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Abstract Upon arrival to a ticket queue, a customer is offered a slip of paper with a
number on it—indicating the order of arrival to the system—and is told the number
of the customer currently in service. The arriving customer then chooses whether to
take the slip or balk, a decision based on the perceived queue length and associated
waiting time. Even after taking a ticket, a customer may abandon the queue, an event
that will be unobservable until the abandoning customer would have begun service. In
contrast, a standard queue has a physical waiting area so that abandonment is apparent
immediately when it takes place and balking is based on the actual queue length at
the time of arrival. We prove heavy traffic limit theorems for the generalized ticket
and standard queueing processes, discovering that the processes converge together
to the same limit, a regulated Ornstein–Uhlenbeck process. One conclusion is that
for a highly utilized service system with a relatively patient customer population,
the ticket and standard queue performances are asymptotically indistinguishable on
the scale typically uncovered under heavy traffic approaches. Next, we heuristically
estimate several performance metrics of the ticket queue, some of which are of a
sensitivity typically undetectable under diffusion scaling. The estimates are tested
using simulation and are shown to be quite accurate under a general collection of
parameter settings.
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1 Introduction

In many service settings, newly arriving customers are given information about the
number of individuals preceding them in line, even when this line is virtual. There are
several ways in which this information may be passed on. For example, a customer
visiting either a delicatessen or the department ofmotorized vehicles (DMV) is offered
a ticket with a number on it and, via some physical display, is informed of the current
customer being serviced. In restaurants, dinner parties may either be told about the
estimated wait or told howmany similarly configured dinner parties are ahead of them.
Often these two forms of information are roughly interchangeable: given the service
rate, knowledge of the queue length yields an estimate of the delay, and vice versa.
Being informed about the delay in service provision, customers then choose whether
to join the queue or to balk.

The fact that a customer initially accepts the estimated delay and joins the queue
does not guarantee that the customer will wait around until service can begin. Cus-
tomers may renege on their initial decision and abandon the queue. In environments
where customers are physically waiting in line for their service—such as at a bank or
grocery store—abandonment is immediately apparent to service providers and other
customers alike. However, neither the delicatessen service personnel, fellow ticket
holders, nor potential ticket holders are aware when someone has chosen to abandon
their ticket. This event is not discovered until the ticket’s number is called and no one
responds. In general, the number of outstanding tickets may be larger than the number
of customers actually waiting for service.

A ticket queue refers to the setup typically employed in delicatessens, but can be
thought of more generally as a mechanism for tracking the number of potential cus-
tomers yet to be served and for maintenance of a first-come-first-served protocol. By
potential, it is meant that these customers have been triaged, joined the queue, and
have committed in principle to be served, yet may ultimately abandon before service
can actually begin. Some of the customers may renege on this implicit commitment
and leave; reneging customers typically will not inform the system manager of their
decision to forgo their place in line. As a result, what is generally perceived as the
queue length—the number of potential customers to be served—will in fact be an
upper bound.

A visual comparison of abandonment in the two queueing types is depicted in Fig. 1.
The left side of the figure shows a progression of three events as they are experienced
in the standard queue. The first image has a queue with four customers, numbered 1
through 4 and with customer #1 currently in service. In the next frame, customer #3
abandons the queue, the system immediately detects the defection and customer #4
replaces customer #3 in line. Then customer #1 completes service. Finally customer
#4 reaches the front of the queue and begins service in the 4th frame after the service
completion for customer #2.
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Fig. 1 Queueing dynamics of the ticket and standard queues when abandonment occurs

The right side of the image depicts the same sequence of events but as they are
experienced in a ticket queue. Notice that when customer #3 abandons his ticket,
the system is unaware. Thus, the perceived queue length (including the customer
in service) is four. After customer #1 completes service, all customers advance and
customer #2 begins service. After customer #2’s service is complete, an attempt is
made to handle customer #3, and it is determined immediately that customer #3 has
left. So customer #4 begins service at this time. What we see here is that in two of the
four frames, the ticket queue’s perceived length is larger than that of the standard queue.

Several questions emerge: What are the dynamics of the collection of outstanding
tickets? What is the actual number of customers remaining, i.e., those who have yet to
renege?What fraction of customers renege?What fraction of customers balk?Does the
difference in implementation of ticket and standard queues lead to a marked difference
in performance between the two customer-organizing methods?

Someheuristics seeking to address these questionswere provided by [22].Our paper
revisits the ticket queue to provide new heuristics and intuition that is complementary
to that of [22]. In particular, informed by a heavy traffic limit theorem, we conclude
that for highly utilized systems with relatively patient customers, ticket queues and
conventional queues are indistinguishable. One of the conclusions of [22] is that for
heavily loaded systems with relatively impatient customers, the ticket queue expe-
riences a higher percentage of balking. In addition to these divergent insights, what
sets this paper apart from [22] is that it provides estimates of the distribution of the
queue length process, which can then be used to estimate other stochastic elements.
More details about these estimates are provided below.Moreover, general assumptions
about the abandonment distribution and balking distributions are employed; random
variables in [22] are all exponentially distributed.
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The paper appeals to heavy traffic limit theory in the pursuit of its approximations
and comparisons of the ticket and standard queues. In this regard, it is similar in
approach to [19],which studies a generalized diffusion-scaled single-server queuewith
abandonment or balking. Our paper concerns a realistic situation where there is both
balking and abandonment.Moreover, technical complications arise as we base balking
on the queue that customers perceive, whereas abandonment is based on the delays
that customers experience. Ultimately, what one obtains under diffusion scaling is a
regulated (at zero) Ornstein–Uhlenbeck (ROU) process whose constant drift is related
to the difference between the arrival and service rates and whose restorative drift
involves the derivatives of the abandonment and balking distributions, both evaluated
at zero. The diffusion limit of the critically loaded ticket queue is identical, despite the
fact that for the ticket queue, abandonment of a ticket is not matched with a shortening
of the queue until the ticket of the abandoning customer reaches the front of the queue.
Further, given the same primitive random variable elements, the diffusion-scaled ticket
and standard queueing processes converge together to the same diffusion limit, a
stronger notion of process similarity. In other words, not only are the dynamics of the
ticket and standard queues asymptotically similar, the processes are asymptotically
coupled.

As mentioned above, we estimate the distribution of the queueing processes
employing heuristic interpretations of the limit theorem. Additionally, we estimate
performance metrics such as abandonment and balking probabilities and the expected
number of abandoned tickets in circulation. Each of these additional quantities is
typically lost under conventional heavy traffic limit theory, but are manifest on a
smaller—i.e., more sensitive—scaling. The approach for estimating the expected
number of abandoned tickets in circulation provides the additional insight needed
to compare the subtle differences between the standard and ticket queues.

We should also mention that the differences between standard and ticket queues
also highlight the different ways that delay information can be communicated to the
customer. This communication between the service and its customers is important
because customers will make their decision to wait or to leave the queue based on
the information that they receive from the manager of the system. For example, see
the following papers on research on queues with delay announcements and estimation
[1,2,8,9,15,20,21].

As for the assumptions used throughout, the paper also fits within the growing
literature on queues with generally distributed abandonment distributions, specifically
those that are not exponentially distributed. Some recent examples of such papers
include [3,7,11–13,18,19,23]. The first two of these are in a multiserver setting,
whereas the others are in the single-server regime. The last two papers use measure-
valued processes to model system dynamics.

The remainder of the paper proceeds as follows. Both the ticket queueing model
and standard queueing model (with abandonment and balking) are presented in the
next section. The main result, Theorem 3.1, is presented in Sect. 3. Section 4 contains
the heavy traffic-inspired approximations for performance measures and some inter-
pretations. The proofs of the main results are provided in Sect. 5. Extensive numerical
results are presented in Sect. 6. Concluding remarks and extensions follow.
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1.1 Notation

We conclude this introduction with notational conventions. LetR denote the set of all
reals,R+ the set of non-negative reals, andN the set of strictly positive integers. For
a Polish space S, let D(R+,S) denote the space of right continuous with left limits
functions fromR+ into S. The Polish spaces we consider here are R+ and R2+.

For ease of exposition, quantities that are related to the ticket queuewill be appended
with the subscript T and those associated with the standard queue will have the sub-
script S. We use the subscript α as a place holder for either ticket (α = T ) or standard
(α = S) queues. The standard hazard rate function h : R �→ R+ is the ratio of the
density of the standard normal distribution to the tail of the standard normal distribu-
tion: h(x) = φ(x)/(1−�(x)) for every x ∈ R. For enumeration purposes, we use the
letters i, j, and k to represent non-negative integers. The letters q, r, s, and t are used
to represent time. Typically, the symbols δ, ε, η are used to represent small positive
real numbers. In contrast, the letters K and L are used to represent large quantities,
predominately as upper bounds.

2 The model basics

In this section we provide the primitive random variables for the queueing processes,
describe the construction of the ticket and standard queues, and discuss the intricacies
of simulating the ticket queues.

2.1 Random variables

We construct the ticket and standard queueing processes using the same collection
of random variables. Each customer that arrives after time zero has an interarrival
time, (potential) service time, initial time tolerance, and (potential) abandonment time.
For the i th customer, these times are captured in the quadruple (ui , vi , bi , di ). The
letters ‘b’ and ‘d’ denote balking and deadline, respectively. Themutually independent
sequences {ui , i ≥ 1}, {vi , i ≥ 1}, {bi , i ≥ 1}, {di , i ≥ 1}, which are all defined on the
same probability space (�,F ,P), are each i.i.d. The exogenous arrival rate of jobs
is λ and the service rate is μ. The sequences {ui , i ≥ 1} and {vi , i ≥ 1} have unitary
means, and the interarrival and service times of the i th customer are ui/λ and vi/μ,
respectively. The arrival time of the i th job occurs at time

ti = (1/λ)

i∑

j=1

u j .

The unitary interarrival and service times have variances σ 2
a and σ 2

s , respectively. The
quantities bi and di represent the random variables associated with balking and reneg-
ing, respectively. Let Fb and Fd denote their respective cumulative distribution func-
tions. We assume the these functions both vanish at zero. Moreover, their derivatives
exist at zero and the sum of these derivatives is strictly positive. We define the sum as

θ ≡ F ′
b(0) + F ′

d(0). (2.1)
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2.2 Initial conditions

Consider jobs that are present at time zero. These jobs do not require arrival times.
Neither do they require balking random variables. Hence, for these initial jobs, we
provide only two sequences of random variables: unitized potential service times,
{v̂i , i ≥ 1}, and residual deadline quantities, {d̂i , i ≥ 1}. Let Q(0) denote the number
of initial jobs. If initial job i ≤ Q(0) has not begun service before time d̂i , this job
will abandon. If this initial job has not been abandoned, then its service time will be
v̂i/μ. The initial potential service times are i.i.d. and have the same distribution as the
potential service times of the jobs arriving after time zero. The residual deadlines do
not necessarily have the same distribution. Let F̂d,i be the cumulative distribution of
d̂i . We impose the following uniform restriction on their distributions near zero: There
exist an f̂ > 0 and an h0 > 0 such that

sup
i

F̂d,i (h)

h
≤ f̂ , ∀h ≤ h0.

The workload at time 0, denoted W (0), is the amount of effort required to process
jobs present at time zero. Because of deadlines running out before service has begun,
some of the Q(0) jobs present at time zero will not be served. Therefore, it is not as
simple as adding up the service times of the first Q(0) jobs. Instead, let ŵi denote the
cumulative amount of server effort required among the first i jobs in-queue at time
zero. The i th job will be served if and only if it is sufficiently patient, or if d̂i > ŵi−1,
where ŵ0 = 0. We can define the ŵi ’s recursively as follows:

ŵi =
i∑

j=1

v̂ j

μ
· 1(d̂ j > ŵ j−1) = ŵi−1 + v̂i

μ
· 1(d̂i > ŵi−1), i ≥ 1.

It follows that W (0) = ŵQ(0).

2.3 The queueing processes

Let the process QT = {QT (t), t ≥ 0} track the dynamics of the ticket queue and
QS = {QS(t), t ≥ 0} track that of the standard queue. The difference between the
ticket and standard queue is the timing of when the abandonment is accounted for.
Otherwise the system dynamics are identical. For example, customers arrive to the
ticket and standard queue in the same sequence, with the same balking and reneging
tendencies, and with the same service requirements. The common arrival process is
A = {A(t), t ≥ 0}.

All other processes are indexed by the abandonment protocol α ∈ {S, T }. In par-
ticular, Bα = {Bα(t), t ≥ 0} is the balking process that tracks as a function of time
the number of arriving customers who leave immediately upon arrival. The reneging
process Rα = {Rα(t), t ≥ 0} tracks the number of jobs that arrive after time zero
who have abandoned, and whose abandonment has been detected in the system. Recall
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that in the standard queue an abandoned customer is immediately detected once they
leave, whereas for the ticket queue, abandonment is only apparent at the moment at
which service for that customer would have begun. The process Sα = {Sα(t), t ≥ 0}
tracks the number of service completions of jobs that arrived after time zero, as a
function of howmuch effort the server has expended. Relatedly, the busy time process
Tα = {Tα(t), t ≥ 0} reports how much time has been spent processing jobs as a
function of time t , including initial jobs. The idle time process Iα = {Iα(t), t ≥ 0} is
complementary to Tα: Iα(t) = t − Tα(t) for each t ≥ 0. Lastly, the workload process
Wα = {Wα(t), t ≥ 0} reports as function of time the amount of effort required by the
server to process those customers currently in-queue that will not abandon.

The systemmust clear out all initial jobs in-queue before it can start processing jobs
that arrive after time zero. Let Q̂α = {Q̂α(t), t ≥ 0} track the number of remaining
initial jobs at time t . Some of these jobs may abandon. Let R̂α = {R̂α(t), t ≥ 0}
track, as a function of time, the number of jobs who arrive before time zero, who have
abandoned, andwhose abandonment has been detected in the system. The standard and
ticket queues start with the same collection of jobs at time zero. Hence, among these
initial jobs, the same subset of jobs abandon both the standard and ticket queues. What
is different about the abandonment processes is the timing of when the abandonment
is detected. What is identical between the ticket and standard queues is the initial job
service completion process: Ŝ = {Ŝ(t), t ≥ 0}, which is defined in the next section.

Equations governing the ticket and standard queue are below. For each t ≥ 0 and
α ∈ {S, T },

Qα(t) = Q̂α(t) + A(t) − Bα(t) − Rα(t) − Sα((Tα(t) − W (0))+), (2.2)

Q̂α(t) = Q(0) − R̂α(t) − Ŝ(t), (2.3)

A(t) = sup

⎧
⎨

⎩ j ≥ 0 :
j∑

i=1

ui/λ ≤ t

⎫
⎬

⎭ , (2.4)

Bα(t) =
A(t)∑

i=1

1(bi ≤ Qα(ti−)/μ), (2.5)

RT (t) =
A(t)∑

i=1

1(bi > QT (ti−)/μ) · 1(di ≤ WT (ti−)) · 1(WT (ti−) ≤ t−ti ),

(2.6)

R̂T (t) =
Q(0)∑

i=1

1(d̂i ≤ ŵi−1) · 1(ŵi−1 ≤ t), (2.7)

RS(t) =
A(t)∑

i=1

1(bi > QS(ti−)/μ) · 1(di ≤ min(WS(ti−), t − ti )), (2.8)

R̂S(t) =
Q(0)∑

i=1

1(d̂i ≤ min(ŵi−1, t)), (2.9)
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Tα(t) =
∫ t

0
1(Qα(s) > 0)ds, (2.10)

Iα(t) = t − Tα(t), (2.11)

and

Wα(t) = W (0) − Tα(t) +
A(t)∑

i=1

(vi/μ) · 1(bi > Qα(ti−)/μ)

·1(di > Wα(ti−)). (2.12)

Interpreting (2.2) and (2.3), the queue length process consists of the remaining
initial jobs and may increase with each arrival, provided the corresponding customer
does not balk. In addition to the departure of the initial jobs, the queue length process
decreases whenever there is an abandonment or a service completion among the jobs
that arrive after time zero. Initially, service is allocated entirely to the initial jobs and
remains so until W (0), when those jobs have departed entirely. At this point, service
allocation is given entirely to jobs arriving after time zero. The initial jobs experience
only abandonment and service completion. The remaining job process is a decreasing
function, hits zero, and remains there.

As for the balking process and (2.5), an arriving customer joins if their initial delay
thresholdbi is sufficiently large.When a customer arrives to the system, it is first triaged
and given the opportunity to join the queue. Under the ticket queue implementation,
joining the queue involves the acceptance of the offered numbered ticket. In addition
to knowing which ticket it will be given, the customer is told the number of the ticket
holder currently in service. For the standard queue, joining the queue involves standing
in a physical line. In both cases, the decision of whether or not to join the queue is
based on the customer’s expectation of the delay until service and her tolerance for
such a delay. Customers convert the queue information into an expectation of delay
until service. We assume the conversion is naive and the same for both ticket and
standard queueing environments: Given the queue length, the customer estimates the
delay by dividing the queue length by the service rate μ, a quantity assumed to be
known by all customers. That is, if the i th customer arrives at time t , the customer
joins the queue if bi > Qα(t−)/μ; otherwise the customer balks. The sequence of
balking tolerances has common distribution function Fb. Naturally, the probability
that a customer arriving at time t balks is Fb(Qα(t−)/μ).

Consider (2.6) and (2.8). A customer who joins the queue is not guaranteed to stick
around for service. If the delay that customer i experiences in the queue reaches di then
that customer will abandon from the queue. The time that a customer arriving at time t
would have to wait is captured byWα(t−). An analogous workload process is themain
object of study in [12]. The distribution of the abandonment time randomvariables di is
denoted Fd ; the ‘d’ stands for customerdeadline. It follows that a non-balking customer
arriving at time t will abandon the queue with probability Fd(Wα(t−)). What sets the
ticket queue apart from the standard one is the time at which the process Qα reflects the
abandonment of a job. Hence the need to express RT (t) and RS(t) separately in (2.6)
and (2.8), respectively. Consider (2.6) and how it captures customer abandonment.
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Not only must the tolerance di be smaller than the delay that the customer must
endure before service, the system does not know that the customer has abandoned
until that delay has expired. Equations (2.7) and (2.9) are the analogous formulations
for reneging customers who are present at time zero.

The workload process is also referred to as the virtual waiting time process because
it tracks, as a function of time, the amount of time a sufficiently patient, non-balking
customer would have to wait before receiving service. The virtual waiting time process
increases by the service time whenever a job arrives to the system that will eventually
receive service. The process decreases at rate one whenever it is greater than zero, or
equivalently, whenever the queue length is non-zero. The cumulative amount that the
workload has decreased by time t is precisely equal to the total busy time Tα(t).

2.4 State space descriptors and simulation of the ticket queue

Simulating the ticket queue is more complicated than simulating the standard queue.
We describe below the intricacies of simulating the ticket queue under bothMarkovian
and non-Markovian assumptions. We use simulation later to assess the accuracy of
our approximations and heuristics.

Under Markovian assumptions, the state space of the ticket queue can be captured
by a vector of zeros and ones. The length of the vector corresponds to the number
of outstanding tickets, including the ticket of the customer currently in service. (For
convenience, assume that the first element of the vector is the leftmost element.)
If the vector has a non-zero length, the first element corresponds to the customer
in service and by convention is a one. The other elements correspond to the other
unresolved tickets. Further, the order of these elements reflects the relative order of the
corresponding customers’ arrivals and, under our first-come-first-served assumptions,
the order in which resolution will take place. Ones in the vector represent customers
who have not abandoned the queue. Some of these customers may abandon before
resolution takes place. When a customer abandons, the corresponding element turns
into a zero.When service of a sufficiently patient customer takes place, the state vector
shifts to the left because at least the first element of the vector must be removed. Either
the second element is a zero or it is a one. In the latter case, the entire state vector shifts
by one element. If the second element is a zero, this represents an abandoned ticket.
Starting with this zero in the second element, all contiguous zeros will be removed
from the state descriptor. The assumption here is that resolution of abandoned tickets
is instantaneous. When a job arrives to the system and chooses to join the queue, a
one is appended to the end of the state vector. If the customer balks, no change in the
state takes place.

The system transition is governed by exponential clocks for each unresolved ticket
that has yet to be abandoned and is not being processed, one clock for the job in service,
and one for the next arriving job. If the clock associated with an unresolved ticket not
in service expires, then the associated customer abandons and the element in the state
descriptor changes from a 1 to a 0. If there is an arrival, then another random variable
is generated and compared to the weighted queue length to determine whether the
customer balks; if balking occurs the state does not change. If the clock associated
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with the job in service expires, service completion ensues and the state changes as
described above.

Alternatively, one could have one exponential clock for all unresolved tickets that
are not in service and have not been abandoned. The rate of this clock is equal to the
number of such tickets multiplied by the abandonment rate of a single individual. If
this clock is the one that expires next, then the actual abandoning customer is found by
randomly choosing between the non-abandoned waiting customers with equal proba-
bility. When there is a change in system state, this clock must be recalculated because
the number of unresolved tickets will have changed as well.

Under general assumptions on the random variables, the state space must contain
the residual interarrival time of the next customer to arrive, the residual service time of
the customer at the front of the queue, and for each customer yet to reach the front of the
queue, the residual abandonment time. There is an alternative state space formulation,
if one is content with only knowing which of the customers in-queue will eventually be
served. For this alternative, onemust track the virtual waiting time process,WT , which
yields as a function of time the amount of time that a customer must wait until service
begins, and the eventual service time of jobs thatwill be served. These service times can
be kept in a vector similar to the vector of zeros and ones above. From the time of their
arrival, jobs that will have abandoned before reaching the front of the queue have a zero
in their corresponding element of the vector. The virtual waiting time process jumps
at the time of an arrival by the service time of the corresponding customer only if this
customer actually joins the queue and is sufficiently patient; see, for instance, [19] or
[12]. What is lost in this formulation is the timing of the individual jobs’ abandonment
times. Gained is the freedom from having to track residual abandonment times for
each job in-queue.

3 Comparing the queue processes

In this section we provide the main result, a heavy traffic limit theorem that serves as
the theoretical underpinning of the heuristics forwarded in the subsequent section.

To facilitate comparing the ticket and standard queue, we appeal to heavy traffic
limit theory. To this end, we consider a sequence of systems, indexed by n. The
arrival and service rates of the nth system are λn and μn . Equations (2.2)–(2.10) have
straightforward analogs with the λ and μ replaced by λn and μn , respectively. For
each t ≥ 0, and α ∈ {S, T },

Qn
α(t) = Q̂n

α(t) + An(t) − Bn
α(t) − Rn

α(t) − Snα(T n
α (t) − Wn(0))+, (3.1)

Q̂n
α(t) = Qn(0) − R̂n

α(t) − Ŝn(t), (3.2)

An(t) = sup

⎧
⎨

⎩ j ≥ 0 :
j∑

i=1

ui/λ
n ≤ t

⎫
⎬

⎭ , (3.3)

Bn
α(t) =

An(t)∑

i=1

1(bi ≤ Qn
α(tni −)/μn), (3.4)
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Rn
T (t) =

An(t)∑

i=1

1(bi > Qn
T (tni −)/μn) · 1(di ≤ Wn

T (ti−)) · 1(Wn
T (tni −) ≤ t − ti ),

(3.5)

R̂n
T (t) =

Qn(0)∑

i=1

1(d̂i ≤ ŵn
i−1) · 1(ŵn

i−1 ≤ t), (3.6)

Rn
S(t) =

An(t)∑

i=1

1(bi > Qn
S(t

n
i −)/μn) · 1(di ≤ min(Wn

S (tni −), t − tni )), (3.7)

R̂n
S(t) =

Qn(0)∑

i=1

1(d̂i ≤ min(ŵn
i−1, t)), (3.8)

T n
α (t) =

∫ t

0
1(Qn

α(s) > 0)ds, (3.9)

Wn
α (t) = Wn(0) − T n

α (t)

+
An(t)∑

i=1

(vi/μ
n) · 1(bi > Qn

α(tni −)/μn) · 1(di > Wn
α (tni −)),

(3.10)

and

I nα (t) = t − T n
α (t), (3.11)

where

tni = (1/λn)
i∑

j=1

u j ,

Wn(0) = ŵn
Qn(0), ŵn

0 = 0, and ŵn
i =

i∑

j=1

v̂ j

μn
· 1(d̂ j > ŵn

j−1), i ≥ 1.

The associated scaled processes are Qn
α = {Qn

α(t), t ≥ 0}, Q̂n
α = {Q̂n

α(t), t ≥ 0},
An = {An(t), t ≥ 0}, Bn

α = {Bn
α(t), t ≥ 0}, Rn

α = {Rn
α(t), t ≥ 0}, R̂n

α = {R̂n
α(t), t ≥

0}, Snα = {Snα(t), t ≥ 0}, Ŝnα = {Ŝnα(t), t ≥ 0}, T n
α = {T n

α (t), t ≥ 0}, I nα = {I nα (t), t ≥
0}, and Wn

α = {Wn
α (t), t ≥ 0}.

We envision the arrival and service rates each being order n and differing by a
quantity that is order

√
n. So, in the absence of abandonment and balking, one would

expect the queue length to be order
√
n and for the workload process to be order

1/
√
n. In fact, this intuition is true in the presence of both balking and abandonment.

Hence, we define for each α ∈ {S, T } the diffusion-scaled queue length process
Q̃n

α = {Q̃n
α(t), t ≥ 0} and the inflated workload process W̃ n

α = {W̃ n
α (t), t ≥ 0}, where
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for each t ≥ 0,

Q̃n
α(t) = Qn

α(t)√
n

and W̃ n
α (t) = √

nWn
α (t).

Notice that we do not scale time as the arrival rates and service rates are already
proportional to n. Also notice that the balking and abandonment times do not change
with n. The reasoning is that demand may change and service speed must adjust
accordingly, however, individuals will still have the same desires for and assessment
of service quality.

We introduce the processes εnα = {εnα(t), t ≥ 0} for each α ∈ {S, T }, where for
each t ≥ 0,

εnα(t) = R̂n
α(t) +

⎛

⎝Rn
α(t) −

An(t)∑

i=1

1(di ≤ Qn
α(T n

i −)/μn)

⎞

⎠ . (3.12)

The idea is to replace the reneging process Rn
α with a process that ignores whether the

job has balked when considering whether it will renege. In reality, a balking customer
leaves and, as a result, the question of whether balking customers would renege is a
moot one. The introduction of this process also eliminates the concern of when the
reneging customer causes a decrease in the queue length. Here we assume that the
customer never actually enters the queue. One further subtlety is that the workload is
replaced by the weighted queue length—the quantity used to determine balking—so
that one needs only to track the process Qn

α rather than the joint process (Qn
α,Wn

α ).
Lastly, a benefit of this formulation is that it allows for the ticket and standard queues to
be handled simultaneously. Ultimately, we will show that the process εnα is negligible
under diffusion scaling, which partially argues why the diffusion-scaled ticket and
standard queues converge together to the same limit. The process εnα(·) also eliminates
the reneging of the initial jobs altogether; the reneging of initial jobs is shown to be
negligible in Proposition 5.13.

The process Snα tracks the number of customers (who arrive after time 0) served as a
function of total effort dedicated to customers. As not all customers receive service, the
service times that determine Snα are a subset of {vi , i ≥ 1}, the collection of potential
service times of arriving jobs. This subset differs for the ticket queue and the standard
queue. The index of the i th job whose service time contributes to Snα—that is, who is
actually served—is

jnα (i) = inf

{
k ≥ 1 :

k∑

�=1

1(bi > Qn
α(tn� −)/μn) · 1(di > Wn

α (tn� −) ≥ i

}
, i ≥ 1,

α ∈ {S, T }.

The sequence of service times that are actually used is denoted {vnα(i), i ≥ 1}, where
vnα(i) = vnjnα (i). Because the service time of job jnα (i) is independent of all random
variables that dictatewhether this service time is used, the filtered sequence {vnα(i), i ≥
1} is i.i.d. and has the same distribution as the original (unfiltered) collection of service
times. Therefore, any property of the unfiltered service times—such as weak laws of
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large numbers or invariance principles—holds for the filtered sequence. Finally, we
can write Snα(t) for each t ≥ 0 as

Snα(t) = sup

{
k ≥ 0 : (1/μn)

k∑

i=1

vnα(i) ≤ t

}
, α ∈ {S, T }. (3.13)

The processes Ŝ = {Ŝ(t), t ≥ 0} and Ŝn = {Ŝn(t), t ≥ 0} are also defined
analogously.

Now we can write the diffusion-scaled queue length processes for each t ≥ 0 as

Q̃n
α(t) = Q̃n(0) + Ãn(t) − M̃n

b,α( Ān(t)) − M̃n
d,α( Ān(t)) − ε̃nα(t) − δ̃nα(t)

− S̃nα((T n
α (t) − Wn(0))+)

− θ

∫ t

0
Q̃n

α(s)ds + (λn − μn)√
n

t + Ỹ n
α (t), α ∈ {S, T }, (3.14)

where, for each α ∈ {S, T }, Q̃n
α(0) = (1/

√
n)Qn(0) is the scaled initial queue length

and, for each t ≥ 0,

Ãn(t) = (1/
√
n)
(
An(t) − λnt

)
, (3.15)

Ān(t) = (1/n)An(t), (3.16)

M̃n
b,α(t) = (1/

√
n)

�nt�∑

i=1

(
1(bi ≤ Qn

α(tni −)/μn) − Fb(
√
nQ̃n

α(tni −)/μn)
)

, (3.17)

M̃n
d,α(t) = (1/

√
n)

�nt�∑

i=1

(
1(di ≤ Qn

α(tni −)/μn) − Fd(
√
nQ̃n

α(tni −)/μn)
)

, (3.18)

S̃nα(t) = (1/
√
n)
(
Snα(t) − μnt

)
, (3.19)

ε̃nα = (1/
√
n)εnα(t), (3.20)

δ̃nα(t) = 1√
n

An(t)∑

i=1

(
Fb(

√
nQ̃n

α(tni −)/μn) + Fd(
√
nQ̃n

α(tni −)/μn)
)

− θ

∫ t

0
Q̃n

α(s)ds + 1√
n

(
Ŝn(t) − μn min(t,Wn(0))

)
, (3.21)

and

Ỹ n
α (t) =

(
μn

n

)
Ĩ nα (t) =

(
μn

√
n

)
I nα (t). (3.22)

We refer to Ãn = { Ãn(t), t ≥ 0} as the diffusion-scaled arrival process and to Ān =
{ Ān(t), t ≥ 0} as its fluid-scaled analog. The reader may notice that the process
δ̃nα = {δ̃nα(t), t ≥ 0} has what looks like an instantaneous drift that is proportionate to
the value of the scaled queue length process. The remaining processes are centered and
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diffusion-scaled versions of their original analogs: M̃n
b,α = {M̃n

b,α(t), t ≥ 0}, M̃n
d,α =

{M̃n
d,α(t), t ≥ 0}, S̃nα = {S̃nα(t), t ≥ 0}, ε̃nα = {ε̃nα(t), t ≥ 0}, and Ỹ n

α = {Yn
α (t), t ≥ 0}.

3.1 A heavy traffic limit theorem

In order to prove a heavy traffic limit theorem, we assume for our sequence of systems
indexed by n that arrival and service rates are order n quantities and are asymptotically
identical; that is, as n → ∞,

λn/n → μ and μn/n → μ. (3.23)

Further, the difference between the two should be an order
√
n quantity such that as

we take the limit n → ∞,

(λn − μn)/
√
n = βn → β ∈ (−∞,∞). (3.24)

One can refer to (3.23) as the heavy traffic condition; the expression implies that

ρn = λn/μn → 1, (3.25)

as n → ∞. We assume that the random variables associated with balking and aban-
donment are unaffected by the change in the index n. Define

σ ≡ μ

√
σ 2
a + σ 2

s (3.26)

as the standard deviation associated with the arrival and service times. Lastly, define
B = {B(t), t ≥ 0} as a Brownian motion with no drift and an infinitesimal variance
of 1.

The framework developed in [18] justifies the alternative representation of (3.14):

(Q̃n
α, Ỹ n

α ) = (�θ ,�θ )(Q̃
n(0) + X̃n

α), (3.27)

where (�θ ,�θ ) : D(R+,R) �→ D(R+,R++) is a Lipschitz continuous map, X̃n
α =

{X̃n
α(t), t ≥ 0}, and for each t ≥ 0 and α ∈ {S, T },

X̃n
α(t) = Ãn(t) − M̃n

b,α( Ān(t)) − M̃n
d,α( Ān(t)) − ε̃nα(t) − δ̃nα(t) − S̃nα(T n

α (t))

+ (λn − μn)√
n

t. (3.28)

The elements of X̃n are those that either will converge to Brownian motions or that
are asymptotically negligible. The limiting stochastic process is the following:

X̃ = βe + σ B. (3.29)
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We now present our main result for the diffusion-scaled queue length and workload
processes.

Theorem 3.1 If

(Q̃n(0), W̃ n(0)) ⇒ (Q̃0, Q̃0/μ), as n → ∞, (3.30)

then

((Q̃n
S, W̃

n
S , Ỹ n

S ), (Q̃n
T , W̃ n

T , Ỹ n
T )) ⇒ ((Q̃, Q̃/μ, Ỹ ), (Q̃, Q̃/μ, Ỹ )), as n → ∞,

(3.31)

where Q̃(0) is equal in distribution to Q̃0, Q̃ = �θ(Q̃(0) + X̃), Ỹ = �θ(Q̃(0) + X̃),
and together Q̃ and Ỹ obey the following stochastic differential equation:

dQ̃(t) = −θ(β/θ − Q̃(t))dt + σdB(t) + dỸ (t). (3.32)

Remark 3.2 The process Q̃ is referred to as an ROU process. The steady-state distri-
bution of Q̃ is a truncated (at zero) normal variable,

Q̃(∞) = Normal

(
β

θ
,
σ 2

2θ
, 0,∞

)
, (3.33)

whose mean is

E[Q̃(∞)] = β

θ
+ σ√

2θ
h

(
− β

σ
√

θ/2

)
, (3.34)

where the hazard function h(·) is defined as the ratio of the density and the tail of the
standard normal distribution:

h (x) = ϕ(x)

1 − �(x)
, for all x ∈ R. (3.35)

3.2 Preliminaries

We conclude this section with several results that are well-known in the heavy traffic
literature. As such, we do not provide proofs. The lemmas are all similar in substance
to those in Lemma 3.1 of [10].

Lemma 3.3 (Bounded total arrivals) For any t ≥ 0,

lim
n→∞P

(
An(t) > 2μnt

) = 0.
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Lemma 3.4 (Bounded maximum service time) For any ε, K , t ≥ 0,

lim
n→∞P

(
sup

i≤Knt
vni > ε/

√
n

)
= lim

n→∞P

(
sup

i≤Knt

v̂i

μn
> ε/

√
n

)
= 0.

Lemma 3.5 (Functional law of large numbers for initial service times) For any ε, b >

0,

lim sup
n→∞

P

⎛

⎝ sup
j,k≤b

√
n

√
n

∣∣∣∣∣∣

k∑

i= j+1

v̂i

μn
− (k − j)

μn

∣∣∣∣∣∣
> ε

⎞

⎠ = 0.

Lemma 3.3 places an upper bound on the arrival process. This bound allows us to
replace the number of arrivals in an interval with a deterministic upper bound. Like-
wise, Lemma 3.4 gives a uniform upper bound on service times that are of order n in
quantity. Used in conjunction with Lemma 3.3, Lemma 3.4 places an upper bound on
all service times during any finite interval of time. Lemma 3.5 places a bound on the
amount by which the service times of initial jobs can differ from their expected value.

The following four results pertain to the arrival of jobs and the arrival of potential
work. The first result states that jobs arrive in a linear fashion.

Lemma 3.6 (Uniformly bounded fluid arrivals) For any ε and t > 0,

lim
n→∞P

(
sup
s≤t

∣∣ Ān(s) − μs
∣∣ > ε

)
= 0.

The second result, based on the heavy traffic condition, is a functional law of large
numbers and states that, asymptotically, potential work arrives at rate 1, uniformly
over compact intervals.

Lemma 3.7 (Uniformly bounded fluid potential workload) For any ε and t > 0,

lim
n→∞P

⎛

⎝sup
s≤t

∣∣∣∣∣∣

An(s)∑

i=1

vni − s

∣∣∣∣∣∣
> ε

⎞

⎠ = 0.

The above lemma is a key component for demonstrating that server idleness is asymp-
totically negligible; see Proposition 5.9. The lemma is also used for the proof of
tightness of our sequence of scaled queueing processes; see Proposition 5.15. How-
ever, we also need another version of the above lemma, but for short time intervals:

Lemma 3.8 (Net potential workload tightness) For any ε and t > 0, there exists a
δ > 0 such that

lim
n→∞P

⎛

⎝ sup
u<v≤t,v−u<δ

∣∣∣∣∣∣

An(v)∑

i=An(u)+1

vni − (v − u)

∣∣∣∣∣∣
>

ε√
n

⎞

⎠ = 0.
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For intuition as to why this lemma holds, consider the required server effort that all
arrivals would contribute to the workload process if none of the customers abandoned
or balked. Then center this process at each time t by t itself, the potential amount of
time that the server could have beenworking had the server never idled. If this centered
process is then scaled up by

√
n and the limit is taken, the result is a Brownian motion.

It follows that the sequence of processes is tight and this fact is used in the proof of
Proposition 5.15.

4 Approximations and interpretations

Now we use the limits of the previous section to approximate several performance
metrics. Throughout this section, assume that we have a queueing system with arrival
rate λ, service rate μ, balking distribution Fb, abandonment distribution Fd , standard
deviation of interarrival times σa , and standard deviation of service times σs . To draw
connections between the formal limiting procedure with the original queueing system,
we make the following notational conventions:

μn = n, β = λ − μ√
μ

, λn = n + β
√
n

and

σ̂ =
√

(σa · λ)2 + (σs · μ)2.

Notice that defining any two of λ, μ, and β uniquely defines the third.

4.1 Distribution of the ticket queue in steady state

Noting the scaling Qn = √
nQ̃n ≈ √

μQ̃, we approximate the steady-state distribu-
tion of our queueing process using the steady-state distribution of the ROU process:

Q ≈ Normal

(
λ − μ

θ
,
μσ̂ 2

2θ
, 0,∞

)
, (4.1)

that is, the ticket queue distribution is approximated by a normal distribution with
mean (λ − μ)/θ , variance μσ̂ 2/(2θ), and truncated to lie within [0,∞). Note the
substitution β ≈ (λ − μ)/

√
μ.

4.2 The expected ticket queue length

We can also approximate the expected queue length as

E[Q] ≈ λ − μ

θ
+ σ̂

√
μ

2θ
h

(
(1 − ρ)

σ̂

√
2μ

θ

)
, (4.2)

123



162 Queueing Syst (2016) 84:145–202

where ρ = λ/μ. If one is also interested in approximations for higher-order cumulant
moments, see, for example, [14,16,17].

4.3 The fraction of abandonment

There are three approximations forwarded for the abandonment probability. To sim-
plify notation we let g(0) = F ′

d(0) and f (0) = F ′
b(0). The first approximation takes

the rate of abandonment from the queue and divides by the total arrival rate:

α1 ≈ g(0)E[Q]
λ

≈ ρ − 1

ρ

g(0)

θ
+ σ̂ g(0)

ρ
√
2θμ

h

(
(1 − ρ)

σ̂

√
2μ

θ

)
. (4.3)

The second approach starts with computing the cumulative distribution function eval-
uated at the expected delay:

α2 ≈ E

[
G

(
Q

μ

)]
= E

[
G

(
Q̃n

√
μ

)]
≈ g(0)

E[Q̃n]√
μ

= g(0)
E[Q]

μ

≈ (ρ − 1)
g(0)

θ
+ σ̂ g(0)√

2θμ
h

(
(1 − ρ)

σ̂

√
2μ

θ

)
. (4.4)

The last approach is the simplification of the first two under the assumption thatρ = 1:

α3 ≈ σg(0)

2
√

πθμ
. (4.5)

4.4 The fraction of balking customers

The balking probabilities are similar to the abandonment ones and, as such, have three
versions:

γ1 ≈ ρ − 1

ρ

f (0)

θ
+ σ̂ f (0)

ρ
√
2θμ

h

(
(1 − ρ)

σ̂

√
2μ

θ

)
, (4.6)

γ2 ≈ (ρ − 1)
f (0)

θ
+ σ̂ f (0)√

2θμ
h

(
(1 − ρ)

σ̂

√
2μ

θ

)
, (4.7)

and when ρ = 1, we have that

γ3 ≈ σ f (0)

2
√

πθμ
. (4.8)
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4.5 The expected number of unresolved abandoned tickets

Given the number of unresolved tickets, a fixed fraction of these are expected to be
abandoned:

E[X (t)] ≈ 1

2
G

(
Q(t)

μ

)
Q(t) ≈ g(0)Q(t)2

2μ
≈ g(0)

2
Q̃2 ≈ g(0)

2
E[Q̃(∞)]2.

(4.9)

4.6 Interpretation

So why should we believe that there is very little difference between the ticket queue
and the standard queue in steady state? In the absence of balking, one would assume
that the number of customers in the standard queue would be smaller than that in
the ticket queue, as the former rids itself of customers who will not add to the server
workload. One mechanism that reduces this difference is that the ticket queue, albeit
longer, ultimately sees less work than its queue length would suggest. Hence it must
be resolving its ticket queue faster than the standard queue is processing its customers.
Moreover, the concentration of abandoned tickets is typically greater among the tickets
close to the front of the queue, as these tickets have been in circulation the longest. But
the closer the ticket is to the front, the sooner it gets resolved. The more abandoned
tickets, the faster the server resolves such tickets. Hence, the ticket queue tends to
drive itself back toward the standard queue status the farther away it deviates from it.

Adding in the balking customers further lessens the difference between the two
queueing scenarios. If the ticket queue is longer than the standard queue then the
former has more customers balking at the front end. To conclude, as the distance
grows between the length of the ticket and standard queues, so do the forces that
force the coupling of the two queueing models. This notion is formally expressed in
Theorem 5.8.

5 Proof of the main results

The results that follow lead up to the proof of the main result at the conclusion of this
section. Some proofs are delayed until the Appendix.

5.1 Asymptotic boundedness

We argue first that the scaled queue length processes and the workload processes are
asymptotically bounded.

Lemma 5.1 Under (3.30), we have that for any t, η > 0 there exists a K = K (η) > 0
such that for each α ∈ {S, T },

lim sup
n→∞

P

(
sup

s∈[0,t]
Q̃n

α(s) > K

)
< η (5.1)
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and

lim sup
n→∞

P

(
sup

s∈[0,t]
W̃ n

α (s) > K

)
< η. (5.2)

Proof The queue length processes for the ticket and standard queues can both be
bounded pathwise by a third queueing process that contains neither balking nor aban-
donment. It is standard that this third scaled queue length process converges to a
reflected Brownian motion. It also follows that this third scaled queue length process
exhibits the boundedness expressed in (5.1); for example, see Lemma 3.4 of [10].
And because this third process bounds the ticket and standard queueing processes for
every time t , the result in (5.1) follows. The same arguments hold for the workload
processes in (5.2) and this concludes the proof. ��
Lemma 5.1 emphasizes the orders of magnitude of the queueing and workload
processes. This lemma will be used frequently in conjunction with the balking and
abandonment distributions to place bounds on abandonment and balking frequencies.

5.2 Abandonment and balking frequencies

Next, we cover several properties of the accumulation of balking and abandonment
events among the arriving jobs. The following lemmas, which besides Lemma 5.3 are
providedwithout proof, use the fact that the derivatives of the balking and abandonment
distributions exist at zero; see (2.1). The first lemma is used throughout this section
and follows from a straightforward application of Taylor’s expansion.

Lemma 5.2 For any K > 0,

Fb(K/
√
n)

K/
√
n

+ Fd(K/
√
n)

K/
√
n

< 2θ

for sufficiently large n.

The second lemma is similar.

Lemma 5.3 For any δ, K > 0,

sup
s∈[0,K ]

(
Fb((s + δ)/

√
n) − Fb(s/

√
n)

δ/
√
n

+ Fd((s + δ)/
√
n) − Fd(s/

√
n)

δ/
√
n

)
< 2θ

for sufficiently large n.

The next result shows that one can choose a sufficiently small δ such that, uniformly
over all subintervals of [0, t] of size δ, the total number of jobs that arrive in any
subinterval that either abandon or balk is arbitrarily small.

The proof of this and subsequent results can be found in the Appendix.
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Proposition 5.4 For any ε, η, t > 0 and K > 0, there exists a δ > 0 such that

lim sup
n→∞

P

⎛

⎝sup
s≤t

An(s+δ)∑

i=An(s)+1

(
1(bi ≤ K/

√
n)+1(di ≤ K/

√
n)
)

> ε
√
n

⎞

⎠ < η. (5.3)

Likewise, for a sufficiently small time interval, the amount of potential workload
contribution associated with balking or abandoning jobs arriving during the interval
is smaller than order 1/

√
n. This result is a key element in the proof of tightness of

our scaled queue length and workload processes; see Proposition 5.15.

Proposition 5.5 For any η, t > 0 and K > 0, there exists a δ such that

lim sup
n→∞

P

⎛

⎝sup
s≤t

An(s+δ)∑

i=An(s)+1

vni · (1(bi ≤ K/
√
n)+1(di ≤ K/

√
n)
)
>

ε√
n

⎞

⎠ < η. (5.4)

So far our propositions have been able to replace the queueing and workload
processes with upper bounds early in the proofs. For the following result, where we
show that the centered and scaled balking and approximate abandonment processes
converge to zero, such substitutions cannot be made immediately.

Proposition 5.6 (Centered balking and reneging processes are negligible) Under the
assumptions of Theorem 3.1, for each α ∈ {S, T } and any ε, η, t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣M̃n
b,α(s)

∣∣∣ > ε

)
< η (5.5)

and

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣M̃n
d,α(s)

∣∣∣ > ε

)
< η. (5.6)

The implications here are that the balking and reneging random variables can be
replaced with their respective distribution functions.

5.3 Coupled processes

An interpretation of Lemma 5.1 is that the queue length is order
√
n. In a model with

no balking or abandonment, this fact would be sufficient to draw a linear relationship
between the queue length and the workload of the form Q/μ ≈ W . In the presence
of balking or abandonment, this relationship is justified in [19]. The key is that the
number of jobs in-queue who do not contribute to the workload is negligible with
respect to

√
n. We have the same result here.
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Proposition 5.7 (State space collapse) Under the conditions of (3.30), we have that
for any t, ε, η > 0 and each α ∈ {S, T },

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣Q̃n
α(s) − μW̃ n

α (s)
∣∣∣ > ε

)
< η.

Next, we establish that the sequences {Q̃n
T , n ≥ 1} and {Q̃n

S, n ≥ 1} converge to
the same limit, if anything at all, as do {W̃ n

T , n ≥ 1} and {W̃ n
S , n ≥ 1}.

Theorem 5.8 (Asymptotic coupling) Under the assumptions of Theorem 3.1, for any
ε, η, t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣Q̃n
S(s) − Q̃n

T (s)
∣∣∣ > ε

)
< η (5.7)

and

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣W̃ n
S (s) − W̃ n

T (s)
∣∣∣ > ε

)
< η. (5.8)

Proof We first show that (5.8) holds. Then (5.7) follows by applying the triangle
inequality twice and Propositions 5.7 for both α = S and α = T .

Fix ε, η, t > 0. Removing the absolute value signs yields

P

(
sup

s∈[0,t]

∣∣∣W̃ n
S (s) − W̃ n

T (s)
∣∣∣ > ε

)

≤ P

(
sup

s∈[0,t]
W̃ n

S (s) − W̃ n
T (s) > ε

)
+ P

(
sup

s∈[0,t]
W̃ n

T (s)−W̃ n
S (s)>ε

)
. (5.9)

We will show that

lim sup
n→∞

P

(
sup

s∈[0,t]
W̃ n

T (s) − W̃ n
S (s) > ε

)
< η/2, (5.10)

and then

lim sup
n→∞

P

(
sup

s∈[0,t]
W̃ n

S (s) − W̃ n
T (s) > ε

)
< η/2 (5.11)

will follow by symmetry.
There are two steps to demonstrating that (5.10) holds. First we restrict the amount

by which the gap between W̃T and W̃S can grow at any instant. Then we show that
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once the gap is of a certain size—one that is smaller than ε—the gap necessarily must
shrink. To this end, introduce the following notation for any s0 ≤ t :

τ n(s0) = inf{s ∈ [s0, t] : W̃ n
T (s) − W̃ n

S (s) ≥ ε}

and

γ n(s0) = inf{s ∈ [s0, t] : W̃ n
T (s) − W̃ n

S (s) ≤ ε/2},

where either stopping time is equal to t if the corresponding infimum is taken over an
empty set. Suppose W̃ n

T is greater than W̃ n
S . The depletion of the former is always as

fast as the that of the latter since the servers work at the same rate. Therefore, the gap
between W̃ n

T and W̃ n
S can only increase due to jumps in W̃ n

T . If jumps in W̃ n
T are all

strictly less than ε/4, then before the gap can exceed ε, it must first assume some value
in (3ε/4, ε). Then, once in this interval, the process must hit ε before falling below
ε/2. Otherwise, the gap must again assume a value in (3ε/4, ε) before it reaches ε.
Hence, we have that

P

(
sup

s∈[0,t]
W̃ n

T (s)−W̃ n
S (s) > ε

)
≤ P

(
sup

s∈[0,t]
W̃ n

T (s)−W̃ n
T (s−) ≥ ε/4

)

+P

(
∃s0≤t s.t. W̃ n

T (s0)

− W̃ n
S (s0) ∈

(
3ε

4
, ε

)
and τ n(s0)<γ n(s0)

)
.

(5.12)

For the first term on the right-hand side, a jump in the ticket queue workload must be
due to a large service time associated with an arriving job. By Lemmas 3.3 and 3.4,

P

(
sup

s∈[0,t]
W̃ n

T (s) − W̃ n
T (s−) ≥ ε/4

)
≤ P

(
An(t) > 2μnt

)

+P

(
sup

i≤2μnt
vn(i) ≥ ε/4

)
<

η

2
. (5.13)

As for the second term on the right-hand side, W̃ n
T is greater than W̃ n

S throughout
the interval [s0,min(τ n(s0), γ n(s0)]. It follows then that any new job that arrives to
both queues during that interval and eventually abandons the standard queue must also
abandon the ticket queue. So for the gap between the processes to increase during this
interval, it must be due to jobs that balk at the standard queue but not at the ticket
queue; this is possible only if the ticket queue is smaller than the standard queue during
this interval. It follows that

P

(
∃s0 ≤ t s.t. W̃ n

T (s0) − W̃ n
S (s0) ∈

(
3ε

4
, ε

)
and τ n(s0) < γ n(s0)

)
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≤ P

(
∃s ≤ t s.t. W̃ n

T (s) − W̃ n
S (s) ≥ ε

2
and Q̃n

T (s) − Q̃n
S(s) < 0

)

≤ P

(
sup

s∈[0,t]

∣∣∣∣∣
Q̃n

T (s)

μ
− W̃ n

T (s)

∣∣∣∣∣ >
ε

4

)
+ P

(
sup

s∈[0,t]

∣∣∣∣∣
Q̃n

S(s)

μ
− W̃ n

S (s)

∣∣∣∣∣ >
ε

4

)
,

where the second inequality is a consequence of the triangle inequality. Applying
Proposition 5.7 twice yields

P

(
∃s0 ≤ t s.t. W̃ n

T (s0) − W̃ n
S (s0) ∈

(
3ε

4
, ε

)
and τ n(s0) < γ n(s0)

)
<

η

4
.

(5.14)

Hence, (5.10) follows from (5.12)–(5.14); (5.8) follows from (5.9)–(5.11); and (5.7)
follows from Proposition 5.7, (5.8), and the triangle inequality. ��
Theorem 5.8 allows us to focus all of our efforts in proving that one of these
sequences—say {Q̃n

T , n ≥ 1}—converges because the other sequence is brought along
with it.

The service allocation process T n converges to the identity function.

Proposition 5.9 (Convergence of the allocation process) Under the assumptions of
Theorem 3.1, for each α ∈ {S, T } and any ε, η, t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]
∣∣T n

α (s) − s
∣∣ > ε

)
< η.

A further implication of this result is that the sequence of idle time processes converges
to zero.

5.4 Simplifying the reneging process

Reneging can happen only if the associated job actually joins the queue. This compli-
cation makes for involved expressions for the reneging processes in (3.5) and (3.7).
Furthermore, notice that the expressions include both the queue length process as well
as the workload process. The process ε̃nα allows one to replace the workload process
with the queue length process, to ignore whether or not the jobs have balked when
considering whether they will abandon, and to ignore the timing of when reneging is
detected by the system. The following proposition justifies this approximation.

For each n ≥ 1 and α, we define the processes R0,n
α = {R0,n

α (t), t ≥ 0}, R1,n
α =

{R1,n
α (t), t ≥ 0}, and R2,n

α = {R2,n
α (t), t ≥ 0}, where

R0,n
α (t) =

An(t)∑

i=1

1(di ≤ Qn
α(tni −)/μn), (5.15)
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R1,n
α (t) =

An(t)∑

i=1

1(di ≤ Wn
α (tni −)) (5.16)

and

R2,n
α (t) =

An(t)∑

i=1

1(bi > Qn
α(tni −)/μn) · 1(di ≤ Wn

α (tni −)). (5.17)

Working backwards, notice that R2,n
α is the fictitious abandonment process where

the abandonment takes place upon arrival. Next, R1,n
α is the fictitious abandonment

process whereby abandonment happens upon arrival and jobs may abandon even if
they have already balked. Finally, R0,n

α is the process by which abandonment happens
upon arrival, is independent of the balking process, and is based on the weighted
queue length upon arrival instead of the workload upon arrival. The diffusion-scaled
analogs have the form R̃k,n

α = {R̃k,n
α (t), t ≥ 0}, where R̃k,n

α (t) = (1/
√
n)Rk,n

α (t)
for each k = 0, 1, 2 and α ∈ {S, T }. Ultimately, we would like to replace Rn

α with
R0,n

α ; see Proposition 5.14. The following three propositions arrive at that conclusion
progressively.

The first result verifies that abandonment may be treated as taking place upon
arrival.

Proposition 5.10 For any ε, η and t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]

(
R̃2,n

α (s) − R̃n
α(s)

)
> ε

)
< η.

An immediate consequence of the next result is that, effectively, no customer could
have abandoned if their balking randomvariablewas small enough to cause it to balk as
well. That is, the number of jobs that are candidates for both balking and abandonment
is asymptotically negligible.

Proposition 5.11 For any ε, η and t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]

(
R̃1,n

α (s) − R̃2,n
α (s)

)
> ε

)
< η.

Now, we show that abandonment can be based on the weighted queue length as
opposed to the workload.

Proposition 5.12 For any ε, η and t > 0,

lim sup
n→∞

P

(
sup

s∈[0,t]

∣∣∣R̃0,n
α (s) − R̃1,n

α (s)
∣∣∣ > ε

)
< η.
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Proposition 5.13 (Reneging among initial jobs is negligible) For every η > 0 and
each α ∈ {S, T }, there exists an L > 0 such that, under the assumptions of Theorem
3.1,

lim sup
n→∞

P

(
R̂n

α(t) > L
)

< η.

Proposition 5.14 (Reneging effectively ignores balking and takes place upon arrival)
For each α ∈ {S, T }, and under the assumptions of Theorem 3.1,

ε̃nα → 0

in probability as n → ∞.

Proof Notice that, for any t ≥ 0 and α ∈ {S, T },

ε̃nα(t) = R̂n
α(t)√
n

+
(
R̃n

α(t) − R̃2,n
α (t)

)
+
(
R̃2,n

α (t) − R̃1,n
α (t)

)
+
(
R̃1,n

α (t) − R̃0,n
α (t)

)
.

The result is an immediate consequence of Propositions 5.10, 5.11, 5.12, and 5.13. ��

5.5 Tightness

Next, we argue that the scaled processes are tight. This result is a key step in proving
Proposition 5.17, which in turn is used to extract the restorative drift of the limiting
diffusion process.

Proposition 5.15 (Tightness of the scaled processes) The processes {Q̃n
α, n ≥ 1} and

{W̃ n
α , n ≥ 1} are tight.

Proof By Theorem 13.2 of [5], tightness follows from Lemma 5.1 and the fact that
for any ε > 0, we have that for either α ∈ {S, T },

lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈[0,t],v−u<δ

∣∣∣Q̃n
α(v) − Q̃n

α(u)

∣∣∣ > ε

)
= 0 (5.18)

and

lim
δ→0

lim sup
n→∞

P

(
sup

u,v∈[0,t],v−u<δ

∣∣∣W̃ n
α (v) − W̃ n

α (u)

∣∣∣ > ε

)
= 0. (5.19)

We will show that (5.19) holds. Then (5.18) follows from Theorem 5.7 and (5.19).
This will conclude the proof.
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Fix α ∈ {S, T } and arbitrary constants ε, η > 0. We will show that there exists a
δ0 > 0 such that for any δ ≤ δ0,

P

(
sup

u,v∈[0,t],v−u<δ

∣∣Wn
α (v) − Wn

α (u)
∣∣ >

ε√
n

)
< η (5.20)

for sufficiently large n. Changes in the workload are due to the arrival of work and the
processing of work. That is, for any v ≥ u ≥ 0,

Wn
α (v) − Wn

α (u) =
An(v)∑

i=An(u)+1

vni · 1(bi > Qn
α(tni −)/μn) · 1(di > Wn

α (tni −))

− (T n
α (v) − T n

α (u)
)
. (5.21)

By (3.11), the change in the service allocation process can be written in terms of the
increase in the idle process, which in turn can be bounded by the shortfall in the arrival
of workload relative to the potential server effort. For any v ≥ u ≥ 0,

I nα (v) − I nα (u) = (v − u) − (
T n

α (v) − T n
α (u)

)

≤ max

⎛

⎝0,− inf
s∈[u,v]

⎛

⎝
An(s)∑

i=An(u)+1

vni · 1(bi > Qn
α(tni −)/μn) · 1(di

> Wn
α (tni −)) − (s − u)

⎞

⎠

⎞

⎠ . (5.22)

It follows from (5.21) and (5.22) that for any 0 < δ ≤ δ0,

sup
u,v∈[0,t],v−u<δ

∣∣Wn
α (v) − Wn

α (u)
∣∣ ≤ 2 sup

u,v∈[0,t],v−u<δ

∣∣∣∣∣∣

An(v)∑

i=An(u)+1

vni − (v − u)

∣∣∣∣∣∣

+ 2 sup
u∈[0,t]

An(u+δ)∑

i=An(u)+1

vni
(
1(bi ≤ Qn

α(tni −)/μn)

+ 1(di ≤ Wn
α (tni −))

)

≤ 2 sup
u,v∈[0,t],v−u<δ0

∣∣∣∣∣∣

An(v)∑

i=An(u)+1

vni − (v − u)

∣∣∣∣∣∣

+ 2 sup
u∈[0,t]

An(u+δ0)∑

i=An(u)+1

vni
(
1(bi ≤ Qn

α(tni −)/μn)

+ 1(di ≤ Wn
α (tni −))

)
. (5.23)
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Finally,

P

(
sup

u,v∈[0,t],v−u<δ

∣∣Wn
α (v) − Wn

α (u)
∣∣ >

ε√
n

)

≤ P

⎛

⎝2 sup
u,v∈[0,t],v−u<δ0

∣∣∣∣∣∣

An(v)∑

i=An(u)+1

vni − (v − u)

∣∣∣∣∣∣
>

ε

2
√
n

⎞

⎠

+P

⎛

⎝2 sup
u∈[0,t]

An(u+δ0)∑

i=An(u)+1

vni
(
1(bi ≤ Qn

α(tni −)/μn) + 1(di ≤ Wn
α (tni −))

)
>

ε

2
√
n

⎞

⎠

≤ P

⎛

⎝2 sup
u,v∈[0,t],v−u<δ0

∣∣∣∣∣∣

An(v)∑

i=An(u)+1

vni − (v − u)

∣∣∣∣∣∣
>

ε

2
√
n

⎞

⎠

+P

(
sup

s≤t+δ0

Qn
α(s)/μn > K/

√
n

)

+P

⎛

⎝2 sup
u∈[0,t]

An(u+δ0)∑

i=An(u)+1

vni
(
1(bi ≤ K/

√
n) + 1(di ≤ K/

√
n)
)

>
ε

2
√
n

⎞

⎠

+P

(
sup

s≤t+δ0

Wn
α (s) > K/

√
n

)
.

By Lemmas 3.8, 5.1, Proposition 5.5, and (5.23), we can choose a K > 0 and a δ0 > 0
such that (5.20) follows easily. ��

5.6 Convergence to diffusion processes

In this subsection we pull together the last ingredients for our diffusion process. We
start with the driving Brownian motions from our centered and scaled interarrival and
service time processes. We derive the restorative drift term of our limiting diffusion
process from the derivatives of the balking and abandonment distributions evaluated
at zero. Finally, we complete the proof of our main result.

Let Ba and Bs be independent standard Brownianmotions, i.e., Ba(0) = Bs(0) = 0
and the processes have zero drift and unitary infinitesimal variance. The diffusion-
scaled arrival processes and service completion processes converge to scaled versions
of these Brownian motions. These are standard results—see, for example, [12].

Proposition 5.16 Under the assumptions of Theorem 3.1,

Ãn ⇒ μσa Ba and S̃nα ⇒ μσs Bs

as n → ∞.
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The process δ̃nα swaps the sum of the abandonment and balking distributions, evalu-
ated at the scaled queue length at the times of arrivals, with a smooth function involving
the derivatives of the distribution functions evaluated at zero and then multiplied by
the scaled queue lengths. The following proposition justifies this step and is proven in
the Appendix.

Proposition 5.17 For each α ∈ {S, T }, and under the assumptions of Theorem 3.1,

δ̃nα → 0

in probability as n → ∞.

We conclude with a proof of the main result.

Proof of Theorem 3.1 Fix α ∈ {S, T }. Recall the expression for the scaled queue
length and idleness process given in (3.27). The elements of the process X̃n

α (see
(3.28)) converge to either zero, a drift, or a Brownian motion. By Lemma 3.6 and
Proposition 5.6, we have that

M̃n
b,α ◦ Ān → 0 and M̃n

d,α ◦ Ān → 0

as n → ∞. Furthermore, Propositions 5.14 and 5.17 inform us that

ε̃nα → 0 and δ̃nα → 0,

respectively, as n → ∞. Proposition 5.16 provides the convergence of the scaled and
centered arrival and potential departure processes. Coupled with the service allocation
process, we have

Ãn + S̃nα ◦ T n
α → μσa Ba + μσbBb

D= σ B.

Finally, (3.24) provides the drift term

(λn − μn)√
n

→ β

as n → ∞. Hence,

X̃n
α ⇒ X̃ .

From (3.30), we have that

(Q̃n(0), X̃n
α) ⇒ (Q̃0, X̃), as n → ∞,

and hence, by the continuous mapping theorem,

(Q̃n
α, Ỹ n

α ) = (�θ ,�θ )(Q̃
n(0), X̃n

α) ⇒ (�θ ,�θ )(Q̃(0), X̃) = (Q̃, Ỹ ), as n → ∞,
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where we recall that Q̃(0) is equal in distribution to Q̃0.
As α was chosen arbitrarily, this limit holds for both the ticket queue- and standard

queue-related processes; both scaled queue length processes converge to the same
limit in distribution. By (5.7) of Theorem 5.8, these processes are coupled as follows:

((Q̃n
S, Ỹ

n
S ), (Q̃n

T , Ỹ n
T )) ⇒ ((Q̃, Ỹ ), (Q̃, Ỹ )), as n → ∞.

Finally, Proposition 5.7 demonstrates that asymptotically the scaled workload and
scaled queue lengths are scalar multiples of each other and thus converge together to
scalar multiples of the same process. Hence (3.31) holds. This concludes the proof. ��

6 Numerical results

We have tested the heuristics forwarded in this paper extensively. Tables capturing
these tests are given in the Appendix. We describe some of the highlights and trends
in the results here. In Tables 1, 2, 3, and 4, we see that our approximations generated
from the heavy traffic limit theorems are quite good, especially when the arrival and
service rates are large, i.e., μ ≈ 100. In Table 1, we simulate a scenario where all of
the parameters are generated from exponential distributions. We see that the approxi-
mations are good and accurate, except when the rates are small and the drift parameter
β is very negative.

In Table 2 we simulate a non-Markovian model where the service rate follows a
lognormal distribution and the balking and reneging distributions follow a uniform
distribution. Unlike the exponential distribution, the uniform distribution is bounded
and we see that the simulated values in Table 1 are very similar to the values of
Table 2 even though they differ in the types of distributions that generate the queueing
dynamics.

In Table 3 we simulate a scenario where all of the parameters are generated from
exponential distributions. This table is different than Table 1 since we use different
balking and reneging parameter values. Once again we see that the approximations
are good and accurate, except when the rates are small and the drift parameter β is
very negative. In Table 4 we simulate a non-Markovian model where the service rate
follows a lognormal distribution and the balking and reneging distributions follow a
uniform distribution. Once again the simulated results of Table 3 are very similar to
Table 4 even though the distributions are not Markovian in Table 4.

In addition to our heavy traffic approximations accurately estimating the perfor-
mance measures, we also notice that in every simulation the ticket queue is larger
than the standard queue. This fact is irrespective of the distributions that are used to
generate the queueing dynamics. Moreover, the fraction of balking in the ticket queue
is also larger than the standard queue. Even though these two processes converge as
the rates tend to infinity, when the rates are finite the ticket queue is perceived as
being larger, which causes more people to balk from the system. This difference in
queue length is also a function of the parameter β. When the β parameter is larger and
positive, the difference is larger than when β is negative. Thus, when the rates are not
infinite, the ticket queue exhibits interesting behavior that is to be expected.
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7 Conclusions and extensions

In this paper we studied the dynamics of a critically loaded queueing system subject to
customerswhomight either balk because the line is too long or abandon the queue from
waiting too long in-queue. We consider two types of abandonment protocols. In the
conventional approach to capturing abandonment, customers immediately leave the
system when their patience time has been exceeded by their time waiting for service;
we refer to the model in this setting as the standard queue. In the standard queue,
everyone is aware of an abandoning customer’s departure at the time of abandonment.
We compare the standard queue to the ticket queue. In the ticket queue, customers
whose patience has run out leave the queue in an unnoticed fashion. Their departure
is only detected when their hypothetical service time would have begun. The paper is
complementary to the study of [22] who study a heavily loaded system with impatient
customers; in comparison, our customers are relatively patient. Ourmethod of analysis
is also fundamentally different from that of [22].

We prove a heavy traffic limit theorem for the diffusion-scaled queue length and
workload processes. A key result in the theorem is that the standard and ticket queues
are asymptotically coupled under diffusion scaling. The managerial interpretation is
that regardless of how you implement your queue—whether with a physical line,
which is best modeled with a standard queue, or as a ticket queue—the dynamics of
the systems will not differ by much. In addition to this insight based on the sensitivity
of the diffusion scaling, we provide some heuristics for calculating certain perfor-
mance metrics of operational importance. These heuristics are beyond the sensitivity
of diffusion scaling. Nonetheless, we assess the accuracy of these heuristics through
simulation. We find that in a broad range of parameter and distributional settings, the
heuristics perform well.

Appendix

The Appendix is split into two parts. The first half provides proofs of results stated
earlier in the paper. The second half provides an extensive collection of numerical
examples.

Proofs

This appendix contains many of the proofs from Sect. 5. We start with a proof of
Proposition 5.4.

Proof of Proposition 5.4 Fix ε, η, t, K > 0 and set δ = ε
4μK θ

. By Lemma 5.2 and
our choice of δ, we have that

μnδ
(
Fb(K

√
n) + Fd(K/

√
n)
)

< 2μ
√
nK θδ ≤ ε

√
n

2
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for sufficiently large n. It follows that, by Lemmas 3.3 and 3.6,

P

⎛

⎝sup
s≤t

An(s+δ)∑

i=An(s)+1

(
1(bi ≤ K/

√
n) + 1(di ≤ K/

√
n)
)

> ε
√
n

⎞

⎠

≤ P

⎛

⎝ sup
0≤ j≤�2μnt�

j+�2μnδ�∑

i= j+1

(
1(bi ≤ K/

√
n) + 1(di ≤ K/

√
n)
)

> ε
√
n

⎞

⎠

+P
(
An(t) > 2μnt

)+ P

(
sup
s≤t

(
An(s + δ) − An(s)

)
> 2μnδ

)

≤ η

2
+ P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�2μnδ�∑

i= j�2μnδ�+1

(
1(bi ≤ K/

√
n) − Fb(K/

√
n)
)

>
ε
√
n

6

⎞

⎠

+P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�2μnδ�∑

i= j�2μnδ�+1

(
1(di ≤ K/

√
n) − Fd(K/

√
n)
)

>
ε
√
n

6

⎞

⎠

+P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�2μnδ�∑

i= j�2μnδ�+1

Fb(K/
√
n) + Fd(K/

√
n) >

ε
√
n

6

⎞

⎠ (8.1)

for sufficiently large n. ��
We will show that, for sufficiently large n,

P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�μnδ�∑

i= j�μnδ�+1

(
1(bi ≤ K/

√
n) − Fb(K/

√
n)
)

>
ε
√
n

6

⎞

⎠ <
η

6
, (8.2)

P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�μnδ�∑

i= j�μnδ�+1

Fb(K/
√
n) + Fd(K/

√
n) >

ε
√
n

6

⎞

⎠ <
η

6
, (8.3)

and by symmetry it will also follow that

P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�μnδ�∑

i= j�μnδ�+1

(
1(di ≤ K/

√
n) − Fd(K/

√
n)
)

>
ε
√
n

6

⎞

⎠ <
η

6
. (8.4)

Consider (8.2). By Kolmogorov’s inequality (see, for example, [4]),

P

⎛

⎝2 sup
0≤ j≤�2t/δ�+1

( j+1)�μnδ�∑

i= j�μnδ�+1

(
1(bi ≤ K/

√
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√
n)
)

>
ε
√
n

6

⎞

⎠

≤
(
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δ
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)(
144

ε2n

)
E

⎡

⎢⎣

⎛

⎝
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(
1(bi ≤ K/

√
n) − Fb(K/

√
n)
)
⎞

⎠
2
⎤

⎥⎦ .
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The indicators above are independent, so the cross-terms all have expectations of zero.
Hence

P

⎛

⎝2 sup
0≤ j≤�2μnt/δ�+1

( j+1)�μnδ�∑

i= j�μnδ�+1

(
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√
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√
n)
)

>
ε
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6
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⎠
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(
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δ
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144
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E

⎡
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(
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√
n) − Fb(K/

√
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⎦

<

(
2μt

δ
+ 2

)(
144

ε2n

)
(μnδ)

(
2K θ√

n

)

≤ η

6

for sufficiently large n. So (8.2) holds, as does (8.4) by symmetry. The result (5.3)
follows from (8.1)–(8.4). ��

Next we prove Proposition 5.5.

Proof of Proposition 5.5 We will alter (5.4) to an expression that, without loss of
generality, excludes the abandonment random variables. We will show that for any
η, t > 0 and K > 0, there exists a δ > 0 such that

P

⎛

⎝sup
s≤t

An(s+δ)∑

i=An(s)+1

vni · 1(bi ≤ K/
√
n) >

ε√
n

⎞

⎠ < η, (8.5)

for sufficiently large n. Fix η, t , and K and set δ = ε
12K θ

and notice that by Lemma
5.2,

(μδn)

(
1

μn

)
Fb(K/

√
n) <

4δK θ√
n

≤ ε

3
√
n

for sufficiently large n. Proceeding in a manner similar to that of the proof of Propo-
sition 5.4, it follows by Lemmas 3.3 and 3.6 that

P

⎛

⎝sup
s≤t

An(s+δ)∑

i=An(s)+1

vni · 1(bi ≤ K/
√
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⎠
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√
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√
n)
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>
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n

⎞

⎠

+P
(
An(t) > 2μnt

)+ P

(
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(
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)
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)
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4
+ P

⎛

⎝ sup
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(
vni − 1

μn

)
· 1(bi ≤ K/

√
n) >

ε

3
√
n

⎞

⎠

+P

⎛

⎝ sup
0≤ j≤�2μnt�

j+�μnδ�∑

i= j+1

1

μn
· (1(bi ≤ K/

√
n) − Fb(K/

√
n)
)

>
ε

3
√
n

⎞

⎠ (8.6)
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for sufficiently large n. Consider the third term on the far right-hand side. By Kol-
mogorov’s inequality [4],

P

⎛

⎝ sup
0≤ j≤�2μnt�

j+�μnδ�∑

i= j+1

1
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√
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√
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⎠
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√
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√
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⎠
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√
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√
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⎞
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2
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2
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(nμδ) Fb(K/
√
n)
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(
36

ε2

)(
8K θ√

n

)

<
η

3
(8.7)

for sufficiently large n. As for the second term on the far right-hand side of (8.6),
applying Kolmogorov’s inequality a second time yields

P

⎛

⎝ sup
0≤ j≤�2μnt�

j+�μnδ�∑

i= j+1

(
vni − 1

μn

)
· 1(bi ≤ K/

√
n) >

ε

3
√
n

⎞

⎠

≤ P

⎛

⎝2 sup
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√
n

⎞

⎠
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(
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δ
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E
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√
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δ
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36n
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μn
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· 1(bi ≤ K/
√
n)

]
, (8.8)

where the last inequality follows because the independence of the cross-terms makes
their expectations zero. Furthermore, the service times are independent of the balking
random variables. Hence,

(
2t

δ
+ 2

)(
36n

ε2

)
E

⎡

⎣
�μnδ�∑
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(
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δ
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)(
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)
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√
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< (2t + 2δ)

(
36

ε2

)(
2σ 2

b

μ

)(
2K θ√

n

)

≤ η

3
(8.9)

for sufficiently large n. The result (8.5) follows from (8.6)–(8.9). ��
Proof of Proposition 5.6 It suffices to prove that the centered and scaled abandonment
process is asymptotically negligible. The analogous property for the balking process
can be proved in an identical fashion. Fix ε, η, t > 0. By Kolmogorov’s inequality we
have that

P

(
sup

s∈[0,t]
M̃n

d,α(s) > ε

)
= P

(
sup

s∈[0,t]
Mn

d,α(s) >
√
n · ε

)

≤ 1

nε2
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Mn
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= 1

nε2
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⎡

⎣

⎛
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1(di < Qn

α(tni −)/μn)

− Fd(Q
n
α(tni −)/μn)

]
⎞

⎠
2
⎤

⎥⎦

Now, by Burkholder’s inequality and bounds for indicator functions, there exists a
c > 0 such that

P

(
sup

s∈[0,t]
M̃n

d,α(s)>ε

)
≤ c

nε2
E

⎡

⎣
�nt�∑
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[
1(di<Qn

α(tni −)/μn)−Fd(Q
n
α(tni −)/μn)

]2
⎤

⎦

≤ c

nε2
E

⎡

⎣
�nt�∑

i=1

[
1(di < Qn

α(tni −)/μn)+Fd(Q
n
α(tni −)/μn)

]
⎤

⎦

≤ 2ct

ε2
P

(
d1 < max

s≤t
Qn

α(s)/μn
)

< η

for sufficiently large n. The last inequality follows from Lemma 5.1. This completes
the proof. ��
Proof of Proposition 5.7 Fix α ∈ {S, T } and t > 0. For each s ≥ 0, let Q̆n

α(s) denote
the difference between the index of the last arriving job and the index of the job
currently in service, plus any of the initial jobs present at time zero that remain in the
system. The jobs present at time zero do not have indices. Note that, for each s ≥ 0,
Q̆n

α(s) ≥ Qn
α(s), for both ticket and standard queues. The process Q̆n

α ignores the
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balking and abandonment that has taken place since the arrival of the job currently in
service. One can think of the process as progressing in a manner similar to a ticket
queue for which, in addition to the abandoned tickets, balking is not accounted for
until service would have begun for the departing job. We can bound the difference
between the processes. Fix an arbitrary η, ε > 0 and choose an L > 0 such that, by
Lemma 5.1,

P

(
sup

s∈[0,t]

(
Q̆n

α(s) − Qn
α(s)

)
>

ε
√
n

3

)

≤ P
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sup
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α(s) > L
√
n
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+ P
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α (s) > L/
√
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⎛
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√
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√
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>
ε
√
n

3

⎞

⎠

<
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5
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⎛
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j≤An(t)

j+�(L+ε/3)
√
n�∑
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1
(
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√
n
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√
n
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>
ε
√
n

3

⎞

⎠

(8.10)

for sufficiently large n. To appreciate the above inequality, note that Q̆n
α is an inflated

version of Qn
α . The jobs in the former not accounted for in the latter must have aban-

doned or balked, or will have eventually abandoned. So if there exists an s ∈ [0, t]
such that Q̆n

α(s) − Qn
α(s) exceeds (L + ε/3)

√
n and Qn

α(u) ≤ L
√
n for all u ∈ [0, t],

then there must be at least ε
√
n/3 abandoned or balked jobs within some (L+ε/3)

√
n

consecutively arriving jobs. We place upper bounds on the queue length and workload
and this makes our abandonment and balking indicators i.i.d. random variables.

For any δ > 0, it is true that (L + ε/3)
√
n < μδn for sufficiently large n. Hence,

by Proposition 5.4,
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5
. (8.11)
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Additionally, define for each s ≥ 0 the quantity W̆ n
α (s) that tracks the service times

of the jobs associated with Q̆n
α(s). This process has the entire service time of the job

currently in service and the service times of all jobs that arrive after the arrival time of
the job in service; jobs that abandon or balk contribute the process W̆ n

α nonetheless.
Just as with Qn

α and its augmented version Q̆n
α , it is also the case that W̆

n
α (s) ≥ Wn

α (s)
for each s ≥ 0. Unlike the process Wn

α , the augmented process W̆ n
α experiences both

upward and downward jumps. Upward jumps are the size of the would-be service time
of each arriving job, even those that balk or abandon, and occur at the time of arrival of
the corresponding job. The downward jumps occur at service completion times. The
downward jump size is equal to the service time of the job that was in service plus
the would-be service times of jobs that arrived between the arrival time of the job just
served and the arrival time of the next job to be served. Just as we did in (8.10) for
the queue lengths, we can bound the difference between these processes. By Lemmas
3.3, 3.4, and 5.1, and Eq. (8.10),

P

(
μn sup

s∈[0,t]

(
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α (s)
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ε
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ε
√
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)
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√
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⎛
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5
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√
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√
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√
n
))

>
ε
√
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6

⎞

⎠ (8.12)

for sufficiently large n. As with (8.10), we replace (L + ε)
√
n with a bigger quantity

μδn (provided n is sufficiently large), where, by Proposition 5.5, δ > 0 is chosen such
that

P

⎛

⎝μn sup
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⎞

⎠
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≤ P
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(8.13)

for sufficiently large n.
Lastly, note that by the functional weak law of large numbers,

P

(
sup

s∈[0,t]

∣∣∣Q̆n
α(s) − μnW̆ n

α (s)
∣∣∣ >

ε
√
n

3

)
<

η

5
(8.14)

for sufficiently large n.
It now follows from the triangle inequality and (8.10)–(8.14) that

P

(
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α(s) − μW̃ n
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(
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3
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μn sup
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ε
√
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α (s)
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ε
√
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3

)

< η

for sufficiently large n. This completes the proof. ��

Proof of Proposition 5.9 Fix ε, η, t > 0 and α. The server cannot work faster than
rate one. It follows that for each s ≤ t ,

T n
α (s) ≤ s. (8.15)

Using (3.10) we can provide a lower bound on the service allocation process for any
s ≥ 0,

T n
α (s) ≥ −Wn

α (s)+
An(s)∑

i=1

vni −
An(s)∑

i=1

vni
(
1(bi < Qn

α(ti−)/μn)+1(di < Wn
α (ti−))

)
.

(8.16)
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It follows from (8.15), and (8.16) that

P
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From Lemmas 3.7 and 5.1, we can bound the first two terms on the right-hand side,
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For the third term, by Lemma 3.3 and Proposition 5.5,
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The result follows from (8.16)–(8.19) and a modification of the proofs of Propositions
5.4–5.6. ��
Proof of Proposition 5.10 Fix ε, η, and t > 0. First notice that for any n ≥ 0, s ≥ 0,
and α ∈ {S.T }, we have that R2,n

α (s) − Rn
α(s) ≥ 0. It is instructive to expand this

difference for each of the α values. For the standard queue,

R2,n
S (s) − Rn

S(s) =
An(s)∑
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1(bi > Qn
S(t

n
i −)/μn) · 1(di ≤ Wn
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≤
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i=1

1(di ≤ Wn
S (tni )) · 1(Wn

S (tni ) > s − tni ).

Note that we have eliminated the indicator associated with balking. Moreover, for an
abandoning customer the workload upon arrival must exceed the patience quantity.
Hence, we can replace the patience quantity in the last of the indicators with the
workload upon arrival. Now we consider the ticket queue:
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Both the standard and the ticket queue have the same bounds:
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α(s)
∣∣∣ > ε

)

≤ P

⎛

⎝ sup
s∈[0,t]

An(s)∑

i=1

1(di ≤ Wn
α (tni )) · 1(Wn

α (tni ) > s − tni ) >
√
nε

⎞

⎠

for each α ∈ {S, T }. For the remainder of the proof, fix α. Next we replace the
workload quantities with an upper bound:

P

(
sup

s∈[0,t]

∣∣∣R̃2,n
α (s) − R̃n

α(s)
∣∣∣ > ε

)

≤ P

⎛

⎝ sup
s∈[0,t]

An(s)∑

i=1

1(di ≤ K/
√
n) · 1(K/

√
n > s − tni ) >

√
nε

⎞

⎠

+P

(
sup

s∈[0,t]
Wn

α (s) > K/
√
n

)
.
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Notice that in the first term on the right-hand side above, the only jobs that contribute
positively to the summation are those jobs i whose arrival time is after s − K/

√
n;

that is tni > s − K/
√
n. By Lemma 5.1,

P

(
sup

s∈[0,t]

∣∣∣R̃2,n
α (s) − R̃n

α(s)
∣∣∣ > ε

)

≤ η

2
+ P

⎛

⎝ sup
s∈[0,t]

An(s)∑

i=An((s−K/
√
n)+)

1(di ≤ K/
√
n) >

√
nε

⎞

⎠

for sufficiently large n. For any arbitrarily chosen δ > 0, it is true that δ > K/
√
n for

sufficiently large n. It follows then by Proposition 5.4 that we can choose a δ > 0 so
that

P

(
sup

s∈[0,t]

∣∣∣R̃2,n
α (s) − R̃n

α(s)
∣∣∣ > ε

)

≤ η

2
+ P

⎛

⎝ sup
s∈[0,t]

An(s)∑

i=An((s−K/
√
n)+)

1(di ≤ K/
√
n) >

√
nε

⎞

⎠

≤ η

2
+ P

⎛

⎝ sup
s∈[0,t]

An(s)∑

i=An((s−δ)+)

1(di ≤ K/
√
n) >

√
nε

⎞

⎠

< η

for sufficiently large n. This completes the proof. ��

Proof of Proposition 5.11 Fix ε, η, t > 0, and α ∈ {S, T }. Notice that R1,n
α − R2,n

α is
non-decreasing. Hence, replacing the workload and queue length with an upper bound
yields

P

(
sup

s∈[0,t]

∣∣∣R̃1,n
α (s) − R̃2,n

α (s)
∣∣∣ > ε

)

≤ P

⎛

⎝
An(t)∑

i=1

1(bi ≤ Qn
α(tni −)/μn) · 1(di ≤ Wn

T (tni −)) >
√
nε

⎞

⎠

≤ P

⎛

⎝
�2μnt�∑

i=1

1(bi ≤ K/
√
n) · 1(di ≤ K/

√
n) >

√
nε

⎞

⎠+ P
(
An(t) > 2μnt

)

+P

(
sup

s∈[0,t]
Qn

α(s)/μn > K/
√
n

)
+ P

(
sup

s∈[0,t]
Wn

α (s) > K/
√
n

)
.
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Choose a K > 0 such that by Lemma 3.3 and (5.1) and (5.2) of Lemma 5.1,

P

(
sup

s∈[0,t]

∣∣∣R̃1,n
α (s) − R̃2,n

α (s)
∣∣∣ > ε

)

<
η

2
+ P

⎛

⎝
�2μnt�∑

i=1

1(bi ≤ K/
√
n) · 1(di ≤ K/

√
n) >

√
nε

⎞

⎠ . (8.21)

As for the second term on the right-hand side above, we resort to adding and
subtracting the mean of each summand:

P

⎛

⎝
�2μnt�∑

i=1

1(bi ≤ K/
√
n) · 1(di ≤ K/

√
n) >

√
nε

⎞

⎠

≤ P

⎛

⎝
�2μnt�∑

i=1

E
[
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n)
]

>

√
nε

2

⎞

⎠

+P

⎛

⎝
�2μnt�∑

i=1

(
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n)

−E
[
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n)
])

>

√
nε

2

)

≤ P

(
(2μnt)Fb(K/

√
n)Fd(K/

√
n) >

√
nε

2

)

+P

⎛

⎝
�2μnt�∑

i=1

(
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n) − Fb(K/

√
n)Fd(K/

√
n)
)

>

√
nε

2

⎞

⎠ .

(8.22)

By Lemma 5.2 we can bound the first term on the right-hand side:

(2μnt)Fb(K/
√
n)Fd(K/

√
n) <

√
nε

2
(8.23)

for sufficiently large n. As for the second term, by Chebyshev’s inequality and (8.23)

P

⎛

⎝
�2μnt�∑

i=1

(
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n) − Fb(K/

√
n)Fd(K/

√
n)
)

>

√
nε

2

⎞

⎠

≤ 4

nε2
E

⎡

⎢⎣

⎛

⎝
�2μnt�∑

i=1

(
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n) − Fb(K/

√
n)Fd(K/

√
n)
)
⎞

⎠
2
⎤

⎥⎦

≤ 4

nε2
E

⎡

⎣
�2μnt�∑

i=1

(
1(bi ≤ K/

√
n) · 1(di ≤ K/

√
n) − Fb(K/

√
n)Fd(K/

√
n)
)2
⎤

⎦
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<
8

nε2
(2μnt)Fb(K/

√
n)Fd(K/

√
n)

<
η

2
. (8.24)

The result follows from (8.21)–(8.24). ��
Proof of Proposition 5.12 Fix ε, η, t > 0, α ∈ {S, T }, and set δ = ε/(16μt). By
Lemma 5.1 and Proposition 5.7, respectively, we can choose a K > 0 such that for
sufficiently large n,

P

(
sup

s∈[0,t]
Wn

α (s) > K/
√
n

)
< min

(
η

4
,

ε2η

128μt

)
(8.25)

and

P

(
sup

s∈[0,t]
∣∣Qn

α(s)/μn − Wn
α (s)

∣∣ > δ/
√
n

)
<

η

8
. (8.26)

Fix such a K . We start by replacing the weighted queue length with the workload
process:

P

(
sup

s∈[0,t]

∣∣∣R̃0,n
α (s) − R̃1,n

α (s)
∣∣∣ > ε

)

= P

⎛

⎝ sup
s∈[0,t]

∣∣∣∣∣∣

An(s)∑

i=1

1(di ≤ Qn
α(tni −)/μn) − 1(di ≤ Wn

α (tni −))

∣∣∣∣∣∣
>

√
nε

⎞

⎠

≤ P

⎛

⎝
An(t)∑

i=1

1(di ∈ [Wn
α (tni −) − δ/

√
n,Wn

α (tni −) + δ/
√
n]) >

√
nε

⎞

⎠

+P

(
sup

s∈[0,t]
∣∣Qn

α(s)/μn − Wn
α (s)

∣∣ > δ/
√
n

)
. (8.27)

The second term of the far right-hand side is handled by (8.26). As for the first
term, we construct a martingale. By Lemma 3.3,

P

⎛

⎝
An(t)∑

i=1

1(di ∈ [Wn
α (tni −) − δ/

√
n,Wn

α (tni −) + δ/
√
n]) >

√
nε

⎞

⎠

≤ η

4

+P

⎛

⎝
�2μnt�∑

i=1

E
[
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])∣∣Fn

i−1

]
>

√
nε

2

⎞

⎠

+P

⎛

⎝
�2μnt�∑

i=1

(
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])
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−E
[
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])∣∣Fn

i−1

])
>

√
nε

2

⎞

⎠

≤ η

4
+ P

⎛

⎝
�2μnt�∑

i=1

(
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n)
)

>

√
nε

2

⎞

⎠

+P

⎛

⎝
�2μnt�∑

i=1

(
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])

− (
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n)
))

>

√
nε

2

⎞

⎠ . (8.28)

As for the second termon the far right-hand side of (8.28), notice that each summand
contributes an amount equal to the increase of the abandonment distribution function
over an interval of length 2δ. By (8.25) and Lemma 5.3,

P

⎛

⎝
�2μnt�∑

i=1

(
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n])) >

√
nε

2

⎞

⎠

≤ P

(
sup

s∈[0,t]
W̃ n(s) > K

)

+ 1

(
2μnt sup

s∈[0,K ]
(
Fd((s + 2δ)/

√
n) − Fd(s/

√
n)
)

>

√
nε

2

)

<
η

4
(8.29)

for sufficiently large n. Now consider the third term on the right-hand side of (8.28).
The following steps are similar to those in the proof of Proposition 5.6. By (8.25) and
Lemma 5.2,

P

⎛

⎝
�2μnt�∑

i=1

(
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])

− (
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n)
))

>

√
nε

2

⎞

⎠

≤ 4

nε2
E

⎡

⎣

⎛

⎝
�2μnt�∑

i=1

(
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])

− (
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n)
))
⎞

⎠
2
⎤

⎥⎦
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≤ 4

nε2
E

⎡

⎣
�2μnt�∑

i=1

(
1(di ∈ [Wn

α (tni −) − δ/
√
n,Wn

α (tni −) + δ/
√
n])

− (
Fd(W

n
α (tni −) + δ/

√
n) − Fd(W

n
α (tni −) − δ/

√
n)
))2
⎤

⎦

≤ 8

nε2
E

⎡

⎣
�2μnt�∑

i=1

Fd(W
n
α (tni −) + δ/

√
n)

⎤

⎦

≤ 16μt

ε2

(
P

(
sup

s∈[0,t]
Wn

α (s) > K/
√
n

)
+ Fd((K + δ)/

√
n)

)

<
η

4
, (8.30)

for sufficiently large n greater than
(
256μtθ(K+δ)

ε2η

)2
.

The result follows from (8.26)–(8.30). ��
Proof of Proposition 5.13 Fix η, t > 0, and α ∈ {S, T }. By Lemma 5.1 there exists a
K > 1 such that, for sufficiently large n,

P

(
sup

s∈[0,t]
Qn

α(s) > K
√
n

)
+ P

(
sup

s∈[0,t]
Wn

α (s) >
K√
n

)
<

η

2
.

We use these constants to replace the workload and queue length:

P

(
R̂n

α(t) > L
)

≤ P

⎛

⎝
Qn(0)∑

i=1

1(d̂i ≤ ŵn
i−1) > L

⎞

⎠

≤ P

⎛

⎝
�K√

n�∑

i=1

1(d̂i ≤ K/
√
n) > L

⎞

⎠+ P
(
Qn(0) ≥ K

√
n
)

+P

(
Wn(0) >

K√
n

)

< P

⎛

⎝
�K√

n�∑

i=1

1(d̂i ≤ K/
√
n) > L

⎞

⎠+ η

2
(8.31)

for sufficiently large n.
Recall that the residual deadlines of the initial jobs may have different distributions,

F̂d,i , but those distributions have a common bound near the origin. Namely, there exists
an f̂ ≥ 1 and an h0 ∈ (0, 1/ f̂ ) such that F̂d,i (h) ≤ h f̂ for each h ≤ h0. Given such
an h0 and f̂ , set L so that L ≥ max(2 f̂ K 2, 4 f̂ K/

√
η). We replace the initial jobs’

residual deadlines with random variables which are i.i.d. In particular, on the same
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probability space, each d̂i is replaced by d̆i .Whenever d̂i < h0 then d̆i ≥ d̂i .Moreover,
the common distribution of each d̆i is

F̆(x) =
{
x f̂ , x < h0
1, x ≥ h0.

When K/
√
n ≤ h0 we have that

(
K

√
n
)
F̆(K/

√
n) = f̂ K 2 < L/2

so that by Kolmogorov’s inequality [4],

P

⎛

⎝
�K√

n�∑

i=1

1(d̂i ≤ K/
√
n) > L

⎞

⎠ ≤ P

⎛

⎝
�K√

n�∑

i=1

1(d̆i ≤ K/
√
n) > L

⎞

⎠

≤ P

⎛

⎝
�K√

n�∑

i=1

(
1(d̆i ≤ K/

√
n) − F̆(K/

√
n)
)

>
L

2

⎞

⎠

≤
(

4

L2

)
(K

√
n)E

[(
1(d̆1 ≤ K/

√
n) − F̆(K/

√
n)
)2]

≤
(

4

L2

)
(K

√
n)F̆(K/

√
n) <

η

2
(8.32)

for sufficiently large n. The result follows from (8.31) and (8.32). ��
Proof of Proposition 5.17 We can break δnα into four parts. For every t ≥ 0 and α ∈
{S, T },

δnα(t) = 1√
n

An(t)∑

i=1

Fb(Q
n
α(tni −)/μn) − Fb(Q

n
α(tni −)/(μn)) + Fd(Q

n
α(tni −)/μn)

− Fd(Q
n
α(tni −)/(μn))

+ 1√
n

An(t)∑

i=1

(
Fb(Q

n
α(tni −)/(μn)) + Fd(Q

n
α(tni −)/(μn)) − θ

Qn
α(tni −)

μn

)

+ θ

(∫ t

0
Q̃n

α(s−)d

(
Ān(s)

μ

)
−
∫ t

0
Q̃n

α(s)ds

)

+ 1√
n

(
Ŝn(t) − μn min(t,Wn(0))

)
. (8.33)

We will show that each of these converges to zero in probability as n → ∞.
Fix t > 0 and α ∈ {S, T } and select arbitrary constants ε, η > 0. We first show

that both

lim sup
n→∞

P

⎛

⎝ 1√
n

An(t)∑

i=1

∣∣Fb(Qn
α(tni −)/(μn)) + Fb(Q

n
α(tni −)/(μn))

∣∣ >
ε

4

⎞

⎠ <
η

4

(8.34)
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and

lim sup
n→∞

P

⎛

⎝ 1√
n

An(t)∑

i=1

∣∣Fd(Qn
α(tni −)/(μn)) + Fd(Q

n
α(tni −)/(μn))

∣∣ >
ε

4

⎞

⎠ <
η

4
.

(8.35)

We will prove (8.34), and the proof of (8.35) follows trivially. The right-hand side
of (8.34) can be expanded as follows:

P

⎛

⎝ 1√
n

An(t)∑

i=1

∣∣Fb(Qn
α(tni −)/(μn)) + Fb(Q

n
α(tni −)/(μn))

∣∣ >
ε

4

⎞

⎠

≤ P

(
An(t)

(
sup

s∈[0,t]
∣∣Fb(Qn

α(s)/μn) + Fb(Q
n
α(s)/(μn))

∣∣
)

>
ε
√
n

4

)

≤ P

(
sup

s∈[0,t]
Qn

α(s) > K
√
n

)
+ P

(
An(t) > 2μnt

)

+P

(
sup
s≤K

∣∣Fb(s
√
n/(μn)) + Fb(s

√
n/(μn))

∣∣ >
ε

8μt
√
n

)
. (8.36)

Fix K > 0 so that by (5.1) of Lemma 5.1,

P

(
sup

s∈[0,t]
Qn

α(s) > K
√
n

)
<

η

8
. (8.37)

Notice that for any δ > 0, we have that

sup
s≤K

∣∣∣∣
s
√
n

μn
− s

√
n

μn

∣∣∣∣ ≤
∣∣∣∣
K

√
n

μn
− K

√
n

μn

∣∣∣∣ <
δ√
n

for sufficiently large n. Set δ = ε/(16μtθ).The first result, (8.34), follows from (8.36),
(8.37), and Lemmas 3.3 and 5.3. Likewise, (8.35) follows from an identical argument.

Next, we show that

lim sup
n→∞

P

⎛

⎝ 1√
n

An(t)∑

i=1

∣∣∣∣Fb(Q
n
α(tni −)/(μn)) + Fd (Q

n
α(tni −)/(μn)) − θ

Qn
α(tni −)

μn

∣∣∣∣ >
ε

4

⎞

⎠<
η

4
.

(8.38)

We explore the derivative of the abandonment and balking distributions:

P

⎛

⎝ 1√
n

An(t)∑

i=1

∣∣∣∣Fb(Q
n
α(tni −)/(μn)) + Fd(Q

n
α(tni −)/(μn)) − θ

Qn
α(tni −)

μn

∣∣∣∣ >
ε

4

⎞

⎠
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≤ P

(
An(t) sup

s∈[0,t]

∣∣∣∣Fb(Q
n
α(s)/(μn)) + Fd(Q

n
α(s)/(μn)) − θ

Qn
α(s)

μn

∣∣∣∣ >
ε
√
n

4

)

≤ P

(
sup

s∈[0,t]
Qn

α(s) > K
√
n

)
+ P

(
An(t) > 2μnt

)

+ 1

(
sup

s∈[0,K/μ]

∣∣∣∣Fb(s/
√
n) + Fd(s/

√
n) − θs√

n

∣∣∣∣ >
ε

8μt
√
n

)
. (8.39)

Recall that the derivatives at zero of both Fb and Fd exist and sum to θ . Hence, for
any given δ > 0, there exists an h0 such that

sup
s≤h

∣∣∣∣
Fb(s)

s
+ Fd(s)

s
− θ

∣∣∣∣ < δ

for all h ≤ h0. Let δ = ε
8Kt and let h0 be a constant so that the above inequality holds.

Now choose an n0 such that K/(μ
√
n) ≤ h0 for all n ≥ n0. It follows that for each

n ≥ n0,

sup
s∈[0,K/(μ

√
n)]

|Fb(s) + Fd(s) − θs| = sup
s∈[0,K/μ]

∣∣∣∣F(s/
√
n) − θs√

n

∣∣∣∣ < δ
K

μ
√
n

= ε

8μt
√
n
. (8.40)

The result (8.38) follows from (8.37), (8.39), (8.40), and Lemma 3.3.
Third, we show that

lim sup
n→∞

P

(∣∣∣∣
∫ t

0
Q̃n

α(s−)d

(
Ān(s)

μ

)
−
∫ t

0
Q̃n

α(s)ds

∣∣∣∣ > ε

)
< η. (8.41)

By Proposition 5.15, the process {Q̃n
α(s), s ≤ t} is tight. Consider a subsequence

{n′} over which the process Q̃n′
α has a limit, say Q̃α . By the Skorohod Representation

Theorem, there exists an alternative probability space on which are defined a sequence

{( ˆ̃Qn′
α , ˆ̄An′

α ), n ≥ 1} and, by Lemma 3.6, a limit process (
ˆ̃Qα, ˆ̄Aα) such that

(
ˆ̃Qn′
α , ˆ̄An′

α )
D=(Q̃n′

α , Ān′
α )

for each n′ and such that ( ˆ̃Qn′
α , ˆ̄An′

α ) → (
ˆ̃Qα, ˆ̄Aα) almost surely as n′ → ∞. It is also

true that

∫ u

0

ˆ̃Qn′
α (s−)d

( ˆ̄An′
(s)

μ

)
D=
∫ u

0
Q̃n′

α (s−)d

(
Ān′

(s)

μ

)
,
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and
∫ t

0

ˆ̃Qn′
α (s)ds

D=
∫ t

0
Q̃n′

α (s)ds

for each n′. Applying Lemma 8.3 from [6] twice we have

sup
u∈[0,t]

∣∣∣∣∣

∫ u

0

ˆ̃Qn′
α (s−)d

( ˆ̄An′
(s)

μ

)
−
∫ u

0

ˆ̃Q(s)ds

∣∣∣∣∣ → 0

and

sup
u∈[0,t]

∣∣∣∣
∫ t

0

ˆ̃Qn′
α (s)ds −

∫ t

0

ˆ̃Q(s)ds

∣∣∣∣ → 0

almost surely as n′ → ∞, so that

sup
u∈[0,t]

∣∣∣∣∣

∫ u

0

ˆ̃Qn′
α (s−)d

( ˆ̄An′
(s)

μ

)
−
∫ t

0

ˆ̃Qn′
α (s)ds

∣∣∣∣∣ → 0

almost surely as n′ → ∞. It follows that in our original probability space

sup
u∈[0,t]

∣∣∣∣∣

∫ u

0
Q̃n′

α (s−)d

( ˆ̄An′
(s)

μ

)
−
∫ t

0
Q̃n′

α (s)ds

∣∣∣∣∣ → 0

as n′ → ∞. This limit holds on the arbitrarily chosen subsequence {n′}. Hence (8.41)
holds.

Consider the fourth term on the right-hand side of (8.33). The service times of
initial jobs that are actually served constitute an i.i.d sequence. This sequence obeys
a weak law of large numbers, as does the renewal process Ŝn , constructed by these
service times over intervals of time that are of the order 1/

√
n. Hence, by Proposition

5.15,

P

(
sup

t≤Wn(0)

∣∣∣Ŝn(t) − μnt
∣∣∣ > ε

√
n

)
< P

(
sup

t≤K/
√
n

∣∣∣Ŝn(t) − μnt
∣∣∣ > ε

√
n

)

+P
(
Wn(0) > K/

√
n
)

< η, (8.42)

for sufficiently large n.
Finally, our result follows from (8.33), (8.34), (8.35), (8.38), (8.41), and Lemma

3.3. ��

Numerical tables

See Tables 1, 2, 3, and 4.
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