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a b s t r a c t

Motivated by heavy traffic approximations for single server queueswith abandonment, we provide an ex-
act expression for the moments of the truncated normal distribution using Stein’s lemma. Consequently,
our moment expressions provide insight into the steady state skewness and kurtosis dynamics of sin-
gle server queues with impatient customers. Moreover, based on the truncated normal distribution, we
develop a new approximation for single server queues with abandonment in the nonstationary setting.
Numerical examples illustrate that our approximation performs quite well.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The truncated normal distribution is a very important distribu-
tion in theworld of probability and statistics. It appears quite natu-
rally when the normal distribution itself arises. For example, when
one wants to threshold or screen values from a dataset that is nor-
mally distributed, the remaining data has a truncated normal dis-
tribution. Therefore to analyze themoments of the remaining data,
one needs to study the moments of the truncated normal distribu-
tion.

Most if not all of the available literature tends to focus on the
mean and variance of the truncated normal distribution. This is
partially motivated from the statistical community since they are
interested in obtaining unbiasedmean and variance estimators for
data that is screened or thresholded. See for example [1–3,5]. In
this paper, we not only provide exact expressions for the skewness
and kurtosis, but also provide anymoment of the truncated normal
distribution. Later in the paper, we also use the truncated normal
distribution to approximate the nonstationary single server queue
with abandonment.

Although there is substantial motivation to study the moments
of the truncated normal distribution from a statistical perspective,
we are primarily motivated by developing approximations for the
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cumulantmoments of queueswith impatient customers. There is a
large and growing literature on queues with impatient customers,
for instance, [21,22] show that the truncated normal distribution
arises as the heavy traffic diffusion limit for the stationary single
server queuewith impatient customers. More recently, [6] showed
that the truncated normal distribution is the heavy traffic limit of
ticket queues where customers are unobservable. In [22] they con-
sider a GI/GI/1 + GI queueing model with abandonment. They as-
sume that the server works at rate one under the FIFO discipline.
The primitives of the model include three independent sequences
of non-negative i.i.d. random variables for the inter arrival times,
service times, and abandonment times. We assume that the ser-
vice times have mean 1

µ
and coefficient of variation σs. The inter

arrival times have mean 1
λ

=
1

µ+β·
√
µ
and coefficient of variation

σa where β is the heavy traffic parameter. Lastly, we assume that
the abandonment can have any distribution where the derivative
of cdf evaluated at zero is strictly positive with value θ . The main
theorem proved in [22] says the following:

Theorem 1.1 ([22]). If

Q̃ n(0) ⇒ Q̃0, as n → ∞,

then we have the following convergence for the queue length process
and generalized linear regulator mapping (Q̃ n, Ỹ n) as described in
Eq. 3.3 in [22]

(Q̃ n, Ỹ n) ⇒ (Q̃ , Ỹ ), as n → ∞,
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where Q̃ (0) is equal in distribution to Q̃0 and together Q̃ and Ỹ obey
the following stochastic differential equation:

dQ̃ (t) = (−β + θ · Q̃ (t))dt + σ · dB(t)+ dỸ (t)

where β is the scaled heavy traffic scaling parameter, θ is the deriva-
tive of the abandonment distribution at zero, and σ 2

= σ 2
a +σ 2

s is the
sum of the arrival and service distributions coefficient of variation.

The process Q̃ (t) is known as a regulated Ornstein–Uhlenbeck
(ROU) process and the steady state distribution of Q̃ (t) is a trun-
cated normal random variable that is conditioned or regulated to
be in the interval (0,∞)

Q̃ (∞) = Normal

β

θ
,
σ 2

2θ
, 0,∞


. (1.1)

In the work of [6,22], they only analyze the steady state mean
dynamics. However, it is important to analyze higher cumulants
such as the variance, skewness, and kurtosis as they provide es-
sential insights into the behavior of the queueing process. Since the
Gaussian is defined to have zero skewness and zero excess kurtosis,
when the skewness and kurtosis are far from zero, it implies that
a Gaussian approximation of the dynamics might not be appropri-
ate. In fact, the work of [9–11,15–19] shows that the skewness and
kurtosis can play a significant role in estimating queueing perfor-
mance. Thus, we believe that our exact expressions for the higher
cumulants of the truncated normal will give us insight into the dy-
namics of queues with impatient customers.

2. Stein’s lemma and main results

2.1. Stein’s lemma

In this section, we give a brief overview of Hermite polynomials
and Stein’s lemma [20], which are important ingredients for deriv-
ing our exact expressions for themoments of the truncated normal
distribution. The probabilistic Hermite polynomials as described
in [14] are defined as:

hn(x) =
1
ϕ(x)

·


−

d
dx

n

ϕ(x).

The first four Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1,
h3(x) = x3 − 3x,

and in general they solve the recurrence relation

hn+1(x) = x · hn(x)− n · hn−1(x).

We have the following Hermite polynomial generalization of
Stein’s lemma; however, for the remainder of the paper, the ran-
dom variable X is a standard Gaussian random variable.

Lemma 2.1. If X is a standard Gaussian random variable and
E[f (n)(X)] < ∞, then

E [f (X) · hn(X)] = E[f (n)(X)]

where f is any generalized function and f (n) is the nth derivative of the
function f .

For example, since {X ≥ χ} is a generalized function, Stein’s
lemma can be used to obtain

E [X · {X ≥ χ}] = E

δχ (X)


= ϕ(χ),

or for n ≥ 1

E [hn(X) · {X ≥ χ}] = E

hn−1(X) · δχ (X)


= hn−1(χ) · ϕ(χ),
where we define ϕ and Φ to be the density and the cumulative
distribution functions, respectively, for X ∼ Normal(0, 1), i.e.,

ϕ(x) ≡
1

√
2π

e−x2/2, Φ(x) ≡

 x

−∞

ϕ(y) dy,

and letΦ(x) ≡


∞

x
ϕ(y) dy.

In addition to the derivative properties of the Hermite poly-
nomials, it is well known from [4] that the probabilistic Hermite
polynomials have the following explicit form in terms of standard
polynomials,

hn(x) = n! ·
⌊n/2⌋
m=0

(−1)m

m! · (n − 2m)!
·
xn−2m

2m
. (2.2)

However, the above relation of Eq. (2.2) can be inverted to
represent any polynomial in terms of the Hermite polynomials as
the next theorem shows.

Theorem 2.2. Any polynomial has the following decomposition rep-
resentation in terms of the probabilist Hermite polynomials

Xn
= n! ·

⌊n/2⌋
m=0

2−m

m! · (n − 2m)!
· hn−2m(X).

Proof. This proof follows from induction and exploiting the Ro-
drigues recursion relation for Hermite polynomials. We also pro-
vide a proof of this result in an online appendix to this paper found
on the author’s website. �

This representation of any polynomial in terms of a sum of Her-
mite polynomials will be useful since any moment of a Gaussian
random variable can be computed by the last coefficient of the sum
since all Hermite polynomials where n ≥ 1 have expectation zero.
Nowwith our review of Hermite polynomials and their properties,
we give our main result.

Theorem 2.3. Suppose that Q has a normal distribution with mean q
and variance v; then the nth conditional moment has representation

E[Q n
|a ≤ Q ≤ b]

=

n
j=0

aj ·


⌊j/2⌋
m=0

bjm · (hn−2m−1(χ) · ϕ(χ)− hn−2m−1(ψ) · ϕ(ψ))


Φ(ψ)− Φ(χ)

where we define

aj =


n
j


·

√

vj · qn−j
· j! and bjm =

2−m

m! · (j − 2m)!
,

(h−1(χ) · ϕ(χ)− h−1(ψ) · ϕ(ψ)) = Φ(ψ)− Φ(χ),

and

χ =
a − q
√
v

and ψ =
b − q
√
v
.

Proof. We prove this result in an online appendix to this paper
found on the author’s website. �

As a result of the above expression, we have the following
corollary, which gives explicit expressions for the mean, variance,
skewness, and kurtosis of the truncated normal distribution.

Corollary 2.4. Eqs. (2.3), (2.4), Skew[Q |a ≤ Q ≤ b] and Kurt[Q |

a ≤ Q ≤ b] are given in Box I.
Proof. After some tedious calculations which we omit for brevity,
the proof follows from using Theorem 2.3 and understanding the
definitions of the variance, skewness, and kurtosis of random
variables. �
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.3)

.4)
E[Q |a ≤ Q ≤ b] = q +
√
v ·

ϕ(χ)− ϕ(ψ)

Φ(ψ)− Φ(χ)
(2

Var[Q |a ≤ Q ≤ b] = v + v ·
χ · ϕ(χ)− ψ · ϕ(ψ)

Φ(ψ)− Φ(χ)
− v ·

(ϕ(χ)− ϕ(ψ))2

(Φ(ψ)− Φ(χ))2
(2

Skew[Q |a ≤ Q ≤ b] =


(h2(χ)·ϕ(χ)−h2(ψ)·ϕ(ψ))

Φ(ψ)−Φ(χ)
− 3 ·

(χ ·ϕ(χ)−ψ ·ϕ(ψ))·(ϕ(χ)−ϕ(ψ))

(Φ(ψ)−Φ(χ))2
+ 2 ·

(ϕ(χ)−ϕ(ψ))3

(Φ(ψ)−Φ(χ))3



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

3/2
Kurt[Q |a ≤ Q ≤ b] =


12 ·

(h1(χ)·ϕ(χ)−h1(ψ)·ϕ(ψ))·(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))3



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

2
−


4 ·

(h2(χ)·ϕ(χ)−h2(ψ)·ϕ(ψ))·(ϕ(χ)−ϕ(ψ))
(Φ(ψ)−Φ(χ))2



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

2 −


3 ·

(h1(χ)·ϕ(χ)−h1(ψ)·ϕ(ψ))2

(Φ(ψ)−Φ(χ))2



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

2
−


6 ·

(ϕ(χ)−ϕ(ψ))4

(Φ(ψ)−Φ(χ))4



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

2 +


(h3(χ)·ϕ(χ)−h3(ψ)·ϕ(ψ))

(Φ(ψ)−Φ(χ))



1 +

χ ·ϕ(χ)−ψ ·ϕ(ψ)

Φ(ψ)−Φ(χ)
−

(ϕ(χ)−ϕ(ψ))2

(Φ(ψ)−Φ(χ))2

2 .
Box I.
Table 1
Truncated normal approximations (100 simulations).

Samples a b q v Mean Sim Var Sim Skew Sim Kurt Sim

104 0 ∞ 1 2 1.578 1.577 ± 0.0016 1.088 1.089 ± 0.0028 0.714 0.716 ± 0.0039 0.201 0.209 ± 0.0142
105 0 ∞ 1 2 1.578 1.577 ± 0.0010 1.088 1.0883 ± 0.0008 0.714 0.713 ± 0.0012 0.201 0.198 ± 0.0044
106 0 ∞ 1 2 1.578 1.578 ± 0.0002 1.088 1.0881 ± 0.0003 0.714 0.715 ± 0.0004 0.201 0.200 ± 0.0014
107 0 ∞ 1 2 1.578 1.578 ± 0.0001 1.088 1.0880 ± 0.0001 0.714 0.714 ± 0.0001 0.201 0.201 ± 0.0005
104 0 ∞ 10 20 10.148 10.153 ± 0.0059 18.494 18.486 ± 0.0356 0.157 0.156 ± 0.0028 −0.214 −0.211 ± 0.0057
105 0 ∞ 10 20 10.148 10.146 ± 0.0021 18.494 18.497 ± 0.0120 0.157 0.158 ± 0.0010 −0.214 −0.213 ± 0.0019
106 0 ∞ 10 20 10.148 10.146 ± 0.0007 18.494 18.510 ± 0.0045 0.157 0.157 ± 0.0003 −0.214 −0.215 ± 0.0007
107 0 ∞ 10 20 10.148 10.148 ± 0.0002 18.494 18.484 ± 0.0015 0.157 0.157 ± 0.0001 −0.214 −0.214 ± 0.0002
104 0 ∞ 100 200 100 99.991 ± 0.0180 200 199.682 ± 0.3814 0 0.002 ± 0.0036 0 −0.0029±0.0069
105 0 ∞ 100 200 100 100.002 ± 0.0062 200 199.91 ± 0.1271 0 0.0004±0.0010 0 0.0009±0.0024
106 0 ∞ 100 200 100 99.987 ± 0.0021 200 198.983 ± 0.0425 0 −0.0002±0.0003 0 −0.001 ± 0.0008
107 0 ∞ 100 200 100 99.993 ± 0.0008 200 200.101 ± 0.0147 0 0.0001±0.0001 0 0.000 ± 0.0003
Table 2
GI/GI/1 + GI queue approximations (100 simulations).

Time λ θ β σ Mean Sim Var Sim Skew Sim Kurt Sim

104 100 0.1 1
√
2 100.08 97.10 ± 0.25 991.48 991.55 ± 8.06 0.0246 0.0493 ± 0.011 −0.061 −0.068 ± 0.017

104 100 0.1 0
√
2 25.23 25.07 ± 0.113 363.38 367.23 ± 3.371 0.995 0.992 ± 0.012 0.8692 0.849 ± 0.051

104 100 0.1 −1
√
2 8.603 7.86 ± 0.023 65.69 64.90 ± 0.519 1.6968 1.768 ± 0.021 3.907 4.311 ± 0.145

104 100 0.2 1
√
2 50.74 48.91 ± 0.12 462.36 459.88 ± 2.24 0.1576 0.193 ± 0.01 −0.2145 −0.197 ± 0.015

104 100 0.2 0
√
2 17.84 17.58 ± 0.057 181.69 189.02 ± 1.43 0.9953 1.002 ± 0.001 0.8692 0.876 ± 0.0396

104 100 0.2 −1
√
2 7.777 7.09 ± 0.017 50.65 51.07 ± 0.332 1.576 1.675 ± 0.0175 3.2259 3.701 ± 0.089

104 200 0.1 1
√
2 141.54 140.74 ± 0.353 1983 1990.63 ± 16.89 0.0246 0.046 ± 0.011 −0.0611 −0.0713 ± 0.0202

104 200 0.1 0
√
2 35.68 35.46 ± 0.17 726.76 732.39 ± 7.53 0.9959 1.0012 ± 0.012 0.8692 0.879 ± 0.035

104 200 0.1 −1
√
2 12.16 11.35 ± 0.203 131.38 130.31 ± 6.059 1.697 1.747 ± 0.0827 3.907 4.076 ± 0.6277

104 200 0.2 1
√
2 71.75 69.59 ± 0.15 924.70 925.01 ± 4.44 0.1576 0.185 ± 0.007 −0.2145 −0.201 ± 0.0135

104 200 0.2 0
√
2 25.23 24.99 ± 0.082 363.38 376.21 ± 2.59 0.9953 0.9967 ± 0.0083 0.8692 0.8616 ± 0.0379

104 200 0.2 −1
√
2 10.99 10.34 ± 0.027 101.30 102.31 ± 0.647 1.576 1.628 ± 0.01 3.2259 3.45 ± 0.069

Arrival = Exp(λ+ β ·
√
λ), Service = Log-Normal(1/λ, 1/λ2), Abandonment = Unif(0, 1

θ
).
2.2. Numerical results for stationary setting

In this section we compare the skewness and kurtosis formulas
with simulated examples of the truncated normal distribution.We
see in Table 1 that our exact formulas do a great job of estimating
the mean, variance, skewness, and kurtosis of the truncated nor-
mal distribution. We also provide confidence intervals and our ex-
plicit formulas lie within the given confidence intervals. Our 95%
confidence intervals are obtained by performing 100 replications
of the random vector of truncated normal random variables. To
calculate our the confidence intervals for each cumulant we com-
pute the standard deviation of each cumulant needed in the simu-
lations, and multiply by 0.196, which is 1.96/

√
100. Moreover, in

Table 2we compare our exact formulas with several queueing pro-
cesses in heavy traffic with general distributions. We see that our
formulas for the mean, variance, skewness, and kurtosis are good
at estimating the performance of the queueing process in heavy
traffic. The truncated normal approximation is less accurate than
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in Table 1 because the queueing process has finite rates and the
queueing process is not exactly a truncated normal distribution.
Nonetheless, the formulas give reasonable estimates for the behav-
ior that are 1%–2% off from the actual values. We also provide con-
fidence intervals in this case as well. Our 95% confidence intervals
are also obtained by doing 100 simulations and by computing the
standard deviation of each estimate in the simulations, and multi-
plying by 0.196, which is 1.96/

√
100.

3. A truncated normal approximation for the Mt/Mt/1 + Mt
queue

In this section, we are inspired by the truncated normal distri-
bution of the previous section and want to understand how a time
varying truncated normal distribution might be useful as an ap-
proximation to the nonstationary single server queue with aban-
donment or the Markovian Mt/Mt/1 + Mt queue. Since we are
dealingwith aMarkovian queueing system, it is possible to express
the queueing process in terms of time changed Poisson processes.
By extending the work of [7] to queues with abandonment, we
have the following stochastic integral representation for the queue
length process as

Q (t) = Q (0)+Π1

 t

0
λ(s)ds


−Π2

 t

0
µ(s) · {Q (s) > 0}ds


−Π3

 t

0
β(s) · Q (s)ds


whereΠi ≡ {Πi(t)|t ≥ 0} for i = 1, 2, 3 are independent standard
(rate 1) Poisson processes. When the abandonment rate is zero,
the work of [7] provides limit theorems for the sample path mean
and variance of the queue length process. However, currently there
are no limit theorems that include the possibility of abandonment
for time varying queueing processes. In fact, applying the meth-
ods developed in [8] would require the rate functions of the single
server queue to have Lipschitz continuous rate functions. However,
the rate functions for the single server queue are not even con-
tinuous, since the service rate function depends on the queue is
empty or not. Moreover, the functional central limit theorem ap-
proximations of [7] do not have to be diffusions and the uniform
acceleration expansions of [12] are for bounded Markov chains.
Thus, we need new methods to analyze these queueing processes
and one potentialmethod to develop approximations that are non-
asymptotic is to use the functional Kolmogorov forward equations
of the queueing process.

3.1. Functional forward equations

Like in the work of [11], we can derive the following functional
version of the Kolmogorov forward equations for theMt/Mt/1+Mt
queue, which are of the form
•

E [f (Q )] = λ · E [f (Q + 1)− f (Q )]
+µ · E [{Q > 0} · (f (Q − 1)− f (Q ))]
+β · E [Q · (f (Q − 1)− f (Q ))]

for all functions f that are well defined and integrable. Moreover,
it is also possible to write the functional forward equations as
•

E [f (Q )] = λ · E [f (Q + 1)− f (Q )]
+µ · E [(Q ∧ 1) · (f (Q − 1)− f (Q ))]
+β · E [Q · (f (Q − 1)− f (Q ))] .

Unlike the first representation, the service rate function is now a
Lipschitz function of the queue length. This equivalence holds only
because the queue length process is an integer valued process and
the indicator function {Q > 0} has the same value as theminimum
functionQ∧1 on the integers. It is our experience that ourmethods
work better for this second representation than with the indicator
function representation.

For special cases of f such as the mean and variance, we can
then obtain the following set of moment equations:
•

E [Q ] = λ− µ · E[(Q ∧ 1)] − β · E[Q ]

•

Var [Q ] = λ+ µ · E[(Q ∧ 1)] + β · E[Q ]

− 2 · µ · Cov[Q , (Q ∧ 1)] − 2 · β · Var[Q ].

(3.5)

Although these equations describe the time varying dynamics of
the queueing process, they are non-trivial to solve since the ex-
pectation terms depend on the queue length distribution beyond
knowing themean or variance. See for example [16] formore infor-
mation regarding this distributional dependence of the mean and
variance.

3.2. Truncated normal approximation

Inspired by the truncated normal distribution in the stationary
setting, we apply a modified time varying truncated normal distri-
bution to approximate the mean and variance of the single server
queuewith abandonment and time varying parameters.We define
our modified truncated normal approximation of the queue length
process at each fixed time point as the following random variable

Q ≡ q +


v · 2 · π

π − 1
·

X+

− ϕ(0)

. (3.6)

This approximation of the queue length leads us to our next theo-
rem.

Theorem 3.1. Suppose Q has the same distribution as Eq. (3.6), then
we have that

E[Q ] = q
Var[Q ] = v

E[(Q ∧ 1)] = q −


π − 1
2 · π · v

·

ϕ(χ)− χ · Φ(χ)


Cov[Q , (Q ∧ 1)] =

v · 2 · π

π − 1
·

Φ(min(χ, 0))− ϕ(0)

·

ϕ(χ)− χ · Φ(χ)


where

χ = ϕ(0)+
(1 − q) · (π − 1)

2 · π ·
√
v

.

Proof. For the mean of the queue length process, we have that

E[Q ] = E


q +


v · 2 · π

π − 1
·

X+

− ϕ(0)


= q +


v · 2 · π

π − 1
·

E

X+

− ϕ(0)


= q +


v · 2 · π

π − 1
· (E [X · {X ≥ 0}] − ϕ(0))

= q +


v · 2 · π

π − 1
· (E [δ0(X)] − ϕ(0))

= q.

Similar computations for the variance of the queue length process
yield that

Var[Q ] =
v · 2 · π

π − 1
· E[(X+

− ϕ(0))2]

=
v · 2 · π

π − 1
· E[(X2

− 1) · {X ≥ 0} + {X ≥ 0} − ϕ(0)2]
= v.
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Fig. 1. λ(t) = 100 + 40 sin(t), µ = 100, β = 50, q(0) = 0, T = 24. Mean Queue Length (Top Left). Variance of Queue Length (Top Right). Skewness of Queue Length
(Bottom Left). Kurtosis of Queue Length (Bottom Right).
Lastly, for the minimum function we exploit the following identi-
ties

E[(Q ∧ 1)] = E[Q ] − E[(Q − 1)+]

Cov[Q , (Q ∧ 1)] = Var[Q ] − Cov[Q , (Q − 1)+]

and solve for the functions E[(Q−1)+] and Cov[Q , (Q−1)+]. Com-
putations similar to the ones that generate the mean and variance
yield the following expressions.

E[(Q − 1)+] =


π − 1
2 · π · v

·

ϕ(χ)− χ · Φ(χ)


Cov[Q , (Q − 1)+] =

v · 2 · π

π − 1
·

Φ(min(χ, 0))− ϕ(0)

·

ϕ(χ)− χ · Φ(χ)


where

χ = ϕ(0)+
(1 − q) · (π − 1)

2 · π ·
√
v

. � (3.7)

This theorem provides us with closed form expressions for the
rate functions that appear in the functional forward equations of
Eq. (3.5). Thus, using a time varying truncated normal distribution,
we can develop accurate approximations for the mean and vari-
ance of the nonstationary queue length process, which has been
neglected in the literature thus far. We can also compute various
cumulants by using the formulas in the previous section. Since we
have approximations for the mean and variance, we use these in
the formulas for calculating the cumulants of the truncated nor-
mal distribution to approximate the skewness and kurtosis of the
nonstationary queueing process.

3.3. Numerical results for nonstationary setting

On the top of Fig. 1 we see that the truncated normal distribu-
tion is approximating the mean and variance of the queue length
process quite well. Moreover, we also compare the truncated nor-
mal distribution to that of the normal distribution with the same
mean and variance and we see that the truncated normal distri-
bution outperforms. On the bottom of Fig. 1 we plot the skewness
and kurtosis of the time varying truncated normal approximation.
It appears that it is overestimating the skewness a bit and it is ap-
proximating the kurtosis quite well. There is no need to calculate
the skewness and kurtosis directly since we can use the formulas
of Section 2 directly. We note that for large values of the mean and
variance of the queue length i.e. q, v > 10, we can use the same
mean and variance generated from the truncated normal approx-
imation. However, when the queue length is smaller we have to
adjust the mean and variance formulas, which can be done using
the fzero function in Matlab [13]. If we were to use a normal distri-
bution, the skewness and kurtosis approximations have the value
zero, which is clearly not an accurate estimate of the true skewness
and kurtosis simulations. We should expect this difference as the
approximation for the skewness and kurtosis is very sensitive to
small changes in the mean and variance when the mean and vari-
ance are near zero. Moreover, our approximations of the skewness
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andkurtosis are basedonour approximations of themean andvari-
ance, which have an error of 1%–2% and 5%–10% respectively. This
error in the mean and variance can yield an error of 10%–15% in
the skewness and kurtosis approximations. We believe that this
approach can be extended to single server loss models and nonsta-
tionary phase type models by expanding the state space and the
dimensionality of the approximations.

Acknowledgments

We acknowledge support from the School of Operations Re-
search and Information Engineering at Cornell University and the
Ford Foundation.

References

[1] D.R. Barr, E.T. Sherrill, Mean and variance of truncated normal distributions,
Amer. Statist. 53 (1999) 357–361.

[2] S. Browne, W. Whitt, Piecewise-linear diffusion processes, in: J. Dshalalow
(Ed.), Advances in Queueing, CRC Press, Boca Raton, FL, 1995, pp. 463–480.

[3] A. Cohen, On estimating themean and standard deviation of truncated normal
distributions, J. Amer. Statist. Assoc. 44 (1949) 518–525.

[4] E. Feldheim, Expansions and integral transforms for products of Laguerre and
Hermite polynomials, Q. J. Math. 11 (1940) 18–29.

[5] M. Halperin, Estimation in the truncated normal distribution, J. Amer. Statist.
Assoc. 47 (1952) 457–465.

[6] O.B. Jennings, J. Pender, Comparisons of Ticket and Standard Queues, Working
Paper, 2014.
[7] A. Mandelbaum, W.A. Massey, Strong approximations for time dependent
queues, Math. Oper. Res. 20 (1995) 33–64.

[8] A. Mandelbaum, W.A. Massey, M. Reiman, Strong approximations for
Markovian service networks, Queueing Syst. 30 (1998) 149–201.

[9] W.A. Massey, J. Pender, Skewness variance approximation for dynamic rate
multiserver queues with abandonment, ACM SIGMETRICS Perform. Eval. Rev.
(39) (2011) 74.

[10] W.A. Massey, J. Pender, Approximation and Stabilizing Jackson Networks with
Abandonment, Working Paper, 2013.

[11] W.A. Massey, J. Pender, Gaussian skewness approximation for dynamic rate
multiserver queues with abandonment, Queueing Syst. 75 (2013) 243–277.

[12] W.A. Massey, W. Whitt, Uniform acceleration expansions for Markov chains
with time-varying rates, Ann. Appl. Probab. (1998) 1130–1155.

[13] Matlab, Version 8.2.9.701 (R2013b). The MathWorks Inc. Natick, Mas-
sachusetts, 2013.

[14] D. Nualart, The Malliavin Calculus and Related Topics, Springer, 1995.
[15] J. Pender, Cumulant moment approximations for nonstationary loss queues

with abandonment, Probab. Engrg. Inform. Sci. (2014) in press.
[16] J. Pender, Gram Charlier expansions for time varying multiserver queues with

abandonment, SIAM J. Appl. Math. 74 (4) (2014) 1238–1265.
[17] J. Pender, Laguerre polynomial approximations for nonstationary queues,

2013. www.columbia.edu/~jp3404/LSA.pdf.
[18] J. Pender, Approximations for the moments of nonstationary and state depen-

dent birth–death queues, 2014. www.columbia.edu/~jp3404/DePoisson.pdf.
[19] J. Pender, Poisson–Charlier approximation for nonstationary queues, Oper.

Res. Lett. 42 (2014) 293–298.
[20] C.M. Stein, Approximate Computation of Expectations, in: Lecture Notes

Monograph Series, vol. 7, Institute of Mathematical Statistics, Hayward, CA,
1986.

[21] A.R. Ward, P.W. Glynn, Properties of the reflected Ornstein–Uhlenbeck
process, Queueing Syst. 44 (2003) 109–123.

[22] A.R. Ward, P.W. Glynn, A diffusion approximation for a GI/GI/1 queue with
balking or reneging, Queueing Syst. 50 (2005) 371–400.

http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref1
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref2
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref3
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref4
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref5
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref7
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref8
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref9
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref11
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref12
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref14
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref15
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref16
http://www.columbia.edu/~jp3404/LSA.pdf
http://www.columbia.edu/~jp3404/DePoisson.pdf
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref19
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref20
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref21
http://refhub.elsevier.com/S0167-6377(14)00154-0/sbref22

	The truncated normal distribution: Applications to queues with impatient customers
	Introduction
	Stein's lemma and main results
	Stein's lemma
	Numerical results for stationary setting

	A truncated normal approximation for the  Mt / Mt / 1 + Mt  queue
	Functional forward equations
	Truncated normal approximation
	Numerical results for nonstationary setting

	Acknowledgments
	References


