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ABSTRACT

Managing the supply and demand of blood for transfusions is a complicated problem that many hospitals
encounter since the blood supply is dependent on donations while the demand is not. Moreover, recent
research also shows that transfusing older blood into patients may lead to increased mortality. This raises
the issue of whether transfusing fresher blood can be achieved without jeopardizing blood availability. In
this paper, we build a simulation model to study the impact of racial and ethnic diversity in combination
with a blood allocation threshold. We show that for many diverse cities like New York City that the
increased diversity of the population can lead to a large mismatch between blood supply and demand.

1 INTRODUCTION

Managing the supply and demand dynamics of red blood cells (RBCs) is a tough and challenging problem
faced by many hospitals and cities. Not only is important to manage the blood supply and the demand,
but it is also important to make sure that the compatibility between donor and the recipient is maintained.
In addition to keeping track of the quantity and the type of the available blood, it is extremely important
to know the age profile of the blood as well.

Blood donations are a crucial component in many medical procedures in modern healthcare. Patients
from the emergency room to the cancer ward require blood donations for survival. Blood shortages are
a major problem in the United States. On an average day, Americans require 36,000 units of red blood
cell donations (The American National Red Cross 2017a). However, less than four percent of Americans
donate blood (The American National Red Cross 2017a). This disparity is costing hospitals millions, as
they must pay to import blood due to insufficient donations to blood banks. In an attempt to minimize
shortage, the current policy used for most blood transfusions throughout the United States is referred to as
FIFO or "First In First Out.” This policy appeals to hospitals and clinics because it minimizes wastage, so
it is very cost-efficient and preserves the availability of blood for future points in time.
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However, it is well known that RBCs undergo chemical changes that can have large effects on the
ability of RBCs to function properly (Koch et al. 2008, Eikelboom et al. 2010, Spinella et al. 2009,
Edgren et al. 2010). Thus, the age of transfused blood has been reported to be associated with an increased
risk of infection, postoperative complications, and mortality (Tinmouth et al. 2006, Zallen et al. 1999,
Mynster and Nielsen 2001, Offner et al. 2002, Purdy et al. 1997, Lelubre et al. 2009). Thus, the work
of Fontaine et al. 2010 explored the possibility of using different allocation policies other than FIFO to
distribute blood to patients. One positive feature of the threshold policy is it can provide patients with
fresher blood. However, this fresher blood comes at a cost because potentially more blood can be wasted
since we are using fresher blood and this can affect the availability of blood to needy patients. However,
as we will show in the sequel, the allocation policy is not the only thing that should matter to hospitals
and the dynamics of a blood supply queue. The racial demographics of a city should matter and do matter
significantly.

2 OBJECTIVE

The main objective of this work is to not only understand the impact of blood transfusion allocation policies
other than the current FIFO method, but also explore the interplay and impact of the racial demographics
on the allocation policy’s overall dynamics of the blood supply. From analyses such as Atkinson et al.
2012, we know that allocation policies can have a profound affect on the quality of the blood, but also its
availability. There are serious consequences that accompany using blood that is near expiration on patients.
Older blood is linked to higher mortality, and consequential increased health risks. Previous research has
also examined the tradeoff between age of transfused blood and the amount of imported blood (Atkinson
et al. 2012, Dzik 2008, Fontaine et al. 2010).

One reason is that it has been shown in Atkinson et al. 2012 that a threshold policy can provide fresher
blood than the current FIFO policy. Although the threshold policy is shown to waste more blood, Atkinson
et al. 2012 show that this wastage is not significant enough to warrant the use of the FIFO policy, which
has larger consequences on patient health. We further support this claim when cities are homogeneous
racially. However, our main goal in this work is to show that racial demographics can have an significant
impact on the performance of these allocation policies, especially when the population is racially diverse.
In order to do so, we examined the role race plays in the blood supply queues for each blood type and
explore the wastage created for different threshold policies.

Race and Blood Type

African-
Caucasian American Hispanic Asian Overall
0+ 037 0.47 0.53 0.39 0.38
0- 0.08 0.04 0.04 0.01 0.07
A+ 033 0.24 0.29 0.27 0.34
A- 0.07 0.02 0.02 0.01 0.06
B+ 0.09 0.18 0.09 0.25 0.09
B- 0.02 0.01 0.01 0.00 0.02
AB + 0.03 0.04 0.02 0.07 0.03
AB - 0.01 0.00 0.00 0.00 0.01

Figure 1: Proportions of blood types by racial/ethnic groups.

It is common knowledge that there are statistically significant differences in the proportions of each
blood type by race and ethnicity (The American National Red Cross 2017b). Figure 1 below displays a
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table of the proportion of African-Americans, Asians, Caucasians, and Hispanics that have each of the
eight blood types {A",A~, BT B~ ,AB" ,AB~,0",0" }, and how these proportions compare with that of
the entire United States population. From Figure 1, it is clear that there are significant differences in blood
type proportions for each racial group.

These differences are most evident in the types {B™,0"}. For example, Caucasians and Hispanics
are half as likely as African-Americans and roughly one-third as likely as Asians to have the blood type
B™. Over half of Hispanics have the blood type O" while only 37% of Caucasian have this blood type.
However, the blood types of different races is not the only factor for the supply of blood. One must also
consider the rates at which different races donate blood as well.

While there are significant differences in the proportions of different blood types for different racial
groups, there are also significant variations in the rate at which different racial groups donate blood within
the United States. According to (Shaz et al. 2011) African-Americans donate blood at twice the rate
of both Hispanics and Asians. However, African Americans donate at half the rate as Caucasians in the
United States. Research by Shaz et al. 2008 suggests that there are two main reasons why donation rates
for African Americans are lower than their Caucasian counterparts. The first reason is that many African
Americans have the sickle cell trait and may have higher rates of anemia, which effectively prohibits them
from donating to blood banks. Another reason is that there are often large barriers like distance to a clinic
or hospital that prevent many African Americans from donating.

Cities by Racial Demographics

City Caucasian African- Hispanic Asian
American
Baltimore, MD 0.3102 0.6155 0.0470 0.0274
Washington, DC 0.4114 0.4506 0.0989 0.0392
Bismarck, ND 0.9726 0.0074 0.0137 0.0063
New York, NY 0.3971 0.2301 0.2581 0.1146
Los Angeles, CA | 0.4178 0.0805 0.4069 0.0948
Atlanta, GA 0.3813 0.5362 0.0516 0.0308
Houston, TX 0.4073 0.1911 0.3532 0.0484
Seattle, WA 0.7106 0.0808 0.0675 0.1411
Chicago, IL 0.4007 0.2930 0.2573 0.0490
Phoenix, AZ 0.5662 0.0558 0.3505 0.0275
Miami, FL 0.4459 0.1179 0.4300 0.0061
Las Vegas, NV 0.5605 0.1002 0.2843 0.0551
New Orleans, LA | 0.3258 0.5943 0.0513 0.0286

Figure 2: Racial/Ethnic demographics of several U.S. cities.

Although biological reasons prevent some African Americans from donating blood, these reasons do
not explain why the donation rates of Hispanics and Asians are very low and even half as low as African
Americans. Research by Gillum et al. 2008 suggests that many Hispanics and Asians are just unfamiliar
with the donation process and as the younger generations of Hispanics and Asians get more familiar with
the process by emulating their peers, we should see their rates increase with time. Figure 2 provides a
table of the racial demographics of 13 major cities in the United States. One easily observes that all of
these cities have different racial and ethnic demographics. As a result, it is evident that the differences in
donation rates among races is also an important factor in understanding the possible blood donation supply
and we should not ignore it in our modelling as it can have a significant impact on the dynamics.

Thus, the purpose of this paper is to propose a safer, more accurate blood allocation policy while taking
race and ethnicity into account. Unlike previous research, we chose to factor in the racial demographics of
an area into our model. This enables us to accurately account for the discrepancies between the patient and
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the donor populations. In using this model and varying the threshold at which blood becomes outdated, we
hope to gain a better understanding of good policies for blood allocation when a given area has a diverse
population.

3 THE STOCHASTIC SIMULATION MODEL

In this section, we describe the stochastic simulation model that we developed for analyzing the impact
of race on blood supply dynamics. To this end, we consider each blood type as a separate, but potentially
coupled discrete time queueing process. An example figure of just one queueing process is given in Figure
3. Figure 3 also shows all of the essential flows that must be considered and accounted for in the queueing
model that we construct. The first flow pictured in Figure 3 is the blood donation flow. This is the flow
into the blood supply. The second flow is the blood that departs the blood supply queue and is needed
for transfusion into patients. We also have a flow into the blood supply queue when there is not enough
supply to meet the transfusion demands. This is imported from other hospitals or regions of the country.
Lastly, we have a flow out of the blood supply queue that represents old blood becoming outdated and too
old for use.

Imported Units Enter
Service if Necessary

Bloc?d Blood Supply Transfusion
Donations Queue of Blood
Blood Arrival Blood Needed
Rate Rate

Outdated Units
Leave Queue

Figure 3: The Model

However, there are eight bloody types and thus, we have eight queues and each queue keeps a count
of how many pints of blood of a certain age are available for transfusions. Figure 4 shows a screenshot
of the simulation that we built in Matlab that enabled us to do our analysis in this work. On the x-axis of
Figure 4 plot the age of blood. On the y-axis, we plot using a color scheme that represents the number of
pints that are available at a specific age and blood type. As the age of the blood increases if it is not used,
the available blood moves to the right of the figure over time. To get a better sense of this movement over
time, a video example of this simulation is available on the second author’s website.

With this simulation model, we assume that blood is allowed to remain in the queue for 42 days and
after 42 days the blood must be discarded. The 42 day old age limit is consistent with current hospital
practice and legal regulations. Since we are using a queueing process, it is vital to understand how the
blood flows through this queueing process. Thus, we must describe the arrival process, departure process,
and allocation policy of the blood queueing process in order to understand its dynamics.

As for the arrival process, we assume that the number of blood is donated in individual pints is
given by a Poisson random variable with mean A,,,. where the type corresponds to the blood types
{A*,A= BB~ ,AB*,AB~,0",0" }. Although some of this blood is discarded for quality control purposes,
we assume this is negligible. We also assume that when fresh blood is donated its age starts at 1. Although
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Figure 4: Screenshot of Matlab Blood Queue Simulator.

sometimes blood quality must be checked for quality control purposes, we also assume that this time is
negligible.

The departure process is somewhat more complex than the arrival process. We also assume that the
number of blood pints needed in any given day is given by a Poisson random variable with mean (i, where
the type corresponds to the blood types {A*,A~,B",B~,AB",AB~,0",0 }. Unlike the arrival process,
the departure process is inextricably linked with the allocation policy and the donor compatibility. Figure
5 provides a picture of donor compatibility and it is clear that this will have an impact on the departure
dynamics. Blood types that are more compatible are likely to experience more shortages since they will
be taken from other types that have shortages. Since these dynamics of the departure process are quite
complex, it is important for use to give an algorithm that describes the departure process and its connection
with the threshold allocation policy. After setting a threshold policy, the algorithm for searching and giving
away a pint of blood is as follows:

— IS

ﬂ—l

Figure 5: Donor Compatibility Diagram

e First we look for an exact blood match: This is done by first searching for the oldest unit of
blood equal to or below the set threshold. If no blood is found, then search for the youngest unit
of blood above the threshold.

e If no exact match is found, then search for a compatible blood match: This is done by finding
the compatible blood type that has the most units to offer and once a type is chosen, we search for
the oldest unit of compatible blood equal to or below the set threshold. If no blood is found, then
we search for the youngest unite of compatible blood above the threshold.
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e No exact or compatible blood is found: If no exact or compatible blood match is found, then we
import the blood to fill our demand.

4 RESULTS

To understand the impact of race on the supply of blood, we select 13 major cities in United States and
used their racial demographics from DeNavas-Walt et al. 2010 to produce simulations of each of their
blood supply queues. Figure 2 shows the proportion of each race in each city that we consider for our
simulations.

Our model is general enough to accommodate for situations where individual patients need either single
or multiple units of blood by assuming that the arrival and transfusion processes of each blood unit are
independent Poisson random variables. Units of blood enter the queue though blood donation and leave
when transfused into patients. If a patient requires a unit of blood and there are no compatible units in the
queue, then the unit is imported into the queue. If blood exceeds its 1 to 42 day shelf life, then it becomes
outdated and is discarded. Figure 3 gives a simple illustration of this model.

The simulation is performed through a Matlab code where we view the blood arrival rate and blood
needed rate as independent Poisson random variables. When determining which blood unit to provide to
the patient, we assign the oldest blood unit that matches the patient’s blood type. If there are no units of
the same blood type available, then the patient is assigned to the oldest unit of a compatible blood type.
Blood units are only imported if there are no matching or compatible units in the blood supply queue. We
then recorded the amount of imported units and outdated units of each blood type.

With our Matlab simulator, we produced the simulations of the blood supply queues for a total of
500 days for the following cities: Baltimore, Washington D.C., Bismarck, New York City, Los Angeles,
Atlanta, Houston, Seattle, Chicago, Phoenix, Miami, Las Vegas, and New Orleans. We ran the simulations
with thresholds of 14, 28, and 42 (FIFO) days to examine the effects of blood allocation policies that
maximize patient health and minimize monetary cost to hospitals. We also examined the differences during
times of blood shortages and surpluses by using donors-to-patients ratios that ranged from 0.9 to 1.1. To
model the fact that donor rates depend on racial demographics, we selected the racial donor ratio for each
city to be (2:1:4:1) (African-American : Asian : Caucasian : Hispanic ). This ratio was has observed in
the work of Shaz et al. 2011 and seems to be robust to spatial factors in many cities.

Figure 6 shows the number of blood units that became outdated and were imported at three different
donation rates in Bismarck, Baltimore, Miami, New York, and Seattle, cities with very different populations.

Blood Units Imported at Standard Blood Units Outdated at Standard
Threshold Threshold

8000 10000
3 co00 Q =o==Bismarck 3 800 =om=gismarck
= X @
5 4000 My 7 eeepaltimoe § 6o eB=Baltimore
8 N g 400 -
=: 2000 4 ::. = ‘Miami 3: 2000 5] Miami
=Smegn  =¥=New York 7 . =SNew York

0+ o
0.9 1.0 1.0 11 11 ed=Seattle 0.9 1.0 1.0 11 11 esseattle
Donated-to-Needed Ratio Donated-to-Needed Ratio

Figure 6: Varying the Donor to Patient Ratio in Bismarck, Baltimore, Miami, New York City, and Seattle.

The demographic differences in Bismarck, Baltimore, Miami, New York, and Seattle are evident in the
dissimilarities in the plots of each city. In a predominantly Caucasian city like Bismarck, shown with the
double line above, more donations result in more wastage. However in the cities with diverse populations,
the units of blood that expire decrease as the rate of donations increase because the demand of the minority
patients is satisfied. Similarly, for all cities, a higher donated-to-needed ratio yields lower amounts of blood
that needs to be imported. Very diverse areas, like New York City, which is the dotted line above, have
the highest import rates.
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Figure 7 shows the results of the simulation for the most and least diverse cities in the study, New
York and Bismarck, when the incoming rate of donated units is equal to the rate at which patients need
the blood i.e A = u = 100.

City Percent Percent Percent Percent Threshold Total Total
Caucasian Black Hispanic Asian Outdated Imported

Bismarck, 97.26 0.74 1.37 0.63 14 115 909
ND
New York, 39.71 23.01 25.81 11.46 14 3741 4814
NY
Bismarck, 97.26 0.74 1.37 0.63 28 0 1176
ND
New York, 39.71 23.01 25.81 11.46 28 3070 4726
NY
Bismarck, 97.26 0.74 1.37 0.63 42 0 580
ND
New York, 39.71 23.01 25.81 11.46 42 2704 5285
NY

Figure 7: Comparison of Diverse and Homogeneous Populations Bismarck vs. New York City

When we fixed the arrival rate and varied the threshold from 14 to 42 days, there were significant
differences in the change in outdated and imported units in each city. Isolating the most and least diverse
cities in the study, New York and Bismarck respectively, it is evident that New York has not only a higher
number of outdated units, but also a higher number of imported units at all thresholds.

Thus, we can make the conclusion that cities with higher diversity have more imported units and far
more outdated units than those with higher homogeneity. The lower donation rates of minorities, especially
Asians and Hispanics, yield blood inventories that reflect the blood types of a Caucasian population. Thus,
more diverse cities have higher rates of importation and even higher rates of wastage and caution should
be taken when implementing these type of threshold allocation policies.

Figure 8 shows the results of the simulation of the four largest cities: New York, Los Angeles, Chicago,
and Houston. New York City has the most homogeneous population of all the thirteen cities in this study.
Thus, due to the large minority population, there is the greatest mismatch in the donors and recipients.
Los Angeles has a large proportion of Hispanics, so there is a significant amount of outdated and imported
blood. Chicago and Houston have similar demographics with minorities making up about sixty percent
of the population. Likewise, these cities have a large amount of blood that becomes outdated and larger
amounts of imported blood units. For all four cities, with each increase to the threshold, the number of
outdated units decreases. There is not a significant change in the number of imported units.

In Figure 9, we see the amount of imported and outdated units for Phoenix, Seattle, Washington DC,
and Las Vegas, the second largest cities in the study. Washington DC has the largest minority population
at about 55 percent, followed by Phoenix and Las Vegas, at about 44 percent, then Seattle at about
29 percent. While Washington DC has a larger proportion of minorities than Phoenix, it has a smaller
amount of imported and outdated blood units. This is because Washington DCs minority population is
predominantly African-American and Phoenixs largest minority group is Hispanic. Hispanics are half as
likely to donate blood as African-Americans, so in cities with large Hispanic populations, we see more
wastage and importation. In Las Vegas, which also has a significant Hispanic population, we see a similar
trend. Seattle, as the city with the lowest minority proportion, has far lower amounts of imported and
outdated blood at all three thresholds.

Figure 10 shows the number of imported and outdated units for Baltimore, Atlanta, Miami, New
Orleans, and Bismarck. The cities Baltimore, Atlanta, and New Orleans have similar racial demographics,
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City cPercer_ﬂ Percent P_ercen_t Pert_:ent Threshold Total Total
aucasian Black Hispanic Asian QOutdated Imported
New York, NY 39.71 23.01 25.81 11.46 14 3741 4814
Los Angeles, CA 41.78 8.05 40.69 9.48 14 980 2044
Chicago, IL 40.07 29.30 25.73 4.90 14 844 1776
Houston, TX 40.73 19.11 35.32 4.84 14 806 1820
City cPerr:er_lt Percent Percent Percent Threshold Total Total
aucasian Black Hispanic Asian Outdated Imported
New York, NY 39.71 23.01 25.81 11.46 28 3070 4726
Los Angeles, CA 41.78 8.05 40.69 9.48 28 659 1853
Chicago, IL 40.07 29.30 25.73 4.90 28 424 1532
Houston, TX 40.73 19.11 35.32 4.84 28 576 1883
City cPerr:.er_lt Percent Percent Percent Threshold Total Total
aucasian Black Hispanic Asian Outdated Imported
New York, NY 39.71 23.01 25.81 11.46 42 2704 5285
Los Angeles, CA 41.78 8.05 40.69 9.48 42 519 1814
Chicago, IL 40.07 29.30 25.73 4.90 42 448 1790
Houston, TX 40.73 19.11 35.32 4.84 42 427 1532

Figure 8: Imported and Outdated Blood vs. Allocation Threshold for New York City, Los Angeles, Chicago,
and Houston.

City cPercer_lt Percent Percent Percent Threshold Total Total
aucasian Black Hispanic Asian Outdated Imported
Phoenix, AZ 56.62 5.58 35.05 2.75 14 1221 1644
Seattle, WA 71.06 8.08 6.75 14.11 14 617 1352
Washington, DC 44.59 43.00 11.79 0.61 14 665 1557
Las Vegas, NV 56.05 10.02 28.43 5.51 14 922 1424
city cPercer_lt Percent P_ercen_t Pert_:ent Threshold Total Total
aucasian Black Hispanic Asian Outdated Imported
Phoenix, AZ 56.62 5.58 35.05 2.75 28 583 1810
Seattle, WA 71.06 8.08 6.75 14.11 28 203 1443
Washington, DC 44,59 43.00 11.79 0.61 28 362 1408
Las Vegas, NV 56.05 10.02 28.43 5.51 28 511 1831
city cPercer_lt Percent P_ercen_t Pert_:ent Threshold Total Total
aucasian Black Hispanic Asian Outdated Imported
Phoenix, AZ 56.62 5.58 35.05 2.75 42 484 1681
Seattle, WA 71.06 8.08 6.75 14.11 42 7 861
Washington, DC 44.59 43.00 11.79 0.61 42 196 1350
Las Vegas, NV 56.05 10.02 28.43 5.51 42 509 1894

Figure 9: Imported and Outdated Blood vs. Allocation Threshold for Phoenix, Seattle, Washington D.C.,
and Las Vegas.
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Cit Percent Percent Percent Percent Threshold Total Total
1ty Caucasian Black Hispanic Asian resho Outdated Imported
Baltimore, MD 31.02 61.55 4.7 2.74 14 705 1171
Atlanta, GA 38.13 53.62 5.16 3.08 14 3868 4821
Miami, FL 44,59 11.79 43 0.61 14 1463 2194
New Orleans, LA 32.58 59.43 5.13 2.86 14 574 1695
Bismarck, ND 97.26 0.74 1.37 0.63 14 115 909
Ccit Percent Percent Percent Percent Threshold Total Total
1ty Caucasian Black Hispanic Asian resho Outdated Imported
Baltimore, MD 31.02 61.55 4.7 2.74 28 262 1348
Atlanta, GA 38.13 53.62 5.16 3.08 28 3303 5219
Miami, FL 44.59 11.79 43 0.61 28 808 1867
New Orleans, LA 32.58 59.43 5.13 2.86 28 376 1298
Bismarck, ND 97.26 0.74 1.37 0.63 28 0 1176
Cit Percent Percent Percent Percent Threshold Total Total
ity Caucasian Black Hispanic Asian resho Outdated Imported
Baltimore, MD 31.02 61.55 4.7 2.74 42 260 1982
Atlanta, GA 38.13 53.62 5.16 3.08 42 2167 5227
Miami, FL 44.59 11.79 43 0.61 42 689 1788
New Orleans, LA 32.58 59.43 5.13 2.86 42 221 1281
Bismarck, ND 97.26 0.74 1.37 0.63 42 0 580

Figure 10: Imported and Outdated Blood vs. Allocation Threshold for Baltimore, Atlanta, Miami, New
Orleans, and Bismarck.

of over 50 percent African-American, just over 30 percent Caucasian, 5 percent Hispanic, and 3 percent
Asian. They have similar amounts of imported and outdated blood units with each of the three thresholds.
Miami has a large Hispanic population, so there is a large amount of blood unit wastage and importation,
particularly at lower thresholds. Bismarck has far lower amounts of outdated blood and imported blood,
compared to the other cities. This is because Bismarck has a nearly homogeneous population, so the blood
types donating the blood correspond with the blood types receiving the blood through transfusions.

CONCLUSION AND FUTURE WORK

In this paper we have investigated the impact of racial demographics in conjunction with blood allocation
threshold policies. We find that more diversity can cause blood banks or hospitals to import much more
blood and waste more blood at the same time since there is a supply and demand mismatch. This effect
of the racial demographics is further buttressed when the allocation policy threshold is lower. Thus, we
recommend some caution when trying to implement new blood allocation policies as racial demographics
can have a large negative impact on the dynamics of the blood supply.

There are many extensions of this work that are noteworthy. A useful extension of this work could
involve exploring the effects of partitioning patients into different priority classes. These classes can be
based on their triage level, health condition, age, or other factors that might contribute to a patients reaction
to receiving blood of a specific age. Obviously with this type of information, hospitals can make better
decisions regarding the transfusion of blood into patients and improve the overall health of patients receiving
transfusions.

Another important extension would be consider time varying or non-stationary arrival rates of blood
donations and blood requests. The work of Massey and Pender 2013, Pender 2014, Engblom and Pender
2014, Pender et al. 2017 seems promising in helping design a non-stationary version of our model. One
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useful thing that a non-stationary version of our model can useful for is analyzing the wastage of blood
drives or understanding the amount of blood needed in a mass casualty event. We hope to analyze all of
these extensions in future work.
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