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Nonstationary queueing networks are often difficult to approximate. Recent novel methods for approximat-
ing the moments of nonstationary queues use the functional version of the Kolmogorov forward equations
in conjunction with orthogonal polynomial expansions. However, these methods require closed form expressions
for the expectations that appear in the functional Kolmogorov forward equations. When closed form expressions
cannot be easily derived, these methods cannot be used. In this paper, we present a new sampling algorithm
to overcome this difficulty; our sampling algorithm accurately estimates the expectations using simulation. We
apply our algorithm to priority queues, which are useful for modeling hospital triage systems. We show that
our sampling algorithm accurately estimates the mean and variance of the priority queue without spending
significantly more computational time than integrating ordinary differential equations. Last, we compare our
sampling algorithm to the closed form analytical approximations for the Erlang-A queueing model and find
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that our method is comparable in time and accuracy.

Keywords: sampling; simulation; nonstationary queues; forward equations; Markov processes; healthcare;

priority queues; triage; closure approximations

History: Accepted by Winfried Grassmann, Area Editor for Computational Probability and Analysis; received
November 2014; revised September 2015; accepted February 2016. Published online November 8, 2016.

1. Introduction
In many applied settings, life is nonstationary
and stochastic. Thus, it is natural to use nonstation-
ary stochastic models to gain insight about real world
stochastic systems. To gain insight on the behavior
of nonstationary queueing models, many authors use
asymptotic expansion methods such as uniform accel-
eration and singular perturbations, see for example
Massey (1985) or Massey and Whitt (1998). Another
method of analysis is the heavy traffic limit theory,
which provides a sample path analysis of the queue-
ing process. One approach uses strong approxima-
tions such as those in the work of Mandelbaum and
Massey (1995) and Mandelbaum et al. (1998). Another
approach is to use the traditional continuous mapping
approach in under- and overloaded regions like in the
work of Liu and Whitt (2014). All of these approaches
are important because they allow one to use simple,
but well known processes such as Brownian motion
with drift to approximate various performance mea-
sures of the queueing process. However, one major
drawback of these methods is that they are asymp-
totic in nature; these approaches typically apply to
stochastic systems with large rates. Thus, the theory
does not necessarily apply to systems with small or
moderate rates.

More recently, Massey and Pender (2011, 2013, 2016),
Pender (2014b, c), and Engblom and Pender (2014)
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have used the functional Kolmogorov forward equa-
tions to model the dynamics of Markovian queueing
processes. Unfortunately, the functional Kolmogorov
forward equations are not an autonomous system
when the queue length process is not an infinite
server queue, or a very simple queueing process.
Thus, to numerically integrate the forward equations,
one must close the forward equations. For instance, if
one wants to compute the mean sample path dynam-
ics, if the forward equations are to be closed, then
the equation for the time derivative of the mean can-
not depend on functions that cannot be written as a
function of the mean queue length. To address this
problem, authors Massey and Pender (2011) showed
that, by using orthogonal polynomial expansions as
a surrogate or approximate distribution of the queue
length process, they can approximate the dynamics
of the queueing process better than the well known
heavy traffic limits. One reason is that the func-
tional forward equations are nonasymptotic and do
not depend on any asymptotic scaling of the queueing
process. Another reason is that the closure approxi-
mations for the mean include information from other
higher moments; this is important for generating
good approximations for the sample path dynamics.

Although the closure approximation methods of
Massey and Pender (2011, 2013, 2016) and Pender
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(2014b, c) work well for relatively simple Marko-
vian queues with mildly nonlinear rate functions such
as polynomials, the closure approximation approach
with orthogonal polynomial expansions depends on
the ability to derive closed form expressions for the
expectations terms that appear on the right-hand side
(RHS) of the functional Kolmogorov forward equa-
tions. If closed form expressions cannot be obtained
by analytically computing the expectations that arise
from the forward equations, then the methods of
Massey and Pender (2011, 2013, 2016) and Pender
(2014b, c¢) cannot be used since one cannot properly
close the system of equations. Unfortunately, there are
many examples of Markov processes where the expec-
tations of the functional forward equations cannot be
computed in closed form.

One example of such a stochastic jump process that
is difficult to develop closed form approximations for
is the nonstationary priority queue of Mandelbaum
et al. (1998). A Markovian multiserver preemptive pri-
ority queue with two classes is complex because the
second (low priority) class depends on the number
of servers not being used by the first class (high pri-
ority) customers. In fact, the function that represents
the number of servers used by the second class is
a composition of maximum functions; this compo-
sition makes it extremely difficult to derive closed
form expressions for approximating the moments of
the priority queue. It is easy to think that choos-
ing a better surrogate or approximate distribution
could help in this situation, however, the inability
to derive closed form expressions for the expecta-
tions that appear in the functional forward equations
is difficult regardless of the surrogate distribution
used. Thus, to compute approximations for various
moments of the priority queue and even for other
Markov processes, it is necessary to develop new
ways to compute approximations for the expectations
that arise from the functional Kolmogorov forward
equations.

In this paper, we propose using Monte Carlo simu-
lation to approximate the expectations that arise from
the functional forward equations. The first step is to
choose a surrogate distribution for the closure approx-
imation. The second step is to sample the expec-
tation terms that arise from the functional forward
equations. With these sampled expectations, we then
numerically integrate the differential equations asso-
ciated with the functional forward equations. This
finally yields our moment approximations of the orig-
inal stochastic process. In this paper, we illustrate that
by estimating the expectations with the sampled ran-
dom variables generated from the same distribution
of the closure approximation, we can approximate the
mean and variance dynamics of the priority queueing
process by numerically integrating only (N?+3N)/2

RIGHTS L

differential equations, where N is the number of pri-
ority classes. As a result, we do not have to simu-
late the actual queueing process using a discrete event
simulation. We will show that this produces signifi-
cant time savings. We also compare our method with
the closed form approximations developed in Massey
and Pender (2013) and show that, although our sam-
pling method is slower than the analytical approach
by at most a factor of 2, it is not nearly as slow when
compared to a discrete event simulation of the actual
stochastic process.

1.1. Contributions
Our contributions in this work are the following;:

¢ We develop a new and novel sampling algorithm
that computes unknown expectations from the func-
tional forward equations when their expectations are
hard to analytically compute in closed form.

* We develop an approximation method for prior-
ity queues that is more accurate than the fluid and
diffusion limit theorems of Mandelbaum et al. (1998).

¢ Our sampling algorithm extends the applicability
of the orthogonal polynomial expansion methods of
Massey and Pender (2011, 2013) and Pender (2014b, c)
to a larger class of stochastic processes without com-
puting the rate functions in closed form.

* We show that our sampling algorithm can
be used to approximate functions of nonstationary
stochastic jump processes in a wide variety of applica-
tion settings such as healthcare, telecommunications,
and service operations.

1.2. Organization of the Paper

The rest of the paper continues as follows: In Sec-
tion 2, we review the Erlang-A model and motivate
the sampling approach. In Section 3, we construct our
sampling method for the Erlang-A model and prove
the pseudocode and actual code for its implementa-
tion. In Section 4, we apply the sampling algorithm
to a nonstationary priority queue and show that the
sampling approach is superior to the fluid and diffu-
sion limits of Mandelbaum et al. (1998). In Section 5,
we describe how to implement our algorithm for a
multidimensional birth death network. Finally, Sec-
tion 6 provides concluding remarks.

2. Erlang-A Model: A Simple
Motivating Example

In this section, we describe the sampling algorithm for
a simple, yet sufficiently complex, queueing process,
i.e., the nonstationary Erlang-A model. The nonsta-
tionary multiserver queue with abandonment or the
Erlang-A model is an important stochastic process for
modeling service systems where customers are impa-
tient and leave the system. Unlike the infinite server
queue for which the exact distribution of the process
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is known, the Erlang-A model is not as tractable. It
is not a closed dynamical system because it depends
on other functions other than the mean. In fact, it can
be shown that the time derivative of the mean and
variance dynamics of the Erlang-A model satisfy the
following differential equations:

LEIQ()]=FIQ1=A~p-E[QAd ~B-EIQ-0T (1)
d
ZVarQ()]

= Var[Q] = A+ E[QAc]+B-E[(Q—0)*]
—2(u-Cov[Q, QAcl+B-Cov[Q, (Q—)*]), ()

where A is the exogeneous arrival rate, u is the service
rate of c homogeneous servers, and (8 is the abandon-
ment rate.

The notation for the Erlang-A queue can be sum-
marized as follows:

e A(t) is the external arrival rate at time ¢

e [(t) is the abandonment rate at time ¢
p(t) is the service rate at time ¢
c(t) is the number of servers at time ¢
x Ay = min(x, y)
(x—y)" = max(0, x —y)
{x <y} denotes an indicator function that equals
one if the statement is true, i.e, if x <y, and zero if
the statement is false

* ¢(x) is the probability density function (pdf) of
the standard normal distribution

e &(x) =1 = P(x) is the cumulative distribution
function (cdf) of the standard normal distribution.

Although we write the parameters of the Erlang-
A model (A, u, B, c) without time dependence, they
should be thought of more generally as functions
of time and not as constants even though they are
allowed to be constant. More generally, the func-
tional Kolmogorov forward equations for the Erlang-
A model for an integrable function f: Z, — R are
given by the following differential equation:

E[f(Q)] = A-E[f(Q+1) - £(Q)]
+ - E[(f(Q=1)= F(Q)(QA Q)]
+B-E[(f(Q-1) - £(Q)-(Q—0)*].

From a computational perspective, the formulas for
the time derivatives of the mean and variance sum-
marized above are not autonomous differential equa-
tions and hence are not a closed dynamical system,
unless u = B or ¢ = co. This means that the differen-
tial equations do not only depend on functions of the
mean and variance of the queue length processes. In
fact, Pender (2014c) show that the expectations that
contain max and min terms actually depend on higher
moments beyond the mean and variance of the queue
length process.
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ReMARK 1. Throughout the remainder of the paper,
we refer to the expectations and covariance terms
derived from the functional forward equations rate
functions. Thus, terms such as E[Q A c], E[(Q — ¢)7],
Cov[Q, QAc], and Cov[Q, (Q—c)*] will be called rate
functions. They should not be confused with the time
varying functions for the arrival, service or abandon-
ment rates A, u, SB.

The fact that the differential equations for the
moments of many important queueing processes are
not autonomous differential equations motivated the
work of Rothkopf and Oren (1979), Clark (1981),
and Taaffe and Ong (1987). However, to our knowl-
edge, none of these authors have provided proof
of why and when the differential equations are not
autonomous. Pender (2014c) was the first to give an
explicit proof for multiserver queues with or with-
out abandonment, i.e., that they are not autonomous
when the number of servers is not infinite or the ser-
vice rate is not equal to the abandonment rate. Here
we provide without proof one of the main contribu-
tions of Pender (2014c).

ProrosiTiON 1 (PENDER 2014c). Suppose that Q is
square integrable or square summable and is a non-negative
random variable. Then we have the following relation-
ship between the maximum and minimum functions, the
moments, and iterated stationary excess distributions

EIQ -] = 5 -EIQ (o), ©)
FIQACI = EIQI - 5 EIQ f§©0, (&)

where the stationary excess distribution is defined as

P(Q>y)
E[Q]

Its iterates are defined as outlined in Pender (2014c).

) = (5)

Proposition 1 illustrates that the maximum and
minimum functions depend on the second moment of
the queueing distribution. This implies that to charac-
terize the behavior of the time derivative of the mean
of the queue length process, it is also necessary to
understand some information about the variance of
the queue length process. This carries over when try-
ing to understand the covariance terms of the queue
length process. In fact, Pender (2014c) shows that the
nth order of the covariance of the queue length pro-
cess (for example Cov[Q", (Q — ¢)*]) depends on the
(n+2)th moment of the queue length process.

As a result, we have demonstrated that it is an
important problem and necessary to find new and
simple ways of closing the functional forward equa-
tions without having closed form rate functions. This
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new method will enable us to obtain accurate approx-
imations for computing moments of a wider class of
nonstationary stochastic jump processes.

One such method, which relies on the closed
form expressions of rate functions, was developed
by Massey and Pender (2011). The main idea of this
method was to project the queueing process onto a
finite number of Hermite polynomials. It turns out
that the first non-deterministic expansion is a Gaus-
sian closure approximation for the queue length pro-
cess, i.e.,

Q)= q(t) +vo(t)- X, (6)

where X is a standard Gaussian random variable. This
Gaussian approximation, called the Gaussian variance
approximation (GVA) in Massey and Pender (2011),
provides the following closed form expressions for
the rate functions that arise from the functional for-
ward equations.

ProrosiTION 2 (MAsseEy AND PENDER 2011). Under
the first order Hermite polynomial expansion for the
Erlang-A queueing model, we have the following expres-
sions for the rate functions:

E[(Q—)"T=vv-(¢(x) —x - P(x))
E[QAc]=q-vv-(e(x) = x - P(x))
Cov[Q, (Q—)*]=0v-P(x)
Cov[Q, Qncl=v-D(x),

where
c—q

X="7" @)
Fortunately for the Erlang-A model, the rate func-
tions have closed form expressions given in Proposi-
tion 2; this enables one to quickly compute the mean
and variance cumulants with high accuracy, as shown
in Massey and Pender (2011). However, for other
functions, especially those that are multidimensional,
it is not immediately clear that the rate functions or
expectations that arise from the functional forward
equation have closed form expressions when inte-
grated with the closure approximation. This is even
true for Gausisan closure approximations, which are
relatively easy to compute using the Hermite polyno-
mial calculus developed in Massey and Pender (2013).
One such example of an expectation that is diffi-
cult to compute in closed form is the spread option
from the mathematical finance literature or the num-
ber of abandoning customers from a priority queue
with low priority. Thus, it is necessary to develop a
new method that can approximate these expectations
or rate functions without much computational effort.
Although we have closed form expressions for the
rate functions under the GVA, we will demonstrate
our new sampling algorithm for the Erlang-A model
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so that the reader can understand the algortithm for a
simple example. A more complex example of a mul-
tidimensional priority queue will be provided later in
the paper.

3. The Sampling Algorithm

In this section, we give a description of the sam-
pling algorithm used to compute the expectations
and covariance terms for which we do not have
closed form formulas. The main idea of our sampling
approach is as follows. Because we cannot always
explicitly compute the expectations and covariance
terms from the functional forward equations, we
propose that we should sample and estimate them
instead with our closure approximation distribution.
For the Gaussian closure approximation and the rate
functions of the Erlang-A model, one can compute
estimates of the rate functions by sampling from
the closure approximation distribution and averag-
ing the samples. Thus, for the Erlang-A model, if
we fix the value of {, we can compute an estimate
of the exact expectation by the following averaging
procedure:

ELQU) — e~ - S (Y—c())*  (8)
i=1

and
m

EQO Ak~ S (Acw), )

where (Y;) are i.i.d. Gaussian random variables with
mean 4(t) and variance v(t) and m is the number of
samples used to estimate the expectation. For covari-
ance terms we use the fact that they can be written in
terms of expectations; therefore we have that

CovlQ(H), (U A< (B)]
1 m l m l m
S i) = (520 ) (5 Z0Ac) 10

i=1

and

F|=

Cov[Q(1), (Q(H) —c(t) T~ =3 Y- (Y —c(h)*
i=1

~(2)- (G Roi-eoy ). an

Thus, using the sampling algorithm with m samples
and a Gaussian closure distribution for the Erlang-A
model yields the following differential equations for
estimating the mean and variance of the queue length
process:

ELQI A= S (V) B S (Y —c() (12)
1 i=1

i=
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VAK[QIN At 3 (A () 4B S (Y —e(t)*
1 m 1 m
2.0l =Y. (Y —=>Y
(w2

-(%émw»))

2 (2 et - (5 20)

. (%;(Y —c(t))+>>. : (13)

3.1. Pseudocode and MATLAB Code for

Sampling Algorithm
The following is pseudocode for the sampling algo-
rithm that we use to compute the mean and covari-
ance matrix of an arbitrary Markovian stochastic net-
work with functional forward equations.

Algorithm 1 (Functional Kolmogorov forward equa-
tion sampling algorithm)
1: procedure FKFE(L, i)
> Computes mean and variance of queue

2: n <« > number of samples
3: d<« » dimension of queueing network
4: At < > time spacing for Euler scheme
5: F « v final time
6: T <« F/At > number of time points
7: fori=1—T do  Loop for each time point
8: for j=1—d do > Loop for each queue
9: samp < random samples generated for
each queue
> In the next two steps we take the
sampled values and compute the
expectations and variance terms in
functional forward equations.
10: uli, j) < pli—1, )
+ At - E[rate functions(samp)]
11: (1, j)«<2(1-1,))
+ At - Var[rate functions(samp)]
12: end for
13:  end for

14: return u,Y > The mean is g and the
variance is 3,
15: end procedure

In addition to providing the pseudocode for the
sampling algorithm, we summarize the steps of im-
plementing our sampling algorithm in English to give
the reader a clear understanding of the sampling algo-
rithm methodology.

* Choose a Markovian stochastic model to ap-
proximate.

¢ Derive the functional Kolmogorov forward equa-
tions for the chosen stochastic model.
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* Sample the expectations from the functional for-
ward equation from a closure approximation or sur-
rogate distribution, examples include (Gaussian, Pois-
son, Gamma, etc.).

¢ Compute the moments of the stochastic model by
numerically integrating the functional forward equa-
tions using the sampled expectations.

For the convenience of the reader, we also provide
the MATLAB code used to construct the sampling
algorithm for the Erlang-A model. It is clear from the
small number of lines that it is easy to implement for
this model.

1 % Initializing mean and variance differential
equations

2 g = q0xones(1l,numsteps); % Mean queue length

3 v = v0xones(1l,numsteps); % Variance of queue
length

4 % Starting Euler scheme for numerically
integrating differential equations.

5 for i = 1:numsteps—1

6 %Computes Gaussian Random Variables for
Sampling Rate Functions

7 Q = g(i)+ones(1,numsamp) + sqrt(v(i))x
randn(1,numsamp);

8 %Computes Sample Mean and Variance of Queue
Length

9 m0l = mean(Q);

10 v01 = var(Q);

11 %Here we start the sampling of the rate
functions

12 ml = mean( min(Q, c(i)=*ones(1l,numsamp)) );
% E[ (Q wedge c) ]

13 m2 =m0l —ml; % E[ (Q — c)t ]

14 m3 = mean(Q.xmin(Q,c(i)xones(1l,numsamp))) —
m0lxml; % Cov[ Q , Q wedge c ]

15md =v0l —m3; % Cov[ Q, (Q — )" ]

16 % Using sampled rate functions to compute the
next iteration of scheme

17 q(i + 1) = q(i) + dtx(lambda(i) — mu(i)=*
ml —beta(i)sm2 );

8 v(i + 1) =v(@) + dtx(lambda(i) + mu(i)=
ml+beta(i)xm2 — 2x(mu(i)s«m3 + beta(i)xmd));

19 end

To relate the pseudocode with the actual MATLAB
code, we have provided numerous comments in the
MATLAB to convey what we are doing at each step.
Our goal is to convey to the reader a better under-
standing of how to develop their own code after
choosing a stochastic model to approximate. A deeper
look at the pseudocode and MATLAB code shows
that the main sampling part for the rate functions
is given in steps 8-9 of the pseudocode. These steps
in the pseudocode are implemented in lines 11-15 of
the MATLAB code. Moreover, the Euler integration of
the differential equations using the sampled rate func-
tions is given in lines 16-18 of the MATLAB code and
match steps 10 and 11 in the pseudocode.
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3.2. How Many Random Variables to Use?

In sampling the rate functions, it is reasonable to ask
how many samples are needed to estimate them with
good accuracy. The next proposition gives us insight
on how many samples one would need to approxi-
mate the maximum function, however, the idea also
extends to other functions that are common in the
queueing or stochastic processes literature by a simi-
lar variance bounding argument.

ProOPOSITION 3. Suppose that S; is a Gaussian random
variable with mean q and variance v, then for the maxi-
mum function we have that

2| R R | RO
where x = (c —q)/~/v and
&, = Var[(X — )] (15)
= —x- e+’ +1) D(x) — e (x)’
=X P +2-x - e(x) - P(x). (16)

Proor. We begin by showing that

£ |5 26 -0 101

]
< J ] ésf o —E[(Q- c)ﬂﬂ

:\/Var[% 3 (Si—c)+}
i=1

= 1. V Var[(5; — o)*].
vn

Now it remains to show that the following identity holds:
Var[(X — )T = —x - e(0) + (* +1) - (1) — ¢ (x)?
=X P42 x - e(x) - (x),

where X is a standard Gaussian random variable.

Because the variance can be split into the second moment
minus the first moment squared, it only remains to com-
pute the first and second moment of the function (X — x)™,
which can be shown using Stein’s lemma of Stein (1986).

E[(X=x)") = E[(X—x) - {X = x}I*
= (e(x) —x - P(x))’
E[(X = x)")’1 = E[(X = x)* - {X = x}]
= E[(X® =2 x- X+ x*) - {X = x]]
=E[(X*-1)-{X=x}]-2-x
CE[X X =)+ (P +1)-E[{(X = x)]
=x-e(X)=2-x-e()+ (X’ +1)- P(x)

Combining these two expressions yields our result. O
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This proposition implies that if we want our sam-
pled expectation to differ by at most €, then we need
at most o /€* samples to achieve our desired accuracy.
The number of samples needed for other rate function
is also on the order of o /€2, however, the value of o
changes for each different function.

PROPOSITION 4. Let S; be a Gaussian random variables
with mean q and variance v. For the terms that arise in the
computation of the variance of the queue length we have
that

EH%ansf'(si—C)*—E[Q-(Q—C)*]

}s% 17)

where

G, = q-~o-Var[(X — x)*]+o-Var[X - (X - x)*] (18)
=v-((x*+3)- DY) — x- () + P(x)*) (19)
+0-Vo- ((F+1)- D) — (1)
—x-@(x)* +x-e(x) - P(x).  (20)
Proor. We begin by showing that

< J E[(%zs (S~ ) ~EIQ-(Q- c>+1)2]

= \/Var[% iSi (S — C)*]

— % . \/Var[Si “(Si—o)f]

|5 25 (5~ 0"~ EiQ- (@]

Moreover, we know that

Var[S; - (S;—¢)"] = g- /v - Var[(X — x)*]
+v-Var[X- (X = x)'],

where X is a standard Gaussian random variable.

Because the first term has been computed in Propo-
sition 3, it now remains to show that the following
identity holds:

Var[X - (X = x)T = ®(x)*+ (* +3) - P(x) — x - e(x),

where X is a standard Gaussian random variable.
Because the variance can be split into the second
moment minus the first moment squared, it only
remains to compute the first and second moment of
the function X - (X — x)*, which can also be derived
using Stein’s (1986) lemma. The first moment squared
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Table 1 GVA Exact vs. FKFE Sampling for Erlang-A Model

Samples (m) A(2) c(t) B(t) w(t) Mean — Error - 10-3 Var — Error- 102 Time (seconds)
Simulation 10+ 2-sin(t) 10 0.5 1 0.8745 0.77 173.712
GVA — Exact 10+ 2-sin(t) 10 0.5 1 0 0 2.3938
10 10+ 2-sin(t) 10 0.5 1 1.900+0.14 2.96 +0.08 4.7330
40 10+ 2-sin(t) 10 0.5 1 0.873 +£0.053 0.78+0.035 4.7432
100 10+ 2-sin(t) 10 0.5 1 0.526 4+ 0.027 0.39+0.019 4.8295
400 10+ 2-sin(t) 10 0.5 1 0.258+0.014 0.16 £0.0065 5.1568
Simulation 40+8-sin(t) 40 0.5 1 0.65 0.71 417.025
GVA — Exact 40+8-sin(f) 40 0.5 1 0 0 2.3557
10 40+ 8- sin(t) 40 0.5 1 0.994 4 0.061 0.8240.07 4.6994
40 40+8-sin(f) 40 0.5 1 0.455 +0.022 0.34+0.04 4.7456
100 40+ 8 -sin(t) 40 0.5 1 0.272 £0.012 0.25+0.02 4.8237
400 40+8-sin(f) 40 0.5 1 0.136 +0.007 0.124+0.006 5.1010
Simulation 100 + 20 - sin(t) 100 0.5 1 047 0.57 906.126
GVA—Exact ~ 100+20-sin(t) 100 05 1 0 0 2.3452
10 100 + 20 - sin(t) 100 0.5 1 0.584 4 0.034 0.78+0.06 4.6859
40 100420 -sin(t) 100 05 1 0.274+0.018 0.35+0.03 4.7852
100 100 + 20 - sin(t) 100 0.5 1 0.167 4+ 0.007 0.23+0.015 4.8257
400 100 + 20 - sin(t) 100 0.5 1 0.085+0.005 0.11+0.005 5.0837

has the following expression in terms of the Gaussian
tail cdf:

E[(X- (X =) = E[(X* — x - X) - (X = x]I?
=E[(X*-1-x-X+1)-(X=x)]’
= (x-e(x) —x - ¢(x) + P(x))*
= d(x)
Last, the second moment has the following expression:
E[(X- (X = x)")1]
= E[X* (X = x)* - {X = x]]
=E[(X*=2-x-X°+x*- X*) - (X = x]]
=E[((X*—6-X*+3)—2-x-(X’-3-X)
+(x*+6)-X*—6-x- X —=3)-{X > x]]
=X’ =3-X) 200 =2-(x = x) - e(X) + (X’ +6- x)
-@(X) —6-x-@(x) + (x> +6—3) - D(x)
= (x*+3)- P(x) = x - ¢(x)-

Once again combining these two expressions yields
our desired result. [

In Table 1 we provide the relative errors made
between the sampling method and the exact GVA
equations. We see that the sampling method is only a
factor of 2 slower than the analytical expressions for
the Erlang-A model, so we do not lose much compu-
tational time when using the sampling method. More-
over, we see that the error is quite small and decreases
as we increase the number of samples to compute the
expectations present in the rate functions at each iter-
ation. It is also apparent from our confidence intervals
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that we are reasonably confident about our sampling
method even when the number of samples is small.
Furthermore, we see in Table 1 that by simulating the
exact stochastic queueing model, we need 72 times
more computational effort. This only increases as we
add more dimensions to the problem and increase the
rates of the stochastic process, i.e., 1 is large. How-
ever, we see that our sampling method does not need
as much computational effort to compute the mean
and variance of the Erlang-A model.

ReMARK 2. Although we present the pseudocode
for the mean and variance of a stochastic network,
it can be extended to other moments as well. We
should also mention that more terms may sometimes
be required in the polynomial expansion to accurately
describe the dynamics of higher moments. This can be
seen in Massey and Pender (2013) where they use an
additional polynomial to approximate the skewness.
Next, we apply this pseudocode to the priority queue
with abandonment and upgrades and comment on its
performance in estimating the mean and variance of
the queueing process.

4. Application to a Priority
Queue Model

In this section, we introduce the priority queueing
model that we will use to demonstrate the effective-
ness our new sampling method. An important reason
we consider a priority queueing model is that, unlike
the Erlang-A model, the priority queueing model we
present does not have closed form expressions for all
of its rate functions. Thus, we will show that our sam-
pling method can overcome this difficulty and still



Downloaded from informs.org by [132.236.181.182] on 11 June 2018, at 07:09 . For personal use only, al rights reserved.

Pender: Sampling Forward Equations
INFORMS Journal on Computing 29(1), pp. 1-17, ©2016 INFORMS

approximate the mean and variance with good accu-
racy and substantially less computational effort than
a discrete event simulation of the queueing process.

4.1. Motivating Applications
In considering a priority queue model, we are moti-
vated by two important applications. The first is the
application to patient flow dynamics in healthcare
systems. In a typical hospital, patients are triaged into
different customer classes based on the severity of
their health condition, see for example Garcia et al.
(1995) and Siddharthan et al. (1996). Patients need-
ing urgent care have priority over patients whose
condition is observed to be more stable and does
not depend too heavily on receiving immediate care.
Because the triage procedure is not perfect and
patients might be triaged into the wrong class we
allow the low priority class patients to be upgraded
to the high priority class if needed. This also accounts
for patients whose condition deteriorates while wait-
ing to be seen and therefore need immediate care.
Another motivating application setting is that of
call centers with multiple classes of customers with
different priority or service levels. Customers who are
deemed important receive service over customers who
have a lower level of priority. This is quite common
in call centers for bank services where customers with
more money in the bank or special accounts might
have priority over customers with regular accounts
and less money. As customers wait for service, the
low priority customers can transition to the higher
priority class or be upgraded if they wait too long
while in the low priority class without receiving ser-
vice from an agent. This upgrading procedure facil-
itates some type of fairness; customers in the lower
class receive upgraded service and eventually talk to
an agent quicker.

4.2. The Nonstationary Priority Queue
with Abandonment

Priority queues are well studied in the queueing lit-
erature. However, many priority queueing models
assume that the arrival and service rates are con-
stant functions of time, see for example Green (2006)
and references therein. In this work, we study the
priority queue with nonstationary arrival rates and
with the additional features of customer abandon-
ment and upgrades to a higher priority class. A
queueing model with upgrades in the single server
context was studied in Down and Lewis (2010) and
nonstationary dynamics were studied in Mandelbaum
et al. (1998). In this paper, we apply our sampling
algorithm to a priority queue with two customer
classes. We assume that the priority queue is pre-
emptive. Although we consider a two-class model
here, our sampling algorithm can handle any num-
ber of classes; the two dimensional example is only
used to effectively illustrate the main idea for a low
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dimensional model. To construct the priority queue-
ing model, we use time changed Poisson processes
such as those in the paper by Mandelbaum et al.
(1998). Thus, our priority queue with abandonment
and upgrades {Q;(t), Q,(t) | t >0} can be represented
by the following stochastic time changed integral
equations:

0,1
~0 @+ ([ n@ds )1 [ - Q) et s

-1 [ 19—ty o)
([ B Q- (€0~ Q) ) @)
Q=00 +11,( [ noe)ds
([ QA ) - Qi) )
([ 2109~ () - Q) s ), 22)

where IT; = {II;(t) | t > 0} for i =1,2,3,4,5,6 are
iid. standard (rate 1) Poisson processes. The deter-
ministic time change for II; transforms it into a non-
homogenous Poisson arrival process with rate A,(f).
Subjecting II, to a random time change causes it to
count the number of service departures from c servers
and exponentially distributed service times function
with mean 1/u,. A random time change of II; counts
the number of abandonments from c identical and
homogeneous servers in the first queue and exponen-
tially distributed abandonment times of mean 1/8,. A
deterministic time change of II, counts the number of
arrivals to the second queue. A random time change
of Il counts the number of service departures from
the second queue and (c — Q;)* available servers and
exponentially distributed service times with mean
1/m,. A random time change of Il, counts the num-
ber of abandonments from the second queue to get
upgraded or to leave the system altogether with expo-
nentially distributed abandonment times with mean
1/B,. Last, a random time change of II, counts the
number of customers who are upgraded from the sec-
ond queue to the first queue where p is the fraction
of the customers who do not leave the system.

The notation for the two-class priority queue can be
summarized as follows:

® A;(t) is the external arrival rate of class i at time ¢

e [;(t) is the abandonment rate of class i at time ¢
1, (t) is the service rate of class i at time ¢

* p is the probability that a customer or patient
from the low priority class, who has waited suffi-
ciently, is upgraded to the high priority class

® ((t) is the number of servers available for service
at time t.
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It can be shown using the theory of Mandel-
baum et al. (1998) that our priority queueing model
with abandonment and upgrades fits into a class of
stochastic processes called Markovian service networks.
With this knowledge, we can construct an associated,
scaled or uniformly accelerated queueing process where
the new arrival rate function is 17 - A and the new
number of servers is 77- ¢ for some positive scale fac-
tor n>0. A healthcare interpretation of the asymp-
totic scaling would be to simultaneously scale up the
patient demand (arrival rate) and the patient supply
(beds or nurses). This is natural in large hospitals with
a large number of patients and nurses or beds. Like-
wise, a call center interpretation would be to simulta-
neously scale up the customer demand (arrival rate)
and the number of call center agents. Taking the fol-
lowing pointwise limits gives us the fluid and diffusion
models of Mandelbaum et al. (1998), i.e.,

lim lQ”:q a.s. and lim /7% (lQ”—q) L0, (23)
n—>0 1 n—>00 n

where the deterministic process g, the fluid mean, is
governed by the following two dimensional dynami-
cal system:

él =M—p (@ Ac) =B (g —0)F
. +pBr (= (c—q)F) (24)
Ty = —py- (oA (c—q1)")

=By (= (c—q))".

Moreover, as pointed out in Mandelbaum et al. (1998),
if the set of time points «

d={t[qt)=cO}U{t] g(t) = () —qu)"} (25)

has measure zero, then () is a Gaussian diffusion pro-
cess whose variance combines with the fluid mean to
form a five-dimensional dynamical system given by
Equation (24) and
Var[Q,] = 9,
= M+ (A +By- (i —c)"
+pBy (= (c—q) ") =201y - {yy
—2:01 By L +2-p- By (v Ly +k- L)

VarQ,] = ¢,
=AMty (A (c—q) ") +(1=p)-B,
(= (c=q) ") =2 py- (k- £y +0,-80)
—2:(1=p)-By-(k-Ln+0y-Ls)
=2:p-By (0 Lip+k-L4)
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CaV[eréz] =k
=—p-By (= (c—q)") —pi-k-Ln
— (01 8+ 0, 8)
=Bk L —(A=p)- By (v L+ 02 L)
—p-Ba (V1L tk-{y)
+pBa (02 L +k-Ly),

where we have that v; = Var[Q,], v, = Var[Q,], k =
COV[Ql/ QZ]/

(41, 42) = (u A ©) (26)
(G, 42) = (2 A (c—q1)") (27)
ay(qy, ) = (1 — )" (28)
ay(q1, 42) = (2 — (c—q) "), (29)

and where we define the following expressions for the
derivatives of the previous functions:

d
g = a_qjai(‘hr 2)- (30)

ReMARK 3. Note that the variance and covariance
differential equations have indicator functions, which
cause the equation to depend discontinuously on
the mean queue length. These discontinuities occur
exactly where we assume the set of time points 5¢ has
measure zero. The measure zero assumption is known
as the lingering condition and it is well known that the
fluid and diffusion limits are not as accurate when
mean queue length processes linger around the set .
In fact, the diffusion limits are also no longer Gaus-
sian at those points.

4.3. Functional Forward Equations for
Priority Queue

Using the functional Kolmogorov forward equations
for multidimensional birth-death processes, we derive
the following functional forward equations for the
mean and variance of the priority queue with aban-
donment and upgrades. We provide explicit formulas
for the two dimensional case, but all of our methods
can also be applied to any finite number of dimen-
sions. Thus, the mean, variance, and covariance of the
priority queueing process satisfy the following differ-
ential equations:

E[Q,] = Ay ()= -E[(Qy () Ac(£)]
- B 'E[(Ql(t) - C(t))ﬂ
+p-Ba E[(Qu(H) — (e())— Qu(H) )]
E[Qa] = Ao(t) — - E[(Qa(B) A (c(H) = Qu (1) )]
— By E[(Qa(H) — (c()) = Qu (1) )]
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Var[Q,] = Ay (B)+p-E[(Q (D Ac(H)]
+B,-E[(Qi(H—c(t)*]
+p-BaE[(Qu(D — ()~ Q, (1) )]
—~2-41,-Cov Q1 (), (Qu(B) Ac(t)]
—~2-B,-Cov[Q, (1), (Qu(B) —c(B) ] +2-p
B2+ CovIQ, (), (Qu()) — (c() — Q1 () )]

Var[Q,] = Ay(H)+py- EI(Qa(B) A () — Qi () )]
By E(Qu(H) — () — Qu (1)) ] -2+,
.CovQu(8), (Qu() A (e(t) — Qs (1)) )] 2
By CovIQ, (1), (Qu()) — (c(H) — Qu () )]

Cov[Qy, Qu] = — sy -Cov[Qs(0), (Qu(H) Ae(t)] —
‘Cov[Q; (1), (Q() A () — Qi (1) )]
= B1-Cov[Q,(1), (Qi(H) —c(t)"]-B,
“Cov[Qy (1), (Qa(t) = (c() = Qi (1)) "]
+p-Be
“Cov[Qy (), (Qa(t) = (c()) = Qi (1)) "]
=P B E[(Qy(H) = (c(t) = Qu(1) )]

Following the approach of Massey and Pender
(2011), a logical next step is to use a two dimen-
sional version of the GVA to close the system of equa-
tions. A Gaussian distribution is natural in a priority
queue setting since the fluid and diffusion limits for
this process are also Gaussian under the mild condi-
tions given in Mandelbaum et al. (1998). However, a
complication arises when we attempt to close the for-
ward equations with the GVA. We cannot compute, in
closed form, some of the expectations or the covari-
ance terms in the functional forward equations with
respect to the Gaussian distribution. For example, the
expectation that represents the number of customers
who receive upgraded service, i.e.,

E[(Q:(H) = (c(t) = Qu(1) )] (G2))

is a composition of maximum functions. Thus, it is
extremely difficult to compute in closed form an ana-
lytical expression for the expectation of Equation (31).
This issue is not unique to the Gaussian distribu-
tion. The Laguerre approach in Pender (2014a), the
Poisson-Charlier approach of Engblom and Pender
(2014), and even the Poisson approach of Pender
(2014c) all have the same difficulties. They are all
difficult since it is extremely hard, if not intractable,
to compute these types of expectations and covari-
ance terms with analytical or closed form expressions.
Moreover, the expectation in Equation (31) is not the
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only expectation that cannot be calculated in closed
form. In the two-dimensional setting, it can be shown
that four terms cannot be computed in closed form
with respect to the Gaussian distribution. Thus, it is
imperative to find ways of computing or approximat-
ing these expectations without losing the computa-
tional advantage of simply integrating the forward
equations. Thus, in the sequel, we develop a new sam-
pling method to circumvent the fact that the analytical
expressions cannot be computed in closed form for
the functional forward equations.

Although we present the pseudocode for the mean
and variance of a stochastic network, it can be
extended to other moments. Note also that sometimes
more terms may be required in the polynomial expan-
sion to accurately describe the dynamics of higher
moments. This can be seen in Massey and Pender
(2013) where they use an additional Hermite polyno-
mial to approximate the skewedness. Next, we apply
this pseudocode to the priority queue with abandon-
ment and upgrades and comment on its performance
in estimating the mean and variance of the queueing
process.

4.4. Priority Queue Numerics

In this section, we apply our sampling algorithm to
the priority queue with abandonment and upgrades.
As mentioned, it is an important model for healthcare
triage systems and where customers need to receive
differentiated service. In the following examples, we
compare our sampling algorithm to the fluid and dif-
fusion limit theorems, which are the state of the art
for priority queue approximations for the mean and
variance.

In Figure 1, we plot the mean of the two dimen-
sional priority queue using discrete event simula-
tion with the fluid limit and the mean approxima-
tion using our algorithm with a Gaussian surrogate
distribution. To compute the mean and variance of
the discrete event simulation of the actual queueing
process, we averaged over 10,000 simulations. With
10,000 individual realizations we are nearly confident
that our sample of the mean and variance is within
1% of the true mean and variance. Moreover, when
implementing our algorithm, we used 100 indepen-
dent random variables to construct a good estimate of
the expectations. We see that for the first and second
queue, the sampled version of GVA or our algorithm
using a Gaussian surrogate distribution is approx-
imating the mean of the discrete event simulation
much better than the fluid limit given by the limit
theorems. Improvement in the approximation of the
mean ranges from 2%—4%. One reason that we see an
improvement over the fluid limit is that the fluid limit
is the best deterministic approximation of the queue
length and does not incorporate any variation of the
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Figure 2 (Color online) Mean of Q, (Left). Mean of Q, (Right)

Note. A, (t) = Ay(t) =10 +2-8in(t), py = pp =1, By = Bp = 0.5, ¢, (0) = g, (0) =1, ¢ = 20, p = 0.25.

stochastic model into its approximation of the sample
path behavior. However, the sampled version of GVA
and even the unsampled version allow for variability
to be incorporated into the mean estimation, which
improves the estimation since it has more information
about the stochastic process.

Not only is our algorithm better at approximat-
ing the moments of the priority queue, but also it
is much faster than a discrete event simulation is on
par with the speed of the fluid and diffusion lim-
its. In fact, for the previous example the fluid and
diffusion limits were computed in two seconds, our
sampling algorithm was computed in six seconds,
and the discrete event simulation with 10,000 inde-
pendent realizations was computed in 164 seconds.
Thus, our algorithm allows us to obtain very accurate
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approximations in significantly less computational
time than a discrete event simulation. This time sav-
ings is even more important when the dimension is
larger and the parameters are larger.

In Figure 2, we plot the variances of the two
dimensional priority queue with abandonment and
upgrades with the diffusion limits and the variance
approximation from the sampled version of the GVA.
We see that for both the first and second queue, the
GVA sampled version is of the GVA is estimating the
simulated variance significantly better than the dif-
fusion limit. In fact, the improvement ranges from
10%-15%, which is much larger than the improve-
ment of the mean estimation. One possible reason that
the variance is not approximated as well via the dif-
fusion limit is the error in approximating the mean.
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For example, if that mean is incorrect by a difference
of g, then the error made in the variance using the
wrong mean is £* as seen by the following:

Var,[X] = E[(X — E[X] - &)’] (32)
= Var[X] + &% (33)

In fact, it resembles the variance and bias decomposi-
tion of the mean squared error, which is a well known
result in statistics.

4.5. Additional Numerical Examples

Next, we provide additional numerical examples
to illustrate our sampling algorithm in the priority
queue setting. In the first additional example given in
Figure 3, we scale up the earlier example by factor 10.
We see again that the sampling method is approxi-
mating the mean, variance, and covariance with better
accuracy than the fluid and diffusion limits. It is clear
from the plots that the most improvement is given by
the variance and covariance. The mean does not need
as much improvement since the limit theorem for the
mean is stronger than the diffusion limit.

In the second additional example given in Figure 4,
we present an example where the queue is overloaded
and there are no upgrades. We see that the sam-
pling method is approximating the mean, variance,
and covariance with accuracy about equal to the fluid
and diffusion limits.

In the third and final additional example given in
Figure 5, the queue is underloaded relative to the
average arrival rate of both queues and the number of
servers. We see that the sampling method is approx-
imating the mean, variance, and covariance with sig-
nificantly better accuracy than the fluid and diffusion
limits. This is especially true for the variance of the
first queue and the covariance of both queues.

5. General Multidimensional
Birth-Death Network

In this section, we derive the functional Kolmogorov
forward equations for multidimensional birth-death
networks. These equations will be useful for deriv-
ing the time dependent behavior of arbitrary func-
tionals of many different queueing networks that
model interactions between different stations. More
specifically, we use these forward equations to
derive non-asymptotic approximations for the queue-
ing network using our sampling algorithm. For
our multidimensional birth-death network, we let
Q=1(Q;,Q,,...,Qy), on ZY with state dependent
birth, death, and transition rates (respectively A(x),
8(x), Dy(x), D,.j(x) where x € Z% .
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ProrosiTiON 5 (ENGBLOM 2014, THEOREM 4.5). Sup-
pose the birth, death, and transition rates satisfy for each
queue x € Z and for each i and j,

Dij(x)+5ij(x)+)‘i(x)+5i(x) <C(l+x), (34)

and suppose further that f: ZY — RN is bounded by some
finite pth order moment, | f (x)| < C,(1+4x*). Then we have
the following set of functional Kolmogorov forward equa-
tions for a general multidimensional birth-death process:

ELf (@)=Y Ela(Q)- (f(Q+¢) ~ £(Q)]
+ Y E3/(Q)- (f(Q-e)~ £(Q)]

+2_2 E[Dy(Q)- (f(Qi—eite) — f(Q))]

i=1j=1
N N

+ 22 ED;(Q)-(f(Q+e—e)—f(Q),  (35)
i=1j=1

where we have the following interpretations for the
queueing network rate functions

a,;(Q) = external arrivals to ith queue  (36)

0;(Q) = departures from ith queue
out of system, (37)

D;;(Q) = internal arrivals to jth queue
from ith queue, (38)

f),.]»(Q) = internal arrivals to ith queue
from jth queue (39)

and e; is an N-dimensional vector of all zeroes, except
the ith entry, which is one. If one specializes to func-

tions such as {Q;, Q;- Q; — E[Q:]- E[Q;], (Q; —E[Q:])*},
one gets the following expressions for the mean,
covariance, and variance functions:

E[Q] = E[e(Q)] - E[5,(Q)]

N N
_ZE[Dij(Q)]+ZE[Dij(Q)]/ (40)

j=1 j=1

Var[Q.] = E[a:(Q)]+E[5.(Q)]
+§;E[ij(Q)]+§£E[ﬁij(Q)]
+]z-Cov[Qi,ai(c]2)] —2.Cov[Q;, 8,(Q)]
—2-§Cov[Qi,Dij(Q>l

j=1

+2'ZCOV[Qi/Dz’j(Q)]f (41)

j=1
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Note. A, (t) =100+ 20-sin(t), A,(t) =100+20-sin(t), uy =1, u, =1, 8, =05, 8,=1,¢=22, ¢,(0) = ,(0) =1, p=0.25.
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Figure 5 (Color online) Discrete Event Sim =200 secs, Fluid-Diffusion = 2 secs, Sampling Algorithm =7 secs

Note. A;(t)=10+2-sin(t), A,(t) =10+ 2-sin(f), =1, 4, =1,8,=0.5,8,=1,¢=22, ¢,(0) = ¢,(0) =1, p=10.25.
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. N N ~
Cov[Q;, Q] = _ZE[Dij(Q)] - ZE[Dij(Q)]
j=1 j=1
—Cov[Q;,6,(Q)]-Cov[Q;, 5,(Q)]
N
+Y Cov[Q;, D;(Q) _Dij(Q)]

j=1

N
_ZCOV[QZ/Dzj(Q)_Dzj(Q)]- (42)

j=1

5.1. Erlang Loss Queueing Network

One important example of a birth-death network is
the (M,/M,/c,/k, + M,)N queue, also known as an
Erlang-loss network. In this model, we assume that
each station’s arrival process is a nonstationary Pois-
son process with a deterministic arrival rate function
Ai(t), t = 0 when there is space available for the cus-
tomer to join the queue. The service times are inde-
pendent random variables with service rate u;(t) and
customers at station i receive service from c;(t) par-
allel and homogenous servers. We also assume that
there are k;(t) waiting spaces at each station. How-
ever, since customers are impatient, they are allowed
to abandon the waiting spaces at rate S;(¢) if they
do not initiate service quickly enough. Moreover, if a
customer receives service at station i and they do not
leave the network, then they are randomly routed to
station j with probability 7; if the station is not full.
However, if a customer abandons station i and they
do not leave the network permanently, then they are
randomly routed to station j with probability y; if the
station is not full.

If we did not consider the possibility of customers
being lost when there is not enough capacity to
accommodate them, then this model would be a
nonstationary Jackson network with abandonment or
the (M,/M,/c, + M,)N queue. Jackson networks with
abandonment fall into the class of queueing models
known as Markovian service networks, which were
analyzed extensively by Mandelbaum et al. (1998).
It is also shown in Mandelbaum et al. (1998) that
Jackson networks with abandonment have fluid and
diffusion limits and can be approximated by Gaus-
sian diffusions under mild technical conditions. How-
ever, the indicator function for the loss network,
which prevents customers from joining a queue if
there are not enough waiting spaces, precludes the
same techniques being applied to the loss systems,
since they rely on the rate functions to be Lipschitz
continuous functions of the queue length. Thus, we
develop a new approach to estimate the performance
of these types of models using the functional Kol-
mogorov forward equations of the queue length pro-
cess. The functional Kolmogorov forward equations
for the (M,/M,/c,/k,+ M,)N queue are identical to the
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above equations for a multidimensional birth-death
network, however, they have the following network
rate functions:

a;(Q) = A {Q; < ¢ +ki}, (43)
8:(Q) = i (Qine) +Bi- (Qi—c)", (44)
]jij(Q) =i 7 (QiAnc) - {Q) <c¢j+kj}
+Bi- v (Qi—c) - {Qj <c;+k;}, (45)
Dji(Q) = p;- 7 - (Qj A ) {Q; < ¢ + ki
+B;-vi-(Qi—c)" - {Qi <c;+ki}. (46)

The main difficulty of Erlang-loss networks when
compared to their Jackson network counterparts is
that if a customer is routed to another station, there
must be enough capacity at the station, otherwise
the customer cannot join the next station. This cre-
ates dependence between stations that is not observed
in traditional Jackson networks where customers can
always join the next station since each station has
an infinite capacity. Moreover, this dependence causes
problems when trying to close the forward equations
with a Gaussian distribution since each rate function
includes an additional indicator function to preserve
the loss feature of the network.

If one were to use a Gaussian distribution for
approximating the mean and variance in the for-
ward equations, one would have to make an addi-
tional assumption to generate closed form approxima-
tions for the network. To consider the full Gaussian
distribution and to correctly characterize the true
covariance under the Gaussian assumption, we must
expand the rate functions in terms of an infinite series
of Hermite polynomials. See Pender (2014a) for more
details on this expansion in the bivariate case.

To circumvent the dependence issue and the infi-
nite series of Hermite polynomials seen in Pender
(2015), Pender (2013) assumes that the pairwise sta-
tions are asymptotically independent. This assump-
tion yields simple closed form expressions for the rate
functions of the functional forward equations. The
independence assumption is also supported by the
recent work of Gurvich and Perry (2012), which ana-
lyzes overflow networks in heavy traffic. One of their
main results shows that in heavy traffic, the over-
flow stations are asymptotically independent. How-
ever, in the nonstationary setting with finite rates, it
is clear that dependence contributes to the dynam-
ics. Thus, using our sampling method, we can over-
come this dependence and generate approximations
for the queueing network that include the dependent
structure of the network. Although we do not include
numerical examples for this queueing network in this
paper, we have performed several numerical experi-
ments and our algorithm also performs well at esti-
mating the network mean and variance.
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6. Conclusion and Extensions

In this paper, we develop a new sampling method to
approximate nonstationary stochastic jump processes
using simulation and ordinary differential equations.
The simulation that we use does not actually simu-
late the stochastic process itself, which can be quite
computationally expensive; rather, it simulates the
functional forward equations. The functional forward
equations describe the functional dynamics of the
stochastic process. Some important functions include
the mean and covariance matrix of the stochastic pro-
cess. We show that our sampling method accurately
approximates the mean and covariance of a variety
of examples while saving significant computational
effort. In our examples where the exact approximation
is known, our sampling method is slower by a factor
of 2, while simulating the process is slower by a factor
of 85. Where the exact solution is not known, our sam-
pling method is slower by a factor of 3, whereas a dis-
crete event simulation of the priority queue is slower
by a factor of 24. However, in all of the examples, our
sampling algorithm is very accurate at reproducing
the simulated dynamics.

We have demonstrated that our sampling method
works for nonstationary queues using Hermite poly-
nomial expansions, however, one can extend this to
other orthogonal polynomial sequences such as the
Laguerre polynomials, Poisson-Charlier polynomials,
and Meixner polynomials, which are orthogonal to
the gamma, Poisson, and negative-binomial distribu-
tions, respectively. Pender (2014a, b, c) shows that
these orthogonal sequences are all accurate at approx-
imating the dynamic behavior of nonstationary and
state dependent stochastic jump processes. Thus, one
can not only apply our methodology to various birth-
death processes in the queueing literature such as
Erlang-loss networks and priority queues with finite
capacity, but we can also use our methodology in
other applications other than queueing theory such as
epidemic and branching processes where the Poisson,
negative binomial, and gamma distributions might
arise. Finally, it would be great to apply our new algo-
rithms for non-Markovian queues such as those in the
work of Ko and Pender (2016), Pender and Ko (2016).
This extension would produce even more accurate
approximations for general queueing processes.
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