.50)

When a rebalancer arrives to a station with j bikes and relative utilization r, where
0 ≤ j ≤ K − C, to put back C bikes, the proportion of stations having j bikes goes down
by 1/N , the proportion of stations having j + C bikes goes up by 1/N , and the transition
rate QN is

QN

(
(y,R),

(
y +

1

N
(1(r,j+C) − 1(r,j)), R− C

))
= µR

y(r, j)gj∑K−C
i=0 y(r, i)gi

· R
C
. (6.51)

We have the following functional forward equations for (Y N
t (r, n), R).

Proposition 6.10. For any integrable function f : [0, 1]K+1 × [0,∞)→ R,
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Y N
t (r) = (Y N

t (r, 0), · · · , Y N
t (r,K)) satisfies the following functional forward equation,

•
E(f(Y N

t (r), R)|Y N
0 (r) = y0(r), RN

0 = R0]

=
K∑
n=0

E
[(
f

(
Y N
t (r) +

1

N
(1r,n−1 − 1r,n), RN

t

)
− f(Y N

t (r), RN
t )

)
Y N
t (r, n)

rRN
max

1n>0

]

+
K∑
n=0

E
[(
f

(
Y N
t (r) +

1

N
(1r,n+1 − 1r,n), RN

t

)
− f(Y N

t (r)), RN
t

)
Y N
t (r, n)N

(
M

N

−
∑
n′

∑
r′

n′Y N
t (r′, n′)− RN

t

N

)
1n<K

]

+ E
[(
f

(
Y N
t (r) +

1

N
(1r,K−C − 1r,K), RN

t + C

)
− f(Y N

t (r), RN
t )

)
Y N
t (r,K)λRN

]
+

K−C∑
n=0

E

[(
f

(
Y N
t (r) +

1

N
(1r,n+C − 1r,n), RN

t − C
)
− f(Y N

t (r), RN
t )

)
µR

Y N
t (r, n)gn∑K−C

i=0 Y N
t (r, i)gi

· R
N
t

C

]
.

(6.52)

6.2.1 Mean Field Limit

Now we show the mean field limit result for the empirical process with rebalancing.

Theorem 6.11. Let |·| denote the Euclidean norm in RK+2. Under Assumption 4.1, suppose

that (Y N
0 , RN

0 /N)
p−→ (y0, r̄0) , then we have for any ε > 0 and t0 > 0,

lim
N→∞

P

(
sup
t≤t0
|(Y N

t , R
N
t /N)− (yt, r̄t)| > ε

)
= 0.

Here yt = (yt(0), · · · , yt(K)), where yt(k) =
∫ 1

0
dyt(r, k) for k = 0, · · · , K. And (yt, r̄t) is the

unique solution to the following differential equation starting at (y0, r̄0)

•
yt = b1(yt, r̄t), (6.53)
•
r̄t = b2(yt, r̄t), (6.54)

where b1 : [0, 1]K+1 → RK+1 and b2 : [0,∞)→ R are vector fields satisfy

b1(yt, r̄t)

=

∫∫
]0,1]×[0,...,K]

[
Λ

r
(1(r,n−1) − 1(r,n))1n>0 +

(
γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
(1(r,n+1) − 1(r,n))1n<K

]
dyt(r, n)

+

∫
]0,1]

λR1(r,K−C − 1(r,K))dyt(r,K) +

∫∫
]0,1]×[0,...,K−C]

µR
gn∑K−C

i=0 yt(r, i)gi
· r̄t
C

(1(r,n+C) − 1(r,n))dyt(r, n),

(6.55)
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or componentwise

b1(yt, r̄t)(0) = −
∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r, 0)︸ ︷︷ ︸

return a bike to a no-bike station

+

∫ 1

0

Λ

r
dyt(r, 1)︸ ︷︷ ︸

retrieve a bike from a 1-bike station

−
∫ 1

0

µR
g0∑K−C

i=0 yt(r, i)gi
· r̄t
C
dyt(r, 0)︸ ︷︷ ︸

rebalancer put back C bikes to a 0-bike station

, (6.56)

b1(yt, r̄t)(k) =

∫ 1

0

Λ

r
dyt(r, k + 1)︸ ︷︷ ︸

retrieve a bike from a k + 1-bike station

−
∫ 1

0

(
Λ

r
+ γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r, k)︸ ︷︷ ︸

retrieve and return a bike to a k-bike station

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r, k − 1)︸ ︷︷ ︸

return a bike to a k − 1-bike station

−
∫ 1

0

µR
gk∑K−C

i=0 yt(r, i)gi
· r̄t
C
dyt(r, k)︸ ︷︷ ︸

rebalancer put back C bikes to a k-bike station

,

for k = 1, ..., K − C − 1, and

b1(yt, r̄t)(k) =

∫ 1

0

Λ

r
dyt(r, k + 1)︸ ︷︷ ︸

retrieve a bike from a k + 1-bike station

−
∫ 1

0

(
Λ

r
+ γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r, k)︸ ︷︷ ︸

retrieve and return a bike to a k-bike station

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r, k − 1)︸ ︷︷ ︸

return a bike to a k − 1-bike station

+

∫ 1

0

µR
gk−C∑K−C

i=0 yt(r, i)gi
· r̄t
C
dyt(r, k − C)︸ ︷︷ ︸

rebalancer put back C bikes to a k-C-bike station

+

∫ 1

0

CλRdyt(r,K)1k=K−C︸ ︷︷ ︸
rebalancers retrieve C bikes from a K-bike station

,

for k = K − C, ...,K − 1, and

b1(yt, r̄t)(K) = −
∫ 1

0

Λ

r
dyt(r,K)︸ ︷︷ ︸

retrieve a bike from a K-bike station

+

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndyt(r, n)− r̄t

)
dyt(r,K − 1)︸ ︷︷ ︸

return a bike to a K − 1-bike station

−
∫ 1

0

CλRdyt(r,K)1k=K−C︸ ︷︷ ︸
rebalancers retrieve C bikes from a K-bike station

, (6.57)

and

b2(yt, r̄t) =

∫ 1

0

CλRdyt(r,K)︸ ︷︷ ︸
rebalancers retrieve C bikes from a K-bike station

−
K−C∑
n=0

∫ 1

0

µR
gn∑K−C

i=0 yt(r, i)gi
r̄tdyt(r, n)︸ ︷︷ ︸

rebalancers put back C bikes to a n-bike station

.

(6.58)
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Proof. This result can be shown by similar techniques used in Section 4.

7 Numerical Examples and Simulation

In this section, we confirm our theoretical results of our bike sharing model with a stochastic
simulation. We perform simulations with both stationary and non-stationary arrival rates,
which are discussed substantially in the following subsections.

Figures 1 and 4 provide the user patterns of BSS from the historical data of Citi Bike.
In Figure 1, we can see that the arrival rate of users to Citi Bike stations varies not only
on the time of the day, but also on the day of the week. So in the subsequent numirical
examples, we consider both stationary and non-stationary arrival rates to provide insights
for the behavior of such systems under different demand and usage conditions. However,
unlike the arrival rate, in Figure 4, we observe that the mean travel duration of Citi Bike
users does not vary significantly as a function of the time of day or the day of the week.
Therefore, in the subsequent numerical examples we assume a constant mean travel time
1/µ.

Figure 4: Citi Bike average trip duration in each 5 minutes (Jan 1st-Dec 31st, 2015)

7.1 Simulation Experiments with a Non-stationary Arrival Rate

In this section, we provide the results of the simulation studies of our stochastic bike sharing
model with a non-stationary arrival process. We perform our simulation with the following
parameters: N = 100, λ(t) = 1 + 0.5 sin(t/2), µ = 1. The number of sample paths we use in
our simulation is 50. Other parameters are specified in the illustration of each figure below.
For the time-varing arrival rate, we use a periodic function λ(t) = 1 + 0.5 sin(t/2) to mimic
the patterns of morning rush and the afternoon-evening rush that we observe from the Citi
Bike data (See Figure 1).
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Figure 5: In Figure 5, we simulate the different components of Y N
t and their subsequent

mean field limits yt when K = 10. Each station has 5 bikes at the begining of the simualtion.
The solid lines represent the simulation results of different components of Y N

t , and the dashed
lines of the same color represent the corresponding mean field limit yt. We also add the purple
dashed line to represent the time-varing arrival rate. We observe that the mean field limit
provides an accurate approximation to the empirical measure on each component. We also
notice that the empirical measure is indeed affected by the non-stationary arrival rate and
is also non-stationary.

Figures 6 - 10: Figures 6 - 9 show the simulation results of Y N
t with a 95% confidence

interval, vs. the mean field limit y(t) with two standard deviations of the unscaled diffusion
limit, when K = 3. The initial distribution of bikes is given as Y N

0 = (0, 0.5, 0.5, 0). In
Figure 6, the black curve shows Y N

t (0), the simulated proportion of stations with no bikes
over time. To produce the simulation, we take an average of 50 independent sample paths.
The red dashed line shows yt(0), the mean field limit of the proportion of stations with no
bikes over time, which is obtained from solving the system of ODEs in Theorem 6.11. The
green curves show 2σ(Y N

t (0)) or two standard deviations of Y N
t (0), from the 50 sample paths

in simulation. Lastly, the blue dashed lines show 2σ(Dt)/N or two standard deviations of the
unscaled diffusion limit, which is obtained from solving the system of ODEs from Theorem 5.7
Equation (5.32). We also add a purple dashed line to represent the time-varing arrival rate,
with black dashed vertical lines to indicate the peaks and valleys of the arrival rate and
the corresponding mean field limit. Again, we observe that the mean field limit and the
diffusion limit provide an accurate approximation to the simulation results. This accuracy
serves to validate the correctness of the mean field and diffusion limits we proved earlier.
Moreover, with a small time lag, the simulation results of Y N

t (0) are positively associated
with movements of the arrival rate. Figures 7, 8, and 9 show the dynamics of the proportion
of stations with 1, 2, and 3 bikes respectively. Unlike the case of zero bikes, we observe that
the dynamics are negatively associated with movements of the arrival rate. To observe these
dynamics in one graph, Figure 10 combines Figures 6 - 9 in one graph, but only keeps the
mean field limit curves. This allows the reader to visualize the dynamics of the mean field
empirical measure under a time-varing arrival rate.

Figure 11 : Figure 11 shows the simulation results of the variance of DN
t vs. the numerical

solution for the system of ODEs regarding the covariance matrix of Dt (see Equation (5.32))
when K = 3. The approximation of the variance of diffusion limit to the variance of the
actual diffusion process is quite accurate. We also observe that as arrival rate increases,
the variance of the proportion of stations with no bikes increases, while the proportion of
stations with 1, 2, or 3 bikes decreases, and vice versa.

Figure 12 : Figure 12 shows the the average number of bikes in circulation over time,
which is denoted as

CN
t ,M −

K∑
j=0

j · Y N
t (j)N. (7.59)
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We use N
(
γ −

∑K
j=0 j · yt(j)

)
to approximate E[CN

t ], the expectation of the number of bikes

in circulation. We use

Var

[
M −

K∑
j=0

j · Y N
t (j)N

]

= Var

[
K∑
j=0

j · Y N
t (j)N

]

= N2

[
K∑
j=0

j2 · Var
[
Y N
t (j)

]
+

K∑
i=0

K∑
j=i+1

2ij · Cov
[
Y N
t (i), Y N

t (j)
]]

= N2

[
K∑
j=0

j2 · Var

[
yt(j) +

1√
N
DN
t (j)

]

+
K∑
i=0

K∑
j=i+1

2ij · Cov

[
yt(i) +

1√
N
DN
t (i), yt(j) +

1√
N
DN
t (j)

]]

≈ N

[
K∑
j=0

j2 · Var[Dt(j)] +
K∑
i=0

K∑
j=i+1

2ij · Cov[Dt(i), Dt(j)]

]
(7.60)

to approximate Var[CN
t ], the variance of the number of bikes in circulation. The black curve

shows the simulated result of the average number of bikes in circulation. The red dashed
line is the mean field limit of the number of bikes in circulation over time, from solving the
system of ODEs otabined by Theorem 6.11. The green curves are 2σ(CN

t ), or two standard
deviations from the mean of the number of bikes in circulation we obtain by simulating 50
independent sample paths of the stochastic bike sharing model. Lastly, the blue dashed lines
show our approximation of 2σ(CN

t ) using the diffusion limit (see Equation (7.60)), which
can be computed from solving the system of ODEs from Theorem 5.7 Equation (5.32). We
also add a purple dashed line to represent the time-varing arrival rate, with black dashed
vertical lines to indicate the peaks and valleys of the arrival rate and the corresponding
mean field limit. Again, we can see that the mean field limit and the diffusion limit provide
a high quality approximation for the actual dynamics of the average number of bikes in
circulation. Moreover, we observe two important things. First, the average number of bikes
in circulation is also time varying and fluctuates between 40 bikes and 80 bikes. Second,
the average number of bikes in circulation lags slightly behind the arrival rate, which is a
common phenomenon in non-stationary queues.

7.1.1 Additional Commentary on the Lag Effect

In the case where the arrival process is non-stationary, we observe a lag effect on the change
of empirical measure in response to the change of the arrival rate. Here we expain what the
dynamics of the lag effect are in this non-stationary case. We observe in Figure 6 and Figure
9 that after time 5, when the effect of the transient behavior is reduced, the proportion of
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stations with no bikes increases as arrival rate increases. However, the proportion of stations
with 3 bikes goes down as arrival rate increases. The intuition is that when more people
starting picking up bikes at stations, we end up with more empty stations and less full
stations. Similarly, as the arrival rate decreases, the proportion of stations with no bikes
decreases while the proportion of stations with 3 bikes increases. The intuition is that when
less people starting picking up bikes at stations, we end up with less empty stations and
more full stations.

We also observe a lag between the peak(valley) of arrival and the peak(valley) of the
proportion of stations with no bikes (Figure 6). There is also a lag between the peak(valley)
of arrival and the valley(peak) of the proportion of stations with 3 bikes (Figure 9). This is
because it takes time for the empirical process to respond to the change in the arrival rate.
In Figure 13, we plot the size of the lag for different values of the service rate µ. We see
that the lag effect has the most impact on the proportion of stations with one bike. It also
has an effect on the proportion of stations with no bikes, 2 bikes and 3 bikes, however, the
time lag is much smaller than that of one bike. We also find that the lag effect does not
affect maximums and minimums the same way. We observe in all of the plots, except for
proportion of stations with one bike, that the lag effect is more pronounced for minimums
than maximums. This is especially true in the case of the proportion of stations having two
bikes.

Figure 5: Proportion of stations with k bikes over time when K = 10
The solid lines represent the simulation results Y N

t . The dashed lines of the same color
represent the corresponding mean field limit yt.
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Figure 6: Simulation results of Y N
t (0) vs. yt(0) when K = 3

Figure 7: Simulation results of Y N
t (1) vs. yt(1) when K = 3

Figure 8: Simulation results of Y N
t (2) vs. yt(2) when K = 3
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Figure 9: Simulation results of Y N
t (3) vs. yt(3) when K = 3

Figure 10: Mean field limits of the proportion of stations with k bikes over time when K = 3

Figure 11: Simulation results of the Var[DN
t ] vs. Var[Dt] with K = 3
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Figure 12: Simulation results vs. mean field limit of the average number of bikes in
circulation with K = 3 and M = 150

Figure 13: The relationship between time lag and the service rate µ. The (solid, dashed)
lines represent the time lag when arrival rate reaches (maximum, minumum).

7.2 Simulation Experiments with Heterogeneous Arrival Rates
and Capacities

In this section, we provide the results of the simulation studies of our stochastic bike sharing
model with heterogeneous arrival rates and capacities. We also extend the scale of the system
in our example to make it closer to reality. Some of the common model parameters that we
use in all of our simulation experiments are given as follows: N = 800, µ = 1, and for each
station, K = 20, 30, 40, or 50 with equal probabilities. The number of sample paths we use
is 30. Other parameters are specified in the illustration of each figure below.

Figure 14 : Figure 14 shows the distribution of station capacities of Citi Bike (December
2017). We observe that most station capacities range from 20 to 50. Thus we set the
parameter K = 20, 30, 40, or 50 with equal probabilities.
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Figure 15 : Figure 15 shows the average empirical distribution of Citi Bike in a day
(September 25th, 2017), with one standard deviation. This is exactly the empirical measure
y we try to analyze in our bike sharing model. Studying the empirical measure and the its
fluctuation over time is of great importance to understanding the system dynamics, providing
prediction and guidance for reblancing and strategic design.

Figure 16 : In Figure 16, we simulate the real Citi Bike network (New York City area)
and show the empirical measure results from the simulation. The network setup is exactly
the same as Citi Bike over the month of September, 2017, where we have N = 695 number
of stations with capacities being the same as Citi Bike. We use Fourier regression to provide
a fit for arrival functions for each station, and use them as heteogeneous time-varying arrival
rates in our bike sharing model. We used a constant travel time rate µ = 3.75, which comes
from taking average of the trip duration data. We run the simulation for a 24-hour period
and plot the average empirical measure from the simulation.

Figure 17 : Figure 17 shows the difference in average empirical measure between simu-
lation and real Citi Bike data. We can see that the simulated empirical measure have at
most 0.02 difference from the real Citi Bike data. We can also observe that stations with
10-28 bikes have a positive difference while stations with less than 10 bikes have a negative
difference. This is because rebalancing happens in the real Citi Bike network, where bikes
will be moved from stations with more bikes to stations with less bikes during peak hours to
make the system more balanced, something we are not able to capture in our model. This
causes the result from our model to have a larger number of stations with more bikes, and
a smaller number of stations with less stations, compared to reality. Besides, we also didn’t
consider the effect of information on Citi Bike customers in our model, such as smartphone
app that tells people the number of bikes and docks at stations in real time. In reality, a
lot of people rely on the app to find stations for picking up and dropping off, which drives
people to stations that have more bikes or docks. This would cause the same effect in making
simulation results slightly different from reality. Overall, we can conclude from the simu-
lation results that the bike sharing model proposed in our paper is doing well in capturing
the real-life situation at Citi Bike, which shows that our mean field limit and diffusion limit
results will be of great value to the understanding the bike sharing systems in real life.

Figure 18 : This figure shows the empirical measure from simulation and its mean field
limit in the heteogeneous arrivals and capacities case where arrivals are stationary. The
arrival rates are setted up to be λ = 0.25, 0.5, 0.75, or 1 with equal probabilities. In this
figure we showed the the empirical measure and its corresponding mean field limit with 95%
confidence interval at a given time point. The blue bars show the empirical measure from
simulation, which is an average of 30 sample paths. The red bars show the corresponding
mean field limit we get from solving the ODEs in (6.38). The error bars show the 95%
confidence interval from the simulation results. We can see that the mean field limit is fitting
well with empirical measure, which shows that our model is able to capture heteogeneous
arrivals and capacities very well, and it can be easily adapted to more complex models, such
as those with non-uniform routing probabilities, as shown in Section 6.
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Figure 19 : This figure shows the evolution of different components of the empirical mea-
sure over time in the heteogeneous arrivals and capacities setting with the same parameters
setup as in Figure 19. The solid lines represents proportion of stations with k bikes where
k = 5, 10, 15, 20, 25. The dashed lines represents their corresponding mean field limits. Again
the mean field limits are fitting well with the empirical measure.

Figure 20 : This figure shows the empirical measure from simulation and its mean field
limit in the heteogeneous arrivals and capacities case where arrivals are non-stationary. The
arrival rates are setted up to be λ(t) = 4λ0(1 + sin(2t)) where λ0 = 0.25, 0.5, 0.75, 1 with
equal probabilities. In this figure we showed the the empirical measure and its corresponding
mean field limit with 95% confidence interval at a given time point. The blue bars show
the empirical measure from simulation, which is an average of 30 sample paths. The red
bars show the corresponding mean field limit we get from solving the ODEs in (6.38). The
error bars show the 95% confidence interval from the simulation results. We can see that the
mean field limit is fitting well with empirical measure, which shows that our model is able
to capture heteogeneous arrivals that are also non-statioanry very well, and it can be easily
adapted to more complex models, such as those with non-uniform routing probabilities, as
shown in Section 6.

Figure 21 : This figure shows the evolution of different components of the empirical mea-
sure over time in the heteogeneous arrivals and capacities setting with the same parameters
setup as in Figure 21. The solid lines represents proportion of stations with k bikes where
k = 0, 10, 20, 30, 40, 50. The dashed lines represents their corresponding mean field limits.
We see that the empirical measure is also non-stationary and that the mean field limits are
fitting well with the empirical measure.

Computational cost : Another major benefit of our model compared to just using sim-
ulation to study the bike sharing system is that our model is extremely computationally
inexpensive, given that it only involves numerically solving ODEs. The computational time
for running the simulation example in Figure 20, with 10 sample paths for 8 unit times is
13.5 hours, while getting the mean field limit for the same example only takes less than 30
seconds.

Figure 14: Histogram of capacities at Citi Bike
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Figure 15: Average empirical measure in a week at Citi Bike

Figure 16: Average empirical measure from simulating the Citi Bike network

Figure 17: Difference between average empirical measure from simulation and real Citi Bike
data
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Figure 18: Empirical measure from simulation vs. mean field limit

Figure 19: Empirical measure from simulation vs. mean field limit

Figure 20: Empirical measure from simulation vs. mean field limit (non-stationary)
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Figure 21: Empirical measure from simulation vs. mean field limit (non-stationary)

8 Applied and Practical Value of Our Work

The results presented in this paper have great value to the operations of bike sharing systems.
First of all, not only is the empirical measure itself an important performance measure to
the bike sharing systems, but it also allows us to obtain salient performance measures such
as yt(0) (the proportion of stations with no bikes), yt(K) (the proportion of stations that are
full), M −

∑K
j=0 j · yt(j)N (the number of bikes in circulation), among others. The empirical

measure approach is a significant reduction in computational complexity when compared to
the full stochastic model.

Moreover, it is the first time that a diffusion limit of the empirical measure of a inhomo-
geneous bike sharing systems is derived, which gives great insights to the fluctuation of the
systems performance over time from a queueing and risk management perspective. It is a
much more computationally efficient way to study the system behaviors in strategic planning
stage, where given the design of the system and parameters such as arrival rate, travel time
distribution and fleet size, you can easily get the proportion of problematic stations (empty
and full stations) over time, which is a key measure that we want to minimize in a bike
sharing system. More importantly, the diffusion limit of the empirical measure provides a
refinement to the mean field limit, which gives us a better understanding to system fluc-
tuations over time. By using the diffusion limit, we are able to build confidence intervals
for the proportion of problematic stations. This helps us design a BSS with low blocking
experiences, not just in expectation, but with high probability. This is especially important
for managers of BSSs who want to control the dynamics of bike stations and reduce the
volatility of station flucuations.

Another benefit of our work is that deriving the mean field limit and diffusion limit
provides a way to formulate optimization problems associated with BSS. For example, the
mean field and diffusion limit for the proportion of problematic stations can be used as
objective functions that we try to minimize given system parameters. The expectation and
variance of the number of bikes in circulation can computed through the mean field limit
and diffusion limit of the empirical process, and therefore can be used to determine optimal
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fleet size. The current literature only uses mean field limits and our diffusion limits can be
used to determine optimal fleet size under a more complex stochastic setting instead of a
deterministic setting.

Our analysis also benefits the rebalancing of bike sharing systems. It can be used to
provide short-term prediction of the empirical measure of the system, which helps the op-
erators of BSS indentify when key measures such as proportion of problematic stations, or
number of bikes in circulation, will go beyond a threshold and act beforehand. Different from
traditional data analysis methods that predict patterms of BSS solely using history data,
our method analyzes the system behaviors from a more fundamental way, one that does not
heavily rely on data. Most importantly, as peak hours only last a few hours, decisions for
rebalancing need to be made fast. In this case our method is much more computationally ef-
ficient and effective, than just doing simulations, which tends to be very slow and intractable
for large scale systems like CitiBike.

Another major benefit of using the empirical measure approach is that if CitiBike chooses
to add a station, then in the empirical measure approach the dimensionality will only increase
if the number of docks at the new station is larger than all of the rest. However, in the
individual station model, it will automatically increase by one. Even though systems like
CitiBike are large, they continue to add stations and increase the complexity of simulating
the system. The empirical measure approach that we advocate in this work does not get
worse when the management chooses to add stations.

From a broader perspective, the framework of mean field and diffusion limits we es-
tablished in this paper provide an effective and efficient way to analyze different problems
associated with BSS, such as, designing reasonable architecture of a BSS, finding a better
path scheduling, improving inventory management, redistributing the bikes among stations
or clusters, price optimization, application of intelligent information technologies and so
forth. Our work serves as the initial step to exploring these important problems facing BSS.

9 Conclusion

In this paper, we construct a bike sharing queueing model that incorporates the finite ca-
pacity of stations. Since our model is intractable to analyze directly, especially for a large
number of stations, we propose to analyze the limiting dynamics of an empirical process that
describes the proportion of stations that have a certain number of bikes. We prove a mean
field limit and a functional central limit theorem for our stochastic bike sharing empirical
process, showing that the mean field limit and the variance of the empirical process can be
described by a system of 1

2
(K + 4)(K + 1) differential equations where K is the maximum

station capacity. We compare the mean field limit and the functional central limit theorem
with simulation and show that the differential equations approximate the mean and variance
of the empirical process extremely well.

There are many directions for future work. The first direction would be to generalize
the arrival and service distribution to follow general distributions. As Figure 22 shows, the
trip durations are not exponential and are closer to a lognormal distribution. An extension
to general distributions would aid in showing how the non-exponential distributions affect
the dynamics of the empirical process. Recent work by Ko and Pender [15, 16], Pender and
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Ko [29] provides a Poisson process representation of phase type distributions and Markovian
arrival processes. This work might be useful in deriving new limit theorems for the queueing
process with non-renewal arrival and service processes.

In the non-stationary context, it is not only important to understand the dynamics of the
mean field limit, but also it is important to know various properties of the mean field limit.
For example, it would be informative to know the size of the amplitude and the frequency of
the mean field limit when the arrival rate is periodic. One way to analyze the amplitude and
the frequency is to exploit methods from non-linear dynamics like Lindstedt’s method and
the two-variable expansion method in Pender et al. [30, 31], Nirenberg et al. [22], Novitzky
et al. [23].

Lastly, it is also interesting to consider a spatial model of arrivals to the bike sharing
network. In this case, we would consider customers arriving to the system via a spatial
Poisson process and customers would choose among the nearest stations to retrieve a bike.
This spatial process can model the real choices that riders make and would model the real
spatial dynamics of bike sharing networks. We intend to pursue these extensions in future
work.

Figure 22: Histogram of Citi Bike trip duration (Jan 1st-Dec 31st, 2015)
Mean = 713s/11.9 mins, Median = 576s/9.6 mins, Stdev = 492s/8.2 mins.
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A Appendix

Proof of Proposition 3.1. The time derivative of the expectation E[f(X(t))] can be derived
by the following discretization method. Taking the expectation on f(X(t+ ∆)) conditioned
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on X(0) = x for some small ∆ > 0, we have

E [f(X(t+ ∆)|X(0) = x]

=
N∑
i=1

f(X(t))

[
1− λi∆1{Xi(t)>0} − µPi

(
M −

N∑
k=1

Xk(t)

)
∆1{Xi(t)<Ki}

]

+
N∑
i=1

[
f(X(t)− 1i)λi∆1{Xi(t)>0} + f(X(t) + 1i)µPi

(
M −

N∑
k=1

Xk(t)

)
∆1{Xi(t)<Ki}

]
+o(∆). (1.61)

Then

E [f(X(t+ ∆)|X(0) = x]− f(X(t))

=
N∑
i=1

[f(X(t)− 1i)− f(X(t)]λi∆1{Xi(t)>0}

+
N∑
i=1

[f(X(t) + 1j)− f(X(t)]µPi

(
M −

N∑
k=1

Xk(t)

)
∆1{Xi(t)<Ki}

+o(∆). (1.62)

By dividing by ∆ and taking the expectation on both sides of Equation(1.62) we get

E [f(X(t+ ∆))]− E [f(X(t))]

∆

=
N∑
i=1

E
[
(f(X(t)− 1i)− f(X(t))λi1{Xi(t)>0}

]
+

N∑
i=1

E

[
(f(X(t) + 1i)− f(X(t))µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t)<Ki}

]
+o(∆)/∆. (1.63)

Taking ∆→ 0 yields

d

dt
E [f(X(t))]

=
N∑
i=1

E
[
(f(X(t)− 1i)− f(X(t))λi1{Xi(t)>0}

]
+

N∑
i=1

E

[
(f(X(t) + 1i)− f(X(t))µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t)<Ki}

]
. (1.64)

43



Let f(X(t)) = Xi(t) for i = 1, · · · , N , we have the following functional forward equations to
each component of X(t),

•
E[f(Xi(t))|Xi(0) = xi] ≡

d

dt
E[f(Xi(t))|Xi(0) = xi]

= E

[
(f(Xi(t) + 1)− f(Xi(t))) ·

(
µPi

(
M −

N∑
k=1

Xk(t)

)
1{Xi(t) < Ki}

)]
+E [(f(Xi(t)− 1)− f(Xi(t))) · (λi1{Xi(t) > 0})] . (1.65)

Proof of Theorem 6.11. Let | · | denote the Euclidean norm in RK+1, then∣∣Y N
t − yt

∣∣ =

∣∣∣∣Y N
0 +MN

t +

∫ t

0

β(Y N
s )ds− y0 −

∫ t

0

b(ys)ds

∣∣∣∣
=

∣∣∣∣Y N
0 − y0 +MN

s +

∫ t

0

(
β(Y N

s )− b(Y N
s )
)
ds+

∫ t

0

(b(Y N
s )− b(ys))ds

∣∣∣∣ .
(1.66)

Now define the random function fN(t) = sups≤t
∣∣Y N
s − ys

∣∣, we have

fN(t) ≤ |Y N
0 − y0|+ sup

s≤t
|MN

s |+
∫ t

0

|β(Y N
s )− b(Y N

s )|ds+

∫ t

0

|b(Y N
s )− b(ys)|ds.

By Proposition 4.3, b(y) is Lipschitz with respect to Euclidean norm. Let L be the Lipschitz
constant of b(y), then

fN(t) ≤ |Y N
0 − y0|+ sup

s≤t
|MN

s |+
∫ t

0

|β(Y N
s )− b(Y N

s )|ds+

∫ t

0

|b(Y N
s )− b(ys)|ds

≤ |Y N
0 − y0|+ sup

s≤t
|MN

s |+
∫ t

0

|β(Y N
s )− b(Y N

s )|ds+ L

∫ t

0

|Y N
s − ys|ds

≤ |Y N
0 − y0|+ sup

s≤t
|MN

s |+
∫ t

0

|β(Y N
s )− b(Y N

s )|ds+ L

∫ t

0

fN(s)ds. (1.67)

By Gronwall’s lemma (See Ames and Pachpatte [1]),

fN(t) ≤
(
|Y N

0 − y0|+ sup
s≤t
|MN

s |+
∫ t

0

|β(Y N
s )− b(Y N

s )|ds
)
eLt. (1.68)

Now to bound fN(t) term by term, we define the function α : [0, 1]K+1 → RK+1 as

α(y) =
∑
x 6=y

|x− y|2Q(y, x)

=
1

N

∑
n

∑
r

[
1

rNRmax

(1(r,n−1) + 1(r,n))1n>0

+

(
M

N
−
∑
n′

∑
r′

n′y(r′, n′)

)
(1(r,n+1) + 1(r,n))1n<K

]
· y(r, n) (1.69)
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and consider the following four sets

Ω0 = {|Y N
0 − y0| ≤ δ}, (1.70)

Ω1 =

{∫ t0

0

|β(Y N
s )− b(Y N

s )|ds ≤ δ

}
, (1.71)

Ω2 =

{∫ t0

0

α(Y N
t )dt ≤ A(N)t0

}
, (1.72)

Ω3 =

{
sup
t≤t0
|MN

t | ≤ δ

}
, (1.73)

where δ = εe−Lt0/3. Here the set Ω1 is to bound the initial condition, the set Ω2 is to bound
the drift term β and the limit of drift term b, and the sets Ω2,Ω3 are to bound the martingale
MN

t .
Therefore on the event Ω0 ∩ Ω1 ∩ Ω3,

fN(t0) ≤ 3δeLt0 = ε. (1.74)

Since limN→∞
M
N

= γ and limN→∞NRmax = 1
Λ

, we can choose N large enough such that

M

N
≤ 2γ, NRmax ≥

1

2Λ
.

And by the proof of Proposition 4.3, there exists C > 0 such that limN→∞ r
N
i ≥ Λ/C. See

the proof of Proposition 4.3 in the Appendix for details. Thus

α(y) ≤ 1

N

∑
n

∑
r

(
2Λ

r
· 2 + 2γ · 2

)
· y(r, n)

≤ 1

N

(
4Λ

Λ/C
+ 4γ

)∑
n

∑
r

y(r, n)

≤ 4

N
(C + γ) . (1.75)

Consider the stopping time

T = t0 ∧ inf

{
t ≥ 0 :

∫ t

0

α(Y N
s )ds > A(N)t0

}
.

By Proposition 4.2,

E
(

sup
t≤T
|MN

t |2
)
≤ 4E

∫ T

0

α(Y N
t )dt ≤ 4A(N)t0.

On Ω2, we have T = t0, so Ω2 ∩ Ωc
3 ⊂ {supt≤T |MN

t | > δ}. By Chebyshev’s inequality,

P(Ω2 ∩ Ωc
3) ≤ P

(
sup
t≤T
|MN

t | > δ

)
≤

E
(
supt≤T |MN

t |2
)

δ2
≤ 4A(N)t0/δ

2. (1.76)
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Thus, by Equation (1.74), we have the following result,

P
(

sup
t≤t0
|Y N
t − yt| > ε

)
≤ P(Ωc

0 ∪ Ωc
1 ∪ Ωc

3)

≤ P(Ω2 ∩ Ωc
3) + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

≤ 4A(N)t0/δ
2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2)

= 36A(N)t0e
2Lt0/ε2 + P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2).

(1.77)

Let A(N) = 4(C+γ)
N

, then Ωc
2 = ∅. And since Y N

0

p−→ y0, limN→∞ P(Ωc
2) = 0. Therefore we

have

lim
N→∞

P
(

sup
t≤t0
|Y N
t − yt| > ε

)
= lim

N→∞
P(Ωc

1).

By Proposition 4.4, limN→∞ P(Ωc
1) = 0. Thus, we proved the final result

lim
N→∞

P
(

sup
t≤t0
|Y N
t − yt| > ε

)
= 0.

Proposition 4.2 (Bounding Martingale). For any stopping time T such that E(T ) < ∞, we
have

E
(

sup
t≤T
|MN

t |2
)
≤ 4E

∫ T

0

α(Y N
t )dt. (1.78)

Proof of Proposition 4.2. Let µ̃ be the jump measure of Y N
t , and ν be its compensator,

defined on (0,∞)× [0, 1] by

µ̃ =
∑

t:Y N
t 6=Y N

t−

δ(t, Y N
t ), ν(dt, B) = Q(Y N

t− , B)dt ∀B ∈ B([0, 1]). (1.79)

Let Ỹ N
m,t be the jump chain of Y N

t , Jm be the jump time, then we have for any t ∈ [0,∞),
Jn ≤ t < Jn+1 for some n ≥ 0. The martingale MN

t can be written as

MN
t = Y N

t − Y N
0 −

∫ t

0

β(Y N
s )ds

=
n−1∑
m=0

(Ỹ N
m+1 − Ỹ N

m )−
∫ t

0

∫ 1

0

(y − Y N
s−)Q(Y N

s−, dy)ds

=

∫ t

0

∫ 1

0

(y − Y N
s−)µ̃(ds, dy)−

∫ t

0

∫ 1

0

(y − Y N
s−)ν(ds, dy)

=

∫ t

0

∫ 1

0

(y − Y N
s−)(µ̃− ν)(ds, dy). (1.80)

Note the following identity(
MN

t

)2
= 2

∫ t

0

∫ 1

0

Ms−(y − Y N
s−)(µ̃− ν)(ds, dy) +

∫ t

0

∫ 1

0

(y − Y N
s−)2µ̃(ds, dy). (1.81)
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This can be established by verifying that the jumps of the left and right hand sides agree,
and that their derivatives agree between jump times. Then we can write(

MN
t

)2
= NN

t +

∫ t

0

α(Y N
t )ds (1.82)

where

NN
t =

∫ t

0

∫ 1

0

H(s, y)(µ̃− ν)(ds, dy), (1.83)

and
H(s, y) = 2Ms−(y − Y N

s−) + (y − Y N
s−)2. (1.84)

Consider the previsible process

H2(t, y) = H(t, y)1{t≤T∧Tn} (1.85)

where Tn = inf{t ≥ 0 : β(Y N
t ) > n} ∧ n.

Then

NT∧Tn =

∫ ∞
0

∫ 1

0

H2(t, y)(µ̃− ν)(dt, dy), (1.86)

and

E
∫ ∞

0

∫ 1

0

|H2(s, y)|ν(ds, dy) = E
∫ T∧Tn

0

∫ 1

0

|2Ms−(y − Y N
s−) + (y − Y N

s−)2|ν(ds, dy)

= E
∫ T∧Tn

0

(
2|MN

t |β(Y N
t ) + α(Y N

t )
)
dt

≤ E
∫ T∧Tn

0

2(2 + n2)ndt+ E
∫ T

0

α(Y N
t )dt

≤ 2n4 + 4n2 +
4(C + γ)

N
E(T ) <∞. (1.87)

By Theorem 8.4 in Darling et al. [5], we have that NT∧Tn is a martingale. Replace t by
T ∧ Tn in Equation (1.82) and take expectation to obtain

E(|MT∧Tn|2) = E(NT∧Tn) + E
∫ T∧Tn

0

α(Y N
t )dt. (1.88)

Since NT∧Tn is a martingale,

E(NT∧Tn) = E(N0) = 0. (1.89)

Apply Doob’s L2-inequality to the martingale MT∧Tn to obtain

E
(

sup
t≤T∧Tn

|Mt|2
)
≤ 4E(|MT∧Tn|2)

= 4E
∫ T∧Tn

0

α(Y N
t )dt. (1.90)
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Proposition 4.3 (Asymptotic Drift is Lipschitz). The drift function b(y) given in Equation
(6.55) is a Lipschitz function with respect to the Euclidean norm in RK+1.

Proof of Proposition 4.3. Assume that maxi(λ
N
i ) ≤ C <∞ for all N , then

rNi =
RN
i

Rmax

=

1
NλNi

maxi

(
1

NλNi

) =
mini λ

N
i

λNi
.

By Assumption 4.1,

NRmax =
1

mini λNi
→ 1

Λ
> 0.

Therefore

lim
N→∞

rNi ≥ lim
N→∞

Λ

maxi λNi
≥ Λ/C.

Thus the integral that defines function b should start from Λ/C instead of 0, i.e.

b(y) =

∫∫
[Λ/C,1]×[0,...,K]

[
Λ

r
(1(r,n−1) − 1(r,n))1n>0 +

(
γ −

∑
n

∫
ndy(r, n)

)
(1(r,n+1) − 1(r,n))1n<K

]
dy(r, n).

Now consider y, ỹ ∈ [0, 1]K+1,

|b(y)− b(ỹ)| ≤ 2

(
Λ

Λ/C
+ γ

)
|y − ỹ| = 2(C + γ)|y − ỹ| , L|y − ỹ|

where | · | denotes the Euclidean norm.

Proposition 6.3 (Asymptotic Drift is Lipschitz). The drift function b(y) given in Equation
(6.39) is a Lipschitz function with respect to the Euclidean norm in RKmax+1.

Proof of Proposition 4.3. Assume that maxi(λ
N
i ) ≤ C <∞ for all N , then

pNi
rNi

=
PN
i /P

N
max

RN
i /R

N
max

= λNi
RN

max

PN
max

By Assumption 6.1,

RN
max/P

N
max →

1

Λ
> 0.

Therefore

lim sup
N→∞

pNi
rNi
≤ C/Λ.

Thus the function to be integrated in b is bounded,

b(y) =
∑
k∈K

∫∫
[0,1]×[0,1]

[
pΛ

r
(1(r,n−1,p,k) − 1(r,n,p,k))1n>0

+ pP

γ −∑
n

∑
k∈K

∫∫
[0,1]×[0,1]

ndy(r, n, p, k)

 (1(r,n+1,p,k) − 1(r,n,p,k))1n<k

 dy(r, n, p, k).
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Now consider y, ỹ ∈ [0, 1]Kmax+1,

|b(y)− b(ỹ)| ≤ 2

(
C

Λ
· Λ + Pγ

)
|y − ỹ| = 2(C + Pγ)|y − ỹ| , L|y − ỹ|

where | · | denotes the Euclidean norm.

Proposition 4.4 (Drift is Asymptotically Close to a Lipschitz Drift). Under Assumption 4.1,
we have for any ε > 0 and s ≥ 0,

lim
N→∞

P(|β(Y N
s )− b(Y N

s )| > ε) = 0.

Proof of Proposition 4.4.

|β(Ys)− b(Ys)|2

≤22
∑
n

∣∣∣∣∣∑
r

1

rNRmax

Ys(r, n)−
∫ 1

0

Λ

r
dYs(r, n)

∣∣∣∣∣
2

+ 22
∑
n

∣∣∣∣∣∑
r

M

N
Ys(r, n)−

∫ 1

0

γdYs(r, n)

∣∣∣∣∣
2

+ 22
∑
n

∣∣∣∣∣∑
r

(∑
n′

∑
r′

n′Ys(r
′, n′)

)
Ys(r, n)−

∫ 1

0

(∑
n′

∫ 1

0

n′dYs(r
′, n′)

)
dYs(r, n)

∣∣∣∣∣
2

.

(1.91)

It suffices to show each term goes to zero as N →∞.
Since Y N

s is a discrete random variable, we have for each n,∫ 1

0

f(r)dYs(r, n) =
∑
r

f(r)Ys(r, n)

holds for any function f .
Then ∣∣∣∣∣∑

r

1

rNRmax

Ys(r, n)−
∫ 1

0

Λ

r
dYs(r, n)

∣∣∣∣∣
≤

∣∣∣∣∣∑
r

(
1

rNRmax

− Λ

r

)
Ys(r, n)

∣∣∣∣∣+

∣∣∣∣∣∑
r

Λ

r
Ys(r, n)−

∫ 1

0

Λ

r
dYs(r, n)

∣∣∣∣∣
=

∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣∑
r

1

r
Ys(r, n)

≤
∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣ CΛ ∑
r

Ys(r, n)

≤
∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣ CΛ → 0.

(1.92)
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Similarly, ∣∣∣∣∣∑
r

M

N
Ys(r, n)−

∫ 1

0

γdYs(r, n)

∣∣∣∣∣
≤

∣∣∣∣∣∑
r

(
M

N
− s
)
Ys(r, n)

∣∣∣∣∣+

∣∣∣∣∣∑
r

γYs(r, n)−
∫ 1

0

γdYs(r, n)

∣∣∣∣∣
≤
∣∣∣∣MN − γ

∣∣∣∣→ 0.

(1.93)

The last term is zero since Y N
s is discrete and∫ 1

0

f(r)dYs(r, n) =
∑
r

f(r)Ys(r, n)

for any function f .

Proposition 6.4 (Drift is Asymptotically Close to a Lipschitz Drift). Under Assumption 6.1,
we have for any ε > 0 and s ≥ 0,

lim
N→∞

P(|β(Y N
s )− b(Y N

s )| > ε) = 0.

Proof of Proposition 6.4.

|β(Ys)− b(Ys)|2

≤ 22
∑
n

∣∣∣∣∣∑
r,p,k

pPN
max

rRN
max

Ys(r, n, p, k)−
∑
k∈K

∫∫
[0,1]×[0,1]

pΛ

r
dYs(r, n, p, k)

∣∣∣∣∣
2

+22
∑
n

∣∣∣∣∣∑
r,p,k

pNPN
max

M

N
Ys(r, n, p, k)−

∑
k∈K

∫∫
[0,1]×[0,1]

pPγdYs(r, n, p, k)

∣∣∣∣∣
2

+22
∑
n

∣∣∣∣∣∑
r,p,k

(∑
n′

∑
r′,p′,k′

n′Ys(r
′, n′, p′, k′)

)
Ys(r, n, p, k)

−
∑
k∈K

∫∫
[0,1]×[0,1]

(∑
n′

∑
k∈K

∫∫
[0,1]×[0,1]

n′dYs(r
′, n′, p′, k′)

)
dYs(r, n, p, k)

∣∣∣∣∣
2

. (1.94)

It suffices to show each term goes to zero as N →∞.
Since Y N

s is a discrete random variable, we have for each n,∑
k∈K

∫∫
[0,1]×[0,1]

f(r, p, k)dYs(r, n, p, k) =
∑
k∈K

∫∫
[0,1]×[0,1]

f(r, p, k)Ys(r, n, p, k)
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holds for any function f .
Then∣∣∣∣∣∑

r,p,k

pPN
max

rRN
max

Ys(r, n, p, k)−
∑
k∈K

∫∫
[0,1]×[0,1]

Λ

r
dYs(r, n, p, k)

∣∣∣∣∣
≤

∣∣∣∣∣∑
r,p,k

(
pPN

max

rRN
max

− pΛ

r

)
Ys(r, n, p, k)

∣∣∣∣∣+

∣∣∣∣∣∑
r,p,k

pΛ

r
Ys(r, n, p, k)−

∑
k∈K

∫∫
[0,1]×[0,1]

pΛ

r
dYs(r, n, p, k)

∣∣∣∣∣
=

∣∣∣∣PN
max

RN
max

− Λ

∣∣∣∣∑
r,p,k

p

r
Ys(r, n, p, k)

≤
∣∣∣∣PN

max

RN
max

− Λ

∣∣∣∣ CΛ ∑
r,p,k

Ys(r, n, p, k)

≤
∣∣∣∣PN

max

RN
max

− Λ

∣∣∣∣ CΛ → 0.

(1.95)

Similarly,∣∣∣∣∣∑
r,p,k

pNPN
max

M

N
Ys(r, n, p, k)−

∑
k∈K

∫∫
[0,1]×[0,1]

pPγdYs(r, n, p, k)

∣∣∣∣∣
≤

∣∣∣∣∣∑
r,p,k

(
NPN

max

M

N
− Pγ

)
pYs(r, n, p, k)

∣∣∣∣∣+

∣∣∣∣∣∑
r,p,k

pPγYs(r, n)−
∑
k∈K

∫∫
[0,1]×[0,1]

pPγdYs(r, n, p, k)

∣∣∣∣∣
≤
∣∣∣∣NPN

max

M

N
− Pγ

∣∣∣∣→ 0.

(1.96)

The last term is zero since Y N
s is discrete and∑

k∈K

∫∫
[0,1]×[0,1]

f(r, p, k)dYs(r, n, p, k) =
∑
k∈K

∫∫
[0,1]×[0,1]

f(r, p, k)Ys(r, n, p, k)

for any function f .
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Proof of Lemma 5.2. By Dynkin’s formula,〈√
NMN(k)

〉
t

=

∫ t

0

N
∑
x 6=Y N

s

|x(k)− Y N
s (k)|2Q(Y N

s , x)ds

=N

∫ t

0

α(Y N
s )(k)ds

=

∫ t

0

∑
r

[
1

rNRmax

(
Y N
s (r, k + 1)1k<K + Y N

s (r, k)1k>0

)
+

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)(
Y N
s (r, k)1k<K + Y N

s (r, k − 1)1k>0

)]
ds

=

∫ t

0

(β+(Y N
s )(k) + β−(Y N

s )(k))ds.

(1.97)

To compute
〈√

NMN(k),
√
NMN(k + 1)

〉
t

for k < K, since〈
MN(k) +MN(k + 1)

〉
t

=

∫ t

0

∑
x 6=Y N

s

∣∣x(k) + x(k + 1)− Y N
s (k)− Y N

s (k + 1)
∣∣2Q(Y N

s , x)ds

=
1

N

∫ t

0

∑
r

[
1

rNRmax

(
Y N
s (r, k + 2)1k<K−1 + Y N

s (r, k)1k>0

)
+

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)(
Y N
s (r, k + 1)1k<K−1 + Y N

s (r, k − 1)1k>0

)]
ds.

(1.98)

We have that〈√
NMN(k),

√
NMN(k + 1)

〉
t

=
N

2

[〈
MN(k) +MN(k + 1)

〉
t
−
〈
MN(k)

〉
t
−
〈
MN(k + 1)

〉
t

]
=

1

2

∫ t

0

∑
r

[
1

rNRmax

(
Y N
s (r, k + 2)1k<K−1 + Y N

s (r, k)1k>0

)
+

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)(
Y N
s (r, k + 1)1k<K−1 + Y N

s (r, k − 1)1k>0

)]
ds

− 1

2

∫ t

0

(β+(Y N
s )(k) + β+(Y N

s )(k + 1) + β−(Y N
s )(k) + β−(Y N

s )(k + 1))ds

=−
∫ t

0

∑
r

[
1

rNRmax

Y N
s (r, k + 1) +

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)
Y N
s (r, k)

]
ds.

(1.99)

When |k − j| > 1, MN(k) and MN(j) are independent, thus〈√
NMN(k),

√
NMN(j)

〉
t

= 0. (1.100)
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Proposition 5.3. For any s ≥ 0,

lim sup
N→∞

√
N
∣∣β(Y N

s )− b(Y N
s )
∣∣ <∞. (1.101)

Proof of Proposition 5.3.

|β(Ys)− b(Ys)|

≤2
∑
n

∣∣∣∣∣∑
r

1

rNRmax

Ys(r, n)−
∫ 1

0

Λ

r
dYs(r, n)

∣∣∣∣∣+ 2
∑
n

∣∣∣∣∣∑
r

M

N
Ys(r, n)−

∫ 1

0

γdYs(r, n)

∣∣∣∣∣
+ 2

∑
n

∣∣∣∣∣∑
r

(∑
n′

∑
r′

n′Ys(r
′, n′)

)
Ys(r, n)−

∫ 1

0

(∑
n′

∫ 1

0

n′dYs(r
′, n′)

)
dYs(r, n)

∣∣∣∣∣ .
(1.102)

By Equation (1.92) and (1.93),

|β(Ys)− b(Ys)| ≤ 2(K + 1)

(∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣ CΛ +

∣∣∣∣MN − γ
∣∣∣∣) . (1.103)

By the assumptions in Theorem 5.1, we have

lim sup
N→∞

√
N(min

i
λNi − Λ) <∞, lim sup

N→∞

√
N

(
M

N
− γ
)
<∞.

Thus

lim sup
N→∞

√
N
∣∣β(Y N

s )− b(Y N
s )
∣∣ ≤ lim sup

N→∞
2(K + 1)

√
N

(∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣ CΛ +

∣∣∣∣MN − γ
∣∣∣∣)

< ∞. (1.104)

Proof of Lemma 5.4. By Proposition 5.3,
√
N |β(Y N

s )− b(Y N
s )| = O(1), then

|DN
t | ≤ |DN

0 |+
√
N |MN

t |+O(1)t+

∫ t

0

√
N |b(Y N

s )− b(ys)|ds

≤ |DN
0 |+

√
N |MN

t |+O(1)t+

∫ t

0

√
NL|Y N

s − ys|ds

= |DN
0 |+

√
N |MN

t |+O(1)t+

∫ t

0

L|DN
s |ds.

(1.105)

By Gronwall’s Lemma,

sup
0≤t≤T

|DN
t | ≤ eLT

(
|DN

0 |+O(1)T + sup
0≤t≤T

|
√
NMN

t |
)
.
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Then

lim sup
N→∞

E
(

sup
0≤t≤T

|DN
t |2
)
≤ e2LT

[
lim sup
N→∞

E(|DN
0 |) +O(1)T + lim sup

N→∞
E
(

sup
0≤t≤T

√
N |MN

t |
)]2

.

By Jensen’s inequality and Proposition 4.2, we have that[
E
(

sup
0≤t≤T

√
N |MN

t |
)]2

≤ NE
(

sup
0≤t≤T

|MN
t |2
)
≤ 4NA(N)T,

and that A(N) = O( 1
N

). Therefore

lim sup
N→∞

E
(

sup
0≤t≤T

√
N |MN

t |
)
<∞.

Together with our assumption lim supN→∞ E(|DN
0 |2) <∞, we have

lim sup
N→∞

E
(

sup
0≤t≤T

|DN
t |2
)
<∞.

Proof of Lemma 5.5. To prove the tightness of (DN)∞N=1 and the continuity of the limit
points, we only need to show that the following two tightness conditions hold for each T > 0
and ε > 0,

(i)

lim
K→∞

lim sup
N→∞

P
(

sup
0≤t≤T

|DN
t | > K

)
= 0, (1.106)

(ii)
lim
δ→0

lim sup
N→∞

P
(
w(DN , δ, T ) ≥ ε

)
= 0 (1.107)

where for x ∈ Dd,

w(x, δ, T ) = sup

{
sup

u,v∈[t,t+δ]

|x(u)− x(v)| : 0 ≤ t ≤ t+ δ ≤ T

}
. (1.108)

By Lemma 5.4, there exists C0 > 0 such that

lim
K→∞

lim sup
N→∞

P
(

sup
0≤t≤T

|DN
t | > K

)
≤ lim

K→∞
lim sup
N→∞

E
(
sup0≤t≤T |DN

t |2
)

K2

≤ lim
K→∞

C0

K2

= 0, (1.109)

which proves condition (i).
For condition (ii), we have that

54



DN
u −DN

v =
√
N · (MN

u −MN
v )︸ ︷︷ ︸

first term

+

∫ u

v

√
N
(
β(Y N

z )− b(Y N
z )
)
dz︸ ︷︷ ︸

second term

+

∫ u

v

√
N
(
b(Y N

z )− b(yz)
)
dz︸ ︷︷ ︸

third term

(1.110)

for any 0 < t ≤ u < v ≤ t + δ ≤ T . Now it suffices to show that each of the three terms of
DN
u −DN

v satisfies condition (ii). In what follows, we will show that each of the three terms
satisfies condition (ii) to complete the proof of tightness.

For the first term
√
N · (MN

u −MN
v ), we would like to show that the limiting sample

path of
√
NMN

t is a continuous Brownian motion, by using the martingale central limit
theorem.

Similar to the proof of Proposition 4.4, we can show that

sup
t≤T

∣∣β+(Y N
t )− b+(Y N

t )
∣∣ p−→ 0, sup

t≤T

∣∣β−(Y N
t )− b−(Y N

t )
∣∣ p−→ 0. (1.111)

And by the proof of Proposition 4.3, b+(y), b−(y) are also Lipschitz with constant L, then
by the fact that the composition of Lipschitz functions are also Lipschitz,

max

{
sup
t≤T
|b+(Y N

t )− b+(yt)|, sup
t≤T
|b−(Y N

t )− b−(yt)|
}
≤ L sup

t≤T
|Y N
t − yt|. (1.112)

By Theorem 6.11,
sup
t≤T
|Y N
t − yt|

p−→ 0. (1.113)

Thus combining Equations (1.111), (1.112) and (1.113), we have

lim
N→∞

P
(

sup
t≤T

∣∣∣〈√NMN(k)
〉
t
− 〈M(k)〉t

∣∣∣ > ε

)
= lim

N→∞
P
(

sup
t≤T

∣∣∣∣∫ t

0

(
β+(Y N

s )(k) + β−(Y N
s )(k)− b+(ys)(k)− b−(ys)(k)

)
ds

∣∣∣∣ > ε

)
≤ lim

N→∞
P
(

sup
t≤T

T
∣∣β+(Y N

t )(k)− b+(Y N
t )(k)

∣∣ > ε/4

)
+ lim

N→∞
P
(

sup
t≤T

T
∣∣b+(Y N

t )(k)− b+(yt)(k)
∣∣ > ε/4

)
+ lim

N→∞
P
(

sup
t≤T

T
∣∣β−(Y N

t )(k)− b−(Y N
t )(k)

∣∣ > ε/4

)
+ lim

N→∞
P
(

sup
t≤T

T
∣∣b−(Y N

t )(k)− b−(yt)(k)
∣∣ > ε/4

)
≤ lim

N→∞
P
(

sup
t≤T

T
∣∣β+(Y N

t )(k)− b+(Y N
t )(k)

∣∣ > ε/4

)
+ 2 lim

N→∞
P
(

sup
t≤T

LT
∣∣Y N
t − yt

∣∣ > ε/4

)
+ lim

N→∞
P
(

sup
t≤T

T
∣∣β−(Y N

t )(k)− b−(Y N
t )(k)

∣∣ > ε/4

)
= 0, (1.114)
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for any ε > 0 and 0 ≤ k ≤ K. This result implies that

sup
t≤T

∣∣∣〈√NMN(k)
〉
t
− 〈M(k)〉t

∣∣∣ p−→ 0. (1.115)

For the adjacent terms, we have

lim
N→∞

P
(

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ > ε

)
= lim

N→∞
P

(
sup
t≤T

∣∣∣∣∣
∫ t

0

[∑
r

(
1

rNRmax

Y N
s (r, k + 1) +

(
M

N
−
∑
n′

∑
r′

n′Y N
s (r′, n′)

)
Y N
s (r, k)

)

−

(∫ 1

0

Λ

r
dys(r, k + 1) +

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndys(r, n)

)
dys(r, k)

)]
ds

∣∣∣∣∣ > ε

)

≤ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣∣∑
r

1

rNRmax

Y N
t (r, k + 1)−

∫ 1

0

Λ

r
dYt(r, k + 1)

∣∣∣∣∣ > ε/3

)

+ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣∣
(
M

N
−
∑
n′,r′

n′Y N
t (r′, n′)

)
Y N
t (r, k)−

∫ 1

0

(
γ −

∑
n

∫ 1

0

ndYt(r, n)

)
dYt(r, k)

∣∣∣∣∣ > ε/3

)

+ lim
N→∞

P
(

sup
t≤T

2LT
∣∣Y N
t − yt

∣∣ > ε/3

)
≤ lim

N→∞
P

(
sup
t≤T

T

∣∣∣∣ C

ΛNRmax

− Λ

Λ/C

∣∣∣∣∑
r

Ys(r, k + 1) > ε/3

)

+ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣MN − γ
∣∣∣∣∑

r

Ys(r, k) > ε/3

)

≤ lim
N→∞

P
(

sup
t≤T

CT

Λ

∣∣∣∣ 1

NRmax

− Λ

∣∣∣∣ > ε/3

)
+ lim

N→∞
P
(

sup
t≤T

T

∣∣∣∣MN − γ
∣∣∣∣ > ε/3

)
= 0, (1.116)

which implies

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ p−→ 0. (1.117)

Since for all |i− j| > 1,〈√
NMN(i),

√
NMN(j)

〉
t

= 〈M(i),M(j)〉t = 0.

We can conclude that

sup
t≤T

∣∣∣〈√NMN(i),
√
NMN(j)

〉
t
− 〈M(i),M(j)〉t

∣∣∣ p−→ 0. (1.118)

for all 0 ≤ i, j ≤ K.
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We also know that the jump size of Y N
t is 1/N , therefore

lim
N→∞

E
[

sup
0<t≤T

∣∣∣√NMN
t −

√
NMN

t−

∣∣∣] = lim
N→∞

E
[

sup
0<t≤T

∣∣∣√NY N
t −

√
NY N

t−

∣∣∣] = 0. (1.119)

By Theorem 1.4 in Chapter 7 of Ethier and Kurtz [8],
√
NMN

t converges to the continuous
Brownian motion Mt in distribution in D(R+,RK+1). By Prohorov’s theorem, (

√
NMN)∞N=1

is tight. This automatically implies the tightness condition ii).
For the second term

∫ u
v

√
N
(
β(Y N

z )− b(Y N
z )
)
dz, we have by Proposition 5.3 that

the quantity
√
N
(
β(Y N

z )− b(Y N
z )
)

is bounded for any value of z ∈ [0, T ]. Therefore, there
exists some constant C1 that does not depend on N such that

sup
z∈[0,T ]

√
N
∣∣β(Y N

z )− b(Y N
z )
∣∣ ≤ C1. (1.120)

Then

lim
δ→0

lim
N→∞

P

(
sup

u,v∈[0,T ],|u−v|≤δ

∫ u

v

√
N
∣∣β(Y N

z )− b(Y N
z )
∣∣ dz > ε

)

≤ lim
δ→0

lim
N→∞

P

(
δ sup
z∈[0,T ]

√
N
∣∣β(Y N

z )− b(Y N
z )
∣∣ > ε

)
≤ lim

δ→0
P (δC1 > ε)

= 0. (1.121)

Thus, we have proved the oscillation bound for the second term.
Finally for the third term we have that∫ u

v

√
N
∣∣b(Y N

z )− b(yz)
∣∣ dz ≤ ∫ u

v

√
NL

∣∣Y N
z − yz

∣∣ dz
=

∫ u

v

L ·
∣∣DN

z

∣∣ dz
≤ Lδ sup

t∈[0,T ]

|DN
t |. (1.122)

By Lemma 5.4,

lim
δ→0

lim
N→∞

P

(
sup

u,v∈[0,T ],|u−v|≤δ

∫ u

v

√
N
∣∣b(Y N

z )− b(yz)
∣∣ dz > ε

)

≤ lim
δ→0

lim
N→∞

P

(
Lδ sup

t∈[0,T ]

|DN
t | > ε

)

≤ lim
δ→0

lim
N→∞

E
(
supt∈[0,T ] |DN

t |2
)

(ε/Lδ)2

≤ lim
δ→0

C0(Lδ)2

ε2

= 0, (1.123)

which implies that the oscillation bound holds for the third term.
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Proof of Theorem 5.7. To prove the existence and uniqueness of the SDE (5.22), we show
the following two conditions hold: There exists a constant H > 0 such that

(1) Lipschitz condition: for any D, D̃ ∈ RK+1, any t ∈ (t0, T ),

|b′(yt)D − b′(yt)D̃| ≤ H|D − D̃|. (1.124)

(2) Linear growth condition: for any D ∈ RK+1, any t ∈ (t0, T ),

|b+(yt) + b−(yt)| ≤ H(1 + |D|), |b′(yt)D| ≤ H(1 + |D|). (1.125)

By Proposition 4.3, b(y) is Lipschitz, and by our assumption in Theorem 5.1, b(y) is also
continuously differentiable, thus b′(y) is bounded. Then conditions (1) and (2) follow, which
prove that there exist a unique solution to the SDE (5.22).

Take expectation on both sides of Equation (5.28), since E
[∫ t

0
e
∫ t
s b
′(yu)dudMs

]
= 0, we

have
E[Dt] = e

∫ t
0 A(s)dsE[D0].

Therefore

Dt − E[Dt] = e
∫ t
0 A(s)ds(D0 − E[D0]) +

∫ t

0

e
∫ t
s A(u)dudMs, (1.126)

Σ(t) = E[(Dt − E[Dt])(Dt − E[Dt])
>]

= e
∫ t
0 A(s)dsE[(D0 − E[D0])(D0 − E[D0])>]

(
e
∫ t
0 A(s)ds

)>
+

(∫ t

0

e
∫ t
s A(u)dudMs

)(∫ t

0

e
∫ t
s A(u)dudMs

)>
= e

∫ t
0 A(s)dsΣ(0)e

∫ t
0 A
>(s)ds +

∫ t

0

e
∫ t
s A(u)duB(s)e

∫ t
s A
>(u)duds. (1.127)

Proposition 6.7. For any s ≥ 0,

lim sup
N→∞

√
N
∣∣β(Y N

s )− b(Y N
s )
∣∣ <∞. (1.128)

Proof of Proposition 6.7.

|β(Ys)− b(Ys)|

≤2
∑
n

∣∣∣∣∣∑
r,p,k

pPN
max

rRN
max

Ys(r, n, p, k)−
∑
k∈K

∫∫
[0,1]×[0,1]

pΛ

r
dYs(r, n, p, k)

∣∣∣∣∣
+ 2

∑
n

∣∣∣∣∣∑
r,p,k

pNPN
max

M

N
Ys(r, n, p, k)−

∑
k∈K

∫∫
[0,1]×[0,1]

pPγdYs(r, n, p, k)

∣∣∣∣∣
+ 2

∑
n

∣∣∣∣∣∑
r,p,k

(∑
n′

∑
r′,p′,k′

n′Ys(r
′, n′, p′, k′)

)
Ys(r, n, p, k)

−
∑
k∈K

∫∫
[0,1]×[0,1]

(∑
n′

∑
k∈K

∫∫
[0,1]×[0,1]

n′dYs(r
′, n′, p′, k′)

)
dYs(r, n, p, k)

∣∣∣∣∣ .
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By Equation (1.95) and (1.96),

|β(Ys)− b(Ys)| ≤ 2(Kmax + 1)

(∣∣∣∣Pmax

Rmax

− Λ

∣∣∣∣ CΛ +

∣∣∣∣NPmax
M

N
− Pγ

∣∣∣∣) . (1.129)

By the assumptions in Theorem 6.5, we have

lim sup
N→∞

√
N

(
PN

max

RN
max

− Λ

)
<∞, lim sup

N→∞

√
N

(
M

N
− γ
)
<∞, lim sup

N→∞

√
N
(
NPN

max − P
)
<∞.

Thus

lim sup
N→∞

√
N
∣∣β(Y N

s )− b(Y N
s )
∣∣ ≤ lim sup

N→∞
2(Kmax + 1)

√
N

(∣∣∣∣Pmax

Rmax

− Λ

∣∣∣∣ CΛ +

∣∣∣∣NPmax
M

N
− Pγ

∣∣∣∣)
< ∞. (1.130)

Proposition 6.8. For k < Kmax,

lim
N→∞

P
(

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ > ε

)
= 0. (1.131)
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Proof of Proposition 6.8. For the adjacent terms, we have

lim
N→∞

P
(

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ > ε

)
= lim

N→∞
P

(
sup
t≤T

∣∣∣∣∣
∫ t

0

[ ∑
r,p,K∈K

(
pPmax

rRmax

Y N
s (r, k + 1, p,K) +

(
pNPmaxM

N
−
∑
n′

∑
r′,p′,K′

n′Y N
s (r′, n′, p′, K ′)

)

Y N
s (r, k, p,K)

)
−

(∑
K∈K

∫∫
[0,1]×[0,1]

pΛ

r
dYs(r, k + 1, p,K)

+
∑
K∈K

∫∫
]0,1]×[0,1]

pP

(
γ −

∑
n

∑
K∈K

∫∫
]0,1]×[0,1]

ndys(r, n, p,K)

)
dys(r, k, p,K)

)]
ds

∣∣∣∣∣ > ε

)

≤ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣∣∑
r,p,K

pPmax

rRmax

Y N
t (r, k + 1, P,K)−

∑
K∈K

∫∫
[0,1]×[0,1]

pΛ

r
dYs(r, k + 1, p,K)

∣∣∣∣∣ > ε/3

)

+ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣∣ ∑
r,p,K∈K

(
pNPmax

M

N
−
∑
n′

∑
r′,p′,K′

n′Y N
s (r′, n′, p′, K ′)

)
Y N
t (r, k, p,K)

−
∑
K∈K

∫∫
]0,1]×[0,1]

pP

(
γ −

∑
n

∑
K∈K

∫∫
]0,1]×[0,1]

ndys(r, n, p,K)

)
dys(r, k, p,K)

∣∣∣∣∣ > ε/3

)

+ lim
N→∞

P
(

sup
t≤T

2LT
∣∣Y N
t − yt

∣∣ > ε/3

)
≤ lim

N→∞
P

(
sup
t≤T

T

∣∣∣∣CPmax

ΛRmax

− Λ

Λ/C

∣∣∣∣ ∑
r,p,K

Ys(r, k + 1, p,K) > ε/3

)

+ lim
N→∞

P

(
sup
t≤T

T

∣∣∣∣NPmax
M

N
− Pγ

∣∣∣∣ ∑
r,p,K

pYs(r, k, p,K) > ε/3

)

≤ lim
N→∞

P
(

sup
t≤T

CT

Λ

∣∣∣∣Pmax

Rmax

− Λ

∣∣∣∣ > ε/3

)
+ lim

N→∞
P
(

sup
t≤T

T

∣∣∣∣NPmax
M

N
− Pγ

∣∣∣∣ > ε/3

)
= 0, (1.132)

which implies

sup
t≤T

∣∣∣〈√NMN(k),
√
NMN(k + 1)

〉
t
− 〈M(k),M(k + 1)〉t

∣∣∣ p−→ 0. (1.133)

References

[1] William F Ames and BG Pachpatte. Inequalities for differential and integral equations,
volume 197. Academic press, 1997.

60



[2] Mike Benchimol, Pascal Benchimol, Benôıt Chappert, Arnaud De La Taille, Fabien
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