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Abstract. Internet and mobile services often provide waiting time or queue length information to customers. This
information allows a customer to determine whether to remain in line or, in the case of multiple lines, better
decide which line to join. Unfortunately, there is usually a delay associated with waiting time information.
Either the information itself is stale, or it takes time for the customers to travel to the service location
after having received the information. Recent empirical and theoretical work uses functional dynamical
systems as limiting models for stochastic queueing systems. This work has shown that if information is
delayed long enough, a Hopf bifurcation can occur and cause unwanted oscillations in the queues. However,
it is not known how large the oscillations are when a Hopf bifurcation occurs. To answer this question,
we model queues with functional differential equations and implement two methods for approximating the
amplitude of these oscillations. The first approximation is analytic and yields a closed-form approximation
in terms of the model parameters. The second approximation uses a statistical technique, and delivers
highly accurate approximations over a wider range of parameters.
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1. Introduction. The omnipresence of smartphone and internet technologies has created new
ways for corporations and service system managers to interact with their customers. One important
and common example of such communication is the delay announcement, which has become the
main tool for service system managers to inform customers of their estimated waiting time. Delay
announcements are common in settings like customer support call centers, appointment schedul-
ing in healthcare services, restaurants during busy hours, public transportation, and even online
shopping at Amazon.com.

The reason why delay announcements are so popular among service providers is that they
are vital to customer experience. Moreover, delay announcements can influence the decisions of
customers, and consequently affect the dynamics of the queueing system as seen in [17]. As a
result, delay announcements are of major interest among researchers who aim to quantify the
impact of such announcements on the queue length process or the virtual waiting time process.
The work of [3, 11, 15, 4, 12, 20, 21, 1, 2, 35] and references therein focus on this aspect of the
delay announcements.

The analysis of this paper is similar to the main thrust of the delay announcement literature
in that it is concerned with the impact of information on the dynamics of the queueing process.
However, the current literature focuses only on services that give the delay announcements to their
customers in real-time, while we consider the scenario when the information is delayed. Information
delay is commonly experienced in services that inform their customers about the waiting times prior
to the customers’ arrival to the service location. One example is the Citibike bike-sharing network in
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New York City [10, 33]. Riders can search the availability of bikes on a smartphone app. However,
in the time that it takes for the riders to leave their home and get to a station, all of the bikes
could have been taken from that station.

Typically, queueing theorists use ordinary differential equations to model the mean dynamics
of the queue length processes, but the incorporation of delayed information leads us to utilize delay
differential equations (DDE’s) in our first model and functional differential equations (FDE’s) in
our second model. As a result, this paper introduces mathematical techniques that are new in the
context of queueing literature. We would like to note, however, that there is a paper [26] which
combines concepts from queueing theory with DDE’s, and applies them to sizing router buffers in
Internet infrastructure services.

The authors in [24] use DDE’s and FDE’s to develop two new two-dimensional fluid models of
queues that incorporate customer choice based on delayed queue length information, and show that
oscillations in queue lengths occur for certain lengths of delay. By comparison, in this paper we prove
that the observed behavior is due to a supercritical Hopf bifurcation, and we use two techniques to
approximate the size of the amplitude of oscillations. The first method is a classical perturbations
technique called Lindstedt’s method. The second method, which we call the slope function method,
is a numerical technique that we develop specifically to extend the range of parameters for which
the Lindstedt’s approximation maintains accuracy. Based on numerical results, the slope function
method successfully reduces the maximum error in approximation over a range of parameters by
60− 75% when compared to Lindstedt’s method. In the context of queueing models, the accuracy
of approximation matters because the amplitude of queue oscillations can provide valuable insights
such as the average waiting time during busier hours, the longest waiting time a customer can
experience, and the optimal moment for joining a queue that will guarantee the quickest service.
Moreover, our method of approximation is not restricted to queueing models and can be applied
to any system where Hopf bifurcations are observed.

1.1. Paper Outline. This paper considers two models of queues that were originally presented
in [24] and [25] as fluid limits of stochastic queueing models. In each model, there are two queues and
customers decide which queue to join based on information about the queue length that is delayed.
In section 2 we present the first model that uses a constant delay. At first, subsection 2.1 describes
the qualitative behavior of the queues, stating the conditions for a unique stable equilibrium as well
as the conditions for supercritical Hopf bifurcations. Then, we focus on the behavior of the queues
when the stable equilibrium transitions into a stable limit cycle, and approximate the amplitude of
the resulting oscillations. In subsection 2.2 - subsection 2.3, we use Lindstedt’s method, which is
accurate on a limited range of parameters. To broaden this range, in subsection 2.4 - subsection 2.5,
we implement the slope function method, which is a technique that uses known amplitude of a small
subset of queues and extrapolates it for a larger set of parameters. Overall, this method achieves
higher accuracy than Lindstedt’s method over a range of model parameters.

In section 3, we present the second model of queues that uses a moving average of the queue
lengths as the delay announcement. The structure of section 3 is identical to section 2, where we
describe the qualitative behavior of queue lengths and later approximate the amplitude of oscilla-
tions via Lindstedt’s method and the slope function method. Finally, we compare the performance
of the two techniques, and conclude by highlighting the strengths and weaknesses of each method.

2. Constant Delay Model. In a model with two infinite-server queues visualized by Figure 2.1,
customers arrive at a rate λ > 0. Each customer is given a choice of joining either queue. The
customer is told the length of each queue, and is likely to prefer the shorter queue. The probability
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pi of a customer joining the ith queue is given by the Multinomial Logit Model (MNL)

pi(q(t),∆) =
exp

(
− qi(t−∆)

)
exp

(
− q1(t−∆)

)
+ exp

(
− q2(t−∆)

) ,(2.1)

where qi(t) is the length of ith queue at time t. The MNL is commonly used to model customer
choice in fields of operations research, economics, and applied psychology [32, 16, 23, 34]. The delay
∆ > 0 accounts for the customers’ travel time to the service location, or for the time lag between
when the service manager measures the queue length and discloses this information to customers.
The model assumes an infinite-server queue, which is customary in operations research literature
[9, 18, 29]. This assumption implies that the departure rate for a queue is the service rate µ > 0
multiplied by the total number of customers in that queue. Therefore the queue lengths can be
described by

(2.2)
•
q1(t) = λ ·

exp
(
− q1(t−∆)

)
exp

(
− q1(t−∆)

)
+ exp

(
− q2(t−∆)

) − µq1(t)

(2.3)
•
q2(t) = λ ·

exp
(
− q2(t−∆)

)
exp

(
− q1(t−∆)

)
+ exp

(
− q2(t−∆)

) − µq2(t)

for t > 0, with initial conditions specified by nonnegative continuous functions f1 and f2

(2.4) q1(t) = f1(t), q2(t) = f2(t), t ∈ [−∆, 0].

Figure 2.1: Customers going through a two-queue service system.

It is worth to noting that Equations (2.2) - (2.3) can be uncoupled when the sum and the
difference of q1 and q2 is taken. The system is then reduced to the equations

•
v1(t) =

•
q1(t)−

•
q2(t) = λ tanh

(
− 1

2
v1(t−∆)

)
− µv1(t),(2.5)

•
v2(t) =

•
q1(t) +

•
q2(t) = λ− µv2(t),(2.6)

where v2(t) is solvable, and the equation for v1(t) is of a form commonly studied in the literature.
Many papers, such as [19, 36, 38, 37, 6], prove properties for models similar to ours. In [38], the
author uses asymptotic analysis to prove uniqueness and stability of the slowly oscillating periodic
solutions that occur under certain parameter restrictions. The authors in [30] study the floquet
multipliers. We complement these results by developing an approximation for the amplitude of the
oscillations near the first bifurcation point.
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2.1. Hopf Bifurcations in the Constant Delay Model. In this section, we discuss the qualita-
tive behavior of the queueing system given by Equations (2.2) - (2.3). We will begin by establishing
the existence and uniqueness of the equilibrium.

Theorem 2.1. For sufficiently small ∆, the unique equilibrium to the system of N equations

(2.7)
•
qi(t) = λ ·

exp
(
− qi(t−∆)

)∑N
j=1 exp

(
− qj(t−∆)

) − µqi(t) ∀i = 1, 2, · · · , N

is given by

(2.8) q∗i =
λ

Nµ
∀i = 1, 2, · · · , N.

Proof. See the Appendix for the proof.

Therefore the equilibrium of the queues from Equations (2.2) - (2.3) is given by

(2.9) q∗1 = q∗2 =
λ

2µ
.

Next, we consider the stability of the equilibrium, which can be determined by the stability
of the linearized system of equations [13, 31]. Hence, subsection 5.1.3 and subsection 5.1.4 in the
Appendix linearize the system of Equations (2.2) - (2.3) and separate the variables, reducing the
system from two unknown functions to one:

•
ṽ2(t) = −λ

2
· ṽ2(t−∆)− µṽ2(t).(2.10)

Assuming a solution of the form ṽ2(t) = exp(Λt), the characteristic equation is

(2.11) Φ(Λ,∆) = Λ +
λ

2
exp(−Λ∆) + µ = 0.

The equilibrium is stable whenever the real part of every eigenvalue Λ is negative. It is evident
from the characteristic equation that any real root Λ must be negative. However, there are infinitely
many complex roots. In the next result, we will show that for a sufficiently small delay, all complex
eigenvalues have negative real parts.

Proposition 2.2. For Equations (2.2) - (2.3), as the delay approaches 0, i.e. ∆ → 0+, the real
part of any complex eigenvalue approaches negative infinity.

Proof. When ∆ = 0, the characteristic equation (2.11) has only one eigenvalue, namely Λ =
−λ

2 −µ. When the delay is raised above 0, the characteristic equation becomes transcendental and
an infinite sequence of roots is born. Since Φ(Λ,∆) is continuous with respect to both Λ and ∆,
each eigenvalue Λ must be continuous with respect to ∆. Hence the real part of Λ must go to
positive infinity or to negative infinity as the delay approaches 0. However, any root with positive
real part is bounded as shown in the Appendix by Proposition 5.1, so the real part of any complex
eigenvalue must go to negative infinity.

By Proposition 2.2, all eigenvalues have negative real parts when ∆ is small, so the equilibrium is
stable until a pair of complex eigenvalues reaches the imaginary axis. To find when the equilibrium
loses stability, we assume Λ = iωcr with ωcr > 0, plug Λ into the characteristic equation (2.11),
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and separate the real and imaginary parts into two equations. We use the trigonometric identity
cos2(ω∆) + sin2(ω∆) = 1 to find

(2.12) ∆cr(λ, µ) =
2 arccos(−2µ/λ)√

λ2 − 4µ2
, ωcr =

√
λ2

4
− µ2.

For ωcr to be real and nonzero the condition λ2

4 − µ
2 > 0 must hold, so λ > 2µ. If this condition is

met, the equilibrium becomes unstable when ∆ exceeds the smallest positive root of ∆cr from
Equation (2.12).

Theorem 2.3. If λ < 2µ, the equilibrium is locally stable for all ∆ > 0. If λ > 2µ, the equilibrium
is locally stable when ∆ is less than the smallest positive root of ∆cr.

Proof. As discussed above, all eigenvalues of the characteristic equation are on the negative
real side of the complex plane, unless 0 6= ωcr ∈ R, and the delay reaches ∆cr.

Figure 2.2 - Figure 2.3 show the behavior of the queues before and after the equilibrium loses
stability. As suggested by Figure 2.3 and proved by the next result, the conditions (2.12) specify
where the Hopf bifurcations occur. We note that if λ > 2µ, there will be infinitely many Hopf
bifurcations as the delay grows, since the expression for ∆cr has infinitely many roots.

Figure 2.2: λ = 10, µ = 1, ∆ < ∆cr. Figure 2.3: λ = 10, µ = 1, ∆ > ∆cr.

Theorem 2.4. If λ > 2µ, a Hopf bifurcation occurs at ∆ = ∆cr, where ∆cr is given by

(2.13) ∆cr(λ, µ) =
2 arccos(−2µ/λ)√

λ2 − 4µ2
.

Proof. When ∆ = ∆cr, there is a a pair of purely imaginary eigenvalues Λ and Λ̄. Further,
Re Λ′(∆cr) > 0. We show this by introducing Λ = α(∆) + iω(∆) into the characteristic equation
(2.11), separating the real and imaginary parts into two equations, and implicitly differentiating
with respect to delay. We find dω

d∆(∆cr) to be

dω

d∆
(∆cr) =

λ
2 e
−α∆

(
cos(ω∆)ω − sin(ω∆)(α′∆ + α)

)
1− λ∆

2 cos(ω∆)e−α∆
= −ωcr(α

′∆cr + µ)

1 + µ∆cr
,(2.14)
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This result is used to determine Re Λ′(∆cr) = dα
d∆(∆cr):

α′ − λ

2
e−α∆(α′∆ + α) cos(ω∆)− λ

2
e−α∆ sin(ω∆)(ω′∆ + ω) = 0,(2.15)

dα

d∆
(∆cr) =

ω2
cr

(1 + µ∆cr)2 + ω2
cr∆

2
cr

> 0 ∀∆cr > 0.(2.16)

where we use that at ∆cr, α = 0, ω = ωcr, sin(∆crωcr) = 2ωcr
λ , and cos(∆crωcr) = −2µ

λ .
At each root of ∆cr there is one purely imaginary pair of eigenvalues, but all other eigenvalues

necessarily have a nonzero real part. This implies that all roots Λj 6= Λ, Λ̄ satisfy Λj 6= mΛ for any
integer m. Hence, all conditions of the infinite-dimensional version of the Hopf theorem from [13]
are satisfied, so a Hopf bifurcation occurs at every root of ∆cr.

Once the equilibrium loses stability, a limit cycle emerges. We now show that the resulting limit
cycle is stable.

Theorem 2.5. The Hopf bifurcations given by Theorem 2.4 are supercritical, i.e. each Hopf
produces a stable limit cycle in its center manifold.

Proof. One way to establish stability of limit cycles is by the method of slow flow, or the method
of multiple scales. This method has previously been applied to systems of DDE’s [7, 5, 22]. Another
standard way to determine the stability of limit cycles is by showing that the floquet exponent has
negative real part, as outlined in Hassard et al. [14]. In this theorem, we follow the first approach
(the method of slow flow), but for the interest of the reader we include the floquet exponent method
in the Appendix, subsection 5.1.5. We note that the results of the two methods agree.

We consider the third order polynomial expansions of q1 and q2 about the equilibrium. The
resulting equations can be uncoupled, with the function of our interest given by

•
ṽ2(t) = λ

(
− ṽ2(t−∆)

2
+
ṽ3

2(t−∆)

24

)
− µṽ2(t).(2.17)

For the details, see subsection 5.1.3 - subsection 5.1.4 of the Appendix. We set ṽ2(t) =
√
εx(t) in

order to prepare the DDE for perturbation treatment, and replace the independent variable t by
two new time variables ξ = ωt (stretched time) and η = εt (slow time). The delay and frequency

are expanded about the critical Hopf values, ∆ = ∆cr + εα, ω = ωcr + εβ, so
•
x becomes

(2.18)
•
x =

dx

dt
=
∂x

∂ξ

dξ

dt
+
∂x

∂η

dη

dt
=
∂x

∂ξ
· (ωcr + εβ) +

∂x

∂η
· ε.

The expression for x(t−∆) may be simplified by Taylor expansion for small ε:

x(t−∆) = x(ξ − ω∆, η − ε∆) = x̃− ε(ωcrα+ ∆crβ) · ∂x̃
∂ξ
− ε∆cr

∂x̃

∂η
+O(ε2),(2.19)

where x(ξ − ωcr∆cr, η) = x̃. The function x is represented as x = x0 + εx1 + . . . , yielding

(2.20)
dx

dt
= ωcr

∂x0

∂ξ
+ εβ

∂x0

∂ξ
+ ε

∂x0

∂η
+ εωcr

∂x1

∂ξ
.

After the proposed transformations are carried out, the DDE (2.17) can be separated into two
equations by collecting the terms with like powers of ε,

ωcr
∂x0

∂ξ
+
λ

2
x̃0 + µx0 = 0,(2.21)

ωcr
∂x1

∂ξ
+
λ

2
x̃1 + µx1 = −βx0ξ − x0η +

λ

2

(
β∆cr + αωcr

)
· x̃0ξ +

λ

24
x̃3

0.(2.22)
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Equation (2.21) shows that x0 can be written as x0(t) = A(η) cos(ξ) +B(η) sin(ξ). Eliminating the
secular terms sin(ξ) and cos(ξ) in Equation (2.22), we get two equations that involve d

dηA(η) and
d
dηB(η), and we remove the delay terms by using Equation (2.21). We switch into polar coordinates

by introducing R(η) =
√
A(η)2 +B(η)2, and we find dR

dη :

(2.23)
dR

dη
= −

R
(

(∆crλ
2 + 4µ)R2 − 16α(λ2 − 4µ2)

)
16(4 + ∆2

crλ
2 + 8∆crµ)

.

Since R ≥ 0 by definition, the two equilibrium points are R1 = 0, which is unstable, and R2 =√
16α(λ2−4µ2)
(∆crλ2+4µ)

, which is stable. Thus the limit cycle born when ∆ exceeds any root of ∆cr is locally

stable in its center manifold.

To summarize, the queues converge to an equilibrium regardless of the delay when λ < 2µ.
However, when λ > 2µ, infinitely many pairs of complex eigenvalues will (one by one) cross the
imaginary axis from negative to positive real half of the complex plane as the delay increases. Each
point of the delay where a pair of eigenvalues reaches the imaginary axis results in a supercritical
Hopf bifurcation, and is denoted by the critical delay ∆cr. Figure 2.4 displays the curves along
which the Hopf bifurcations occur, as a function of the arrival rate λ. For any λ, the queues
lose stability when the delay exceeds the first Hopf curve, at which point a stable limit cycle is
established. We will now approximate the amplitude of the limit cycle near the bifurcation point
via Lindstedt’s method.

Figure 2.4: The Hopf curves for µ = 1.

2.2. Main Steps of Lindstedt’s Method. Lindstedt’s method was originally formulated for
finite-dimensional differential equations, but has been later extended to delay differential equations.
Texts such as [8] and [27] apply Lindstedt’s method for equations with delays. We synthesize the
main steps into four essential parts. These steps provide clarity to the reader who might be
unfamiliar with asymptotic techniques and outline a complete methodology for replicating our
results for other types of models.

1. The third order Taylor expansions of the DDE’s (2.2) - (2.3) can be uncoupled, yielding ṽ2

from Equation (5.14) as our function of interest. The details are provided in the Appendix,
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subsection 5.1.3 - subsection 5.1.4. We stretch the time t and scale the function ṽ2:

(2.24) τ = ωt, ṽ2(t) =
√
εv(t).

2. We approximate the unknown function v(t), the delay ∆, and the oscillation frequency ω
by performing asymptotic expansions in ε:

(2.25) v(t) = v0(t) + εv1(t) + ..., ∆ = ∆0 + ε∆1 + ..., ω = ω0 + εω1 + ...

3. After the expansions from (2.25) are made, the resulting equation can be separated by the
terms with like powers of ε (ε0 and ε1). The resulting equations are

µv0(τ) +
λ

2
v0(τ −∆0ω0) + ω0v

′
0(τ) = 0,(2.26)

µv1(τ) +
λ

2
v1(τ −∆0ω0) + ω0v

′
1(τ)

+ ω1v
′
0(τ)− 1

24
λv3

0(τ −∆0ω0)− 1

2
λ(∆1ω0 + ∆0ω1)v′0(τ −∆0ω0) = 0.(2.27)

Equation (2.26) is satisfied by the solution v0(τ) = Av sin(τ), which is expected since v0

describes the queue behavior at the Hopf bifurcation where a limit cycle is born. It can be
verified by substitution of ∆0 = ∆cr and ω0 = ωcr. Further, the equation for v1(τ) has a
homogeneous and a non-homogeneous parts to it. The homogeneous part vH1 (τ) satisfies an
equation which is identical to the Equation (2.26), so any linear combination of sin(τ) and
cos(τ) will satisfy the equation for vH1 (τ). To avoid secular terms in the non-homogeneous
solution, the coefficients of sin(τ) and cos(τ) resulting from v0 in Equation (2.27) must
vanish. This gives two equations with two unknowns, Av and ω1.

4. The resulting equations can be solved for Av and ω1. Substituting in ∆0 = ∆cr and
ω0 = ωcr, the results are

(2.28) ω1 = − (∆−∆cr)λ
2(λ2 − 4µ2)3/2

4
(

2λ2µ− 8µ3 + λ2
√
λ2 − 4µ2 arccos(−2µ

λ )
) ,

(2.29) Av(∆) =
√

∆−∆cr ·
√

8(λ2 − 4µ2)2

2λ2µ− 8µ3 + λ2
√
λ2 − 4µ2 arccos(−2µ

λ )
.

Amplitude of the Queues. The function ṽ2 from Equation (5.14) attains a steady state ampli-
tude approximately given by Av. A change of variables reveals the amplitude of q1 and q2, showing
that the steady state of queues up to a phase shift is given by

q1(t)→ λ

2µ
+

1

2
Av sin(ωt), q2(t)→ λ

2µ
− 1

2
Av sin(ωt),(2.30)

where ω is the frequency of oscillations and the amplitude is 1
2Av.

2.3. Numerical Results of Lindstedt’s Method. Although the Figure 2.5 - Figure 2.6 demon-
strate that the amplitude approximation from Equation (2.30) matches the behavior of the queues
quite well, they do not reveal whether the approximation remains equally accurate when the model
parameters vary. Hence, in this section, we wish to know under what conditions the approximation
of the steady state amplitude is accurate. We consider the queue lengths to be determined with
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sufficient accuracy by numerical integration of Equations (2.2) - (2.3) using MATLAB’s ’dde23’
function, and will use numerical integration to assess the validity of the approximation.

Figure 2.5: λ = 10, µ = 1. Figure 2.6: λ = 10, µ = 1.

Lindstedt’s method perturbs the system about ∆cr, so the approximated amplitude must ap-
proach the true amplitude as ∆→ ∆cr. This is consistent with our numerical results, and is evident
from Figure 2.7 - Figure 2.8. The two plots compare the numerically found amplitude with Lind-
stedt’s amplitude while treating each as a function of delay for parameters (λ, µ) = (10, 1) for the
ranges ∆ ∈ [∆cr,∆cr +0.2] and ∆ ∈ [∆cr,∆cr +1], respectively. In both cases the approximation is
highly accurate when τ = ∆ −∆cr → 0. However, Lindstedt’s method cannot provide theoretical
guarantees as the gap between ∆ and ∆cr increases, and as seen from Figure 2.7 - Figure 2.8 the
approximation loses accuracy.

Figure 2.7: λ = 10, µ = 1. Figure 2.8: λ = 10, µ = 1.

The method’s performance is also affected by the choice of parameters λ and µ. Lindstedt’s
method works better for smaller λ, as shown by the surface plot Figure 2.9 of the absolute error of
Lindstedt’s approximation across a range of λ and ∆. Based on the plot, the error of approximation
monotonically increases with respect to both λ and ∆. While the absolute error in Figure 2.9 is
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constructed for µ = 1, the same holds for other choices of µ. The performance of Lindstedt’s
method depends on µ in a similar fashion. The accuracy of the method improves when µ increases,
and the error is monotone with respect to both µ and ∆. This trend is exemplified by the surface
plot in Figure 2.10, which shows the absolute error of Lindstedt’s method as a function of µ and
∆, for λ = 10.

Figure 2.9: Absolute error, varying λ. Figure 2.10: Absolute error, varying µ.

The observation that Lindstedt’s method works differently for varying values of λ, µ, and ∆
leads to two points. The first point is that even though the parameters depend on the physical
circumstances and cannot be easily manipulated, it is beneficial to know when to expect a larger
error in approximation. The second point is that the limitations of Lindstedt’s method motivate us
to develop a different numerical technique with the objective of decreasing the maximum error over
a larger set of parameter values. Specifically, we would like to eliminate the peaks of error observed
in Figure 2.9 - Figure 2.10 when λ is large or µ is small, and therefore obtain a more accurate
approximation of the amplitude. With this in mind, we introduce the slope function method.

2.4. The Slope Function Method. The theory of Hopf bifurcation together with numerical
examples highlight that the amplitude is approximately proportional to the square root of the
difference of the actual delay and the critical delay, i.e.

(2.31) Amplitude ≈ C(λ, µ) ·
√

∆−∆cr,

where the C(λ, µ) does not depend on ∆. We call C(λ, µ) the slope function as it characterizes
the slope of the amplitude as a function of system’s parameters. In this section, we propose a
statistical way to fit the slope function, which turns out to approximate the amplitude in some
cases better than Lindstedt’s method.

The Slope Function Algorithm.
1. For a fixed pair of parameters λ1 and µ1, we find the amplitude A(τ) via numerical inte-

gration for a finite number of points τ = ∆−∆cr := 0, d, 2d, ..., (K − 1)d, where d > 0 and
K ∈ N. Then C(λ1, µ1) is defined to be such coefficient C that for Ap(τ) = C

√
τ , the error

Ap(τ)−A(τ) is minimized in the least squares sense.
The sum of squared errors for the K points of delay is given by the function F (c) =

10



∑K−1
j=0

(
c
√
jd−A(jd)

)2
, which by definition reaches its minimum at C. Hence

dF (C)

dc
=

K−1∑
j=0

2
√
jd
(
C
√
jd−A(jd)

)
= 0.(2.32)

The closed-form solution for C is found to be

C =

∑K−1
j=0

√
jdA(jd)∑K−1

j=0 jd
.(2.33)

This gives us the value of the slope function at (λ1, µ1). To see how this approximation
compares to the Lindstedt’s method, consider Figure 2.11 and Figure 2.12, which show the
amplitude as a function of delay for λ = 10 and λ = 20, respectively. The slope function
offers a relatively good approximation for the fixed λ and µ, and it is left to determine the
function for the other values of λ and µ.

Figure 2.11: Approximation comparison. Figure 2.12: Approximation comparison.

2. We extrapolate to find the slope function at arbitrary λ and µ based on the function’s values
computed for a few points. We assume that C(λ, µ) is a separable function,

(2.34) C(λ, µ) = Λ(λ)M(µ),

and then approximate the functions Λ and M by first degree polynomials

Λ(λ) ≈ l0 + l1λ, M(µ) ≈ m0 +m1µ, l0, l1,m0,m1 ∈ R.(2.35)

We cannot prove that C is a separable function because it depends on the unknown function
A, the ”true” amplitude, which is not necessarily separable. However, the separability as-
sumption is a reasonable approximation based on numerical insight. Further, C(λ, µ) from
Equation (2.33), as seen from experimental data, indeed is very close to a linear function
of λ when µ is constant, and it is close to linear as a function of µ while λ is constant.
This approximately linear behavior with respect to λ and µ is demonstrated in Figure 2.13
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- Figure 2.14, respectively, where the blue line in each plot represents the values of C(λ, µ)
computed according to Equation (2.33).

Figure 2.13: C is approximately linear in λ. Figure 2.14: C is approximately linear in µ.

3. We reduce the number of coefficients by a change of variables a1 = l1m1, l0 = a2l1, and
m0 = a3m1. Equation (2.34) then becomes

(2.36) C(λ, µ) = a1(a2 + λ)(a3 + µ).

Determining three unknown coefficients requires three data points C(λ1, µ1), C(λ2, µ1), and
C(λ1, µ2) that are evaluated based on Equation (2.33) from Step 1 of the algorithm. Then
Equation (2.36) allows us to solve for a1, a2, and a3:

C(λ1, µ1)

C(λ2, µ1)
=
a2 + λ1

a2 + λ2
,

C(λ1, µ1)

C(λ1, µ2)
=
a3 + µ1

a3 + µ2
, a1 =

C(λ1, µ2)

(a2 + λ1)(a3 + µ2)
.(2.37)

Therefore the coefficients of interest are

a1 =
C(λ1, µ2)

(a2 + λ1)(a3 + µ2)
, a2 =

λ1 − x1λ2

x1 − 1
, a3 =

µ1 − x2µ2

x2 − 1
,(2.38)

where x2 =
C(λ1, µ1)

C(λ1, µ2)
, x1 =

C(λ1, µ1)

C(λ2, µ1)
.(2.39)

Remark. By this algorithm, the amplitude of the queues is estimated to be

Amplitude ≈ a1(a2 + λ)(a3 + µ)
√

∆−∆cr,(2.40)

where the coefficients a1, a2, and a3 are given by Equations (2.38) - (2.39). The specific values
of these coefficients will slightly vary depending on the choice of parameters λ1, λ2, µ1, and µ2

because the linearity assumption of Equations (2.35) is only an approximation of the true behavior
as shown in Figure 2.13 - Figure 2.14. Hence, for optimal results one should choose the data points
C(λ1, µ1), C(λ2, µ1), and C(λ1, µ2) around the range of λ and µ that one is interested in.
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2.5. Numerical Results for the Slope Function Method. We will now numerically compare
the performance of the slope function method to Lindstedt’s method. Figure 2.15 and Figure 2.16
show the absolute error of the amplitude for varying λ and ∆ resulting from the slope function and
Lindstedt’s method, respectively. Note that overall the slope function results in a smaller error for
a wide range of λ and ∆, with a maximum error of 0.4 compared with a maximum error of 1.5
in Lindstedt’s approximation. However, unlike Lindstedt’s technique the slope function does not
guarantee to be accurate when ∆ approaches ∆cr. Thus, it is advantageous to use the slope func-
tion for predicting the amplitude when the delay is sufficiently greater than the critical value, while
Lindstedt’s method is preferable when the delay is close to the threshold. A similar observation
holds in the case when λ is constant and µ varies. Surface plots Figure 2.17 and Figure 2.18 show
that the slope function has a maximum error of less than a third of the error seen in Lindstedt’s
method, being outperformed mainly when the delay approaches the critical value.

Figure 2.15: Absolute error from the
slope function, with µ = 1.

Figure 2.16: Absolute error from Lindtsedt’s
method, with µ = 1.

Figure 2.17: Absolute error from the
slope function, with λ = 20.

Figure 2.18: Absolute error from Lindtsedt’s
method, with λ = 20.

In conclusion to this analysis, we wish to emphasize that neither numerical method comes with
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an analytic expression for an error bound. Therefore a comparison of numeric results provides a
valuable insight and gives intuition about the performance of the two methods. However, our insight
from numerics is of course limited because we do not have guarantees that the numerical trends
observed for this one queueing model can be extended to other models. In the next section we will
introduce a different queueing model not only to study the model’s behavior (which is interesting
in of itself given the model’s relevance to applications), but also to verify that the numerical trends
of the method performance are consistent with the trends we observed so far.

3. Moving Average Fluid Model. In this section, we present a queueing model similar to
the constant delay model from section 2, except here, the information given to the customer is the
average length of each queue measured over the last ∆ time units, or the moving average. Figure 2.1
still accurately represents the overall system: the customers appear at a rate λ, join one of the two
queues with probabilities p1 and p2, and get service at a rate µ with an infinite number of servers.
Customers join the queues according to the Multinomial Logit Model, giving higher preference to
the queue with a smaller average length

p1 =
exp

(
− 1

∆

∫ t
t−∆ q1(s)ds

)
exp

(
− 1

∆

∫ t
t−∆ q1(s)ds

)
+ exp

(
− 1

∆

∫ t
t−∆ q2(s)ds

)(3.1)

p2 =
exp

(
− 1

∆

∫ t
t−∆ q2(s)ds

)
exp

(
− 1

∆

∫ t
t−∆ q1(s)ds

)
+ exp

(
− 1

∆

∫ t
t−∆ q2(s)ds

) .(3.2)

Here pi is the probability of ith queue being joined, qi(t) is the ith queue length, and the integral
expressions in the exponents are the moving average lengths of the queues.

Given these probabilities we can describe the queue lengths as

•
q1 = λ ·

exp
(
− 1

∆

∫ t
t−∆ q1(s)ds

)
exp

(
− 1

∆

∫ t
t−∆ q1(s)ds

)
+ exp

(
− 1

∆

∫ t
t−∆ q2(s)ds

) − µq1(t)(3.3)

•
q2 = λ ·

exp
(
− 1

∆

∫ t
t−∆ q2(s)ds

)
exp

(
− 1

∆

∫ t
t−∆ q1(s)ds

)
+ exp

(
− 1

∆

∫ t
t−∆ q2(s)ds

) − µq2(t),(3.4)

where ∆, λ, µ > 0. The equations are simplified by the notation for the moving average mi, which
itself satisfies a delay differential equation:

mi(t,∆) =
1

∆

∫ t

t−∆
qi(s)ds,(3.5)

•
mi(t,∆) =

1

∆
·
(
qi(t)− qi(t−∆)

)
, i ∈ {1, 2}.(3.6)

The functional differential equations (3.3) - (3.4) can now be expressed as a system of DDE’s

•
q1 = λ · exp(−m1(t))

exp(−m1(t)) + exp(−m2(t))
− µq1(t)(3.7)

•
q2 = λ · exp(−m2(t))

exp(−m1(t)) + exp(−m2(t))
− µq2(t)(3.8)

•
m1 =

1

∆
· (q1(t)− q1(t−∆))(3.9)

•
m2 =

1

∆
· (q2(t)− q2(t−∆)).(3.10)
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Since the functions mi represent the averages of qi, the initial conditions of mi must reflect this.
With f1(t) and f2(t) being continuous and nonnegative functions on t ∈ [−∆, 0], the initial condi-
tions are

q1(t) = f1(t), q2(t) = f2(t), t ∈ [−∆, 0];(3.11)

m1(0) =
1

∆

∫ 0

−∆
f1(s)ds, m2(0) =

1

∆

∫ 0

−∆
f2(s)ds.(3.12)

3.1. Hopf Bifurcation in the Moving Average Model. The behavior of the queues (3.7) -
(3.10) depends on the delay parameter ∆, but the dependence itself is more nuanced than in the
Constant Delay model. To provide a qualitative understanding of the behavior, we will begin by
establishing the existence and uniqueness of the equilibrium.

Theorem 3.1. The unique equilibrium of Equations (3.7) - (3.10) is given by

(3.13) q∗1(t) = q∗2(t) = m∗1(t) = m∗2(t) =
λ

2µ
.

Proof. See the proof in the Appendix.

The stability of the equilibrium comes from the eigenvalues of the characteristic equation that
is determined by the linearized system of equation. In subsection 5.2.3 and subsection 5.2.4 in the
Appendix, we linearize the system of Equations (3.7) - (3.10) and separate the variables, reducing
the system from four unknown functions to two:

•
ṽ2(t) = −λ

2
ṽ4(t)− µṽ2(t)(3.14)

•
ṽ4(t) =

1

∆

(
ṽ2(t)− ṽ2(t−∆)

)
.(3.15)

To determine the characteristic equation, we need to first consider a special scenario with the trivial
eigenvalue. Under the assumption that ṽ2 = eΛt with Λ = 0, both functions must be constant, so
for some c2, c4 ∈ R, ṽ2(t) = c2, ṽ4(t) = c4. By Equation (3.15), the initial condition for ṽ2(t) must
be a constant function on t ∈ [−∆, 0] so ṽ2(t) = c2 for all t ≥ −∆. The initial condition for ṽ4

then implies that ṽ4(0) = c4 =
∫ 0
−∆ c2ds = ∆c2. Therefore c4 = ∆c2, but from Equation (3.14) we

also find that c2 = −λc4
2µ . The only way both equalities can hold is if c2 = c4 = 0. Thus the trivial

eigenvalue can only exist as a solution when the initial conditions are exactly zero, meaning that
both queues must be of equal length q1(t) = q2(t) = λ

2µ for all t ∈ [−∆, 0].

Now we determine the characteristic equation assuming that ṽ2 = eΛt, Λ 6= 0:

(3.16) Φ(Λ,∆) = Λ + µ+
λ

2∆Λ
− λ

2∆Λ
· e−Λ∆ = 0.

The equilibrium is stable as long as all eigenvalues Λ have negative real parts. Proposition 5.2 in
the Appendix shows that any real eigenvalue must be negative. However, since ∆ > 0 there are
also infinitely many pairs of complex eigenvalues. The following proposition shows that, regardless
of the parameters λ and µ, all complex eigenvalues have negative real parts when the delay is
sufficiently small.

Proposition 3.2. Let λ, µ,∆ > 0. There exists ∆∗ > 0 such that for any ∆ < ∆∗, all complex
eigenvalues of the characteristic equation (3.16) have negative real parts.
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Proof. Let Λ = a+ ib be a solution of Equation (3.16). Then a and b must satisfy

cos(b∆) =
ea∆

λ
(2a2∆− 2b2∆ + λ+ 2aµ∆)(3.17)

sin(b∆) = −e
a∆

λ
· 2b∆(2a+ µ).(3.18)

If b satisfies these equations, then −b is a solution too. Hence without loss of generality we will
assume that b > 0. Summing the squares of the two equations, we get

e−2a∆λ2 =
(
2a2∆− 2b2∆ + λ+ 2aµ∆

)2
+
(
2b∆(2a+ µ)

)2
,(3.19)

from which b can be expressed as a continuous function of a and ∆, namely b(a,∆). If a = 0 then

b(0,∆) =
√

λ
∆ − µ2, and when plugged into Equation (3.18) we get

sin(b(0,∆)∆) = −2µ

λ
· b(0,∆)∆(3.20)

sin(x(0,∆)) = −2µ

λ
· x(0,∆)(3.21)

x(a,∆) = b(a,∆)∆, x(0,∆) = ∆

√
λ

∆
− µ2.(3.22)

The function x will be helpful in the proof. Note that x is a continuous function of b and therefore
of a. Let us define ∆∗ > 0 as

∆∗ =


λ

2µ2
, λ

2µ ≤ π
λ−
√
λ2−4µ2π2

2µ2
, otherwise.

(3.23)

This choice of ∆∗ guarantees that for all ∆ < ∆∗, the functions b(0,∆) and x(0,∆) are real.
Further, ∆∗ ensures that 0 < x(0,∆) < min(π, λ2µ) for all ∆ < ∆∗, which can be checked from
Equation (3.22). The condition 0 < x(0,∆) < π implies that

sin(x(0,∆)) > 0 > −2µ

λ
· x(0,∆).(3.24)

However, for any a ≥ 0, Equation (3.18) gives the inequality

sin(x(a,∆)) = −e
a∆

λ
· 2x(a,∆)(2a+ µ) ≤ −2µ

λ
· x(a,∆),(3.25)

therefore when a = 0 the inequality remains

sin(x(0,∆)) ≤ −2µ

λ
· x(0,∆),(3.26)

which is in contradiction with Equation (3.24). Hence a must be negative to satisfy the character-
istic equation for ∆ < ∆∗.

The stability of the equilibrium is lost when a pair of complex eigenvalues crosses the imaginary
axis. If for some ∆ = ∆cr there are purely imaginary eigenvalues, Λ = ±iωcr, ωcr > 0, then the
characteristic equation gives the equalities

sin(ωcr∆cr) = −2∆crµωcr
λ

, cos(ωcr∆cr) = 1− 2∆crω
2
cr

λ
.(3.27)
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From the trigonometric identity sin2(ωcr∆cr) + cos2(ωcr∆cr) = 1, ωcr can be found

ωcr =

√
λ

∆cr
− µ2.(3.28)

Since ωcr must be real and nonzero, the condition ∆cr <
λ
µ2 must hold. When ωcr is substituted

into Equation (3.27), we find that ∆cr must satisfy the equation

(3.29) sin
(

∆cr ·
√

λ

∆cr
− µ2

)
+

2µ∆cr

λ
·
√

λ

∆cr
− µ2 = 0.

We are now ready to formulate the conditions that determine the stability of the equilibrium.

Theorem 3.3. If the Equation (3.29) has no positive roots ∆cr then the equilibrium of Equations
(3.7) - (3.10) is stable for all ∆ > 0. If there exists ∆cr > 0 satisfying Equation (3.29) then the
equilibrium is stable when ∆ is less than the smallest positive root ∆cr or greater than the largest
root ∆cr. Further, the largest root ∆cr is less than λ

µ2
.

Proof. See the proof in the Appendix.

If and when ∆ exceeds the smallest positive root ∆cr of Equation (3.29), the equilibrium becomes
unstable and a stable limit cycle emerges. Figure 3.1 and Figure 3.2 show the transition. The
change of behavior is due to a Hopf bifurcation, as shown in the next theorem. Further, since
there can be multiple roots ∆cr to Equation (3.29) for fixed parameters λ and µ, multiple Hopf
bifurcations may occur.

Figure 3.1: Before bifurcation. Figure 3.2: After bifurcation.

Theorem 3.4. If ∆cr satisfies Equation (3.29) and ∆cr 6= λ−2µ
2µ2

, then the queues from Equations

(3.7) - (3.10) undergo a Hopf bifurcation at ∆cr.

Proof. For each ∆cr satisfying Equation (3.29), the characteristic equation (3.16) has two simple
roots Λ = ±iωcr. Further, through implicit differentiation of Equation (3.16), it can be shown that
Re[Λ′(∆cr)] 6= 0:

Re Λ′(∆cr) =
2ω2

cr(λ− 2µ− 2µ2∆cr)

4ω2
cr∆cr(3 + 2∆crµ) + λ(4 + ∆crλ+ 4∆crµ)

.(3.30)

The denominator of Re[Λ′(∆cr)] is positive, and the assumption ∆cr 6= λ−2µ
2µ2

guarantees the nu-
merator to be nonzero. Further, all other eigenvalues Λ∗ are complex with a nonzero real part, so
Λ∗ 6= mΛ. Therefore, a Hopf bifurcation occurs at ∆cr.
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As was suggested by Figure 3.2, the limit cycle is stable. In fact, the following theorem shows that
any Hopf bifurcation in our queueing system is supercritical.

Theorem 3.5. Any Hopf bifurcation from Theorem 3.4 is supercritical.

Proof. We will use the method of slow flow to determine whether the limit cycle is stable. The
third order expansion of Equations (3.7) - (3.8) can be uncoupled, and the resulting equations of
interest are given by subsection 5.2.3 and subsection 5.2.4:

•
ṽ2 = λ

(
− ṽ4(t)

2
+
ṽ4(t)3

24

)
− µṽ2(t)(3.31)

•
ṽ4 =

1

∆

(
ṽ2(t)− ṽ2(t−∆)

)
.(3.32)

The two variables are scaled by
√
ε

ṽ2(t) =
√
εv(t), ṽ4(t) =

√
εu(t),(3.33)

the delay and the frequency are expanded close to their critical values, and two time scales are
introduced:

∆ = ∆cr + εα, ω = ωcr + εβ, ξ = ωt, η = εt.(3.34)

The functions v(t) and u(t) are also expanded

v(ξ, η) = v0(ξ, η) + εv1(ξ, η), u(ξ, η) = u0(ξ, η) + εu1(ξ, η).(3.35)

When the suggested transformations are made to the equations for
•
v(t) and

•
u(t), we can separate

the resulting equations by collecting all the terms with the like orders of ε. The equations for the
zeroth order terms are satisfied with a solution of the form

v0(ξ, η) = A(η) cos(ξ) +B(η) sin(ξ),(3.36)

which allows us to find the form of u0(ξ, η):

u0(ξ, η) = −2(A(η) +B(η)ωcr)

λ
cos(ξ)− 2(B(η)−A(η)ωcr)

λ
sin(ξ).(3.37)

The terms involving the first order of ε comprise of (i) the differential operator acting on x1, (ii) the
non-resonant terms cos(3ξ) and sin(3ξ), and (iii) the resonant terms involving cos(ξ) and sin(ξ).
For no secular terms, the coefficients of cos(ξ) and sin(ξ) must vanish, giving a slow flow on A(η)
and B(η). By introducing the polar coordinates

A = R cos(Θ), B = R sin(Θ)(3.38)

we find equation for the radial component d
dηR(η)

dR

dη
=

R(λ−∆crµ
2)(R2(λ+ 2µ)− 4αλ(λ− 2µ− 2∆crµ

2))

2∆crλ(−∆crλ2 + 4∆crµ2(3 + 2∆crµ)− 4λ(4 + 3∆crµ))
(3.39)

Assuming R ≥ 0, the equilibrium points are

R0 = 0, R1 =

√
4αλ(λ− 2µ− 2∆crµ2)

λ+ 2µ
.(3.40)
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From Theorem 3.4, ∆cr 6= λ−2µ
2µ2

, so R1 and R0 are always two distinct points. When ∆cr <
λ−2µ
2µ2

then in order for R1 to be real, α must be positive. On the other hand, if ∆cr >
λ−2µ
2µ2

then α

must be negative for R1 to be real. In both cases, the assumption λ
∆cr
− µ2 > 0 that arose from

the frequency ωcr being positive, guarantees that dR
dη is positive on the interval R ∈ (0, R1) and

negative when R > R1. Therefore the Hopf bifurcation is supercritical.

To summarize, for any fixed parameters λ and µ the queues converge to a stable equilibrium
when the delay is sufficiently small. However, as the delay increases up to ∆ = λ−2µ

2µ2
, finitely many

pairs of complex eigenvalues may cross to the positive real side of the imaginary axis of the complex
plane. Every pair of eigenvalues reaching the imaginary axis is indicated on Figure 3.3 by a Hopf
curve. Note that the dashed orange line ∆ = λ−2µ

2µ2
from Figure 3.3 passes through the minimum of

each Hopf curve, where each minimum represents a pair of eigenvalues that reaches the imaginary
axis at ∆ = λ−2µ

2µ2
and then returns back to the negative real side of complex plane without crossing

the imaginary axis.
Once the delay exceeds λ−2µ

2µ2
and the parameters are in the region to the right of the dashed

orange line from Figure 3.3, every pair of eigenvalues with positive real parts will inevitably cross
back the imaginary axis in the negative real direction. In fact, all eigenvalues will obtain negative
real parts before the delay reaches a. This is guaranteed by the condition 0 6= ωcr ∈ R together
with Proposition 5.3 in the Appendix. The condition ∆ = λ

µ2
is indicated on Figure 3.3 by the

non-Hopf curve, and it is clear that the Hopf curves cannot cross the non-Hopf curve.
The equilibrium is stable whenever λ is below the Hopf 1 curve from Figure 3.3. To quantita-

tively describe the behavior of the queues after Hopf 1 curve is crossed, we will approximate the
amplitude of the queue oscillations via Lindstedt’s method.

Figure 3.3: The Hopf curves for µ = 1; green area - limit cycles; blue area - stable equilibrium;
dashed orange line → λ = 2µ2∆ + 2µ; the non-Hopf curve → ∆ = λ

µ2
.
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3.2. Lindstedt’s Method. We apply Lindstedt’s method according to the steps shown in sub-
section 2.2. However, instead of working with one unknown function we are now working with
two.

1. We start with the variables that represent third order polynomial expansion of q1, q2, m1,
and m1 about the equilibrium. These four variables can be reduced to two by a change
of variables. The details are provided in the Appendix, subsection 5.2.3 - subsection 5.2.4.
The functions of interest become ṽ2 and ṽ4 from Equation (5.43). We stretch the time and
scale both functions by

√
ε:

(3.41) τ = ωt, ṽ2 =
√
εv(t), ṽ4 =

√
εu(t).

This ensures that the cubic terms will have one higher order of ε than linear terms,

ω
•
v(τ) = λ

(
− u(τ)

2
+
εu(τ)3

24

)
− µv(τ)(3.42)

ω
•
u(τ) =

1

∆

(
v(τ)− v(τ − ω∆)

)
.(3.43)

2. We approximate the variables by performing asymptotic expansions in ε:

v(t) = v0(t) + εv1(t) + ..., u(t) = u0(t) + εu1(t) + ...,(3.44)

∆ = ∆0 + ε∆1 + ..., ω = ω0 + εω1 + ...(3.45)

3. We separate each of the resulting equations by collecting all the terms of the like powers of
ε. The terms of order ε0 yield equalities

0 =
1

2
λm0(τ) + µv0(τ) + ω0

•
v0(τ)(3.46)

0 = −v0(τ) + v0(τ −∆0ω0) + ∆0ω0
•
m0(τ),(3.47)

and the terms of order ε1 yield

0 = − 1

24
λm0(τ)3 +

1

2
λm1(τ) + µv1(τ) + ω1

•
v0(τ) + ω0

•
v1(τ)(3.48)

0 = ∆1

(
v0(τ)− v0(τ −∆0ω0)

)
+ ∆2

0ω1
•
m0(τ) + ∆2

0ω0
•
m1(τ)

− ∆0

(
v1(τ)− v1(τ −∆0ω0) + (∆1ω0 + ∆0ω1)

•
v0(τ −∆0ω0)

)
.(3.49)

The function m0 can be expressed through v0 by Equation (3.46), and m1 can be expressed
through v0 and v1 from Equation (3.48). It can be verified that v0(τ) = Av sin(τ) satisfies
Equations (3.46) - (3.47). Further, the homogeneous part of solution for v1 is satisfied
by vH1 (τ) = a sin(τ) + b cos(τ). Therefore to avoid secular terms sin(τ) and cos(τ), the
coefficients of sin(τ) and cos(τ) from Equation (3.49) must vanish. This condition gives two
equations for two unknowns, w1 and Av.

4. After some algebra we determine the amplitude Av as a function of delay:

Av(∆) =
√

∆−∆cr ·

√
4λ2(−λ− 2µ+ 2∆crω2

cr)

∆cr

(
µ2 + ω2

cr

)(
− λ+ 2(µ+ ∆crµ2 + ∆crω2

cr)
) .(3.50)
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Amplitude of the Queues. The function Av approximates the amplitude of oscillations for v(t)
from Equation (3.42). A change of variables reveals the amplitude of q1 and q2, showing that the
steady state of queues is given up to a phase shift by

q1(t)→ λ

2µ
+

1

2
Av sin(ωt), q2(t)→ λ

2µ
− 1

2
Av sin(ωt),(3.51)

where the amplitude is 1
2Av and ω is the frequency of oscillations. Figure 3.4 - Figure 3.5 use the

predicted amplitude to bound the oscillations of queues near the bifurcation point, providing some
validation to Lindstedt’s method as well as our calculations.

Figure 3.4: λ = 20, µ = 1. Figure 3.5: λ = 20, µ = 1.

3.3. Numerical Results. In this section we compare the approximations of amplitude from
Lindstedt’s method and the slope function method to the true behavior of the queueing system.
Note that the slope function is provided by the algorithm in subsection 2.4 and Equation (2.40), so
no additional work is needed. Also, we consider the queue lengths to be determined with sufficient
accuracy by numerical integration of Equations (3.7) - (3.10) using MATLAB’s ’dde23’ function,
so we will test our approximations against the numerical integration results.

Our key finding is that the trends of the method performance are consistent with those that
were observed for the constant delay model in subsection 2.3, both for Lindstedt’s method and
the slope function method. Hence, we avoid repeating the analysis of subsection 2.3, and instead
provide relevant figures with a summary of the key differences between the two methods.

• Lindstedt’s method tends to be more accurate than the slope function method when ∆→
∆cr. For example, see Figure 3.7, where the amplitude is shown as a function of delay.
• Lindstedt’s method loses accuracy when the delay increases, and it is outperformed by the

slope function method for larger delay. See Figure 3.6 - Figure 3.11.
• The error of Lindstedt’s approximation is monotonic in λ,∆, and µ. Hence, over the

parameter space the error function has predictable and significant peaks around large λ
and ∆ and around small µ. See Figure 3.9 and Figure 3.11.
• The error of the slope function method is relatively evenly distributed over the parameter

space, and therefore there are no significant peaks in error. See Figure 3.8 and Figure 3.10.
• The maximum error for slope function over a neighborhood of parameters is 3 - 4 times

smaller than it is for Lindstedt’s method. Specifically, the maximum error is three times
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smaller for the constant delay model, and 4 times smaller for the moving average model.
See Figure 3.8 - Figure 3.11.

Figure 3.6: Comparison of approximations. Figure 3.7: Comparison of approximations.

Figure 3.8: Absolute error, µ = 1. Figure 3.9: Absolute error, µ = 1.
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Figure 3.10: Absolute error, λ = 20. Figure 3.11: Absolute error, λ = 20.

4. Conclusion. In this paper, we analyze two queueing models that incorporate customer choice
and delayed queue length information. The first model assumes a constant delay and while the
second one uses a moving average. We analyze the qualitative behavior of these queueing models
and show the occurrence of supercritical Hopf bifurcations. Using Lindstedt’s method, we construct
an analytic approximation for the amplitude of oscillations that the queueing system exhibits after
a Hopf bifurcation. Lindstedt’s method works well where the delay is close the critical delay value,
but the method becomes less accurate for larger values of delay. We address this by proposing a
new numerical technique, the slope function method, that estimates the slope of the amplitude as
a function of the system’s parameters.

The slope function method is conceptually intuitive and elementary in implementation. It can
be used in a wide variety of models where a Hopf bifurcation is observed. Unlike the perturbations
method, the slope function does not require complicated analytical work and can be implemented
without a substantial mathematical background. Limit cycles are known to occur in models studied
by social scientists and biologists, for which the slope function method can provide an easy way to
numerically approximate the amplitude of oscillations. Although we give no theoretical guarantees
on the method’s performance, our paper demonstrates on two different models that the slope
function method maintains a low error across a much wider range of the parameters than does
Lindstedt’s method. For our models, the maximum error in approximation is 3 − 4 times smaller
over a large neighborhood of parameters than the maximum error from Lindstedt’s method.

Lastly, it is worthy to note that this paper connects the field of queueing theory to nonlinear
dynamics and, in particular, delay-differential equations. Our work opens doors for many other
queueing models to be considered with mathematical techniques that may be new to the queueing
community. Simultaneously, our work places queueing theory on the radar of the dynamical systems
experts as a potential application area for their research with direct relevance to industry.
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5. Appendix.

5.1. Constant Delay Model.

5.1.1. Showing the existence and uniqueness of equilibrium.

Proof of Theorem (2.1). When qi(t) = qi(t−∆) = λ
Nµ for each 1 ≤ i ≤ N , all functions qi are

constant with respect to time

(5.1)
•
qi(t) = λ ·

exp(− λ
Nµ)∑N

j=1 exp(− λ
Nµ)
− µ λ

Nµ
= 0.

Therefore q∗i = λ
Nµ is an equilibrium.

To show uniqueness, we will argue by contradiction. Suppose there is another equilibrium given
by q̄i, 1 ≤ i ≤ N , and for some i we have q∗i 6= q̄i. Without loss of generality, let us assume that it
is the N ’th queue, so q∗N 6= q̄N . Also, without loss of generality let us assume that q∗N > q̄N , and
since both are constants with respect to time, we can conclude that q̄N (t) = λ

Nµ + ε for some ε > 0.

From the condition 0 =
∑N

i=1

•
q̄i, the sum of the queues has to be

∑N
i=1 q̄i = λ

µ , so the average

queue length is 1
N

∑N
i=1 q̄i = λ

Nµ . Since q̄N is greater than the average, then there must be some

queue q̄k, 1 ≤ k ≤ N − 1, that is less than the average, so q̄k = λ
µN − δ for some δ > 0. We can use

this together with the condition
•
q̄i = 0 to get an expression

(5.2)

N∑
i=1

exp
(
− q̄i(t−∆)

)
=
λ

µ
·

exp
(
− λ

Nµ + δ
)

( λ
Nµ − δ)

,
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which can now be used to show contradiction:

•
q̄N (t) = λ

exp
(
− λ

Nµ − ε
)

λ
µ ·

exp(− λ
Nµ

+δ)

( λ
Nµ
−δ)

− µ
( λ

Nµ
+ ε
)

(5.3)

= − λ
N

(
1− e−ε−δ

)
− µ

(
ε+ δe−ε−δ

)
< 0.(5.4)

Hence q̄i is not an equilibrium, and so the equilibrium must be unique.

5.1.2. Showing stability of the equilibrium. The following proposition is used to prove the
stability of the equilibrium.

Proposition 5.1. If there is a root r = x+ iy of the characteristic equation

(5.5) r = α+ βe−r∆

with positive real part (x > 0) then it is bounded by x ≤ α+ |β| and |y| ≤ |β|.
Proof. Plug r = x+ iy into Equation (5.5) and separate real and imaginary parts to get

cos(y∆) =
ex∆(x− α)

β
, sin(y∆) = −e

x∆y

β
(5.6)

These equations give the inequalities

−1 ≤ ex∆(x− α)

β
≤ 1, −1 ≤ −e

x∆y

β
≤ 1(5.7)

Assuming that x > 0 and ∆ ≥ 0, we know that ex∆ ≥ 1. Therefore inequalities reduce to

−1 ≤ (x− α)

β
≤ 1, −1 ≤ − y

β
≤ 1,(5.8)

and give the desired bounds x ≤ α+ |β| and |y| ≤ |β|.

5.1.3. Third order Taylor expansion. A third order Taylor expansion of
•
q1(t) and

•
q2(t) is

used to approximate the deviation of the queues from the equilibrium. This is required both by
the Lindstedt’s method and by the the slow flow method. To find the expansion, we define new
functions ũ1 and ũ2 that represent the deviation of the queues q1 and q2 from the equilibrium state
at λ

2µ

(5.9) q1(t) =
λ

2µ
+ ũ1(t), q2(t) =

λ

2µ
+ ũ2(t).

Equations (2.2) - (2.3) give expressions for
•
ũ1(t) and

•
ũ2(t), which can be approximated by with a

third degree polynomial about the equilibrium point ũ1(t) = ũ2(t) = 0. We denote the approxima-
tions by w1(t) and w2(t)

•
w1(t) = λ

(
−w1 − w2

4
+
w3

1 − 3w2w
2
1 + 3w1w

2
2 − w3

2

48

)
(t−∆)− µw1(t)(5.10)

•
w2(t) = λ

(
−w2 − w1

4
+
w3

2 − 3w1w
2
2 + 3w2w

2
1 − w3

1

48

)
(t−∆)− µw2(t).(5.11)
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5.1.4. Reduction to one cubic delay equation. The symmetry of Equations (5.10) - (5.11)
allows the equations to become uncoupled. We consider sum and the difference of w1 and w2,

(5.12) ṽ1(t) = w1(t) + w2(t), ṽ2(t) = w1(t)− w2(t).

This change of variables leads to the differential equations

•
ṽ1(t) = −µ

(
w1(t) + w2(t)

)
= −µṽ1(t)(5.13)

•
ṽ2(t) = λ

(
− ṽ2(t−∆)

2
+
ṽ3

2(t−∆)

24

)
− µṽ2(t),(5.14)

which are uncoupled. Equation (5.13) has the solution ṽ1(t) = Ce−µt so ṽ1(t) decays to 0 regardless
of what the delay parameter is, making ṽ2(t) the function of interest.

5.1.5. Limit cycle stability via floquet exponents. Theorem (2.5) shows that the Hopf bifur-
cations are supercritical by perturbing the system about the point of bifurcation. However, the
stability of limit cycles can also be determined by projecting the infinite-dimensional DDE on a
center manifold, and then finding the characteristic floquet exponent of the resulting system of
ODE’s. This approach is explained in detail by Hassard et al. [14]. In our case, the DDE is given
by

•
v = −µv(t)− λ

2
v(t−∆) + f

(
v(t), v(t−∆)

)
,(5.15)

where f
(
v(t), v(t−∆)

)
contains all the nonlinear terms. To project Equation (5.15) onto a center

manifold, we follow Chapter 14.3 in [28] precisely. First, we get rid of delay in our equation by
defining vt(θ) = v(t+ θ) for θ ∈ [−∆, 0] and the operators

Avt(θ) =

{
∂xt(θ)
∂θ for θ ∈ [−∆, 0)

−µvt(0)− λ
2vt(−∆) for θ = 0

(5.16)

Fvt(θ) =

{
0 for θ ∈ [−∆, 0)

f
(
vt(0), vt(−∆)

)
for θ = 0

(5.17)

so that the DDE (5.15) can be written as

d

dθ
vt(θ) = Avt(θ) + Fvt(θ).(5.18)

We assume that ∆ = ∆cr, so there is a pair of purely imaginary roots Λ = ±iωcr with the
corresponding eigenfunctions s1(θ) and s2(θ) such that

A
(
s1(θ) + is2(θ)

)
= iωcr

(
s1(θ) + is2(θ)

)
.(5.19)

The solution vt of Equation (5.18) can then be expressed as a sum of points lying in the center
subspace spanned by s1(θ) and s2(θ), and the points that don’t lie in the center subspace, which is
the rest of the solution and we denote it by w:

vt(θ) = y1(t)s1(θ) + y2(t)s2(θ) + w(t, θ).(5.20)
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The idea of the center manifold reduction is to approximate w as a function of y1 and y2 (the center
manifold), therefore replacing the infinite dimensional system with a two dimensional approxima-
tion. After some algebra we can determine y1 and y2 to be

•
y1 = ωy2 −

(
4ωy2 + 4(µ+ ∆µ2 + ∆ω2)y1

)3
24λ2

(
(1 + ∆µ)2 + ∆2ω2

)3 +O
(
y5
i

)
(5.21)

•
y2 = −ωy1 +O

(
y5
i

)
.(5.22)

Now we will follow the technique in Chapter 1 of Hassard et al. [14] to analyze the stability of y1

and y2. The system of ODE’s (5.21) - (5.22) can be equivalently written as

•
z = ωz +

∑
2≤i+j≤L

gij
ziz̄j

i!j!
+O(|z|L+1),(5.23)

where z is a complex function z = y2 + iy1, and z̄ is its complex conjugate. The coefficients gij can
be determined from Equations (5.21) - (5.23), and we find that g20 = g02 = g11 = 0 and

g21 = − 2(µ− iωcr)(µ+ iωcr)
2

λ2(1 + ∆cr(µ− iωcr))(1 + ∆cr(µ+ iωcr))2
.(5.24)

Further, if the floquet exponent is negative, then the bifurcating periodic solutions of Equation
(5.23) are asymptotically, orbitally stable with asymptotic phase. When ∆ is sufficiently close to
∆cr, the floquet exponent is of the same sign as β2 that is given by Equation (5.9) in Chapter 1 of
Hassard et al. [14]:

β2 = 2 Re
[ i

2ωcr

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

1

2
g21

]
.(5.25)

Hence,

β2 = −2(µ2 + ω2
cr)(µ+ ∆crµ

2 + ∆crω
2
cr)

λ2((1 + ∆crµ)2 + ∆2
crω

2
cr)

2
< 0,(5.26)

so the floquet exponent is negative and the limit cycle is stable in its center manifold.

5.2. Moving Average Model.

5.2.1. Showing the existence and uniqueness of equilibrium.

Proof of Theorem (3.3). Suppose the queues are in equilibrium. Then q1(t) = q∗1, q2(t) = q∗2,
m1(t) = 1

∆

∫ t
t−∆ q1(s)ds = q∗1, and m2(t) = 1

∆

∫ t
t−∆ q2(s)ds = q∗2. By summing Equations (3.7) -

(3.8) we find

λ− µ(q∗1 + q∗2) = 0, q∗1 =
λ

µ
− q∗2.(5.27)

Eliminating q∗1 from Equations (3.7) - (3.8) and subtracting one equation from the other, we find
that for x = 2q∗2 − λ

µ

x =
λ

µ

(
1− ex

1 + ex

)
.(5.28)

Since λ
µ > 0, when x > 0 the right-hand side of Equation (5.28) is negative so x ≤ 0. Similarly,

when x < 0 then the right hand side of the equation is positive, which means that x = 0 is the
only solution. Hence q∗2 = λ

2µ and q∗1 = λ
µ − q

∗
2 = λ

2µ is the only equilibrium point of q1(t) and q2(t),

which implies that m1(t) = m2(t) = λ
2µ .
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5.2.2. Showing stability of the equilibrium. The equilibrium is stable whenever all eigenvalues
of the characteristic equation (3.16) have negative real parts. The following propositions help to
establish that.

Proposition 5.2. Any real eigenvalue of the characteristic equation (3.16) is negative.

Proof. Under the assumption Λ 6= 0 and Λ ∈ R, the characteristic equation can be rewritten as

1 +
2∆

λ
· Λ(Λ + µ) = e−Λ∆.(5.29)

The left hand side (LHS) and the right hand side (RHS) intersect at Λ = 0, and for Λ > 0 the LHS
is monotonically increasing while the RHS is monotonically decreasing. Hence when Λ ∈ R, this
equality can only hold for Λ < 0.

Proposition 5.3. If ∆ ≥ λ
µ2

, then any complex eigenvalue of the Equation (3.16) has a negative
real part.

Proof. We will argue by contradiction. Assume that ∆ ≥ λ
µ2

, a ≥ 0, and b 6= 0, for some

Λ = a + ib where a, b ∈ R. We substitute Λ into Equation (3.16) and separate the real and
imaginary parts:

cos(b∆)e−a∆λ = 2a2∆− 2b2∆ + λ+ 2aµ∆(5.30)

sin(b∆)e−a∆λ = −2b∆(2a+ µ).(5.31)

Summing the squares of the two equations, we get

e−2a∆λ2 =
(
2a2∆− 2b2∆ + λ+ 2aµ∆

)2
+
(
2b∆(2a+ µ)

)2
,(5.32)

and after some algebra we find

b2 ≤ 1

∆
(λ+ 2aµ∆ + 2a2∆)− (2a+ µ)2(5.33)

=
λ

∆
− µ2 − 2a(a+ µ) ≤ −2a(a+ µ) ≤ 0,(5.34)

so b must be 0, which contradicts our assumption. Therefore Re[Λ] = a < 0 for any complex
eigenvalue when ∆ > λ

µ2
.

It is now left to establish the stability of the equilibrium.

Proof of Theorem (3.3). We will show that for the specified range of ∆, all eigenvalues of the
characteristic equation (3.16) have negative real parts. Recall that prior to deriving the charac-
teristic equation, we considered the case with the trivial eigenvalue separately, so to analyze the
stability we now only need to look at the non-trivial eigenvalues. Proposition (5.2) shows that any
nontrivial real eigenvalue must be negative. Hence, it remains to show that the complex eigenvalues
have negative real parts.
Case 1. Suppose the characteristic equation (3.29) does not have positive roots ∆cr. This implies
that a complex eigenvalue Λ never reaches the imaginary axis as ∆ varies. Since Λ is continuous as
a function of ∆, then Re[Λ] must be of the same sign for all ∆ > 0. Proposition (3.2) shows that
for sufficiently small ∆, all complex eigenvalues have negative real parts, which is therefore true for
all ∆ > 0.
Case 2. Suppose Equation (3.29) has at least one positive root ∆cr. By the continuity of Λ with
respect to ∆, Re[Λ] must be of the same sign on the interval where ∆ is less than the smallest
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positive root of Equation (3.29), and by Proposition (3.2) the sign is negative. Same holds when
∆ is greater than the largest root ∆cr of Equation (3.29). Any root ∆cr is less than λ

µ2
by the

condition 0 6= ωcr ∈ R, and for ∆ exceeding λ
µ2

all complex eigenvalues have negative real parts by

Proposition (5.3). Therefore, the continuity of Λ implies that Re[Λ] < 0 whenever ∆ exceeds the
largest root ∆cr.

We showed that for the specified ranges of ∆, all eigenvalues have negative real parts and
therefore the equilibrium is stable.

5.2.3. Third order polynomial expansion. We will perform a Taylor series expansion for the
deviations about the equilibrium (3.13) of equations (3.7) - (3.10) and keep terms up to the third
order. To start, we find the perturbations of our functions from the equilibrium,

q1(t) =
λ

2µ
+ ũ1(t), q2(t) =

λ

2µ
+ ũ2(t),(5.35)

m1(t) =
λ

2µ
+ ũ3(t), m2(t) =

λ

2µ
+ ũ4(t),(5.36)

and from Equations (3.7) - (3.10) we find their derivatives. A third order polynomial expansion of
•
ũi(t) is given by

•
wi(t), where

•
w1(t) = λ ·

(
− w3(t)− w4(t)

4

)
− µw1(t)

+ λ ·
(
w3

3(t)− 3w4(t)w2
3(t) + 3w3(t)w2

4(t)− w3
4(t)

48

)
(5.37)

•
w2(t) = λ ·

(
− w4(t)− w3(t)

4

)
− µw2(t)

+ λ ·
(
w3

4(t)− 3w3(t)w2
4(t) + 3w4(t)w2

3(t)− w3
3(t)

48

)
(5.38)

•
w3(t) =

1

∆

(
w1(t)− w1(t−∆)

)
(5.39)

•
w4(t) =

1

∆

(
w2(t)− w2(t−∆)

)
.(5.40)

5.2.4. Reduction to two cubic delay equations. We will utilize the symmetry of the Equations
(5.37) - (5.40) to simplify our problem by uncoupling the four equations. To do so we introduce a
change of variables

ṽ1 = w1 + w2, ṽ2 = w1 − w2, ṽ3 = w3 + w4, ṽ4 = w3 − w4.(5.41)

The expressions for variables ṽ1 and ṽ3 are uncoupled from ṽ2 and ṽ4

(5.42)
•
ṽ1 = −µṽ1(t),

•
ṽ3 =

1

∆

(
ṽ1(t)− ṽ1(t−∆)

)
,

(5.43)
•
ṽ2 = λ

(
− ṽ4(t)

2
+
ṽ4(t)3
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)
− µṽ2(t),

•
ṽ4 =

1

∆

(
ṽ2(t)− ṽ2(t−∆)

)
.

Furthermore, ṽ1(t) and ṽ3(t) can be solved directly and they converge to zero as t→∞. Hence we
are left with only two functions of further interest, ṽ2 and ṽ4.
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