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1. Introduction

Time varying queueing models such as the M;/G/oc queue and
the M;/M/k: + M queue are standard models for describing the dy-
namics of large scale service systems like telecommunication sys-
tems, call centers, and healthcare systems like hospitals. To get a
good understanding of the wide variety of applications of nonsta-
tionary queueing models, see for example (Khudyakov, Feigin, &
Mandelbaum, 2010) for applications to call centers with interactive
voice response and Yom-Tov and Mandelbaum (2014) for applica-
tion to healthcare systems. However, staffing these systems appro-
priately and stabilizing salient performance measures such as the
probability of delay and waiting times for these stochastic systems
has been a long standing problem in the queueing literature for
many years.

One of the first solutions for stabilizing the delay probabilities
for multiserver queues without abandonment was developed by
Jennings, Mandelbaum, Massey, and Whitt (1996). Jennings et al.
(1996) develop a novel square root staffing algorithm that uses
the offered load of an infinite server queue and the square root
of the offered load for refinements to stabilize the delay proba-
bilities in multi-server queues. In the case of exponential service
times, it only requires the solution to a simple ordinary differ-
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ential equation to find the appropriate staffing level. However, as
noted in Feldman, Mandelbaum, Massey, and Whitt (2008) and Liu
and Whitt (2012) and Massey and Pender (2013), this algorithm for
stabilizing the delay probabilities does not stabilize the abandon-
ment probabilities and other performance measures. Thus, Liu and
Whitt developed a new approach that stabilizes the abandonment
probabilities and mean delay using the combination of two infinite
server queues.

Nonetheless, these algorithms for performance stabilization are
only useful for a few performance measures that are well-studied
in the queueing literature and are especially tailored for appli-
cations in telecommunications where there is no extreme conse-
quence if a customer waits a long time for service. For instance,
in a call center it is considered good performance if 99 percent
of customers are served within 2 minutes and we might not care
about the 1 percent of customers who might have extremely long
wait times. However, in a healthcare or emergency care setting,
patients with extremely long waiting times can be very costly
to the hospital, especially if their health deteriorates while wait-
ing and subsequently they die before being seen, see for exam-
ple (Castillo, 2014). Consequently, it is not sufficient to just make
sure that waiting times are short, but it is also important to make
sure that even excessive waiting times are short in the context of
healthcare.

To address the difference between application settings like
telecommunications and healthcare, in this paper we propose ana-
lyzing the new problems in applications like healthcare with new
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ideas, namely using static risk measures from the mathematical fi-
nance literature. The advantage of using static risk measures over
traditional approaches of performance analysis, is that the risk
measure approach can be adapted to a manager’s risk preferences
and the particular application context. The fact that the risk mea-
sure approach can be adapted to different applications and in dif-
ferent contexts within a particular application is quite useful for
managers of service systems. One example in healthcare is that
patients with shortness of breath might be less willing to tolerate
long waits than patients with an ankle sprain so a different risk
measure should be used for those patients. Thus, this risk measure
approach allows the manager of a service center such as hospital
to choose his or her own risk preferences for the overall perfor-
mance of the system as well as the individual parts of the system.

In order to develop this risk measure approach for general ser-
vice systems, we need to specify a stochastic model for the dynam-
ics of our service systems. In this paper, we begin with the infinite
server queueing model. This model is very natural as a start since
its dynamics are tractable in the stationary and nonstationary set-
ting. Not only are the mean and variance dynamics tractable, but
also the entire distribution is known for the infinite server queue
when initialized with a Poisson distribution or at zero. Besides the
fact that the infinite server queue is a relatively simple model, it
is also an offered load model. Thus, the infinite server dynamics
represents the system when an unlimited number of resources are
available and serves as an lower bound for the dynamics of finite
server systems.

In addition to the infinite server queue, we also analyze the
canonical nonstationary Erlang-A queueing model. The nonstation-
ary Erlang-A model assumes the customer arrival process is a non-
homogenous Poisson process with nonstationary arrival rate A(t).
We also have k servers with i.i.d. service times that are exponen-
tially distributed with mean 1/w. Finally, all the customers have
i.i.d. abandonment times that are also exponentially distributed
with mean 1/8. Although the Erlang-A model is a simple model for
some complex realities, it is also very hard to find closed form ex-
pressions for many of the performance measures of interest in the
nonstationary setting. Thus, we must find approximations of the
Erlang-A that are accurate and more tractable in terms of provid-
ing closed form expressions for performance measures of interest.

One standard method would be to use the fluid and diffusion
limits of Mandelbaum, Massey, and Reiman (1998). However, it
is well known that for small values of the scaling parameter 7,
the fluid and diffusion limits are not warranted. Moreover, when
the mean queue length is near the number of servers, the fluid
and diffusion limits are not Gaussian. Thus, in this work, we use
another approximation to accurately estimate the queue length
process. This approximations is known as the Gaussian variance
approximation (GVA) of Massey and Pender (2011) and uses a
Gaussian surrogate distribution to approximate the queue length
dynamics. With this approximation for the queue length dynamics,
we then approximate various risk measures for the queue length
process and illustrate their performance as tools for staffing the
system. We are not the first to study staffing issues in queues,
see for example (Engblom & Pender, 2014; Pender, 2015; Stolletz,
2008; Tirdad, Grassmann, & Tavakoli, 2016; Yarmand & Down,
2013), however, we are the first to use risk measures in this
context.

1.1. Contributions

To the best of our knowledge our contributions in this work are
the following.

e We are the first to illustrate how static risk measures from
the mathematical finance literature can be used in the con-

text of server staffing and performance analysis in queueing
theory.

o We derive explicit approximate staffing schedules for various
risk measures that are widely used in the financial community
and derive closed form expressions for the values of risk mea-
sures under Poisson and Gaussian distributional assumptions.

o We use the risk measures as staffing procedures and assess
the results through comparing standard performance measures
such as the probability of delay and abandonment probabilities.

1.2. Outline of paper

The rest of the paper is as follows. In Section 2, we introduce
the concept of risk measures and provide several examples of risk
measures. We also introduce the concept of functional risk mea-
sures, which will also be used throughout the rest of the paper.
In Section 3, we start with the infinite server queue and derive
closed form formulas for several risk measures for the queueing
process. In Section 4, we introduce the Erlang-A model and sev-
eral approximations for it. In Section 5, we use the approximations
for the Erlang-A model queueing model and derive closed form ex-
pressions for the risk measures of the queueing model. In Section
6, we give numerical results and describe the impact of using the
risk measures for staffing the system. We give examples of some
extensions and conclude with final remarks in Section 7.

2. Static risk measures

One of the central goals in mathematical finance is to assess
the risk of financial positions. The risk of a financial position may
be seen as the capital reserves that a bank should hold in response
to the risk it exposes itself to. Inspired by this notion of risk as a
minimal capital reserve and by the shortcomings of V@R, Artzner
et al. (1997,1999) introduced an axiomatic approach to coherent
risk measures. The goal of a coherent risk measure is to quantify
the risk of X by a number p(X). It is our goal in this paper to in-
troduce this notion of risk measures into the world of queueing
theory where there are analogous notions of risk and reserves. In
fact, in the context of queueing theory and staffing, the notions of
risk and reservers can be viewed as the number of staff needed to
maintain a specific quality of service level. Before we describe how
various risk measures are related to various performance quantities
in the service systems literature, we give a brief overview of risk
measures to make the paper self-contained for the reader’s conve-
nience.

Definition 2.1. A mapping p : X — RU {+oo} is called a monetary
risk measure if p(0) is finite and if p satisfies the following condi-
tions for X)Y € &.

o Monotonicity: If X <Y, then p(X) > p(Y).
o Cash Invariance: If m e R, then p(X +m) = p(X) —m

These two conditions are very necessary to define risk measure.
It is clear that if X is always smaller than Y under every scenario
(Vw), then the risk associated with X should be higher than the
risk associated with Y. Moreover, if we add cash to our position, it
should reduce the risk of that position because cash is not a risky
asset.

Definition 2.2. A monetary risk measure p is called a convex or
quasi-convex risk measure if p satisfies the following condition for
XY e x.

e Convex: If p(AX + (1 —=2)Y) <ApX)+ (1 -A)p(Y) for all A
[0,1].

e Quasi-Convex: If p(AX + (1 —X)Y) <max{p(X), p(Y)} for all A
c [0,1]
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From a financial perspective this is an important property for a
risk measure since, it agrees with the theory of diversification in
portfolio theory. Thus, if you invest in different assets that are not
perfectly positively correlated, then you should naturally lower the
risk of your overall portfolio.

Definition 2.3. A convex risk measure p is called a coherent risk
measure if p satisfies the following condition for X,Y € x.

 Positive Homogeneity: If p(AX) = Ap(X) for all A > 0.

Note that when we assume that the convex risk measure is pos-
itive homogenous, we get for free that the risk measure is sub-
additive. Moreover, positive homogeneity and sub-additivity imply
that the risk measure is convex. We now give some examples of
more common risk measures that are used frequently in the fi-
nance literature.

2.1. Examples of risk measures

One of the most important and widely used risk measures is
the Value at Risk risk measure (V@R).

2.1.1. Value at risk
The Value at Risk (V@R) is defined as:

V@R(X,e) =infly | P{X <y} > €}. (21)

The V@R(X, €) is interpreted as the minimal amount of money
that an agent must add to a position X such that, with probability
not greater than €, he will not become bankrupt. However in the
context of queueing theory and optimal server staffing the V@R(X,
€) can be interpreted as the number of agents you need to staff
your system to keep the probability of waiting for service below
some pre-specified tolerance value €. Thus, there are important in-
terpretations of risk measures from a queueing theory perspective.

Unfortunately, V@R(X, €) does not satisfy sub-additivity and
therefore is not a coherent risk measure unless the distributions
involved are jointly elliptically distributed. One typical example of
a coherent risk measure is the Average Value at Risk (also called
Tail-V@R or AV@R).

2.1.2. Average value at risk
The Average Value at Risk (AV@R) is defined as:

1 1
AV@R(X, €) = ﬁ/ V@R(X, v)dv
- €
and when the distribution of X is continuous, we have that

AV@R(X, €)

1 1
ﬁfe V@R(X, v)dv

1
- [ inflylpix <y} = vidu
1-€ /e
— E[X|X = V@R(X, €)]

Hence, AV@R takes the average over all Values at Risk between 1
and 1 — €. If the distribution of X is continuous, this is equivalent
to conditional expectation of a drop in the market and then taking
the average over all these bad scenarios. In this respect, the AV@R
is more robust than V@R to changes in the distribution since the
V@R is a point value of a quantile and AV@R is the average of the
tail behavior of the V@R. It can also be shown that the AV@R is
greater than V@R for the same value of € and the same random
variable. Moreover, AV@R can be seen as a compromise between
the V@R risk measure and the maximal loss of the random variable
since it is larger than the V@R, but smaller than the maximal loss.

Like the V@R, AV@R has important meaning in the context
of queueing theory. In queueing theory, it is an important goal

to understand the behavior of the queueing process when the
queue length exceeds the currently available number of servers.
The AV@R allows one to compute the mean of the queue length
when the queue is overloaded. Understanding this risk measure
for queueing processes will allow us to staff our system when it
is overloaded with customers. Unlike V@R the AV@R is a convex
risk measure. This means for queueing theory that adding two dif-
ferent queues together should only lower the total staffing needed
to properly staff both. In finance, the convexity is motivated by di-
versification, which is meant to lower risk, however, for the per-
spective of a manager of a queueing system, it can be interpreted
as economies of scale. As we add more queues to the network,
we would hope that our optimal staffing would be no worse than
staffing the two queues separately.

2.1.3. Entropic risk measure
The Entropic risk measure is defined as:

1
pX.y) = " log (E[e7¥]). (2.2)
The Entropic risk measure also has a dual representation as
< 1 ~
p(X.7) = sup [E"[-X] - ZH(PIP) (23)
ﬁe.r\/h
where
< dP  dP
H(P|P) =E|:dplog dPi| (2.4)

is the relative entropy of measures P and P and where P is abso-
lutely continuous with respect to P. This dual representation of the
Entropic risk measure can be view as the worst case of the ex-
pected loss under measure P, corrected by a penalty term, where
the probabilistic model P is penalized proportional to the devia-
tion of P from P, measured by the relative entropy. Moreover, in
the realm of mathematical finance the Entropic risk measure can
be viewed as the indifference price of an investor with the con-
stant risk aversion utility function u(x) =1 —e* and is also widely
used when there is incomplete information or uncertainty about
the models for the market dynamics. See for example (Rudloff,
Sass, & Wunderlich, 2008). Although we do not see an immediate
analogous connection to queueing systems like the other risk mea-
sures, it is nonetheless important since the Entropic risk measure
is a scaled version of the cumulant generating function, which is
an important probabilistic quantity to understand.

2.1.4. Mean-Variance risk measure

Another important risk measure that is popular in the financial
literature is the Mean-Variance risk measure. The Mean-Variance
risk measure is defined as:

p(X,y)=E[X]+ y -Var[X]. (2.5)

The Mean-Variance risk measure is quite popular since it is made
up of the first two cumulants of the distribution of the random
variable. It is also most notably used in the capital asset pricing
model known as the (CAPM). It allows one to trade off expected
return with the variance of that return in a simple and elegant
manner. A slight modification of the Mean Variance risk measure
leads to the following risk measure.

2.1.5. Mean-deviation risk measure of order p

The last risk measure that we describe here is the Mean-
Deviation risk measure of order p. The Mean-Deviation risk mea-
sure of order p is defined as:

p(X.y.p) =EX]+y - (E[IX —E[X]|P]D)"P. (2.6)



116 J. Pender/European Journal of Operational Research 254 (2016) 113-126

This is somewhat of a generalization of the Mean-Variance risk
measure since it allows different values of p other than 2. When
p =2, we have a similar risk measure like the Mean-Variance risk
measure i.e.

p(X.y.2) = E[X]+y - (E[IX - EIX]]*D'"? (2.7)

=E[X]+y -/ Var[X]. (2.8)

We will demonstrate later in the paper that this risk measure
is important for staffing nonstationary systems. Currently, we limit
the number of risk measures that we explain in detail, however,
see (Cheridito & Li, 2009) for more examples of risk measures. To
find out more about risk measures and their applications in finance
or optimization, see (Cheridito & Li, 2008; 2009; Ruszczynski &
Shapiro, 2006).

2.2. Functional risk measures

In addition to understanding the performance of risk measures
with respect to random variables, it is also important to under-
stand the performance with respect to functions of those random
variables. When we consider a risk measure with respect to a func-
tion of a random variable, we call these functional risk measures.

2.2.1. Functional value at risk
The functional Value at Risk (V@R) is defined as:

V@R(f(X).€) =infly | P{f(X) <y} = €} (2.9)

V@R(f(X), €) is interpreted as the minimal amount of money
that an agent must add to a position f{X) such that, with proba-
bility not greater than €, he will not become bankrupt. However in
the context of queueing theory and optimal staffing the V@R(f(X),
€) can be interpreted as the number of agents you need to staff
your system to keep the probability of delay below some pre-
specified tolerance value € at a particular time t.

2.2.2. Functional average value at risk
The functional Average Value at Risk (AV@R) is defined as:

AV@R(f(X), €)

%/1 VOR(f(X). v)dv

1
e [ infptfe0 <) = viay
=E[fX)|f(X) = V@R(f(X).€)]

2.2.3. Functional mean-variance risk
The functional mean-variance risk measure is defined as:

p(fX).y) =E[f(X)] +y - Var[f(X)] (210)

2.2.4. Functional mean-deviation risk measure of order p
The functional mean-variance risk measure of order p is defined

as:
p(fX), v, p) =E[fCO]+y - ElIfX) —E[fFGOIPDYP (211
2.2.5. Functional entropic risk
The functional entropic risk measure is defined as:
1
PUX).y) = - log (Ele 7 1™)) (212)

Now that we have define a general class of risk measures that
may be applicable it is our hope that these risk measures can give
insight into the performance of queueing systems under different
types of management since each management style has a different
appetite for risk. As an example, in healthcare it may not be suf-
ficient for a manager to control the average time that customer is

delayed for emergency care. In fact it is more reasonable to con-
trol average time that a customer is delayed given that they are
delayed. This quantity is more realistic for hospitals because it is
not a concern if a customer is taken into the ER immediately. It is
only a concern of the manager how long customers will wait, given
that they have to wait and there is no room for them when they
are admitted. In this particular case, a manager would choose to
staff the hospital using the AV@R since this risk measure has the
ability to condition on the customers being delayed when they ar-
rive to the ER. In the same context, a manager also may choose a
different risk measure for different times as well. For instance, dur-
ing a terrorist attack or catastrophic event, hospital managers may
want to staff for a worse case scenario. In this case, one would use
the entropic risk measure with a high value of y. As we have seen
the entropic risk measure has the interpretation of being the worst
case scenario as y — oo.

3. The infinite server queue

In this section, we give a brief introduction to queueing the-
ory, its applications, and also describe some of the simple queue-
ing models that we will analyze in this paper. Queueing theory
has the beginnings of its history in the context of telecommuni-
cations. Queueing theory was invented by a Danish engineer, Ag-
ner Erlang, who worked for the Copenhagen Telephone Exchange.
He published the first paper on what would now be called queue-
ing theory in 1909 and this work developed stochastic models for
callers that dropped due to frustration from waiting for an oper-
ator. Simple queueing models are often denoted by Kendall no-
tation A/B/C/DJE, where A stands for the distribution of arrivals,
B stands for the distribution of service times, C stands for the
number of servers, D stands for the waiting room capacity of the
queue, and finally E stands for the service discipline. For example,
the M/G/1/oo/FIFO queue represents Poisson arrivals, general ser-
vice times, one server, an infinite waiting room, and the first in
first out service discipline. More recently, some queueing models
include customer abandonment and these are often denoted by a
+G after the number of servers. Queues have a variety of appli-
cation areas such as telecommunications, healthcare, finance (limit
order books), transportation, and data centers just to name a few.
Thus, queueing theory is an important area of research and we in-
tend to connect this literature with the risk measure literature.

To begin our analysis of stochastic queueing models, we start
with the M;/G/oco queueing model. There are two main reasons to
start with the M;/G/occ queueing model. The first is that the M;/G/oo
queue is very tractable since the distribution is known in closed
form. The second reason is that the M;/G/oo queue is the best type
of queue one can hope for where everyone is served immediately
and no one ever waits for service. In this regard, the M;/G/oo in-
finite server queue is a lower bound for queueing models with a
finite number of servers and without abandonment since it rep-
resents the dynamics if the manager had access to an infinite
amount of resources and is not resource constrained.

3.1. The My/G/co queue

In this section, we derive closed form formulas for risk mea-
sures for the M;/G/oo queueing model, which exploits the results of
Eick, Massey, and Whitt (1993) for the time varying infinite server
queue. In the paper of Eick et al. (1993), they use the properties of
the Poisson arrival process and use Poisson random measure argu-
ments to show that the M;/G/oo queue Q>(t), has a Poisson distri-
bution with time varying mean g*(t) . The exact analysis of the in-
finite server queue is often useful since it represents the dynamics
of the queueing process if there were an unlimited amount of re-
sources to satisfy the nonstationary demand process. As observed
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in Eick et al. (1993), g>(t) has the following integral representa-
tion

g™ (t) = E[Q*(t)] (3.13)
= /t G(t —u)A(u)du (3.14)
t
= Au)d .
E[/ts (u) u] (3.15)
= E[A(t —S.)] - E[S] (3.16)

where A(u) is the time varying arrival rate and S represents a ser-
vice time with distribution G, G=1—G(t) = P(S > t), and S, is a
random variable with distribution that follows the stationary ex-
cess of residual-lifetime cdf G, defined by

1 [t 1t
Go(t) = P(S, < 1) = ﬁ/o Cu)du = ﬁ/o P(S > u)du,

t>0. (3.17)

When the service time distribution is exponential, we know
that the mean queue length, q..(t), solves the autonomous differ-
ential equation

Qo= A(6) — L - 4o (1),

which is very easy to solve numerically. Moreover, from the stan-
dard theory of infinite server queues, the distribution of the queue
length process is Poisson with mean g*°(t) when initialized with a
Poisson distributed number customers or initialized at zero. Using
this fact, we now compute several risk measures for the infinite
server queue to get a better understanding of the impact of these
risk measures in a relatively simple context.

(3.18)

3.2. The M¢/M/oo queue

Theorem 3.1. The solution to the mean and variance of the
M;/M;[oo queue with initial values of Qg and Vj is given by

E[Q]=Qo-exp {/O[M(s)ds}

¥ (exp {[Otm)ds} - </O[>»(S) eXp{fosu(r)dr}ds»

(3.19)

t
Var[Q:] = E[Q:] + (Vo — Qo) - exp {—2/0 ,u(s)ds}. (3.20)
Proof. Using the functional forward equations for the mean and
variance as in Pender (2014a), we know that the mean and vari-
ance of the infinite server queue with a time varying arrival rate
and service rate solves the following non-homogeneous differen-
tial equations

E Q] = A(t) — pu(t) - E[Q]
Var [Qe] = A(t) + u(t) - E[Q:] — 2 ju(t) - Var[Q,].

Thus, since the mean is independent of the variance, we can solve
the mean equation by standard ordinary differential equation the-
ory. Since there is a uniqueness theory for simple first order equa-
tions, it only follows to show that the solution above actually
solves the differential equation. Although integrating factors are
standard in any text on ordinary differential equations, we sketch

the solution for E[Q;] using the integrating factor method for ordi-
nary differential equations. From the functional forward equations,
we know the mean satisfies the following equation

DEIQ]+ 1) -EIQ] = 20).

Now multiply both sides by an integrating factor e/“(du to get
that

e/ ““”“((ftE[Qt] + 1 (t) - E[Qr]) = A(t)e/ miwdu,

Now using the product rule and chain rule of differentiation, we
can write the left hand side as

e.fﬂ(u)du(;tE[Qt] +u(t) - E[Qt]) — %(A(t)efu(u)du)

where

% (A(t)efot u(u)du> _ )L(t)efb[ p(wdu_

Now by integrating both sides, we have that

[e ”(“’d“<(ftE[Qr]+u(t) ~E[@1) = [ G0@erma),

Finally, using the fundamental theory of calculus and dividing
by the integrating factor, we have that

t
E[Q:] = Qo -exp {—/0 [L(s)ds}

¥ (exp {—/Ju(s)ds} ~ (/Otx(s) exp {—/Osu(ndr}ds)).

For the variance, we observe the fact that

Var [Q]- E [Q] = A(t) + () - E[Q] - 2 ju(£) - Var[Q;]
— M) + () - E[Q1]
=2-pu(t)-E[Q] -2 pu(t) - Var[Q]
=2 u(t) - (E[Q:] - Var[Q:])
= —2.ju(t) - (Var[Q:] - E[Q:]).

Since the last equation describes a first order linear differential
equation for Var[Q:;] — E[Q;], we know that its solution is

var(Q] - E[Q] = (Vo — Qo) - exp —2]0 ju(s)ds .

Moving the mean to the righthand side yields the solution for the
variance as

var[Q] = E[Q] + (Vo — Qo) - exp | -2 /0 ju(s)ds .

O

From this theorem, it is immediately clear that the mean is very
close to the variance and when the queue is initialized at zero or
with a Poisson distribution, then the mean and variance are equal
for all times. Moreover, the Poisson assumption in this case is not
unrealistic when the initial mean and initial variance are close or
when the time is large enough and w(t) is bounded away from
zero.

3.3. Risk measures for the Mi/G/oo and M/Mi/co queues
However, before we prove the results, we provide a lemma that

shows that the tail distribution of a Poisson distribution can be
expressed in terms of the incomplete gamma function.
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Lemma 3.2.
I'(c x):fze*’ﬂﬁ:L Xe*yycfldy (3.21)
’ m!  T(c) Jo ’
m=c
c—1 00
Tlcx)=) e™*. *_ 1 e Vy“dy (3.22)
’ m!  TI'(c) Jx ’ ’
m=0
where
‘l X
C(c,x) = W/o eVy“ldy and
T(cx) = %c)/ e Yy ldy (3.23)
X

are the lower and upper incomplete gamma functions respectively.

Moreover, we define I'~1(x, €. k) and F_l(X,G, k) to be the func-
tional inverses of I'(c + k, x) and I"(c + k, x) respectively.

Proof. See (Janssen, Van Leeuwaarden, Zwart et al., 2008) or
Pender (2014c). O

Moreover, the Chen-Stein method can aid us in our computa-
tion of various quantiles and expectations related to the risk mea-
sures. We include the Chen-Stein theorem below for the conve-
nience of the reader.

Theorem 3.3 (Chen-Stein). Let Q be a random variable with values
in N. Then, Q has the Poisson distribution with mean rate q if and
only if, for every bounded function f: N — N,

E[Q  f(Q]=q-E[f(Q+1)]
Proof. See (Peccati & Taqqu, 2011). O

(3.24)

Proposition 3.4. The Value at Risk, Average Value at Risk, Mean-
Variance Risk, and Entropic Risk for the nonstationary infinite
server queue with mean q is given by the following formulas

V@R(Q.e) =T '(q.€) (3.25)
_q-I'(@@ve-1)]

AV@R(Q,¢€) = TTaqv) (3.26)
Mean — Variance(Q, y,p) =q+y - q (3.27)
Entropic(Q, y) = w (3.28)
Proof. For the Value at Risk, we have that

V@R(Q, €) = infly[P{Q < y} > €} (3.29)
= inf{y[T'(q.y) = €} (3.30)
—T '(ge). (3.31)

For the Average Value at Risk, we first let v = V@R(Q, €) and thus
we obtain the following

AV@R(Q,€) = E[Q|Q > v¢] (3.32)
_E[Q-{Q>ve}]

= b= (3.33)
_E[Q- {Q > v}

= " T (3.34)
_ 9 E{Q+1> v cpai .

= NCED) Chen — Stein Identity (3.35)
— M (3.36)

F(qv UG)

For the Mean-Variance Risk, we exploit the fact that the Poisson
distribution has all of its cumulant moments equal to its mean.
Thus,

Mean — Variance(Q, y, p) = E[Q] + y - Var[Q] (3.37)
=q+y-q (3.38)
Lastly, for the entropic risk measure, we have that
Entropic = %log (E[er?]) (3.39)
_ 1 log ieﬂ"" @ e (3.40)
y — k! '
1 (ev-1)
= —log (e ) (3.41)
14
(e77 —
_aer-1 (342)
v
O

One thing to observe is that the Mean-Deviation of order 2 risk
measure, which is similar in spirit to the Mean-Variance risk mea-
sure, is similar to the staffing level derived from the square root
staffing formula of Jennings et al. (1996). Recall that in the pa-
per of Jennings et al. (1996), they use the infinite server queue
as the mean offered load and provide a square root safety factor,
which turns out to be the square root of the mean queue length
since they exploit the fact that the Poisson distribution has the
unique property of having all of its cumulant moments equalling
the mean. Thus, this implies that the mean is equivalent to the
variance. Furthermore, if gf° is sufficiently large, then we can use
a normal approximation to the Poisson distribution to gain insight
in staffing. Using the infinite server approximation and then the
normal approximation implies that

P(Q(t) = c(t)) = P(Q™(t) = k(t)) (3.43)
~ =P + /g - X = k(t)) (3.44)
k(t) —q°
=PlX>—~—-_1 3.45
( G ) o
—=[ k®) —q°
- (3.46)

where X denotes a Gaussian random variable with mean 0 and
variance 1 and ®(x) is the complement of the standard Gaus-
sian cdf. Using this approximation, one can generate the following
square root staffing formula

k() = g7 + B - /a1, (347)

which should yield stable delay probabilities for our original sys-
tem. Thus, in order to stabilize the delay probabilities of a multi-
server queue at probability €, one must replace y in the risk mea-

sure expression with the inverse Gaussian cdf at € or 57] ().

On the left of Fig. 1 we plot the V@R for the infinite server
queue for different values of €. We see that our explicit formulas
are quite accurate for estimating the value at risk for the M;/M/oo
queueing model. On the right of Fig. 1, we plot the AV@R for the
M;/M/oo queueing model and for different values of tolerance level
€. Like in the case of the V@R, we see that our explicit formulas
are also quite good at estimating the simulated AV@R risk measure
for the queueing model. On the left of Fig. 2, we plot the Entropic
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Fig. 1. A(t) =100+ 20 -sin(t), # =1, q(0) = 0. Value at Risk for M/M/oco Queue. € = {.05, .1, .25, .5} (Left). Average Value at Risk for M/M/oo Queue. € = {.05,.1,.25, .5}
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Fig. 2. A(t) =100+ 20 -sin(t), u = 1, q(0) = 0. Entropic Risk for M/M/co Queue. € = {.05, .1, .25, .5} (left). Mean-Variance Risk for M/M/oo Queue. € = {.05, .1, .25, .5} (right).

risk measure for different values of y. We also see that our explicit
formulas are accurate at estimating the appropriate risk for the in-
finite server queue. We see however, that the case where y =.05
or where y is closest to 0, seems to be the least accurate case. On
the right of Fig. 2, we plot the Mean-Variance risk measure for the
queueing process and different values of y. We also see that our
explicit formulas accurately capture the dynamic behavior of the
risk measure over time.

It is clear that the explicit formulas for the infinite server queue
are quite accurate for the queue length process itself. However, in
some settings is also interesting to derive risk measures for non-
linear functions of the queue length process. In the sequel, we will
derive explicit formulas for several functions of the queue length,
which are important to the queueing and financial mathematics
communities.

3.4. Functional risk measures for the Mi/G/oo and M¢/Mi/co queues

In this section, we now derive some functional risk measures
for the M;/G/oo and M;/M;[oo queues. Two of the most important
functions that appear in both the financial and queueing literature
are f(X) = (X —k)* and f(X) = (k—X)*. In the financial literature

these functions respectively represent call and put option payoffs
with respect to the random variable X and have strike price equal
to k. In the infinite server queue context, k is viewed as a ficti-
tious buffer where we can see how much the buffer is either being
exceeded when f(X) = (X — k)™ or how much the buffer is being
underutilized when f(X) = (k—X)™.

In the multi-server queueing literature, if k represents the num-
ber of servers that are providing service for the system then the
two functions f(X) = (X —k)* and f(X) = (k—X)* respectively
represent the number of customers that are waiting to engage in
service with an agent and the number of agents that are currently
idle and are not currently serving a customer. Moreover, from a
manager’s perspective, both of these functions represent inefficien-
cies in the system. When the function f(X) = (X — k)™ is positive
customers are waiting for service and the quality of service is per-
ceived to be low. However, when the function f(X) = (k—X)* is
positive, this means that the manager is staffing the system with
too many agents and this is not cost effective from the manager’s
perspective.

Proposition 3.5. The Functional Value at Risk, Functional Average
Value at Risk, Functional Mean-Variance Risk, and Functional En-
tropic Risk for the nonstationary infinite server queue with mean
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q and function f(Q) = (Q —k)* is given by the following formu-
las

Functional V@R(f(Q),€) =T ' (g, €, k)
q-I'(qve+k—-1)—k-T'(q,ve +k)

Functional AV@R(f(Q), €) = (g, ve + k)

Functional Mean — Variance(f(Q), ¥, p)
= E[(Q k)] +y -Var[(Q — k)*]
Functional Entropic(f(Q), y)

= % -log f(q, k) + e’ 9. T (e .q, k))
where

E[(Q-K*"]=q-T'(qk—-1)—k-T'(q.k)
Var[(Q - k)"l =¢* T'(q.k-2)+q-I'(q.k—1)
—2-k-q-T(q.k=1)+k>-T(q,. k)2
-q-k-T'(q. k—1)-T'(q. k)
—k?>-T%(q. k) —q*> - T%(q,k-1).

Moreover, for the function f(Q) = (k — Q)" we have that
Functional V@R(f(Q),€) =I""1(q, €, k)
k-T(qve+k)—q-T(qve+k+1)

T(q. ve + k)

Functional MV(f(Q), v, p) = E[(k—Q)*]+y - Var[(k — Q)]
Functional Entropic(f(Q),y)

- % log (I'(q. k) +e”*9.T(e™ - q,k))

Functional AV@R(f(Q), €)=

where

E[(k—Q)*]=k-T(q.k)—q-T(q.k—1)
Var[(k—Q)*]1=k* - T(q.k)—=2-k-q-T (g, k—1)
+q-T(qk=1)+¢* T(qk-2)
—R. T k) +2-T(q k) -T(qgk-1)
~ ¢ T@k-1).

Proof. See Appendix. O

4. Erlang-A queueing model

Now that we have addressed the infinite server queue, we
would like to extend our risk measures to a more general queue-
ing model that takes into account that most queues have a finite
number of servers and that most customers are not infinitely pa-
tient when waiting for service from an agent. The Erlang-A model
is the canonical choice when considering these new features of the
queueing model. Since the Erlang-A has these new features, it is
not as tractable as the infinite server queue. Thus, we will exploit
new approximations for this queueing system that are accurate and
derive risk measures for these approximations. However, now we
give a brief overview of the Erlang-A model for the reader’s conve-
nience.

4.1. Stochastic analysis of Erlang-A model

In this section we introduce the M;/M/k; + M queueing model
that serves to describe the dynamics of our hospital dynamics.
Mandelbaum et al. (1998), showed that the queueing system pro-
cess {Q(t)|t > 0} is represented by the following equation

t t
Q) = Q) + I, ( /0 Ms)ds) "y ( /0 1 Q) A c(s))ds)

t
1, ( /0 B-(Q(s) - c(s)>+ds>,

where I1; = {II;(t)|t > 0} for i=1,2,3 are iid. standard (rate
1) Poisson processes. The deterministic time change for IT; trans-
forms it into a non-homogenous Poisson arrival process with rate
A(t). Subjecting IT, to random time change causes it to count the
number of service departures from c servers and exponentially dis-
tributed service times function of mean 1/u. Finally the random
time changes of Il3 cause it to count the number of abandonments
from c servers and exponentially distributed abandonment times of
mean 1/8. With this representation of our queueing dynamics, this
model is an example of a Markovian service network, which were
extensively studied in Mandelbaum et al. (1998).

4.2. Fluid and diffusion limits

In Mandelbaum et al. (1998) it was shown that a Markovian
service network always has a fluid and diffusion limits i.e.
1 1 A
EQ” = q as and ﬁ-(EQ”—q)ﬂ Q (4.49)

where the fluid mean is governed by the one dimensional dynam-
ical system

q=r-p-(@ro)-B-(@-0o" (4.50)
and if the set {t|q(t) = ¢} has measure zero then Q is a Gaussian
diffusion whose variance combines with the fluid mean to form a
2-dimensional dynamical system given by (2.2) and

VarlQ] = A+ it (A 0)+ B - (q—0)*
—2-Var[Q]- (u-{g<c}+B-{g=c}. (4.51)

where {q < c} denotes an indicator function equaling one if, ¢ <
¢, and zero otherwise. However, for small systems like in hospi-
tals, it was shown in Ko and Gautam (2013), Massey and Pender
(2011, 2013), Pender (2014a,b) that these fluid and diffusion limits
do not do a great job of characterizing the correct moment behav-
ior. Therefore, we will use approximations for our queueing process
that will serve to estimate the transient dynamics.

4.3. Gaussian variance approximation

The first approximation, which we call the Gaussian variance
approximation was first developed by Ko and Gautam (2013) and
further simplified and explained in Massey and Pender (2011). This
approximation assumes a Gaussian distribution for the queueing
model i.e

Q1) £ q©)+X-u(e). (452)

for all t > 0, where {q(t), v(t)|t > 0} is some two-dimensional dy-
namical system where the v process is always positive and X is a
standard Gaussian random variable. We call this the Gaussian vari-
ance approximation (GVA). The forward equations for the mean and
variance of Q are

E[Ql=A~ (n-E[QAcl+B-E[(Q-0)"]) (4.53)
var[Q] = A+ -E[Qacl+ B -E[(Q - )]
—2(u-Cov[Q. QA c]+B-CovlQ (Q-)'])  (454)

Now if we define the following variable x = % we get the

following differential equations for the mean and variance of the
queueing process under the distributional assumptions of GVA
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E[Ql=A— (- Vv -EIX A x]+B-VU-E[(X - x)*])

var[Q] = A+ u-VV-EX A x]+B - VV-E[(X = x)*]
—2(p-v-Cov[X, X A x]+ B - v- CovlX, (X — x)*])
Thus, in order to understand the dynamics, it only remains to
compute the expectations and covariance. Like Massey and Pen-
der (2011), we resort to using Stein’s lemma to derive the expec-

tations and covariance terms. To do this we use the following Her-
mite polynomial generalization of Stein’s lemma.

Lemma 4.1. If X is a standard Gaussian random variable and
E[fM(X)] < oo, then

E[f(X) - hn(X)] = E[f™ (X)]

where f is any generalized function and f™ is the n' derivative of the
function f.

The use of Stein’s lemma yields the following equations for the
mean and variance dynamics of our queueing process:

EIQl=A-p q+vv-(u—PB)(¢(x)—x-®(x))
Var[Ql = A+ p-q—vo- (- B)- (900 — x -3(0)

— 2.0 (- @O0+ B D(0)

where we define ¢ and & to be the density and the cumulative
distribution functions, respectively, for X ~ Normal(0, 1), i.e.,

1 2 X
—e X2 P(x E/ dy, and let
T (%) _oost)(y) y

B0 = [ T o) dy.

In the sequel, we will show how to use the Gaussian variance ap-
proximation in order to approximate various risk measures of the
Erlang-A queueing model.

p(x) =

(4.55)

4.4. Risk measures for Erlang-A queue

In this section, we show that the GVA can be used to approx-
imate various risk measures of the Erlang-A queue. However, we
should mention that when ¢ = co or i = B, the Erlang-A queueing
model reduces to the infinite server queue and we have already
given exact results for this case in the previous sections of the pa-
per.

Proposition 4.2. Under the assumptions of the GVA for the queue
length, then the Value at Risk, Average Value at Risk, Mean-Variance
Risk, and Entropic Risk have the following expressions

Ver(Q.e€) = q+vv-d7'(e)

o(7)

v
Mean — Variance(Q,y) = q+y -v

Entropic(Q, y) = —q + yTv

Proof. From the definition of the Value at risk, we have that
Ver(Q.e) =infly : P{Q <y} > €}.

Thus, we we assume that the queue length is approximated by
GVA, we get that

ver(Q,e) = inf{y : P{Q <y} > €}
=infly:P{g+vv-X <y} > €}

AVOr(Q.€) = q+v-

4

(4.56)

=inf{y:P{X§y\_ﬁ}ze}

=inf{y: d>({}f> ze}
=q+ V- D (e).

Now we show the exact formula for the AV@R. From the defi-
nition of the AV@R, we have that

AV@r(Q,e) =E[Q|Q > v]

where we define ve =V@r(Q, €). Thus, when we approximate the
queue length distribution with the GVA and define x = "%‘ﬁ we

have that

Aver(Q,e) = E[Q|Q > v]
= E[q+Vv-X|q+VV-X > V]
_E[(q+Vv-X) - {q+VV-X > ve}]
B E[{q+ vV -X > ve}]
_q-P{q+VV-X>ve} +VU-EX - {q+ V- X > Vel
a P{q+V-X > ve}
_a-PX >+ VU EIX (X >

(4.57)

P{X > x}

_ -0+ V90
D(x)
— gt 20
w00

Remark 4.3. Note that q+ V- % > q+ X - +~/V, which implies

that the AV@R is larger than the V@R for the same value of €.
For the Mean-Variance risk measure, which is defined as
Mean — Variance(Q, y) = E[Q] + v - Var[Q], (4.58)

we use the standard properties of the Gaussian distribution to con-

clude that
Mean — Variance(Q, y) =q+y - V. (4.59)

Lastly, we derive the exact expressions for the Entropic risk

measure. For the Entropic risk measure we have that
1

pQ.y) = v log (E[e77]). (4.60)

Thus, when we assume that the queue length is approximated by
GVA, we get that

% log (E[e 7))

log (E[e‘V‘(‘“ﬁ'X)])

-log (E[e777] - E[e77V"X])

R|= X[ =

-log (e779) + % -log (E[e77V"X])

I
_q+2

O

On the left of Fig. 3 we plot the V@R for the Erlang-A queue for
different values of €. We see that our approximate formulas are
quite accurate for estimating the V@R for the Erlang-A queueing
model. On the right of Fig. 3, we plot the AV@R for the Erlang-A
queueing model and for different values of tolerance level €. Like
in the case of the V@R, we see that our explicit formulas are also
quite good at estimating the simulated AV@R risk measure for the
queueing model. On the left of Fig. 4, we plot the Entropic risk
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measure for different values of y. We also see that our Gaussian
approximations are accurate at estimating the appropriate risk for
the Erlang-A queue. We see however, that the case where y =.05
or where y is closest to 0, seems to be the least accurate case. On
the right of Fig. 4, we plot the Mean-Variance risk measure for the
queueing process and different values of y. We also see that our
approximate formulas accurately capture the dynamic behavior of
the risk measure over time.

It is clear that the explicit formulas for the Erlang-A queue
are quite accurate for the queue length process itself. How-
ever, in some settings is also interesting to derive risk mea-
sures for non-linear functions of the queue length process. In
the sequel, we will derive explicit formulas for several func-
tions of the queue length, which are important to the queueing
literature.

4.5. Functional risk measures

Proposition 4.4. Under the GVA and when f(Q) = (Q —k)™, the
Functional Value at Risk, Functional Average Value at Risk, Functional
Mean-Variance Risk, and Functional Entropic Risk have the following
expressions

Functional V@r((Q —k)*,€) =q—k+Vv- ®'(€)
\/D'(p(Xk,c) _ ﬁ Xiec

6(Xk,c)

Functional Mean — Var((Q — k)™, €)
=E[(Q-Kk)*]+y -Var[(Q — k)]

Functional Entropic((Q — k)™, €)

— % ]og ((D(Xk) + eVZ~V/2+V'ﬁ'Xk . E(Xk + Y- ﬁ))

Functional AV@r((Q — k)™, ¢) =

where

E[Q—K)*] = vV (¢(x) — Xk P(x0))
Var[(Q = k)1 = v+ (=x- 9 (x) + O +1) - PO — 9 (x)?)
Ve (=X P+ 2 X 9 Ot) - PO)).
Moreover, when f(Q)= (k—Q)*, the Functional Value at Risk,

Functional Average Value at Risk, Functional Mean-Variance Risk, and
Functional Entropic Risk have the following expressions
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Functional V@r((k—Q)*,€) =k—q+vv-® ' (€)

Functional AV@r((k—Q)*,€) =k —q+v- @ uee)

P (Xk,c)

Functional Mean — Var((k —Q)*, €)
=E[(k—Q)"]+y - Var[(k—Q)"]

Functional Entropic((k —Q)*, €)

- % log (B(xi) + €7 V27V D (i — y - V).

where
E[(k—Q)"]=(k—q) - ®(x) + V- 9(x)
var[(k—Q)* 1 =v- (x> +1)- (X)) + x -v-9(x)
—(k=q) - ®(X)+VV-9(X))*
Proof. See Appendix. O

4.6. Staffing nonstationary queues with risk measures

In addition to the fact that the risk measures provide perfor-
mance measures for queueing models, the risk measures derived
for these nonstationary queues can also be used as staffing pro-

cedures. On the left of Fig. 5, we use the V@R as a staffing pro-
cedure for the Erlang-A queueing model. We see that the V@R
somewhat stabilizes the probability of delay near the value of €
that is used for the V@R calculation. This is partly because the
staffing level given by the V@R is similar to the offered load ap-
proach of Jennings et al. (1996). Moreover, on the right of Fig. 5,
we use the AV@R as a staffing procedure for the Erlang-A queue-
ing model. We also see this time that staffing with the AV@R also
somewhat stabilizes the probability of delay. It should be noted
that the probability of delay using AV@R is lower than the prob-
ability of delay when using V@R. This is because the staffing level
derived from AV@R is larger since AV@R is the average of the tail
values of the V@R. However, we should also mention that the vari-
ation that one sees for the probability of delay is due to the ad-
dition or removal of one server. This is partially observed when ¢
is the smallest since the variation is the smallest and the largest
number of servers is used for staffing. Thus, the impact of adding
or removing one server is much smaller.

On the left of Fig. 6, we use the V@R as a staffing procedure
for the Erlang-A queueing model. We see that the V@R does not
stabilizes the abandonment probability. This is consistent with Liu
and Whitt (2012) where they show that it is impossible to sta-
bilize both using the same staffing procedure, except when the
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probabilities are very small. Moreover, on the right of Fig. 6, we
use the AV@R as a staffing procedure for the Erlang-A queueing
model. We also see this time that staffing with the AV@R does
not stabilizes the abandonment probability. Similar to the previous
figure, we also observe that noted that the resuting abandonment
probability using AV@R as the staffing procedure is lower than the
abandonment probability when using V@R.

4.7. Beyond the Erlang-A queueing model

This method of using the mean and variance of the queueing
model can be used beyond the Erlang-A model. There are fluid and
diffusion limits for queues with more general arrival, service times,
and abandonment times. See for example , Liu and Whitt (2011);
2012); Liu, Whitt et al. (2014) and Jelenkovi¢, Mandelbaum, and
Momcilovi¢ (2004); Mandelbaum and Momcilovic (2012); Zeltyn
and Mandelbaum (2005) . The mean and variance of these fluid
and diffusion models can be used as Gaussian approximations of
the underyling stochastic process in the risk measure formulation.
Using the same formulas, one can also derive approximations to
the risk measures for more general queueing models. Although we
do not consider these queueing models in this paper, it is perhaps
interesting to see if the Gaussian fluid and diffusion approxima-
tions help in providing good approximations for the risk measures
of the original queueing model.

5. Conclusions and future work

We have analyzed the problem of staffing queueing systems
with risk measures. We have shown that many of the traditional
staffing procedures like square root staffing and the modified of-
fered load procedure can be derived from some of the standard
risk measures. This paper introduces the concept of risk mea-
sures to the queueing theory community and shows how they
can be relevant, especially in the context of healthcare systems.
One extension worth pursing, is to extend our analysis to a multi-
dimensional setting. To pursue this requires extensions of the ap-
proximations of the queueing systems to multi-dimensional set-
tings and also extending the notion of risk measures to a multi-
dimensional setting. Some progress has been made on the risk
measure side see for example (Klyman, 2011). It would be of par-
ticular interest to apply it to variants of the Erlang-R model of
Yom-Tov and Mandelbaum (2014). Moreover, it is also possible to
analyze many other risk measures that are not presented in this
work, see for example the list of risk measures in Cheridito and
Li (2008); 2009). Lastly, the concept of a conditional risk measure
has been developed recently in the work of Detlefsen and Scandolo
(2005) and these types of risk measures are worth study given new
applications such as queueing theory.

Another area of interest is to use the fluid and diffusion lim-
its of Mandelbaum and Momcilovic (2012) to approximate the
risk measure performance of more general queueing systems. This
would allow managers to approximate risk measures for more gen-
eral systems that model reality well. Another extension would be
to construct risk measure approximations for the single server
queue as well. In the stationary case, this analysis would in-
volve the geometric distribution. Like the Chen-Stein theorem and
Stein’s lemma, the geometric distribution also has a characterizing
operator and it is of the form

Af(k)y =1 =p)- (flk+1) = f(k)) = p- f(k) + p- f(O).

The same analysis used earlier can also be used to calculate risk
measures for the single server queueing model and yield perfor-
mance measures for managers with different risk profiles.

(5.61)
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Appendix A

A.1. Proofs of results

Proof of Proposition 3.5. For the Functional Value at Risk, we
have that

V@R(Q, €) = infly [P{(Q - k)" <y} > €} (6.62)
=infly [P{Q =y +k} = €} (6.63)
=infly [T(q.y +k) > €} (6.64)
—T '(q.e k. (6.65)

For the Average Value at Risk, we first let ve = V@R((Q — k)™, €)
and thus we obtain the following

AV@R(Q. €) = E[(Q - k)*|(Q - k)* > v] (6.66)
_EQ ;?()é .—{I(§+7>k1)):)> Ve}] (6.67)
- e e o6
_ElQ- k)big - ﬁi ~+{%> Ve + K} (6.69)
_El@ _Fk()q; i(eljk\;e + Kk}l (6.70)
_ E[Q-{Q>ve;:(kq},]1; ’ilf)[{Q> Ve + K} (6.71)
_ 9 T@ve+k=1)—k-T(qve+k) (6.72)

I'(q, ve + k)

For the Mean-Variance Risk, we just need to compute the mean
and variance of the function (Q — k)*.

Mean — Variance((Q — k)™, ¥, p) = E[(Q — k)"]

+y-Var[(Q - k)*] (6.73)

=q-I'(qk=-1)-k-T'(q.k)+v-q

E[(Q—-Kk)*]=E[(Q—k)-{Q > k}]
=E[Q-{Q > k}] - k-E[{Q > k}]
=q-I'(q.k—1)-k-T'(q.k)

(6.74)

Var[(Q — k)*] = E[((Q — k)")?*] — E[(Q — k)" ]?
=E[(Q*-2-Q -k+k*) -{Q >k} -E[(Q-Kk)']
=q¢ I'(q.k-2)+q-T'(qg.k-1)
—2-k-q-T(q.k=1)+k*>-T(q. k)
-(q-T'(qk-1)-k-T'(q,k)
=¢ I'(qk-2)+q-T'(q.k-1)
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—2-k-q-T(q.k=1)+k>-T(q. k)
—q¢* - T%(q.k—1) - k> -T%(q. k)
+2.-q-k-T'(q,k—1)-T'(q, k)

Lastly, for the functional entropic risk measure, we have that

Entropic = %log (E[er(@b7]) (6.75)

1 k-1 m 0 m
; ]og Z e_)/'(m—k)Jr . L' e 4 + Z e—)/'(m—k)Jr . L e 4
m=0

m! m!
m=k
(6.76)
1 k—1 qm o0 qm
_ - —y-(m-l* -
= —log m—!-euZeym o e d (6.77)
m=0 m=k
_ 1 log [ T(q, k) + Z om0 A" g (6.78)
Y m=k m!
— i qm
= —log [ T(q.k)+er*.y erm. — e (6.79)
m=k m:
= % log (T'(q. k) +e”*-T'(e™” - q,k)) (6.80)

For the terms involving the function f(Q) = (k—Q)*, we can
use the same type of analysis as above. We do not derive these
separately for brevity. O

Proof of Proposition 4.5.. We will provide proof of the all of the
terms that involve the function (Q — k)* and not the terms involv-
ing (k — Q)" since the terms involving (k — Q)* can be derived in
a similar manner. We define the functional Value at Risk as:

Fver(f(Q),€) =infly : P{f(Q) <y} = €}
where f(Q) = (Q —k)*.

Using GVA as our approximation for the queueing dynamics and
f(Q) = (Q —k)*, we have that
FVer(f(Q),e) = inf{y: P{(Q-k)* <y} = €}
inf{y:P{vv- (X - x)* <y} =€}

= inf y:P{(X—Xﬁgy}ze}
= inf y:P{X—ngv}ze}

=infly:

(6.81)

. . k—-q 'y N
= inf y'¢(ﬁ+ﬁ)—€}

=inf{y: @(k_j;_y> ze}.

Now by inversion of the cdf, we finally get that
Fver((Q—k)*,e) =k—q+vv-d 1(€).

which completes the proof for the functional value at risk.
Now for the AV@R we have that

E[Q-k)"(Q-k)" > v ] =E[(Q-Kk)"|Q > ve + k]
_E[(Q-Kk)*-{Q > ve +k}]
B P(Q > ve + k)

ﬁ.E[(X_kjg)+,{ﬁ.x>v€+k—q}}

L
o(=)

VI-E[(X = X0 - X > Xew}]

@ (xer.)
3 VUE[(X = x0) - X > d - (X > Xiew ]
) @ ()
VI (@Ot = Xew, - P (X))
- E(Xk,vg)
@ (Xkw,)
=Ve —k+JV- m

For the functional Mean-Variance risk measure it suffices to
look at the paper of Pender (2014d).
Lastly, for the functional entropic risk measure, we have that

Entropic = %log (E[e7 @) (6.82)

= %log (E[e”"ﬁ'(x’)‘)+]) (6.83)

= %log ((b(x) + e’VW‘("’X) -w(x)dx) (6.84)

= %log (GJ(X) +erX[ eV'ﬁ"‘w(x)dx) (6.85)

X

= %1 g(d>(x)+e7"ﬁ‘X*V'”/2~5(x +y VD). (6.86)
O

References

Castillo, M. (2014). Man found dead in nyc hospital waiting room
more than 8 hours after entering. http://www.cbsnews.com/news/
man-found-dead-in-st-barnabas-hospital-waiting-room-8-hours/.

Cheridito, P, & Li, T. (2008). Dual characterization of properties of risk measures on
orlicz hearts. Mathematics and Financial Economics, 2(1), 29-55.

Cheridito, P, & Li, T. (2009). Risk measures on orlicz hearts. Mathematical Finance,
19(2), 189-214.

Detlefsen, K., & Scandolo, G. (2005). Conditional and dynamic convex risk measures.
Finance and Stochastics, 9(4), 539-561.

Eick, S. G., Massey, W. A., & Whitt, W. (1993). The physics of the mt/g/oco queue.
Operations Research, 41(4), 731-742.

Engblom, S., & Pender, ]. (2014). Approximations for the moments of nonstationary
and state dependent birth-death queues. arXiv preprint arxiv:1406.6164.

Feldman, Z., Mandelbaum, A., Massey, W. A., & Whitt, W. (2008). Staffing of time-
varying queues to achieve time-stable performance. Management Science, 54(2),
324-338.

Janssen, A., Van Leeuwaarden, ]., Zwart, B., et al. (2008). Gaussian expansions and
bounds for the poisson distribution applied to the erlang b formula. Advances in
Applied Probability, 40(1), 122-143.

Jelenkovi¢, P, Mandelbaum, A., & Momcilovi¢, P. (2004). Heavy traffic limits for
queues with many deterministic servers. Queueing Systems, 47(1-2), 53-69.
Jennings, O. B., Mandelbaum, A., Massey, W. A., & Whitt, W. (1996). Server staffing

to meet time-varying demand. Management Science, 42(10), 1383-1394.

Khudyakov, P., Feigin, P. D., & Mandelbaum, A. (2010). Designing a call center with
an ivr (interactive voice response). Queueing Systems, 66(3), 215-237.

Klyman, J. (2011). Systemic risk measures: DistVaR and other. Princeton University.

Ko, Y. M., & Gautam, N. (2013). Critically loaded time-varying multiserver queues:
computational challenges and approximations. INFORMS Journal on Computing,
25(2), 285-301.

Liu, Y., & Whitt, W. (2011). Large-time asymptotics for the g t/m t/s t+ gi t
many-server fluid queue with abandonment. Queueing systems, 67(2), 145-182.


http://www.cbsnews.com/news/man-found-dead-in-st-barnabas-hospital-waiting-room-8-hours/
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0004
http://arxiv.org/abs/1212.6874
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0012

126 J. Pender/European Journal of Operational Research 254 (2016) 113-126

Liu, Y., & Whitt, W. (2012). Stabilizing customer abandonment in many-server
queues with time-varying arrivals. Operations research, 60(6), 1551-1564.

Liu, Y., Whitt, W., et al. (2014). Many-server heavy-traffic limit for queues with
time-varying parameters. The Annals of Applied Probability, 24(1), 378-421.

Mandelbaum, A., Massey, W. A., & Reiman, M. 1. (1998). Strong approximations for
markovian service networks. Queueing Systems, 30(1-2), 149-201.

Mandelbaum, A., & Momcilovic, P. (2012). Queues with many servers and impatient
customers. Mathematics of Operations Research, 37(1), 41-65.

Massey, W., & Pender, J. (2011). Skewness variance approximation for dynamic rate
multi-server queues with abandonment. Performance Evaluation Review, 39. 74—
74

Massey, W., & Pender, ]. (2013). Approximation and Stabilizing Jackson Networks
with Abandonment. Technical Report. Working Paper.

Massey, W., & Pender, ]. (2013). Gaussian skewness approximation for dynamic rate
multi-server queues with abandonment.. Queueing Systems, 75(2), 243-277.
Peccati, G., & Taqqu, M. S. (2011). Wiener chaos: moments, cumulants and diagrams:

a survey with computer implementation: Vol. 1. Springer.
Pender, ]. (2014a). Gram charlier expansions for time varying multi-server queues
with abandonment. SIAM Journal on Applied Mathematics, 74(4), 1238-1265.
Pender, ]. (2014b). Laguerre polynomial expansions for time varying multiserver
queues with abandonment. Available at http://people.orie.cornell.edu/jpender/
LSA.pdf.

Pender, J. (2014c). A Poisson-Charlier approximation for nonstationary queues. Op-
erations Research Letters, 42(4), 293-298.

Pender, J. (2014d). Sampling the functional kolmogorov forward equations: applica-
tions to nonstationary queues. INFORMS Journal on Computing.

Pender, J. (2015). The truncated normal distribution: applications to queues with
impatient customers. Operations Research Letters, 43(1), 40-45.

Rudloff, B., Sass, J., & Wunderlich, R. (2008). Entropic risk constraints for utility
maximization. Festschrift in celebration of Prof. Dr. Wilfried Grecksch?s 60th birth-
day. Aachen: Shaker Verlag. Berichte aus der Mathematik, 149-180.

Ruszczyniski, A., & Shapiro, A. (2006). Optimization of risk measures. In Probabilistic
and randomized methods for design under uncertainty (pp. 119-157). Springer.
Stolletz, R. (2008). Approximation of the non-stationary m (t)/m (t)/c (t)-queue us-
ing stationary queueing models: the stationary backlog-carryover approach. Eu-

ropean Journal of operational research, 190(2), 478-493.

Tirdad, A., Grassmann, W. K., & Tavakoli, ]. (2016). Optimal policies of m (t)/m/c/c
queues with two different levels of servers. European Journal of Operational Re-
search, 249(3), 1124-1130.

Yarmand, M. H,, & Down, D. G. (2013). Server allocation for zero buffer tandem
queues. European Journal of Operational Research, 230(3), 596-603.

Yom-Tov, G. B., & Mandelbaum, A. (2014). Erlang-r: A time-varying queue with reen-
trant customers, in support of healthcare staffing. Manufacturing & Service Op-
erations Management, 16(2), 283-299.

Zeltyn, S., & Mandelbaum, A. (2005). Call centers with impatient customers:
many-server asymptotics of the m/m/n+ g queue. Queueing Systems, 51(3-4),
361-402.


http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0021
http://people.orie.cornell.edu/jpender/LSA.pdf
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30140-0/sbref0030

	Risk measures and their application to staffing nonstationary service systems
	1 Introduction
	1.1 Contributions
	1.2 Outline of paper

	2 Static risk measures
	2.1 Examples of risk measures
	2.1.1 Value at risk
	2.1.2 Average value at risk
	2.1.3 Entropic risk measure
	2.1.4 Mean-Variance risk measure
	2.1.5 Mean-deviation risk measure of order p

	2.2 Functional risk measures
	2.2.1 Functional value at risk
	2.2.2 Functional average value at risk
	2.2.3 Functional mean-variance risk
	2.2.4 Functional mean-deviation risk measure of order p
	2.2.5 Functional entropic risk


	3 The infinite server queue
	3.1 The MtG queue
	3.2 The MtMt queue
	3.3 Risk measures for the MtG and MtMt queues
	3.4 Functional risk measures for the MtG and MtMt queues

	4 Erlang-A queueing model
	4.1 Stochastic analysis of Erlang-A model
	4.2 Fluid and diffusion limits
	4.3 Gaussian variance approximation
	4.4 Risk measures for Erlang-A queue
	4.5 Functional risk measures
	4.6 Staffing nonstationary queues with risk measures
	4.7 Beyond the Erlang-A queueing model

	5 Conclusions and future work
	 Acknowledgments
	 Appendix A
	A.1 Proofs of results

	 References


