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Abstract
Giving customers queue length information about a service system has the potential

to influence the decision of a customer to join a queue. Thus, it is imperative for
managers of queueing systems to understand how the information that they provide
will affect the performance of the system. To this end, we construct and analyze a two-
dimensional deterministic fluid model that incorporates customer choice behavior based
on delayed queue length information. All of the previous literature assumes that all
queues have identical parameters and the underlying dynamical system is symmetric.
However, in this paper, we relax this symmetry assumption by allowing the arrival
rates, service rates, and the choice model parameters to be different for each queue.
Our methodology exploits the method of multiple scales and asymptotic analysis to
understand how to break the symmetry. We find that the asymmetry can have a large
impact on the underlying dynamics of the queueing system.
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1 Introduction

In many service systems, customers are given information about the system, which can
influence their decision to join the queue. In many of these systems, either the queue length
or the waiting time might be given to customers to estimate the time that they might lose
waiting to receive service. Consequently, it is important for service system managers to
understand how the information that they provide to customers can affect the underlying
queueing system’s dynamics. The most common way that service systems interact with their
customers are through delay announcements.

Delay announcements provide customers with information about the estimated time that
a customer will wait for service. This is usually important when customers have multiple
decisions about what service they might want to receive. For example, if one takes a trip to
Disney World, one has the option to take many different rides as seen by Nirenberg et al.
[16]. Thus, the information provided by the company will influence park goers to join the
line for specific rides. Since this issue is quite important, the impact of delay announcements
on the performance of queueing systems has been studied quite extensively in the applied
probability literature. See for example work by Armony and Maglaras [3], Guo and Zipkin
[10], Hassin [12], Armony et al. [4], Guo and Zipkin [11], Jouini et al. [14, 15], Allon and
Bassamboo [1], Allon et al. [2], Whitt [23]. Unfortunately, most of the literature assumes
that the information that the customer receives is in real time and is 100% accurate.

However, there are two important scenarios where real-time information is unreasonable
to assume. First, in reality, most of the information communicated to customers is through
some electronic device. Generally these devices need time to process the wait time infor-
mation and send it to the customer. In both processing and sending the information, it
is possible that the information experiences some time lag. The second scenario is where
customers must commit to a queue before physically joining the queue. In this setting, the
information itself is not delayed, but the customer must experience a travel delay. During
this delay, the system state will most certainly change by the time the customer arrives to
the queue. From the perspective of Disney World, customers who use the My Disney app,
first see the wait times of the rides, choose a ride, and then walk to that ride. The time the
customer spends walking to the ride represents the time delay.

Unlike the previous literature, this paper takes on the challenge of trying to understand
the impact of giving delayed information to customers and how this impacts the dynamics
of the queueing system. However, we are not the first to consider delayed information in
the context of queueing systems. The impact of delayed information has been studied in
previous work by Pender et al. [20, 21], Novitzky et al. [18], Pender et al. [19]. However,
one crucial assumption in all of the previous work is that all queues have the same arrival
rates, service rates, and the same choice model function. Thus, the previous models have
a symmetry that is easy to exploit for mathematical and analysis purposes. In this paper,
we attempt to explore the same delayed information queueing model, but instead where
the queues have different arrival rates, service rates and different choice functions, thereby
breaking the symmetry. This is a significant challenge as symmetry was the key ingredient
in previous analyses of our model.

To this end, we consider an asymmetric two-dimensional system of delay differential
equations in which the customer choice model is informed by delayed queue length informa-
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tion. We apply techniques from asymptotic analysis such as the method of multiple scales
to analyze how the stability of the system depends on how delayed the information in the
choice model is provided to customers. In doing so, we derive a first-order approximation
of the asymmetric equilibrium, the critical delay for a Hopf bifurcation to occur, and the
amplitude of oscillations when a limit cycle is born. To find these quantities, we employ
Lindstedt’s method to derive an analytic expression for an approximation of the amplitude
of limit cycles when the delay is close to the critical delay. Our analysis provides additional
insight into how the asymmetry of our model can impact the performance of the underlying
queueing system.

1.1 Main Contributions of Paper

The contributions of this work can be summarized as follows.

• We analyze an asymmetric two-dimensional fluid model that uses delayed queue length
information to inform customers about the queue length at each queue. We show how
the asymmetry affects the queueing model’s equilibrium.

• Using the method of multiple scales, we derive an approximation for the critical delay,
which determines the location of a Hopf bifurcation, in terms of the queueing model
parameters.

• We derive an asymptotic closed form approximation for the amplitudes of the limit
cycles that arise when the delay is larger than the critical delay.

1.2 Organization of Paper

The remainder of this paper is organized as follows. In Section 2, we review the symmet-
ric two dimensional queueing model and then introduce the asymmetric model that we will
analyze. Section 3 derives an expression for the new approximate equilibrium point of the
asymmetric system. We demonstrate through several numerical examples to show the equi-
librium changes as the queueing model’s parameters are varied. Section 4 uses the method
of multiple scales and asymptotic analysis to find the critical delay at which the stability of
the delay differential equations changes. We also demonstrate numerically that our approx-
imate critical delays are quite accurate and determine the location of Hopf bifurcations. In
Section 5, we use Lindstedt’s method to approximate the amplitude of limit cycles when the
delay is near the critical delay. We show through numerical examples that our amplitude
approximations are accurate near the critical delay, even with the model asymmetry. Finally
in Section 6, we conclude with directions for future research related to this work.

2 Asymmetric Queueing Model

In this section, we describe the asymmetric queueing model that we will analyze in this paper.
In previous literature on queueing systems with delayed information, such as Novitzky et al.
[18] and Pender et al. [21], a common assumption is that the queueing system is symmetric.
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This symmetry was assumed for convenience in the analysis since the analysis of an N-
dimensional DDE system can be reduced to a one dimensional DDE. In this paper, our
focus is on understanding the impact of asymmetry on the dynamics of the queuing system.
In fact, it can be shown that the asymmetric model does not yield an explicit closed form
formula for the equilibrium and the equilibrium can only be written as the solution to a fixed
point equation. This is true even in the two dimensional case. Thus, the asymmetric model
presents significant mathematical challenges that the symmetric model does not.

The symmetric model used in previous literature consists of two infinite-server queues.
The two queues are coupled through the arrival rate function, which is equal to the product
of the arrival rate λ > 0 and the probabilistic choice model for joining each queue. The choice
model that determines the probabilities of joining each queue is based on a Multinomial Logit
Model (MNL) Ben-Akiva and Bierlaire [5], Train [22] that makes the decision off of delayed
queue length information, as shown in the following system Novitzky et al. [17]. Customers
are served immediately at each queue at rate µ > 0 and therefore the total departure rate at
each queue is queue length times the service rate. The infinite server queue is widely used
as a canonical model that represents the best one can hope for, see for example Iglehart
[13], Fralix and Adan [9], Daw and Pender [6, 7, 8]. This is because the infinite server queue
is a lower bound for multi-server queues without abandonment. From a dynamical system
perspective, it was shown in Novitzky et al. [17] that it is unnecessary to study fluid models
with a finite number of servers as the finite server model can be reduced to an infinite server
dynamical system model, with modified different parameters. The two delay differential
equations in the symmetric case are given by the following equations

•
q1(t) = λ · exp(−θq1(t−∆) + α)

exp(−θq1(t−∆) + α) + exp(−θq2(t−∆) + α)
− µq1(t) (2.1)

•
q2(t) = λ · exp(−θq2(t−∆) + α)

exp(−θq1(t−∆) + α) + exp(−θq2(t−∆) + α)
− µq2(t) (2.2)

where we assume that q1(t) and q2(t), which represent the queue lengths as functions of time,
start with different initial continuous functions on the interval [−∆, 0]. One should note
that if the two queue lengths in the symmetric model start with identical initial functions,
then they will remain the same for all time. Now we will describe the symmetric model’s
parameters. The parameter λ represents the arrival rate, which is the rate at which customers
arrive to each queue. The parameter µ is the service rate at which servers will serve each
customer in the system. The parameter θ is the customer sensitivity to the queue length.
When the parameter θ is large, then customers are highly sensitive to the queue length. In
fact, when we let θ →∞, the MNL model converges to the indicator function for the smallest
queue. In addition, when we let θ → 0, the MNL model converges to 1

N
and the system

becomes a system of N independent and uncoupled infinite server queues. The parameter α
is the customer preference parameter. Whichever queue has the largest preference parameter
α, then customers are more likely to go to that queue regardless of the queue length. The
parameter α may initially seem pointless as it cancels in the the symmetric system, however,
we include it for clarity because it will not cancel in the asymmetric system. With those
four model parameters, we can break the symmetry by perturbing the parameters associated
with the first queue, yielding the following asymmetric queueing system

4



•
q1(t) = (λ+ ελ̂) · exp(−(θ + εθ̂)q1(t−∆) + (α + εα̂))

exp(−(θ + εθ̂)q1(t−∆) + (α + εα̂)) + exp(−θq2(t−∆) + α)

− (µ+ εµ̂)q1(t) (2.3)

•
q2(t) = λ · exp(−θq2(t−∆) + α)

exp(−(θ + εθ̂)q1(t−∆) + (α + εα̂)) + exp(−θq2(t−∆) + α)
− µq2(t) (2.4)

where ε is assumed to be a small parameter. This is the asymmetric system that we will be
concerned with throughout this paper.

Before we move to the analysis of the asymmetric model, we believe that it is impor-
tant to observe that the asymmetric model can be viewed as a symmetric model where the
parameters are uncertain or random. Thus, our asymmetric model can be used to provide
confidence intervals around the symmetric model when the model parameters are unknown.
This is also useful from a statistical perspective when the model parameters are obtained
through some inference analysis and they are not exactly symmetric. In the age of of un-
certainty quantification, the asymmetry analysis provides information about the DDEs with
random parameters.

3 Asymptotic Analysis of the Equilibrium

In this paper, our goal is to analyze the stability of the queueing system as a function of
the model parameters and the delayed information and to approximate the amplitude of the
limit cycles near the bifurcation point. In order to understand the stability of the queueing
model, we must calculate the equilibrium or an approximation equilibrium for our queueing
model. For the symmetric model, Novitzky et al. [18] shows that the symmetric model
given in Equations 2.1-2.2 has a unique equilibrium point at q1 = q2 = λ

2µ
. In this section,

we explore the effects that the asymmetry has on this equilibrium point. In doing so, we
obtain a first-order (in ε) approximation of the equilibrium of our perturbed system which
is described in Theorem 3.1.

Theorem 3.1. The system of Equations 2.3-2.4 has an approximate (up to order ε2) equi-
librium point at

(q∗1, q
∗
2) =

(
λ

2µ
+ aε+O(ε2),

λ

2µ
+ bε+O(ε2)

)
where

a =
λθ + 4µ

4µ(λθ + 2µ)
λ̂+
−λ(λθ + 4µ)

4µ2(λθ + 2µ)
µ̂+

−λ2

4µ(λθ + 2µ)
θ̂ +

λ

2(λθ + 2µ)
α̂

and

b =
λθ

4µ(λθ + 2µ)
λ̂+

−λ2θ

4µ2(λθ + 2µ)
µ̂+

λ2

4µ(λθ + 2µ)
θ̂ +

−λ
2(λθ + 2µ)

α̂.

Proof. If we substitute in the constants q∗1 and q∗2 for q1 and q2 in the system 2.1-2.2, respec-
tively, we have that q1(t) = q1(t−∆) = λ

2µ
+aε+O(ε2) and q2(t) = q2(t−∆) = λ

2µ
+bε+O(ε2)

which gives us
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0 = (λ+ ελ̂)

[
1 + exp

(
ε

(
θ(a− b) +

λ

2µ
θ̂ − α̂

)
+O(ε2)

)]−1

− (µ+ εµ̂)

(
λ

2µ
+ aε+O(ε2)

)
= (λ+ ελ̂)

(
1

2
− 1

4

(
θ(a− b) +

λ

2µ
θ̂ − α̂

)
ε+O(ε2)

)
− (µ+ εµ̂)

(
λ

2µ
+ aε+O(ε2)

)

and

0 = λ

[
1 + exp

(
ε

(
θ(b− a)− λ

2µ
θ̂ + α̂

)
+O(ε2)

)]−1

− µ
(
λ

2µ
+ bε+O(ε2)

)
= λ

(
1

2
− 1

4

(
θ(b− a)− λ

2µ
θ̂ + α̂

)
ε+O(ε2)

)
− µ

(
λ

2µ
+ bε+O(ε2)

)
.

Matching O(ε) terms, we get a system of two equations with two unknowns a and b.

0 = 2µλθ(b− a)− 8µ2a− λ2θ̂ + 2µλα̂ + 4µλ̂− 4λµ̂

0 = 2µλθ(a− b)− 8µ2b+ λ2θ̂ − 2µλα̂

Solving this two dimensional system of equations gives us the desired values for a and b.

Our expression for the new approximate equilibrium makes it very easy to understand
what happens to the equilibrium when only a single parameter is perturbed. We observe
that the λ̂ terms in a and b are both positive so that a positive perturbation in the arrival
rate λ will cause the equilibrium for each queue to increase, with the first queue’s equilibrium
increasing more as the λ̂ term in a is larger than the corresponding term in b. One should
note this asymmetry in the arrival rate change. In fact, this is because the increase in the
arrival rate is direct to first queue, but is indirect for the second queue. By similar reasoning,
we see that positively perturbing the service rate µ will cause the equilibrium corresponding
to each queue to decrease, with the first queue’s equilibrium decreasing more than that of
the second queue. Thus, we observe the effects of increasing either λ̂ or µ̂ are not symmetric
with respect to each queue, but they have the same sign in this model. However, if we only
perturb either θ or α, we observe that one of the queue length’s equilibrium will increase
while the other will decrease. Despite the opposite signs of direction, the magnitude of the
change is identical and symmetric.

3.1 Numerical Verification of Equilibrium

In this section, we analyze the validity of Theorem 3.1 by plotting several numerical examples.
Below we show plots of queue length versus time to illustrate the shift in the equilibrium
due to the perturbations of the model parameters.
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In Figure 2, we consider the symmetric system for two values of ∆, each of which shows
us a qualitatively different behavior of the system as the queue lengths decay in one case
and grow in the other. This trend will be discussed more in the following section. In this
case, the equilibrium is at q1 = q2 = λ

2µ
.

In Figure 3, we consider the perturbed system where the only perturbed parameter is the
queueing system’s arrival rate λ. Since we increased the arrival rate for the first queue, it
makes sense that the equilibrium for q1 increases. However, we observe that the equilibrium
for q2 also increases, to a slightly less extent, and this is due to the fact that the probability
of joining the second queue depends on the delayed length of the first queue in a way so
that if the delayed length of the first queue increases (which of course happens because we
increased the arrival rate into the first queue), then the probability of joining the second
queue increases.

In Figure 4, the only perturbed parameter is the service rate µ. Since we increased the
service rate for the first queue, we see that the equilibrium for it decreases. We also see that
the equilibrium for the second queue decreases because the probability of joining the second
queue decreases when the delayed length of the first queue decreases.

In Figure 5, the only perturbed parameter is θ. Perturbing this parameter positively
causes the probability of joining the first queue to decrease and the probability of joining
the second queue to increase which gives us some intuition for why we see the equilibrium
for the first queue decrease and the equilibrium for the second queue increase.

In Figure 6, the only perturbed parameter is α. Perturbing this parameter positively
causes the probability of joining the first queue to increase and the probability of joining the
second queue to decrease, which causes the equilibrium for the first queue to increase and
the equilibrium for the second queue to decrease.

We see that the effects of perturbing α are the opposite of the effects of perturbing θ.
Similarly, perturbing λ seems to qualitatively affect the equilibrium in a way opposite to
how perturbing µ does.

In Figure 7, all four of the aforementioned parameters are perturbed and in this case the
resulting behavior depends on how big the permutations are for each parameter.

We summarized the various values used in these figures along with the resulting equilib-
rium values and approximations and errors in Table 1. A natural concern is how the error of
the equilibrium approximation varies as a parameter is perturbed by varying amounts. We
explore this by varying λ̂ while keeping other parameters fixed. The results can be seen in
Table 2 and they are plotted on the left side of Figure 1. We do the same for µ̂ in Table
3 and we plotted those results in the right side of Figure 1. In both cases, we see that
the error increases as the parameter is perturbed more. This is expected as we expect our
approximation to get its best results when the perturbations are small.
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λ λ̂ µ µ̂ θ θ̂ α α̂ ε q̂1 q1 q̂1 error q̂2 q2 q̂2 error
10 1 1 0 1 0 0 0 0.1 5.0292 5.0290 2 · 10−4 5.0208 5.0207 1 · 10−4

10 0 1 0.1 1 0 0 0 0.1 4.9708 4.9710 2 · 10−4 4.9792 4.9793 1 · 10−4

10 0 1 0 1 1 0 0 0.1 4.7917 4.8000 0.0083 5.2084 5.2000 0.0084
10 0 1 0 1 0 0 1 0.1 5.0417 5.0417 0.0000 4.9583 4.9583 0.0000
10 1 1 0.1 1 1 0 1 0.1 4.8333 4.8400 0.0067 5.1667 5.1600 0.0067

Table 1: The analytical expression for the first-order approximation of equilibrium, q̂, com-
pared against numerical integration, q, for various parameter values

λ̂ q̂1 q1 q̂1 error q̂2 q2 q̂2 error
1 5.0292 5.0290 2 · 10−4 5.0208 5.0207 1 · 10−4

1.5 5.0438 5.0435 3 · 10−4 5.0313 5.0311 2 · 10−4

2 5.0583 5.0578 5 · 10−4 5.0417 5.0413 4 · 10−4

2.5 5.0729 5.0722 7 · 10−4 5.0521 5.0515 6 · 10−4

3 5.0875 5.0864 0.0011 5.0625 5.0617 8 · 10−4

3.5 5.1021 5.1006 0.0015 5.0729 5.0719 0.0010
4 5.1167 5.1147 0.0020 5.0833 5.0820 0.0013
4.5 5.1313 5.1288 0.0025 5.0938 5.0920 0.0018
5 5.1458 5.1429 0.0029 5.1042 5.1020 0.0022

Table 2: How the approximation of the equilibrium point, q̂, compares to numerical integra-
tion, q, as λ̂ varies while fixing λ = 10, µ = 1, θ = 1, α = 0, ε = .01, µ̂ = θ̂ = α̂ = 0

µ̂ q̂1 q1 q̂1 error q̂2 q2 q̂2 error
0.1 4.9708 4.9710 2 · 10−4 4.9792 4.9793 1 · 10−4

0.15 4.9562 4.9566 4 · 10−4 4.9688 4.9690 2 · 10−4

0.2 4.9417 4.9423 6 · 10−4 4.9583 4.9588 5 · 10−4

0.25 4.9271 4.9281 0.001 4.9479 4.9487 8 · 10−4

0.3 4.9125 4.9140 0.0015 4.9375 4.9386 0.0011
0.35 4.8979 4.9000 0.0021 4.9271 4.9285 0.0014
0.4 4.8833 4.8860 0.0027 4.9167 4.9186 0.0019
0.45 4.8688 4.8721 0.0033 4.9063 4.9087 0.0024
0.5 4.8542 4.8583 0.0041 4.8958 4.8988 0.0030

Table 3: How the approximation of the equilibrium point, q̂, compares to numerical integra-
tion, q, as µ̂ varies while fixing λ = 10, µ = 1, θ = 1, α = 0, ε = .01, µ̂ = θ̂ = α̂ = 0
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Figure 1: Plots of the error of the equilibrium approximation against
λ̂ and µ̂ from Tables 2 (Left) and 3 (Right)
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Figure 2: λ̂ = µ̂ = θ̂ = α̂ = 0, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4
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Figure 3: λ̂ = 1, µ̂ = θ̂ = α̂ = 0, ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4
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Figure 4: µ̂ = 1, λ̂ = θ̂ = α̂ = 0, ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4
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Figure 5: θ̂ = 1, λ̂ = µ̂ = α̂ = 0, ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4
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Figure 6: α̂ = 1, λ̂ = µ̂ = θ̂ = 0, ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4
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Figure 7: µ̂ = 0.1, λ̂ = θ̂ = α̂ = 1, ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99 and q2 = 5.01, Left: ∆ = .25, Right: ∆ = .4

4 Hopf Bifurcation of Asymmetric Model

Now that we have derived an approximate equilibrium for our asymmetric queueing model,
we can now analyze the stability of this approximate equilibrium. In the symmetric model,
Novitzky et al. [18] shows that if λθ > 2µ, then the symmetric system given in Equations
2.1-2.2 will exhibit a Hopf bifurcation for values of ∆ > ∆cr where

∆cr =
arccos

(−2µ
λθ

)
ωcr

and ωcr =
1

2

√
λ2θ2 − 4µ2.

Our goal in this section is to derive an analogous critical delay expression for the asymmetric
model, which we will denote as ∆mod. We will show that the new critical delay, ∆mod,
marks a change in stability for the queueing model and we verify this result using numerical
integration of DDEs. This means that we show from numerical integration that a limit cycle
is born at this modified critical value of ∆mod. Our analysis for deriving the approximate
critical delay makes use of the method of multiple scales. We show this result below in
Theorem 4.1

Theorem 4.1. If λθ > 2µ, then, for sufficiently small ε, the stability of the queueing system
given in Equations 2.3-2.4 changes when ∆ = ∆mod where

∆mod = ∆cr − ε
(
µ+ ∆cr(µ

2 + ω2
cr)

2λω2
cr

λ̂− 1 + µ∆cr

2ω2
cr

µ̂+
µ+ ∆cr(µ

2 + ω2
cr)

2θω2
cr

θ̂

)
+O(ε2).

Proof. We begin by linearizing the system of Equations 2.3-2.4 about the approximate equi-
librium point

(q∗1, q
∗
2) =

(
λ

2µ
+ aε+O(ε2),

λ

2µ
+ bε+O(ε2)

)
where a and b are as defined in Theorem 2.1. In doing so, we introduce the functions ũ1(t)
and ũ2(t) so that

q1(t) = q∗1 + ũ1(t), q2(t) = q∗2 + ũ2(t)
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and we approximate
•
ũ1 and

•
ũ2 by a linear Taylor expansion about the equilibrium point

ũ1(t) = ũ2(t) = ũ1(t − ∆) = ũ2(t − ∆) = 0 and we denote the linear approximations by
•
u1(t) and

•
u2(t), respectively, and we Taylor expand coefficients with nonlinear dependence

on ε about ε = 0 and neglect terms that are O(ε2) yielding the following first-order (in ε)
approximation of the linear system.

•
u1(t) =

(λ+ λ̂ε)θ

4
[u2(t−∆)− u1(t−∆)]− λθ̂

4
εu1(t−∆)− (µ+ µ̂ε)u1(t) (4.5)

•
u2(t) =

λθ

4
[u1(t−∆)− u2(t−∆)] +

λθ̂

4
εu1(t−∆)− µu2(t) (4.6)

We then proceed by making the change of variables

v1(t) = u1(t) + u2(t), v2(t) = u1(t)− u2(t)

to get the following system

•
v1(t) +

(
µ+

µ̂

2
ε

)
v1(t) = −θλ̂

4
εv2(t−∆)− µ̂

2
εv2(t) (4.7)

•
v2(t) +

(
λθ

2
+
θλ̂

4
ε+

λθ̂

4
ε

)
v2(t−∆) +

(
µ+

µ̂

2
ε

)
v2(t) = −λθ̂

4
εv1(t−∆)− µ̂

2
εv1(t).

(4.8)

Before proceeding, we introduce new variables

ξ = t, η = εt

to represent a regular time and a slow time, respectively, so we have

vi(t) = vi(ξ, η) and vi(t−∆) = vi(ξ −∆, η − ε∆)

and the derivatives become

•
vi(t) =

dvi
dt

=
∂ui
∂ξ

dξ

dt
+
∂ui
∂η

dη

dt
=
∂vi
∂ξ

+ ε
∂vi
∂η

, i = 1, 2.

In addition to this change of variables, we expand our functions and detune our delay from
the critical delay for the symmetric system as follows.

v1(t) = v1,0(t) + εv1,1(t) +O(ε2)

v2(t) = v2,0(t) + εv2,1(t) +O(ε2)

∆ = ∆cr + ε∆1 +O(ε2)

Taylor expanding our delayed terms yields

vi(t−∆) = vi(ξ −∆, η − ε∆) = v̄i − ε
(

∆1
∂v̄i
∂ξ

+ ∆cr
∂v̄i
∂η

)
+O(ε2)
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where v̄i := vi(ξ − ∆cr, η) for i = 1, 2. Applying these expansions to equations 4.7 and 4.8
and then collecting O(1) terms and O(ε) terms yields the following four equations.

∂v1,0

∂ξ
+ µv1,0 = 0 (4.9)

∂v2,0

∂ξ
+
λθ

2
v̄2,0 + µv2,0 = 0 (4.10)

∂v1,1

∂ξ
+ µv1,1 = −∂v1,0

∂η
− θλ̂

4
v̄2,0 −

µ̂

2
(v1,0 + v2,0) (4.11)

∂v2,1

∂ξ
+
λθ

2
v̄2,1 + µv2,1 = −∂v2,0

∂η
+
λθ

2

(
∆1

∂v̄2,0

∂ξ
+ ∆cr

∂v̄2,0

∂η

)
(4.12)

− θλ̂

4
v̄2,0 −

µ̂

2
(v1,0 + v2,0)− λθ̂

4
(v̄1,0 + ¯v2,0)

It is easy to check that

v1,0 = c̃(η) exp(−µξ) and v2,0 = A(η) cos(ωcrξ) +B sin(ωcrξ)

solve Equations 4.9 and 4.10, respectively, and we can rearrange Equation 4.10 and use our
expression for v2,0 to observe that

v̄2,0 = − 2

λθ

[
∂v2,0

∂ξ
+ µv2,0

]
=

2

λθ
[−(µA+ ωcrB) cos(ωcrξ) + (ωcrA− µB) sin(ωcrξ)] .

Thus, we have the following expressions for terms in Equations 4.11 and 4.12

∂v1,0

∂η
= c̃′ exp(−µξ)

∂v2,0

∂η
= A′ cos(ωcrξ) +B′ sin(ωcrξ)

∂v̄2,0

∂η
=

2

θλ
[−(µA′ + ωcrB

′) cos(ωcrξ) + (ωcrA
′ − µB′) sin(ωcrξ)]

∂v̄2,0

∂ξ
=

2ωcr

θλ
[(ωcrA− µB) cos(ωcrξ) + (µA+ ωcrB) sin(ωcrξ)]

and Equations 4.11 and 4.12 can respectively be rewritten as

13



∂v1,1

∂ξ
+ v1,1 =

(
c̃′(η)− µ̂

2
c̃(η)

)
exp(−µξ) + cos(ωcrξ)

[
λ̂

2λ
(µA(η) + ωcrB(η))− µ̂

2
A(η)

]

+ sin(ωcrξ)

[
− λ̂

2λ
(ωcrA(η)− µB(η))− µ̂

2
B(η)

]
(4.13)

∂v2,1

∂ξ
+
λθ

2
v̄2,1 + µv2,1 = − µ̂

2
c̃ exp(−µξ)

+ cos(ωcrξ)

[
A′(η)(−µ∆cr − 1) +B′(η)(−ωcr∆cr)

+ A(η)

(
ω2

cr∆1 +
µλ̂

2λ
− µ̂

2
+
µθ̂

2θ

)
+B(η)

(
−µωcr∆1 +

ωcrλ̂

2λ
+
ωcrθ̂

2θ

)]

+ sin(ωcrξ)

[
A′(η) (ωcr∆cr) +B′(η)(−µ∆cr − 1)

+ A(η)

(
µωcr∆1 −

ωcrλ̂

2λ
− ωcrθ̂

2θ

)
+B(η)

(
ω2

cr∆1 +
µλ̂

2λ
− µ̂

2
+
µθ̂

2θ

)]
. (4.14)

We observe that the general homogeneous solutions for v1,1 and v2,1 are the same as the
general homogeneous solutions for v1,0 and v2,0, respectively. In both Equations 4.13 and
4.14, there are terms present in the inhomogeneous part that are not linearly independent of
the corresponding homogeneous solution. It is easy to see, by the method of undetermined
coefficients for example (which introduces a factor of ξ on to terms in the particular solution
that correspond to terms in the inhomogeneity that are linearly dependent with a homoge-
neous solution), that such terms will give rise to secular terms in the particular solutions to
each equation. We want to set terms in the inhomogeneities that introduce secular solutions
equal to zero because our asymptotic expansions would otherwise become invalid for large
time as the series would no longer be asymptotic when ξ = O(1

ε
), for example, at which

point O(ε) terms in the series would become O(1). Equating the coefficients of these terms
in the inhomogeneities equal to zero yields the following equations.

dc̃

dη
=
µ̂

2
c̃ (4.15)

dA

dη
= K1A(η) +K2B(η) (4.16)

dB

dη
= K3A(η) +K4B(η) (4.17)

Solving Equation 4.15 gives us that c̃(η) = k̃ exp( µ̂
2
η) and therefore v1,0 = k̃ exp( µ̂

2
η−µξ)

which decays to 0 for sufficiently small ε. We observe that the system of Equations 4.16-4.17
is in the form

c1A
′ + c2B

′ + c3A+ c4B = 0
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−c2A
′ + c1B

′ − c4A+ c3B = 0

where

c1 = −µ∆cr−1, c2 = −ωcr∆cr, c3 = ω2
cr∆1+

µλ̂

2λ
− µ̂

2
+
µθ̂

2θ
, c4 = −µωcr∆1+

ωcrλ̂

2λ
+
ωcrθ̂

2θ
.

This tells us that

K1 = K4 =
−(c1c3 + c2c4)

c2
1 + c2

2

K2 = −K3 =
c2c3 − c1c4

c2
1 + c2

2

.

So, we have the linear system [ dA
dη
dB
dη

]
=

[
K1 −K3

K3 K1

] [
A
B

]
. (4.18)

Recall that
v2,0 = A(η) cos(ωcrξ) +B(η) sin(ωcrξ)

so that A(η) and B(η) represent the amplitudes of each term in v2,0. Thus, the equilibrium
point A(η) = B(η) = 0 of this linear system corresponds to when v2,0 = 0 and it also
corresponds to when the sinusoidal terms in the inhomogeneity in 4.13 are equal to zero
which would make v1,1 decay for sufficiently small ε. Because of this, the stability of the
equilibrium point (A,B) = (0, 0) to 4.18 corresponds to the stability of the DDE system
given in Equations 2.3-2.4¿. Thus, our problem reduces to analyzing the stability of a linear
system.
Now we define the following matrix

K =

[
K1 −K3

K3 K1

]
.

Note that since we assumed λθ > 2µ, we have that each entry of K is real. To analyze the
stability of Equation 4.18, we need to determine whether the real parts of the eigenvalues of
K are positive or negative. However, keep in mind that the entries of K depend on ∆1, so
if we can find conditions on what the value of ∆1 must be in order for the real parts of the
eigenvalues of K to change sign, then we’ll essentially have found an approximation (up to
O(ε) terms) for the critical value of ∆ for which the stability of our DDE system given in
Equations 2.3-2.4 changes and a Hopf bifurcation occurs. In particular, we note the special
structure of this matrix K (it is actually the matrix representation of the complex number
K1 + iK3) and see that it has eigenvalues K1 ± iK3. Thus, K1 is the real part of both of
the eigenvalues of K, so we want to find conditions on ∆1 under which K1 is positive or
negative. We see that sgn(K1) = −sgn(c1c3 + c2c4).
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c1c3 + c2c4 = (−µ∆cr − 1)

(
ω2

cr∆1 +
µλ̂

2λ
− µ̂

2
+
µθ̂

2θ

)
+ (−ωcr∆cr)

(
−µωcr∆1 +

ωcrλ̂

2λ
+
ωcrθ̂

2θ

)

= −ω2
cr∆1 −

[
µ+ ∆cr(µ

2 + ω2
cr)

2λ
λ̂− 1 + µ∆cr

2
µ̂+

µ+ ∆cr(µ
2 + ω2

cr)

2θ
θ̂

]
So we see that K1 < 0 when

∆1 < −
(
µ+ ∆cr(µ

2 + ω2
cr)

2λω2
cr

λ̂− 1 + µ∆cr

2ω2
cr

µ̂+
µ+ ∆cr(µ

2 + ω2
cr)

2θω2
cr

θ̂

)
and K1 > 0 when

∆1 > −
(
µ+ ∆cr(µ

2 + ω2
cr)

2λω2
cr

λ̂− 1 + µ∆cr

2ω2
cr

µ̂+
µ+ ∆cr(µ

2 + ω2
cr)

2θω2
cr

θ̂

)
and since ∆ = ∆cr + ε∆1 +O(ε2), we see that the critical value of ∆ for which the stability
of our perturbed DDE system given in Equations 2.3-2.4 changes is

∆mod = ∆cr − ε
(
µ+ ∆cr(µ

2 + ω2
cr)

2λω2
cr

λ̂− 1 + µ∆cr

2ω2
cr

µ̂+
µ+ ∆cr(µ

2 + ω2
cr)

2θω2
cr

θ̂

)
+O(ε2).

An observation we can make that more clearly relates this expression of ∆mod to the form
of ∆cr given in Novitzky et al. [18] is that

∆mod =

arccos

(
−2(µ+ µ̂ε

2 )(
λ+ λ̂ε

2

)(
θ+ θ̂ε

2

)
)

ωmod

+O(ε2) where

ωmod =
1

2

√√√√(λ+
λ̂ε

2

)2(
θ +

θ̂ε

2

)2

− 4

(
µ+

µ̂ε

2

)2

which can be seen by Taylor expanding about ε = 0. To give some intuition regarding
how this observation was made, consider the case where we only perturb the arrival rate λ.
Linearizing the system, neglecting O(ε2) terms, we’ll obtain equations 4.5 and 4.6, but with
θ̂ = µ̂ = 0.

•
u1(t) =

(λ+ λ̂ε)θ

4
[u2(t−∆)− u1(t−∆)]− µu1(t) (4.19)

•
u2(t) =

λθ

4
[u1(t−∆)− u2(t−∆)]− µu2(t) (4.20)

Applying the transformation v1(t) = u1(t) + u2(t) and v2(t) = u1(t) − u2(t) gives us
equations 4.7 and 4.8 except with θ̂ = µ̂ = 0.
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•
v1(t) + µv1(t) = −θλ̂

4
εv2(t−∆) (4.21)

•
v2(t) +

(
λθ

2
+
θλ̂

4
ε

)
v2(t−∆) + µv2(t) = 0 (4.22)

We see that the coupling that was present in equations 4.7 and 4.8 has been simplified.
We see that the homogeneous solution to the equation for v1(t) decays with time. Thus, if
v2(t) is stable, then the particular solution for the v1(t) equation will be stable and if v2(t)
is unstable then the system is unstable. Because of this, we can restrict our attention to the
equation for v2(t). Letting v2(t) = ert gives us the characteristic equation

r + Ce−r∆ + µ = 0

where C = λθ
2

+ θλ̂
4
ε. The system is stable when r has negative real part and it is unstable

when r has positive real part, so the change in stability occurs when r crosses the imaginary
axis, so we let r = iω for some real ω. Collecting real and imaginary parts gives us the
equations

sin(ω∆) =
ω

C
(4.23)

cos(ω∆) = − µ
C

(4.24)

and since cos2(ω∆) + sin2(ω∆) = 1, we are able to get

∆mod =
arccos

(
− µ
C

)
ωmod

, ωmod =
√
C2 − µ2.

We see that

C =
λθ

2
+
θλ̂

4
ε =

θ
(
λ+ λ̂

2
ε
)

2
so we get

∆mod =

2 arccos

(
− 2µ(

λ+ λ̂ε
2

)
θ

)
√(

λ+ λ̂
2
ε
)2

θ2 − 4µ2

.

While this isn’t a rigorous approach to obtaining the expression we got for ∆mod with all of
the parameters perturbed as the coupling in the general case causes complications, it should
at least give some intuition for why we considered the expression above. The perturbations
to the parameters end up being divided by 2 in each case due to the transformation from u1

and u2 to v1 and v2. This also has to do with the fact that the perturbation terms for the
λ and µ cases only appear in a single equation in equations 4.7 and 4.8, so when forming
the equation for v2(t), these terms do not get the factor of 2 that terms that were in both
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equations (but differed by a factor of -1) got. Also, even though the θ perturbation is in
both equations, it is multiplying a u1 term in both cases which transforms to

u1 =
v1 + v2

2

which introduces a factor of 1
2
.

Another important observation to make is that our expression for ∆mod appears to not
depend on α̂ up to first order. However, if we collect O(ε2) terms when linearizing the system,
we can see the contributions from α̂. We illustrate this in Theorem 4.2 by considering the
special case where λ̂ = µ̂ = θ̂ = 0 for ease of calculation.

Theorem 4.2. When λ̂ = µ̂ = θ̂ = 0, we have that

∆mod = ∆cr +
4µ3 + µ2λ2θ2∆cr

4ω2
cr(λθ + 2µ)2

ε2α̂2 +O(ε3).

Proof. It can be shown by a calculation similar to the one in Section 3 that the equilibrium
point in this special case is

(q∗1, q
∗
2) =

(
λ

2µ
+ a1ε+ a2ε

2 +O(ε3),
λ

2µ
+ b1ε+ b2ε

2 +O(ε3)

)
where

a1 =
λ

2(λθ + 2µ)
, b1 =

−λ
2(λθ + 2µ)

and a2 = b2 = 0. Linearizing about this equlibrium point and neglecting O(ε3) terms gives
us the following linear system.

•
u1(t) =

(
λθ

4
− 1

16

[
(a1 − b1)2λθ3 + 2(b1 − a1)λθ2α̂ + λθα̂2

]
ε2
)

[u2(t−∆)− u1(t−∆)]− µu1(t)

•
u2(t) =

(
λθ

4
− 1

16

[
(a1 − b1)2λθ3 + 2(b1 − a1)λθ2α̂ + λθα̂2

]
ε2
)

[u1(t−∆)− u2(t−∆)]− µu2(t)

Using the transformation

v1(t) = u1(t) + u2(t), v2(t) = u1(t)− u2(t)

gives us the system

•
v1(t) + µv1(t) = 0 (4.25)

•
v2(t) +

(
λθ

2
− 1

8

[
(a1 − b1)2λθ3 + 2(b1 − a1)λθ2α̂ + λθα̂2

]
ε2
)
v2(t−∆) + µv2(t) = 0

(4.26)

18



We see that v1(t) decays with time and thus we restrict our analysis to (3.20). Letting
v2(t) = ert, we get the characteristic equation

r +De−r∆ + µ = 0

where we let D =
(
λθ
2
− 1

8
[(a1 − b1)2λθ3 + 2(b1 − a1)λθ2α̂ + λθα̂2] ε2

)
for ease of notation. If

r has negative real part, then we have stability and we have instability when r has positive
real part. Thus, the change in stability occurs when r crosses the imaginary axis, that is
when r = iω for some real ω. Letting r = iω and collecting real and imaginary parts gives
us the following two equations

sin(ω∆) =
ω

D
(4.27)

cos(ω∆) = − µ
D

(4.28)

so that, using the fact that cos2(ω∆) + sin2(ω∆) = 1, we get

∆mod =
arccos

(
− µ
D

)
ωmod

, ωmod =
√
D2 − µ2.

Taylor expanding ∆mod about ε = 0 gives us the result

∆mod = ∆cr +
4µ3 + µ2λ2θ2∆cr

4ω2
cr(λθ + 2µ)2

ε2α̂2 +O(ε3)

when λ̂ = µ̂ = θ̂ = 0.

4.1 Numerical Verification of Hopf Bifurcation

Below we show plots of queue length versus time for various cases to demonstrate the bifur-
cation in ∆. In each figure below, we consider our system with various parameters either
being perturbed or not perturbed from symmetry. In each case, we consider having a delay
.05 below and .05 above the corresponding critical delay value. In each case, we see that the
queue length amplitudes decay to equilibrium values when the delay ∆ is below the critical
value. When we increase the delay to be above the critical delay, we see oscillations increase
and approach a fixed amplitude forming a limit cycle. This suggests that we have a Hopf
bifurcation at the critical delay. This observation prompts us to consider the amplitudes of
limit cycles in Section 5.

In Figure 8, we consider the symmetric case and we see that the amplitudes of the queues
oscillate and decay when the delay is below the critical delta and approach some limiting
amplitude when the delay is above the critical delta. In Figure 9, we consider the case where
only the arrival rate λ is perturbed positively. In this case, we see that increasing the arrival
rate in one of the queues causes the critical delay to be less than the critical delay in the
symmetric case. In Figure 10, the service rate µ is the only perturbed parameter and we are
able to see that increasing the service rate in one of the queues leads to an increase in the
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critical delay. These observations tell us that increasing the inflow of customers in one queue
makes the system more susceptible to oscillations caused by delayed information whereas
increasing the service rate in one of the queues helps to mitigate this issue. In Figure 11,
the only perturbed parameter is θ and we see that increasing the value of θ corresponding
to one of the queues causes a decrease in the critical delay. We note that increasing the
value of the θ corresponding to one of the queues increases the number of arrivals into that
queue and thus it makes sense that it impacts the critical delay in the same direction that
perturbing the arrival rate does. In Figure 12, the only perturbed parameter is α. We see
that the critical delay is roughly the same as the critical delay in the symmetric case which
isn’t surprising based on the result of Theorem 4.2 which says that perturbing α only affects
the value of the critical delay if we include O(ε2) terms. Figure 13 is an example where all
four of the parameters we have discussed were perturbed from symmetry. The impact that
perturbing all four of these parameters has on the critical delay will depend on how much
each parameter is perturbed by.
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Figure 8: λ̂ = µ̂ = θ̂ = α̂ = 0, λ = 10, µ = 1, θ = 1, α = 0, ∆mod = ∆cr ≈ .3617
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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Figure 9: λ̂ = 1, µ̂ = θ̂ = α̂ = 0, ∆mod ≈ .3596 ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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Figure 10: µ̂ = 1, λ̂ = θ̂ = α̂ = 0, ∆mod ≈ .3646 ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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Figure 11: θ̂ = 1, λ̂ = µ̂ = α̂ = 0, ∆mod ≈ .3408 ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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Figure 12: α̂ = 1, λ̂ = µ̂ = θ̂ = 0, ∆mod ≈ .3617 ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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Figure 13: λ̂ = µ̂ = θ̂ = α̂ = 1, ∆mod ≈ .3416 ε = .1, λ = 10, µ = 1, θ = 1, α = 0
On [−∆, 0], q1 = 4.99, q2 = 5.01, Left: ∆ = ∆mod − .05, Right: ∆ = ∆mod + .05
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5 Amplitude of Limit Cycle

In the previous section, we observed that increasing the delay past the critical value ∆mod

causes oscillations in the queue lengths and ultimately gives rise to a limit cycle. In this
section, we aim to approximate the amplitude of the limit cycle when the delay is close to
∆mod. To do this we will resort to using Lindstedt’s method.

Theorem 5.1. Using Lindstedt’s method, we obtain the following approximation, Ã, of the
amplitude of limit cycles near the critical delay

Ã =
√

∆−∆mod

√
8(λ̄2θ̄2 − 4µ̄2)2

2λ̄2µ̄θ2θ̄2 − 8µ̄3θ2 +
[
λθ2λ̄θ̄ + 4λθ2

λ̄θ̄
µ̄2(θ − 1)

]√
λ̄2θ̄2 − 4µ̄2 arccos

(
−2µ̄
λ̄θ̄

) .
Proof. We will expand the system of Equations 2.3-2.4 about the approximate equilibrium
point

(q∗1, q
∗
2) =

(
λ

2µ
+ aε+O(ε2),

λ

2µ
+ bε+O(ε2)

)
where a and b are as defined in Theorem 3.1. However, unlike the equilibrium and stability
calculations, we need to Taylor expand to third order in order to find the amplitude. By
Taylor expanding to third order (cubic) and dropping O(ε2) terms leaves us with the following
cubic system of DDEs

•
u1(t) = −(µ+ µ̂ε)u1(t)− 1

4

(
λθ + (λθ̂ + λ̂θ)ε

)
u1(t−∆) +

1

4

(
λθ + θλ̂ε

)
u2(t−∆)

+
1

32µ
(λ2θ2θ̂ + 2µ(a− b)λθ3 − 2µα̂λθ2)ε(u1(t−∆)− u2(t−∆))2

+
1

48

(
λθ3 + (3λθ2θ̂ + θ3λ̂)ε

)
u3

1(t−∆)− 1

48

(
λθ3 + θ3λ̂ε

)
u3

2(t−∆)

− 1

16
(λθ3 + (2λθ2θ̂ + θ3λ̂)ε)u2

1(t−∆)u2(t−∆) +
1

16
(λθ3 + (λθ2θ̂ + θ3λ̂)ε)u1(t−∆)u2

2(t−∆)

•
u2(t) = −µu2(t) +

1

4
(λθ + λθ̂ε)u1(t−∆)− 1

4
λθu2(t−∆)

+
1

32µ
(λ2θ2θ̂ + 2µ(a− b)λθ3 − 2µα̂λθ2)ε(u2

1(t−∆) + 2u1(t−∆)u2(t−∆)− u2
2(t−∆))

− 1

48
(λθ2 + 3λθ2θ̂ε)u3

1(t−∆) +
1

48
λθ3u3

2(t−∆)

+
1

16
(λθ3 + 2λθ2θ̂ε)u2

1(t−∆)u2(t−∆)− 1

16
(λθ3 + λθ2θ̂ε)u1(t−∆)u2

2(t−∆).

As we did in the linear case, we make the change of variables

v1(t) = u1(t) + u2(t), v2(t) = u1(t)− u2(t)

and we let
v1(t) = v1,0(t) + εv1,1(t) +O(ε2)

v2(t) = v2,0(t) + εv2,1(t) +O(ε2).

23



Collecting O(1) terms gives us the following two equations

•
v1,0(t) + µv1,0(t) = 0 (5.29)

•
v2,0(t) +

λθ

2
v2,0(t−∆)− λθ3

24
v3

2,0(t−∆) + µv2,0(t) = 0 (5.30)

and collecting O(ε) terms gives us

•
v1,1(t) + µv1,1(t) = −θλ̂

4
v2,0(t−∆) +

θ3λ̂

48
v3

2,0(t−∆)− µ̂

2
(v1,0(t) + v2,0(t)) (5.31)

•
v2,1(t) +

λθ

2
v2,1(t−∆)− λθ3

8
v2

2,0(t−∆)v2,1(t−∆) + µv2,1 = −

(
θλ̂

4
+
λθ̂

4

)
v2,0(t−∆)

− λθ̂

4
v1,0(t−∆) +

(
2λθ3µ(a− b) + λ2θ2θ̂ − 2λθ2µα̂

16µ

)
v2

2,0(t−∆)

+
θ3λ̂

48
v3

2,0(t−∆) +
λθ2θ̂

16
[v1,0(t−∆)v2

2,0(t−∆) + v3
2,0(t−∆)]− µ̂

2
(v1,0(t) + v2,0(t)).

(5.32)

We observe that we can directly solve Equation 5.29 and its solution is given by v1,0(t) =
ĉ exp(−µt), for some constant ĉ, meaning

v1(t) = u1(t) + u2(t) = ĉ exp(−µt) +O(ε)

so that for small ε and large time, we have that

u1(t) ≈ −u2(t)

which tells us that the amplitudes of the queue lengths are approximately symmetric (which
is expected given that we’re perturbing a symmetric model) and thus

v2,0(t) = u1(t)− u2(t) +O(ε) ≈ 2u1(t)

gives us approximately twice the amplitude of the limit cycle. Because of this, we narrow
our interest to Equation 5.30. Since we are interested in the amplitudes of limit cycles near
the bifurcation point, we are working under the assumption that ∆−∆mod is small. Letting
∆0 = ∆mod and ω0 = ωmod, we use the following transformations.

τ = ωt, v2,0(t) =
√
εv(t)

v(t) = v0(t) + εv1(t) + · · · , ∆ = ∆0 + ε∆1 + · · · , ω = ω0 + εω1 + · · ·

Matching powers of ε and dropping higher ordered terms, we get two equations.
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ω0v
′
0(τ) +

λθ

2
v0(τ − ω0∆0) + µv0(τ) = 0 (5.33)

ω0v
′
1(τ) +

λθ

2
v1(τ − ω0∆0) + µv1(τ) = −ω1v

′
0(τ)

+
λθ

2
(ω0∆1 + ω1∆0)v′0(τ − ω0∆0)

+
λθ3

24
v3

0(τ − ω0∆0) (5.34)

Noting that v0(τ) = A sin(τ) satisfies Equation 5.33 and that the homogeneous form of
Equation 5.34 is the same as that of Equation 5.33, we substitute in v0(τ) = A sin(τ) into
the inhomogeneity of Equation 5.34 and set the terms that would introduce secular terms
in the particular solution equal to 0. Doing this yields a system of two equations and two
unknowns: A and ω1. Solving for these unknowns, we obtain

A =

√
8∆1(λ̄2θ̄2 − 4µ̄2)2

2λ̄2µ̄θ2θ̄2 − 8µ̄3θ2 +
[
λθ2λ̄θ̄ + 4λθ2

λ̄θ̄
µ̄2(θ − 1)

]√
λ̄2θ̄2 − 4µ̄2 arccos

(
−2µ̄
λ̄θ̄

) (5.35)

and

ω1 = − 1

∆0

(
ω0∆1 +

A2θ2 cos(ω0∆0)

16 sin(ω0∆0)

)
(5.36)

where

λ̄ := λ+
λ̂ε

2
, µ̄ := µ+

µ̂ε

2
, θ̄ := θ +

θ̂ε

2
.

We assume that ∆ − ∆0 ≈ ε which implies that ∆1 ≈ 1 and since v2,0(t) =
√
εv(t), our

approximation of the amplitude, Ã, is

Ã =
√

∆−∆mod

√
8(λ̄2θ̄2 − 4µ̄2)2

2λ̄2µ̄θ2θ̄2 − 8µ̄3θ2 +
[
λθ2λ̄θ̄ + 4λθ2

λ̄θ̄
µ̄2(θ − 1)

]√
λ̄2θ̄2 − 4µ̄2 arccos

(
−2µ̄
λ̄θ̄

) .

We now demonstrate numerically how well this approximation matches the actual am-
plitude of the limit cycle. In each figure below, we will plot the queue lengths against time
and approximate the maximum and minimum values of each queue length by adding or
subtracting 1

2
Ã from the equilibrium for each queue. The cycle lines are the approximations

corresponding to q1 and the dashed green lines are the approximations corresponding to q2.
In Figure 14 and Figure 15, all four of the parameters are perturbed with ε = .1 and

we consider the cases when ∆ − ∆mod is equal to .05, .1, .15, and .2. As we increase the
delay past the critical delay, we see the amplitude increase as our amplitude approximation
would expect. Indeed, our approximation of the amplitude is proportional to

√
∆−∆mod, so

increasing the difference between the delay and the critical delay will result in an increase in

25



0 2 4 6 8 10 12 14 16 18 20
3.5

4

4.5

5

5.5

6
Queue Length vs. Time

Time

Q
ue

ue
 L

en
gt

h

 

 

q1

q2

0 2 4 6 8 10 12 14 16 18 20
3.5

4

4.5

5

5.5

6

6.5
Queue Length vs. Time

Time

Q
ue

ue
 L

en
gt

h

 

 

q1

q2

Figure 14:
λ̂ = µ̂ = θ̂ = α̂ = 1, ε = .1, λ = 10, µ = 1, θ = 1, α = 1, on [−∆, 0] q1 = 4.99 and q2 = 5.01
Left: ∆−∆mod = .05, Amplitudes: q1 ≈ 1.3593, q2 ≈ 1.3524, Approximation ≈ 1.4562
Right: ∆−∆mod ≈ .1 Amplitudes: q1 ≈ 1.9576, q2 ≈ 1.9503, Approximation ≈ 2.0594
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Figure 15:
λ̂ = µ̂ = θ̂ = α̂ = 1, ε = .1, λ = 10, µ = 1, θ = 1, α = 1, on [−∆, 0] q1 = 4.99 and q2 = 5.01
Left: ∆−∆mod = .15, Amplitudes: q1 ≈ 2.4265, q2 ≈ 2.4208, Approximation ≈ 2.5222
Right: ∆−∆mod ≈ .2, Amplitudes: q1 ≈ 2.8292, q2 ≈ 2.8268, Approximation ≈ 2.9124

the approximation of the amplitude. Keep in mind that our approximation of the amplitude
is really only an O(1) approximation as our calculation was based off of Equation 5.30 and
did not rely on the equations obtained by collecting O(ε) terms, which made the analysis
more manageable. Consequently, it is not particularly surprising that we see a noticeable
amount of error between the actual amplitude and our approximation of the amplitude. The
error seems to be around .1 for all four cases.

26



6 Conclusion and Future Research

In this paper, we analyze a two-dimensional fluid model that incorporates customer choice
which depends on delayed queue length information. This model is different from those
considered in previous literature because of the asymmetry we introduced by perturbing four
of the model parameters corresponding to one of the two queues. Analyzing this model allows
us to explore the impact that breaking the symmetry has on the dynamics of the queueing
system. We see how perturbing different model parameters can have different effects on
the system’s equilibrium, which we find a first-order approximation for. We consider the
stability of this equilibrium to derive a first-order approximation for the critical delay at
which the system exhibits a change in stability. Numerical experiments suggest that a Hopf
bifurcation occurs at this critical delay as a limit cycle appears to be born when the delay
is increased past the critical delay value we derived. We employ Lindstedt’s method to get
an O(1) approximation for the amplitude of limit cycles near the bifurcation point.

There are several extensions that could be made to this work. One extension would be to
consider a system generalized to have N > 2 queues where parameters corresponding to each
queue have different perturbations so that no two queues in the system are symmetric to
each other. Another potential extension would be to consider different choice functions or to
simply change the information that the choice model depends on. Such analysis could provide
a better understanding of how providing customers with different types of information affects
the dynamics of the system. One could also consider a queueing system with time-varying
arrival rates, as in Pender et al. [21], but with asymmetry introduced to the system. We
plan on exploring some of these extensions in future work.
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