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In this paper, we explore the use of static risk measures from the mathematical finance literature to as- 

sess the performance of some standard nonstationary queueing systems. To do this we study two impor- 

tant queueing models, namely the infinite server queue and the multi-server queue with abandonment. 

We derive exact expressions for the value of many standard risk measures for the M t / M / ∞ , M t / G / ∞ , and 

M t / M t / ∞ queueing models. We also derive Gaussian based approximations for the value of risk mea- 

sures for the Erlang-A queueing model. Unlike more traditional approaches of performance analysis, risk 

measures offer the ability to satisfy the unique and specific risk preferences or tolerances of service op- 

erations managers. We also show how risk measures can be used for staffing nonstationary systems with 

different risk preferences and assess the impact of these staffing policies via simulation. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Time varying queueing models such as the M t / G / ∞ queue and

he M t /M/k t + M queue are standard models for describing the dy-

amics of large scale service systems like telecommunication sys-

ems, call centers, and healthcare systems like hospitals. To get a

ood understanding of the wide variety of applications of nonsta-

ionary queueing models, see for example ( Khudyakov, Feigin, &

andelbaum, 2010 ) for applications to call centers with interactive

oice response and Yom-Tov and Mandelbaum (2014) for applica-

ion to healthcare systems. However, staffing these systems appro-

riately and stabilizing salient performance measures such as the

robability of delay and waiting times for these stochastic systems

as been a long standing problem in the queueing literature for

any years. 

One of the first solutions for stabilizing the delay probabilities

or multiserver queues without abandonment was developed by

ennings, Mandelbaum, Massey, and Whitt (1996) . Jennings et al.

1996) develop a novel square root staffing algorithm that uses

he offered load of an infinite server queue and the square root

f the offered load for refinements to stabilize the delay proba-

ilities in multi-server queues. In the case of exponential service

imes, it only requires the solution to a simple ordinary differ-
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ntial equation to find the appropriate staffing level. However, as

oted in Feldman, Mandelbaum, Massey, and Whitt (2008) and Liu

nd Whitt (2012) and Massey and Pender (2013) , this algorithm for

tabilizing the delay probabilities does not stabilize the abandon-

ent probabilities and other performance measures. Thus, Liu and

hitt developed a new approach that stabilizes the abandonment

robabilities and mean delay using the combination of two infinite

erver queues. 

Nonetheless, these algorithms for performance stabilization are

nly useful for a few performance measures that are well-studied

n the queueing literature and are especially tailored for appli-

ations in telecommunications where there is no extreme conse-

uence if a customer waits a long time for service. For instance,

n a call center it is considered good performance if 99 percent

f customers are served within 2 minutes and we might not care

bout the 1 percent of customers who might have extremely long

ait times. However, in a healthcare or emergency care setting,

atients with extremely long waiting times can be very costly

o the hospital, especially if their health deteriorates while wait-

ng and subsequently they die before being seen, see for exam-

le ( Castillo, 2014 ). Consequently, it is not sufficient to just make

ure that waiting times are short, but it is also important to make

ure that even excessive waiting times are short in the context of

ealthcare. 

To address the difference between application settings like

elecommunications and healthcare, in this paper we propose ana-

yzing the new problems in applications like healthcare with new

http://dx.doi.org/10.1016/j.ejor.2016.03.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.03.012&domain=pdf
mailto:jjp274@cornell.edu
http://dx.doi.org/10.1016/j.ejor.2016.03.012
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ideas, namely using static risk measures from the mathematical fi-

nance literature. The advantage of using static risk measures over

traditional approaches of performance analysis, is that the risk

measure approach can be adapted to a manager’s risk preferences

and the particular application context. The fact that the risk mea-

sure approach can be adapted to different applications and in dif-

ferent contexts within a particular application is quite useful for

managers of service systems. One example in healthcare is that

patients with shortness of breath might be less willing to tolerate

long waits than patients with an ankle sprain so a different risk

measure should be used for those patients. Thus, this risk measure

approach allows the manager of a service center such as hospital

to choose his or her own risk preferences for the overall perfor-

mance of the system as well as the individual parts of the system. 

In order to develop this risk measure approach for general ser-

vice systems, we need to specify a stochastic model for the dynam-

ics of our service systems. In this paper, we begin with the infinite

server queueing model. This model is very natural as a start since

its dynamics are tractable in the stationary and nonstationary set-

ting. Not only are the mean and variance dynamics tractable, but

also the entire distribution is known for the infinite server queue

when initialized with a Poisson distribution or at zero. Besides the

fact that the infinite server queue is a relatively simple model, it

is also an offered load model. Thus, the infinite server dynamics

represents the system when an unlimited number of resources are

available and serves as an lower bound for the dynamics of finite

server systems. 

In addition to the infinite server queue, we also analyze the

canonical nonstationary Erlang-A queueing model. The nonstation-

ary Erlang-A model assumes the customer arrival process is a non-

homogenous Poisson process with nonstationary arrival rate λ( t ).

We also have k servers with i.i.d. service times that are exponen-

tially distributed with mean 1/ μ. Finally, all the customers have

i.i.d. abandonment times that are also exponentially distributed

with mean 1/ β . Although the Erlang-A model is a simple model for

some complex realities, it is also very hard to find closed form ex-

pressions for many of the performance measures of interest in the

nonstationary setting. Thus, we must find approximations of the

Erlang-A that are accurate and more tractable in terms of provid-

ing closed form expressions for performance measures of interest. 

One standard method would be to use the fluid and diffusion

limits of Mandelbaum, Massey, and Reiman (1998) . However, it

is well known that for small values of the scaling parameter η,

the fluid and diffusion limits are not warranted. Moreover, when

the mean queue length is near the number of servers, the fluid

and diffusion limits are not Gaussian. Thus, in this work, we use

another approximation to accurately estimate the queue length

process. This approximations is known as the Gaussian variance

approximation (GVA) of Massey and Pender (2011) and uses a

Gaussian surrogate distribution to approximate the queue length

dynamics. With this approximation for the queue length dynamics,

we then approximate various risk measures for the queue length

process and illustrate their performance as tools for staffing the

system. We are not the first to study staffing issues in queues,

see for example ( Engblom & Pender, 2014; Pender, 2015; Stolletz,

2008; Tirdad, Grassmann, & Tavakoli, 2016; Yarmand & Down,

2013 ), however, we are the first to use risk measures in this

context. 

1.1. Contributions 

To the best of our knowledge our contributions in this work are

the following. 

• We are the first to illustrate how static risk measures from

the mathematical finance literature can be used in the con-
text of server staffing and performance analysis in queueing

theory. 
• We derive explicit approximate staffing schedules for various

risk measures that are widely used in the financial community

and derive closed form expressions for the values of risk mea-

sures under Poisson and Gaussian distributional assumptions. 
• We use the risk measures as staffing procedures and assess

the results through comparing standard performance measures

such as the probability of delay and abandonment probabilities.

.2. Outline of paper 

The rest of the paper is as follows. In Section 2 , we introduce

he concept of risk measures and provide several examples of risk

easures. We also introduce the concept of functional risk mea-

ures, which will also be used throughout the rest of the paper.

n Section 3 , we start with the infinite server queue and derive

losed form formulas for several risk measures for the queueing

rocess. In Section 4 , we introduce the Erlang-A model and sev-

ral approximations for it. In Section 5 , we use the approximations

or the Erlang-A model queueing model and derive closed form ex-

ressions for the risk measures of the queueing model. In Section

, we give numerical results and describe the impact of using the

isk measures for staffing the system. We give examples of some

xtensions and conclude with final remarks in Section 7. 

. Static risk measures 

One of the central goals in mathematical finance is to assess

he risk of financial positions. The risk of a financial position may

e seen as the capital reserves that a bank should hold in response

o the risk it exposes itself to. Inspired by this notion of risk as a

inimal capital reserve and by the shortcomings of V @ R , Artzner

t al. (1997,1999) introduced an axiomatic approach to coherent

isk measures. The goal of a coherent risk measure is to quantify

he risk of X by a number ρ( X ). It is our goal in this paper to in-

roduce this notion of risk measures into the world of queueing

heory where there are analogous notions of risk and reserves. In

act, in the context of queueing theory and staffing, the notions of

isk and reservers can be viewed as the number of staff needed to

aintain a specific quality of service level. Before we describe how

arious risk measures are related to various performance quantities

n the service systems literature, we give a brief overview of risk

easures to make the paper self-contained for the reader’s conve-

ience. 

efinition 2.1. A mapping ρ : X → R ∪ { + ∞} is called a monetary

isk measure if ρ(0) is finite and if ρ satisfies the following condi-

ions for X,Y ∈ X . 

• Monotonicity: If X ≤ Y , then ρ( X ) ≥ ρ( Y ). 
• Cash Invariance: If m ∈ R , then ρ(X + m ) = ρ(X ) − m 

These two conditions are very necessary to define risk measure.

t is clear that if X is always smaller than Y under every scenario

 ∀ ω), then the risk associated with X should be higher than the

isk associated with Y. Moreover, if we add cash to our position, it

hould reduce the risk of that position because cash is not a risky

sset. 

efinition 2.2. A monetary risk measure ρ is called a convex or

uasi-convex risk measure if ρ satisfies the following condition for

,Y ∈ X . 

• Convex: If ρ(λX + (1 − λ) Y ) ≤ λρ(X ) + (1 − λ) ρ(Y ) for all λ ∈
[0,1]. 

• Quasi-Convex: If ρ(λX + (1 − λ) Y ) ≤ max { ρ(X ) , ρ(Y ) } for all λ
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From a financial perspective this is an important property for a

isk measure since, it agrees with the theory of diversification in

ortfolio theory. Thus, if you invest in different assets that are not

erfectly positively correlated, then you should naturally lower the

isk of your overall portfolio. 

efinition 2.3. A convex risk measure ρ is called a coherent risk

easure if ρ satisfies the following condition for X,Y ∈ X . 

• Positive Homogeneity: If ρ(λX ) = λρ(X ) for all λ ≥ 0. 

Note that when we assume that the convex risk measure is pos-

tive homogenous, we get for free that the risk measure is sub-

dditive. Moreover, positive homogeneity and sub-additivity imply

hat the risk measure is convex. We now give some examples of

ore common risk measures that are used frequently in the fi-

ance literature. 

.1. Examples of risk measures 

One of the most important and widely used risk measures is

he Value at Risk risk measure (V@R). 

.1.1. Value at risk 

The Value at Risk (V@R) is defined as: 

 @ R (X, ε) = inf { y | P { X ≤ y } ≥ ε} . (2.1)

The V @ R ( X , ε) is interpreted as the minimal amount of money

hat an agent must add to a position X such that, with probability

ot greater than ε, he will not become bankrupt. However in the

ontext of queueing theory and optimal server staffing the V @ R ( X ,

) can be interpreted as the number of agents you need to staff

our system to keep the probability of waiting for service below

ome pre-specified tolerance value ε. Thus, there are important in-

erpretations of risk measures from a queueing theory perspective.

Unfortunately, V @ R ( X , ε) does not satisfy sub-additivity and

herefore is not a coherent risk measure unless the distributions

nvolved are jointly elliptically distributed. One typical example of

 coherent risk measure is the Average Value at Risk (also called

ail-V@R or AV@R). 

.1.2. Average value at risk 

The Average Value at Risk (AV@R) is defined as: 

V @ R (X, ε) = 

1 

1 − ε

∫ 1 

ε
V @ R (X, ν) dν

nd when the distribution of X is continuous, we have that 

V @ R (X, ε) = 

1 

1 − ε

∫ 1 

ε
V @ R (X, ν) dν

= 

1 

1 − ε

∫ 1 

ε
inf { y | P { X ≤ y } ≥ ν} dν

= E [ X | X ≥ V @ R (X, ε)] 

ence, AV@R takes the average over all Values at Risk between 1

nd 1 − ε. If the distribution of X is continuous, this is equivalent

o conditional expectation of a drop in the market and then taking

he average over all these bad scenarios. In this respect, the AV@R

s more robust than V@R to changes in the distribution since the

@R is a point value of a quantile and AV@R is the average of the

ail behavior of the V@R. It can also be shown that the AV@R is

reater than V@R for the same value of ε and the same random

ariable. Moreover, AV@R can be seen as a compromise between

he V@R risk measure and the maximal loss of the random variable

ince it is larger than the V@R, but smaller than the maximal loss.

Like the V@R, AV@R has important meaning in the context

f queueing theory. In queueing theory, it is an important goal
o understand the behavior of the queueing process when the

ueue length exceeds the currently available number of servers.

he AV@R allows one to compute the mean of the queue length

hen the queue is overloaded. Understanding this risk measure

or queueing processes will allow us to staff our system when it

s overloaded with customers. Unlike V @ R the AV @ R is a convex

isk measure. This means for queueing theory that adding two dif-

erent queues together should only lower the total staffing needed

o properly staff both. In finance, the convexity is motivated by di-

ersification, which is meant to lower risk, however, for the per-

pective of a manager of a queueing system, it can be interpreted

s economies of scale. As we add more queues to the network,

e would hope that our optimal staffing would be no worse than

taffing the two queues separately. 

.1.3. Entropic risk measure 

The Entropic risk measure is defined as: 

(X, γ ) = 

1 

γ
log 

(
E [ e −γ X ] 

)
. (2.2) 

he Entropic risk measure also has a dual representation as 

(X, γ ) = sup 

˜ P ∈M 1 

{ 

E 
˜ P [ −X ] − 1 

θ
H( ̃  P | P ) 

} 

(2.3) 

here 

( ̃  P | P ) = E 

[
d ̃  P 

dP 
log 

d ̃  P 

dP 

]
(2.4)

s the relative entropy of measures ˜ P and P and where ˜ P is abso-

utely continuous with respect to P . This dual representation of the

ntropic risk measure can be view as the worst case of the ex-

ected loss under measure ˜ P , corrected by a penalty term, where

he probabilistic model ˜ P is penalized proportional to the devia-

ion of ˜ P from P, measured by the relative entropy. Moreover, in

he realm of mathematical finance the Entropic risk measure can

e viewed as the indifference price of an investor with the con-

tant risk aversion utility function u (x ) = 1 − e −x and is also widely

sed when there is incomplete information or uncertainty about

he models for the market dynamics. See for example ( Rudloff,

ass, & Wunderlich, 2008 ). Although we do not see an immediate

nalogous connection to queueing systems like the other risk mea-

ures, it is nonetheless important since the Entropic risk measure

s a scaled version of the cumulant generating function, which is

n important probabilistic quantity to understand. 

.1.4. Mean-Variance risk measure 

Another important risk measure that is popular in the financial

iterature is the Mean-Variance risk measure. The Mean-Variance

isk measure is defined as: 

(X, γ ) = E[ X ] + γ · Var [ X ] . (2.5)

he Mean-Variance risk measure is quite popular since it is made

p of the first two cumulants of the distribution of the random

ariable. It is also most notably used in the capital asset pricing

odel known as the (CAPM). It allows one to trade off expected

eturn with the variance of that return in a simple and elegant

anner. A slight modification of the Mean Variance risk measure

eads to the following risk measure. 

.1.5. Mean-deviation risk measure of order p 

The last risk measure that we describe here is the Mean-

eviation risk measure of order p . The Mean-Deviation risk mea-

ure of order p is defined as: 

(X, γ , p) = E[ X ] + γ · (E[ | X − E[ X ] | p ]) 1 /p . (2.6)
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This is somewhat of a generalization of the Mean-Variance risk

measure since it allows different values of p other than 2. When

p = 2 , we have a similar risk measure like the Mean-Variance risk

measure i.e. 

ρ(X, γ , 2) = E[ X ] + γ · (E[ | X − E[ X ] | 2 ]) 1 / 2 (2.7)

= E[ X ] + γ ·
√ 

Var [ X ] . (2.8)

We will demonstrate later in the paper that this risk measure

is important for staffing nonstationary systems. Currently, we limit

the number of risk measures that we explain in detail, however,

see ( Cheridito & Li, 2009 ) for more examples of risk measures. To

find out more about risk measures and their applications in finance

or optimization, see ( Cheridito & Li, 20 08; 20 09; Ruszczy ́nski &

Shapiro, 2006 ). 

2.2. Functional risk measures 

In addition to understanding the performance of risk measures

with respect to random variables, it is also important to under-

stand the performance with respect to functions of those random

variables. When we consider a risk measure with respect to a func-

tion of a random variable, we call these functional risk measures . 

2.2.1. Functional value at risk 

The functional Value at Risk (V@R) is defined as: 

 @ R ( f (X ) , ε) = inf { y | P { f (X ) ≤ y } ≥ ε} (2.9)

V @ R ( f ( X ), ε) is interpreted as the minimal amount of money

that an agent must add to a position f ( X ) such that, with proba-

bility not greater than ε, he will not become bankrupt. However in

the context of queueing theory and optimal staffing the V @ R ( f ( X ),

ε) can be interpreted as the number of agents you need to staff

your system to keep the probability of delay below some pre-

specified tolerance value ε at a particular time t. 

2.2.2. Functional average value at risk 

The functional Average Value at Risk (AV@R) is defined as: 

AV @ R ( f (X ) , ε) = 

1 

1 − ε

∫ 1 

ε
V @ R ( f (X ) , ν) dν

= 

1 

1 − ε

∫ 1 

ε
inf { y | P { f (X ) ≤ y } ≥ ν} dν

= E [ f (X ) | f (X ) ≥ V @ R ( f (X ) , ε)] 

2.2.3. Functional mean-variance risk 

The functional mean-variance risk measure is defined as: 

ρ( f (X ) , γ ) = E[ f (X )] + γ · Var [ f (X )] (2.10)

2.2.4. Functional mean-deviation risk measure of order p 

The functional mean-variance risk measure of order p is defined

as: 

ρ( f (X ) , γ , p) = E[ f (X )] + γ · (E[ | f (X ) − E[ f (X )] | p ]) 1 /p (2.11)

2.2.5. Functional entropic risk 

The functional entropic risk measure is defined as: 

ρ( f (X ) , γ ) = 

1 

γ
log 

(
E [ e −γ · f (X ) ] 

)
(2.12)

Now that we have define a general class of risk measures that

may be applicable it is our hope that these risk measures can give

insight into the performance of queueing systems under different

types of management since each management style has a different

appetite for risk. As an example, in healthcare it may not be suf-

ficient for a manager to control the average time that customer is
elayed for emergency care. In fact it is more reasonable to con-

rol average time that a customer is delayed given that they are

elayed. This quantity is more realistic for hospitals because it is

ot a concern if a customer is taken into the ER immediately. It is

nly a concern of the manager how long customers will wait, given

hat they have to wait and there is no room for them when they

re admitted. In this particular case, a manager would choose to

taff the hospital using the AV@R since this risk measure has the

bility to condition on the customers being delayed when they ar-

ive to the ER. In the same context, a manager also may choose a

ifferent risk measure for different times as well. For instance, dur-

ng a terrorist attack or catastrophic event, hospital managers may

ant to staff for a worse case scenario. In this case, one would use

he entropic risk measure with a high value of γ . As we have seen

he entropic risk measure has the interpretation of being the worst

ase scenario as γ → ∞ . 

. The infinite server queue 

In this section, we give a brief introduction to queueing the-

ry, its applications, and also describe some of the simple queue-

ng models that we will analyze in this paper. Queueing theory

as the beginnings of its history in the context of telecommuni-

ations. Queueing theory was invented by a Danish engineer, Ag-

er Erlang, who worked for the Copenhagen Telephone Exchange.

e published the first paper on what would now be called queue-

ng theory in 1909 and this work developed stochastic models for

allers that dropped due to frustration from waiting for an oper-

tor. Simple queueing models are often denoted by Kendall no-

ation A/B/C/D/E, where A stands for the distribution of arrivals,

 stands for the distribution of service times, C stands for the

umber of servers, D stands for the waiting room capacity of the

ueue, and finally E stands for the service discipline. For example,

he M/G/1/ ∞ /FIFO queue represents Poisson arrivals, general ser-

ice times, one server, an infinite waiting room, and the first in

rst out service discipline. More recently, some queueing models

nclude customer abandonment and these are often denoted by a

 G after the number of servers. Queues have a variety of appli-

ation areas such as telecommunications, healthcare, finance (limit

rder books), transportation, and data centers just to name a few.

hus, queueing theory is an important area of research and we in-

end to connect this literature with the risk measure literature. 

To begin our analysis of stochastic queueing models, we start

ith the M t / G / ∞ queueing model. There are two main reasons to

tart with the M t / G / ∞ queueing model. The first is that the M t / G / ∞
ueue is very tractable since the distribution is known in closed

orm. The second reason is that the M t / G / ∞ queue is the best type

f queue one can hope for where everyone is served immediately

nd no one ever waits for service. In this regard, the M t / G / ∞ in-

nite server queue is a lower bound for queueing models with a

nite number of servers and without abandonment since it rep-

esents the dynamics if the manager had access to an infinite

mount of resources and is not resource constrained. 

.1. The M t / G / ∞ queue 

In this section, we derive closed form formulas for risk mea-

ures for the M t / G / ∞ queueing model, which exploits the results of

ick, Massey, and Whitt (1993) for the time varying infinite server

ueue. In the paper of Eick et al. (1993) , they use the properties of

he Poisson arrival process and use Poisson random measure argu-

ents to show that the M t / G / ∞ queue Q 

∞ ( t ), has a Poisson distri-

ution with time varying mean q ∞ ( t ) . The exact analysis of the in-

nite server queue is often useful since it represents the dynamics

f the queueing process if there were an unlimited amount of re-

ources to satisfy the nonstationary demand process. As observed
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n Eick et al. (1993) , q ∞ ( t ) has the following integral representa-

ion 

 

∞ (t) = E[ Q 

∞ (t)] (3.13) 

= 

∫ t 

−∞ 

G (t − u ) λ(u ) du (3.14) 

= E 

[∫ t 

t−S 

λ(u ) du 

]
(3.15) 

= E[ λ(t − S e )] · E[ S] (3.16) 

here λ( u ) is the time varying arrival rate and S represents a ser-

ice time with distribution G, G = 1 − G (t) = P (S > t) , and S e is a

andom variable with distribution that follows the stationary ex-

ess of residual-lifetime cdf G e , defined by 

 e (t) ≡ P (S e < t) = 

1 

E[ S] 

∫ t 

0 

G (u ) du = 

1 

E[ S] 

∫ t 

0 

P (S > u ) du, 

t ≥ 0 . (3.17) 

When the service time distribution is exponential, we know

hat the mean queue length, q ∞ 

( t ), solves the autonomous differ-

ntial equation 

•
 ∞ 

= λ(t) − μ · q ∞ 

(t) , (3.18)

hich is very easy to solve numerically. Moreover, from the stan-

ard theory of infinite server queues, the distribution of the queue

ength process is Poisson with mean q ∞ ( t ) when initialized with a

oisson distributed number customers or initialized at zero. Using

his fact, we now compute several risk measures for the infinite

erver queue to get a better understanding of the impact of these

isk measures in a relatively simple context. 

.2. The M t / M t / ∞ queue 

heorem 3.1. The solution to the mean and variance of the

 t / M t / ∞ queue with initial values of Q 0 and V 0 is given by 

[ Q t ] = Q 0 · exp 

{
−

∫ t 

0 

μ(s ) ds 

}

+ 

(
exp 

{
−

∫ t 

0 

μ(s ) ds 

}
·
(∫ t 

0 

λ(s ) exp 

{
−

∫ s 

0 

μ(r ) dr 

}
ds 

))
(3.19) 

ar [ Q t ] = E[ Q t ] + ( V 0 − Q 0 ) · exp 

{
−2 

∫ t 

0 

μ(s ) ds 

}
. (3.20) 

roof. Using the functional forward equations for the mean and

ariance as in Pender (2014a) , we know that the mean and vari-

nce of the infinite server queue with a time varying arrival rate

nd service rate solves the following non-homogeneous differen-

ial equations 

•
E [ Q t ] = λ(t) − μ(t) · E[ Q t ] 

•
ar [ Q t ] = λ(t) + μ(t) · E[ Q t ] − 2 · μ(t) · Var [ Q t ] . 

hus, since the mean is independent of the variance, we can solve

he mean equation by standard ordinary differential equation the-

ry. Since there is a uniqueness theory for simple first order equa-

ions, it only follows to show that the solution above actually

olves the differential equation. Although integrating factors are

tandard in any text on ordinary differential equations, we sketch
he solution for E [ Q t ] using the integrating factor method for ordi-

ary differential equations. From the functional forward equations,

e know the mean satisfies the following equation 

d 

dt 
E[ Q t ] + μ(t) · E[ Q t ] = λ(t) . 

ow multiply both sides by an integrating factor e ∫ μ( u ) du to get

hat 

 

∫ 
μ(u ) du 

(
d 

dt 
E[ Q t ] + μ(t) · E[ Q t ] 

)
= λ(t) e 

∫ 
μ(u ) du . 

ow using the product rule and chain rule of differentiation, we

an write the left hand side as 

 

∫ 
μ(u ) du 

(
d 

dt 
E[ Q t ] + μ(t) · E[ Q t ] 

)
= 

d 

dt 

(
λ(t) e 

∫ 
μ(u ) du 

)
here 

d 

dt 

(
λ(t) e 

∫ t 
0 μ(u ) du 

)
= λ(t) e 

∫ t 
0 μ(u ) du . 

ow by integrating both sides, we have that 

 

e 
∫ 

μ(u ) du 

(
d 

dt 
E[ Q t ] + μ(t) · E[ Q t ] 

)
= 

∫ 
d 

dt 

(
λ(t) e 

∫ 
μ(u ) du 

)
. 

Finally, using the fundamental theory of calculus and dividing

y the integrating factor, we have that 

[ Q t ] = Q 0 · exp 

{
−

∫ t 

0 

μ(s ) ds 

}

+ 

(
exp 

{
−

∫ t 

0 

μ(s ) ds 

}
·
(∫ t 

0 

λ(s ) exp 

{
−

∫ s 

0 

μ(r ) dr 

}
ds 

))
. 

or the variance, we observe the fact that 

•
ar [ Q t ] −

•
E [ Q t ] = λ(t) + μ(t) · E[ Q t ] − 2 · μ(t) · Var [ Q t ] 

− λ(t) + μ(t) · E[ Q t ] 

= 2 · μ(t) · E[ Q t ] − 2 · μ(t) · Var [ Q t ] 

= 2 · μ(t) · (E[ Q t ] − Var [ Q t ]) 

= −2 · μ(t) · ( Var [ Q t ] − E[ Q t ]) . 

ince the last equation describes a first order linear differential

quation for Var [ Q t ] − E[ Q t ] , we know that its solution is 

ar [ Q t ] − E[ Q t ] = (V 0 − Q 0 ) · exp 

{
−2 

∫ t 

0 

μ(s ) ds 

}
. 

oving the mean to the righthand side yields the solution for the

ariance as 

ar [ Q t ] = E[ Q t ] + (V 0 − Q 0 ) · exp 

{
−2 

∫ t 

0 

μ(s ) ds 

}
. 

�

From this theorem, it is immediately clear that the mean is very

lose to the variance and when the queue is initialized at zero or

ith a Poisson distribution, then the mean and variance are equal

or all times. Moreover, the Poisson assumption in this case is not

nrealistic when the initial mean and initial variance are close or

hen the time is large enough and μ( t ) is bounded away from

ero. 

.3. Risk measures for the M t / G / ∞ and M t / M t / ∞ queues 

However, before we prove the results, we provide a lemma that

hows that the tail distribution of a Poisson distribution can be

xpressed in terms of the incomplete gamma function. 
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Lemma 3.2. 

�(c, x ) = 

∞ ∑ 

m = c 
e −x · x m 

m ! 
= 

1 

�(c) 

∫ x 

0 

e −y y c−1 dy (3.21)

�(c, x ) = 

c−1 ∑ 

m =0 

e −x · x m 

m ! 
= 

1 

�(c) 

∫ ∞ 

x 

e −y y c−1 dy. (3.22)

where 

�(c, x ) = 

1 

�(c) 

∫ x 

0 

e −y y c−1 dy and 

�(c, x ) = 

1 

�(c) 

∫ ∞ 

x 

e −y y c−1 dy (3.23)

are the lower and upper incomplete gamma functions respectively.

Moreover, we define �−1 (x, ε, k ) and �
−1 

(x, ε, k ) to be the func-

tional inverses of �(c + k, x ) and �(c + k, x ) respectively. 

Proof. See ( Janssen, Van Leeuwaarden, Zwart et al., 2008 ) or

Pender (2014c) . �

Moreover, the Chen–Stein method can aid us in our computa-

tion of various quantiles and expectations related to the risk mea-

sures. We include the Chen–Stein theorem below for the conve-

nience of the reader. 

Theorem 3.3 (Chen–Stein) . Let Q be a random variable with values

in N . Then, Q has the Poisson distribution with mean rate q if and

only if, for every bounded function f : N → N , 

E [ Q · f (Q ) ] = q · E [ f (Q + 1) ] (3.24)

Proof. See ( Peccati & Taqqu, 2011 ). �

Proposition 3.4. The Value at Risk, Average Value at Risk, Mean-

ariance Risk, and Entropic Risk for the nonstationary infinite

server queue with mean q is given by the following formulas 

 @ R (Q, ε) = �
−1 

(q, ε) (3.25)

AV @ R (Q, ε) = 

q · �(q, νε − 1)] 

�(q, νε ) 
(3.26)

Mean − Variance (Q, γ , p) = q + γ · q (3.27)

Entropic (Q, γ ) = 

q · (e −γ − 1) 

γ
(3.28)

Proof. For the Value at Risk, we have that 

 @ R (Q, ε) = inf { y | P { Q ≤ y } ≥ ε} (3.29)

= inf { y | �(q, y ) ≥ ε} (3.30)

= �
−1 

(q, ε) . (3.31)

For the Average Value at Risk, we first let νε = V @ R (Q, ε) and thus

we obtain the following 

AV @ R (Q, ε) = E[ Q| Q > νε] (3.32)

= 

E[ Q · { Q > νε} ] 
P (Q > νε ) 

(3.33)

= 

E[ Q · { Q > νε} ] 
�(q, νε ) 

(3.34)

= 

q · E[ { Q + 1 > νε} ] 
�(q, νε ) 

Chen − Stein Identity (3.35)

= 

q · �(q, νε − 1)] 

�(q, νε ) 
. (3.36)
For the Mean-Variance Risk, we exploit the fact that the Poisson

istribution has all of its cumulant moments equal to its mean.

hus, 

ean − Variance (Q, γ , p) = E[ Q] + γ · Var [ Q] (3.37)

= q + γ · q (3.38)

Lastly, for the entropic risk measure, we have that 

ntropic = 

1 

γ
log 

(
E [ e −γ ·Q ] 

)
(3.39)

= 

1 

γ
log 

( 

∞ ∑ 

k =0 

e −γ ·k · q k 

k ! 
· e −q 

) 

(3.40)

= 

1 

γ
log 

(
e q ·(e −γ −1) 

)
(3.41)

= 

q · (e −γ − 1) 

γ
. (3.42)

�

One thing to observe is that the Mean-Deviation of order 2 risk

easure, which is similar in spirit to the Mean-Variance risk mea-

ure, is similar to the staffing level derived from the square root

taffing formula of Jennings et al. (1996) . Recall that in the pa-

er of Jennings et al. (1996) , they use the infinite server queue

s the mean offered load and provide a square root safety factor,

hich turns out to be the square root of the mean queue length

ince they exploit the fact that the Poisson distribution has the

nique property of having all of its cumulant moments equalling

he mean. Thus, this implies that the mean is equivalent to the

ariance. Furthermore, if q ∞ 

t is sufficiently large, then we can use

 normal approximation to the Poisson distribution to gain insight

n staffing. Using the infinite server approximation and then the

ormal approximation implies that 

 (Q(t) ≥ c(t)) ≈ P (Q 

∞ (t) ≥ k (t)) (3.43)

≈ = P (q ∞ 

t + 

√ 

q ∞ 

t · X ≥ k (t)) (3.44)

= P 

( 

X ≥ k (t) − q ∞ 

t √ 

q ∞ 

t 

) 

(3.45)

= �

( 

k (t) − q ∞ 

t √ 

q ∞ 

t 

) 

(3.46)

here X denotes a Gaussian random variable with mean 0 and

ariance 1 and �(x ) is the complement of the standard Gaus-

ian cdf. Using this approximation, one can generate the following

quare root staffing formula 

 

∞ (t) = 
 q ∞ 

t + β ·
√ 

q ∞ 

t � , (3.47)

hich should yield stable delay probabilities for our original sys-

em. Thus, in order to stabilize the delay probabilities of a multi-

erver queue at probability ε, one must replace γ in the risk mea-

ure expression with the inverse Gaussian cdf at ε or �
−1 

(ε) . 

On the left of Fig. 1 we plot the V@R for the infinite server

ueue for different values of ε. We see that our explicit formulas

re quite accurate for estimating the value at risk for the M t / M / ∞
ueueing model. On the right of Fig. 1 , we plot the AV@R for the

 t / M / ∞ queueing model and for different values of tolerance level

. Like in the case of the V@R, we see that our explicit formulas

re also quite good at estimating the simulated AV@R risk measure

or the queueing model. On the left of Fig. 2 , we plot the Entropic
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Fig. 1. λ(t) = 100 + 20 · sin (t) , μ = 1 , q (0) = 0 . Value at Risk for M/M/ ∞ Queue. ε = { . 05 , . 1 , . 25 , . 5 } (Left). Average Value at Risk for M/M/ ∞ Queue. ε = { . 05 , . 1 , . 25 , . 5 } 
(Right). . 

Fig. 2. λ(t) = 100 + 20 · sin (t) , μ = 1 , q (0) = 0 . Entropic Risk for M/M/ ∞ Queue. ε = { . 05 , . 1 , . 25 , . 5 } (left). Mean-Variance Risk for M/M/ ∞ Queue. ε = { . 05 , . 1 , . 25 , . 5 } (right). 
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isk measure for different values of γ . We also see that our explicit

ormulas are accurate at estimating the appropriate risk for the in-

nite server queue. We see however, that the case where γ = . 05

r where γ is closest to 0, seems to be the least accurate case. On

he right of Fig. 2 , we plot the Mean-Variance risk measure for the

ueueing process and different values of γ . We also see that our

xplicit formulas accurately capture the dynamic behavior of the

isk measure over time. 

It is clear that the explicit formulas for the infinite server queue

re quite accurate for the queue length process itself. However, in

ome settings is also interesting to derive risk measures for non-

inear functions of the queue length process. In the sequel, we will

erive explicit formulas for several functions of the queue length,

hich are important to the queueing and financial mathematics

ommunities. 

.4. Functional risk measures for the M t / G / ∞ and M t / M t / ∞ queues 

In this section, we now derive some functional risk measures

or the M t / G / ∞ and M t / M t / ∞ queues. Two of the most important

unctions that appear in both the financial and queueing literature

re f (X ) = (X − k ) + and f (X ) = (k − X ) + . In the financial literature
hese functions respectively represent call and put option payoffs

ith respect to the random variable X and have strike price equal

o k . In the infinite server queue context, k is viewed as a ficti-

ious buffer where we can see how much the buffer is either being

xceeded when f (X ) = (X − k ) + or how much the buffer is being

nderutilized when f (X ) = (k − X ) + . 
In the multi-server queueing literature, if k represents the num-

er of servers that are providing service for the system then the

wo functions f (X ) = (X − k ) + and f (X ) = (k − X ) + respectively

epresent the number of customers that are waiting to engage in

ervice with an agent and the number of agents that are currently

dle and are not currently serving a customer. Moreover, from a

anager’s perspective, both of these functions represent inefficien-

ies in the system. When the function f (X ) = (X − k ) + is positive

ustomers are waiting for service and the quality of service is per-

eived to be low. However, when the function f (X ) = (k − X ) + is

ositive, this means that the manager is staffing the system with

oo many agents and this is not cost effective from the manager’s

erspective. 

roposition 3.5. The Functional Value at Risk, Functional Average

alue at Risk, Functional Mean-Variance Risk, and Functional En-

ropic Risk for the nonstationary infinite server queue with mean
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q and function f (Q ) = (Q − k ) + is given by the following formu-

las 

Functional V @ R ( f (Q ) , ε) = �
−1 

(q, ε, k ) 

Functional AV @ R ( f (Q ) , ε) = 

q · �(q, νε + k − 1) − k · �(q, νε + k

�( q, νε + k ) 

Functional Mean − Variance ( f (Q ) , γ , p) 

= E[(Q − k ) + ] + γ · Var [(Q − k ) + ] 

Functional Entropic ( f (Q ) , γ ) 

= 

1 

γ
· log 

(
�(q, k ) + e γ ·k −q · �(e −γ · q, k ) 

)
where 

E[(Q − k ) + ] = q · �(q, k − 1) − k · �(q, k ) 

Var [(Q − k ) + ] = q 2 · �(q, k − 2) + q · �(q, k − 1) 

− 2 · k · q · �(q, k − 1) + k 2 · �(q, k )2 

· q · k · �(q, k − 1) · �(q, k ) 

− k 2 · �2 (q, k ) − q 2 · �2 (q, k − 1) . 

Moreover, for the function f (Q ) = (k − Q ) + we have that 

Functional V @ R ( f (Q ) , ε) = �−1 (q, ε, k ) 

Functional AV @ R ( f (Q ) , ε)= 

k · �(q, νε + k ) − q · �(q, νε + k + 1)

�( q, νε + k ) 

Functional MV ( f (Q ) , γ , p) = E[(k − Q ) + ] + γ · Var [(k − Q ) + ] 

Functional Entropic ( f (Q ) , γ ) 

= 

1 

γ
· log 

(
�(q, k ) + e γ ·k −q · �(e −γ · q, k ) 

)
where 

E[(k − Q ) + ] = k · �(q, k ) − q · �(q, k − 1) 

Var [(k − Q ) + ] = k 2 · �(q, k ) − 2 · k · q · �(q, k − 1) 

+ q · �(q, k − 1) + q 2 · �(q, k − 2) 

− k 2 · �2 
(q, k ) + 2 · �(q, k ) · �(q, k − 1) 

− q 2 · �2 
(q, k − 1) . 

Proof. See Appendix. �

4. Erlang-A queueing model 

Now that we have addressed the infinite server queue, we

would like to extend our risk measures to a more general queue-

ing model that takes into account that most queues have a finite

number of servers and that most customers are not infinitely pa-

tient when waiting for service from an agent. The Erlang-A model

is the canonical choice when considering these new features of the

queueing model. Since the Erlang-A has these new features, it is

not as tractable as the infinite server queue. Thus, we will exploit

new approximations for this queueing system that are accurate and

derive risk measures for these approximations. However, now we

give a brief overview of the Erlang-A model for the reader’s conve-

nience. 

4.1. Stochastic analysis of Erlang-A model 

In this section we introduce the M t /M/k t + M queueing model

that serves to describe the dynamics of our hospital dynamics.

Mandelbaum et al. (1998) , showed that the queueing system pro-

cess { Q ( t )| t ≥ 0} is represented by the following equation 
(t) = Q(0) + Π1 

(∫ t 

0 

λ(s ) ds 

)
− Π2 

(∫ t 

0 

μ · (Q(s ) ∧ c(s )) ds 

)

−Π3 

(∫ t 

0 

β · (Q(s ) − c(s )) + ds 

)
, 

here �i ≡ { �i ( t )| t ≥ 0} for i = 1 , 2 , 3 are i.i.d. standard (rate

) Poisson processes. The deterministic time change for �1 trans-

orms it into a non-homogenous Poisson arrival process with rate

( t ). Subjecting �2 to random time change causes it to count the

umber of service departures from c servers and exponentially dis-

ributed service times function of mean 1/ μ. Finally the random

ime changes of �3 cause it to count the number of abandonments

rom c servers and exponentially distributed abandonment times of

ean 1/ β . With this representation of our queueing dynamics, this

odel is an example of a Markovian service network, which were

xtensively studied in Mandelbaum et al. (1998) . 

.2. Fluid and diffusion limits 

In Mandelbaum et al. (1998) it was shown that a Markovian

ervice network always has a fluid and diffusion limits i.e. 

1 

η
Q 

η = q a.s and 

√ 

η ·
(

1 

η
Q 

η − q 

)
⇒ 

ˆ Q (4.49)

here the fluid mean is governed by the one dimensional dynam-

cal system 

•
 = λ − μ · (q ∧ c) − β · (q − c) + (4.50)

nd if the set { t | q (t ) = c} has measure zero then 

ˆ Q is a Gaussian

iffusion whose variance combines with the fluid mean to form a

-dimensional dynamical system given by (2.2) and 

•
ar [ ̂  Q ] = λ + μ · (q ∧ c) + β · (q − c) + 

− 2 · Var [ ̂  Q ] · ( μ · { q < c} + β · { q ≥ c} ) . (4.51)

here { q < c } denotes an indicator function equaling one if, q <

 , and zero otherwise. However, for small systems like in hospi-

als, it was shown in Ko and Gautam (2013), Massey and Pender

2011, 2013), Pender (2014a,b) that these fluid and diffusion limits

o not do a great job of characterizing the correct moment behav-

or. Therefore, we will use approximations for our queueing process

hat will serve to estimate the transient dynamics. 

.3. Gaussian variance approximation 

The first approximation, which we call the Gaussian variance

pproximation was first developed by Ko and Gautam (2013) and

urther simplified and explained in Massey and Pender (2011) . This

pproximation assumes a Gaussian distribution for the queueing

odel i.e 

(t) 
d = q (t) + X ·

√ 

v (t) . (4.52)

or all t ≥ 0, where { q (t) , v (t) | t ≥ 0 } is some two-dimensional dy-

amical system where the v process is always positive and X is a

tandard Gaussian random variable. We call this the Gaussian vari-

nce approximation (GVA). The forward equations for the mean and

ariance of Q are 

•
 

[ Q] = λ −
(
μ · E[ Q ∧ c] + β · E[(Q − c) + ] 

)
(4.53)

•
ar [ Q] = λ + μ · E[ Q ∧ c] + β · E[(Q − c) + ] 

− 2 

(
μ · Cov [ Q, Q ∧ c] + β · Cov [ Q, (Q − c) + ] 

)
(4.54)

Now if we define the following variable χ = 

c−q √ 

v , we get the

ollowing differential equations for the mean and variance of the

ueueing process under the distributional assumptions of GVA 
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•
 

[ Q] = λ −
(
μ · √ 

v · E[ X ∧ χ ] + β · √ 

v · E[(X − χ) + ] 
)

•
ar [ Q] = λ + μ · √ 

v · E[ X ∧ χ ] + β · √ 

v · E[(X − χ) + ] 

−2 

(
μ · v · Cov [ X, X ∧ χ ] + β · v · Cov [ X, (X − χ) + ] 

)
Thus, in order to understand the dynamics, it only remains to

ompute the expectations and covariance. Like Massey and Pen-

er (2011) , we resort to using Stein’s lemma to derive the expec-

ations and covariance terms. To do this we use the following Her-

ite polynomial generalization of Stein’s lemma. 

emma 4.1. If X is a standard Gaussian random variable and

 [ f ( n ) ( X )] < ∞ , then 

 [ f (X ) · h n (X ) ] = E[ f (n ) (X )] 

here f is any generalized function and f ( n ) is the n th derivative of the

unction f. 

The use of Stein’s lemma yields the following equations for the

ean and variance dynamics of our queueing process: 

•
E [ Q] = λ − μ · q + 

√ 

v · (μ − β) ·
(
ϕ(χ ) − χ · �(χ) 

)
•
ar [ Q] = λ + μ · q − √ 

v · (μ − β) ·
(
ϕ(χ ) − χ · �(χ) 

)
− 2 · v ·

(
μ · �(χ) + β · �(χ) 

)
here we define ϕ and � to be the density and the cumulative

istribution functions, respectively, for X ∼ Normal(0, 1), i.e., 

ϕ(x ) ≡ 1 √ 

2 π
e −x 2 / 2 , �(x ) ≡

∫ x 

−∞ 

ϕ(y ) dy, and let 

(x ) ≡
∫ ∞ 

x 

ϕ(y ) dy. (4.55) 

n the sequel, we will show how to use the Gaussian variance ap-

roximation in order to approximate various risk measures of the

rlang-A queueing model. 

.4. Risk measures for Erlang-A queue 

In this section, we show that the GVA can be used to approx-

mate various risk measures of the Erlang-A queue. However, we

hould mention that when c = ∞ or μ = β, the Erlang-A queueing

odel reduces to the infinite server queue and we have already

iven exact results for this case in the previous sections of the pa-

er. 

roposition 4.2. Under the assumptions of the GVA for the queue

ength, then the Value at Risk, Average Value at Risk, Mean-Variance

isk, and Entropic Risk have the following expressions 

V @ r(Q, ε) = q + 

√ 

v · �−1 (ε) 

AV @ r(Q, ε) = q + 

√ 

v ·
ϕ 

(
νε−q √ 

v 

)
�

(
νε−q √ 

v 

)
ean − Variance (Q, γ ) = q + γ · v 

Entropic (Q, γ ) = −q + 

γ · v 
2 

. 

roof. From the definition of the Value at risk, we have that 

 @ r(Q, ε) = inf { y : P { Q ≤ y } ≥ ε} . (4.56)

hus, we we assume that the queue length is approximated by

VA, we get that 

 @ r(Q, ε) = inf { y : P { Q ≤ y } ≥ ε} 
= inf 

{
y : P 

{
q + 

√ 

v · X ≤ y 
}

≥ ε
}

= inf 

{
y : P 

{
X ≤ y − q √ 

v 

}
≥ ε

}

= inf 

{
y : �

(
y − q √ 

v 

)
≥ ε

}
= q + 

√ 

v · �−1 (ε) . 

Now we show the exact formula for the AV@R. From the defi-

ition of the AV@R, we have that 

V @ r(Q, ε) = E[ Q| Q > νε] (4.57)

here we define νε = V @ r(Q, ε) . Thus, when we approximate the

ueue length distribution with the GVA and define χ = 

νε−q √ 

v , we

ave that 

V @ r(Q, ε) = E[ Q| Q > νε] 

= E[ q + 

√ 

v · X | q + 

√ 

v · X > νε] 

= 

E[(q + 

√ 

v · X ) · { q + 

√ 

v · X > νε} ] 
E[ { q + 

√ 

v · X > νε} ] 
= 

q · P { q + 

√ 

v · X >νε} + 

√ 

v · E[ X · { q + 

√ 

v · X > νε} ] 
P { q + 

√ 

v · X > νε} 
= 

q · P { X > χ} + 

√ 

v · E[ X · { X > χ} ] 
P { X > χ} 

= 

q · �(χ) + 

√ 

v · ϕ(χ ) 

�(χ) 

= q + 

√ 

v · ϕ(χ ) 

�(χ) 
. 

emark 4.3. Note that q + 

√ 

v · ϕ(χ ) 

�(χ) 
> q + χ · √ 

v , which implies

hat the AV@R is larger than the V@R for the same value of ε. 

For the Mean-Variance risk measure, which is defined as 

ean − Variance (Q, γ ) = E[ Q] + γ · Var [ Q] , (4.58)

e use the standard properties of the Gaussian distribution to con-

lude that 

ean − Variance (Q, γ ) = q + γ · v . (4.59)

Lastly, we derive the exact expressions for the Entropic risk

easure. For the Entropic risk measure we have that 

(Q, γ ) = 

1 

γ
· log 

(
E 
[
e −γ ·Q ]). (4.60) 

hus, when we assume that the queue length is approximated by

VA, we get that 

1 

γ
· log 

(
E 
[
e −γ ·Q ]) = log 

(
E 
[
e −γ ·(q + √ 

v ·X ) 
])

= 

1 

γ
· log 

(
E 
[
e −γ ·q ] · E 

[
e −γ ·√ 

v ·X ])
= 

1 

γ
· log 

(
e −γ ·q ) + 

1 

γ
· log 

(
E 
[
e −γ ·√ 

v ·X ])
= −q + 

γ · v 
2 

�

On the left of Fig. 3 we plot the V@R for the Erlang-A queue for

ifferent values of ε. We see that our approximate formulas are

uite accurate for estimating the V@R for the Erlang-A queueing

odel. On the right of Fig. 3 , we plot the AV@R for the Erlang-A

ueueing model and for different values of tolerance level ε. Like

n the case of the V@R, we see that our explicit formulas are also

uite good at estimating the simulated AV@R risk measure for the

ueueing model. On the left of Fig. 4 , we plot the Entropic risk
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Fig. 3. λ(t) = 100 + 20 · sin (t) , μ = 1 , β = . 5 , c = 100 , q (0) = 0 . Value at Risk for Erlang-A Queue. ε = { . 05 , . 1 , . 25 , . 5 } (Left). Average Value at Risk for Erlang-A Queue. 

ε = { . 05 , . 1 , . 25 , . 5 } (Right). 

Fig. 4. λ(t) = 100 + 20 · sin (t) , μ = 1 , β = . 5 , c = 100 , q (0) = 0 . Entropic Risk for Erlang-A Queue. ε = { . 05 , . 1 , . 25 , . 5 } (left). Mean-Variance Risk for Erlang-A Queue. ε = 

{ . 05 , . 1 , . 25 , . 5 } (right). 
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measure for different values of γ . We also see that our Gaussian

approximations are accurate at estimating the appropriate risk for

the Erlang-A queue. We see however, that the case where γ = . 05

or where γ is closest to 0, seems to be the least accurate case. On

the right of Fig. 4 , we plot the Mean-Variance risk measure for the

queueing process and different values of γ . We also see that our

approximate formulas accurately capture the dynamic behavior of

the risk measure over time. 

It is clear that the explicit formulas for the Erlang-A queue

are quite accurate for the queue length process itself. How-

ever, in some settings is also interesting to derive risk mea-

sures for non-linear functions of the queue length process. In

the sequel, we will derive explicit formulas for several func-

tions of the queue length, which are important to the queueing

literature. 

4.5. Functional risk measures 

Proposition 4.4. Under the GVA and when f (Q ) = (Q − k ) + , the

Functional Value at Risk, Functional Average Value at Risk, Functional

Mean-Variance Risk, and Functional Entropic Risk have the following

expressions 
unctional V @ r((Q − k ) + , ε) = q − k + 

√ 

v · �−1 (ε) 

unctional AV @ r((Q − k ) + , ε) = 

√ 

v · ϕ(χk,c ) 

�
(
χk,c 

) − √ 

v · χk,c 

unctional Mean − Var ((Q − k ) + , ε) 

= E[(Q − k ) + ] + γ · Var [(Q − k ) + ] 

unctional Entropic ((Q − k ) + , ε) 

= 

1 

γ
log 

(
�(χk ) + e γ

2 ·v / 2+ γ ·√ 

v ·χk · �(χk + γ · √ 

v ) 
)

here 

E[(Q − k ) + ] = 

√ 

v ·
(
ϕ(χk ) − χk · �(χk ) 

)
ar [(Q − k ) + ] = v ·

(
−χk · ϕ(χk ) + (χ2 

k + 1) · �(χk ) − ϕ(χk ) 
2 
)

+ v ·
(
−χ2 

k · �(χk ) 
2 + 2 · χk · ϕ(χk ) · �(χk ) 

)
. 

Moreover, when f (Q ) = (k − Q ) + , the Functional Value at Risk,

unctional Average Value at Risk, Functional Mean-Variance Risk, and

unctional Entropic Risk have the following expressions 
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Fig. 5. Staffing the M t /M/c + M Queue. λ(t) = 100 + 20 · sin (t) , μ = 1 , β = . 5 , c = 100 , q (0) = 0 . Probability of Delay using V@R as staffing procedure. ε = { . 05 , . 1 , . 25 , . 5 } 
(left). Probability of Delay using AV@R as staffing procedure. ε = { . 05 , . 1 , . 25 , . 5 } (right). 

Fig. 6. Staffing the M t /M/c + M Queue. λ(t) = 100 + 20 · sin (t) , μ = 1 , β = . 5 , c = 100 , q (0) = 0 . Abandonment probability using V@R as staffing procedure. ε = 

{ . 05 , . 1 , . 25 , . 5 } (left). Abandonment probability using AV@R as staffing procedure. ε = { . 05 , . 1 , . 25 , . 5 } (right). 
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a  

b  
unctional V @ r((k − Q ) + , ε) = k − q + 

√ 

v · �−1 
(ε) 

unctional AV @ r((k − Q ) + , ε) = k − q + 

√ 

v · ϕ(χk,c ) 

�
(
χk,c 

)
unctional Mean − Var ((k − Q ) + , ε) 

= E[(k − Q ) + ] + γ · Var [(k − Q ) + ] 

unctional Entropic ((k − Q ) + , ε) 

= 

1 

γ
log 

(
�(χk ) + e γ

2 ·v / 2 −γ ·√ 

v ·χk · �(χk − γ · √ 

v ) 
)
. 

here 

E[(k − Q ) + ] = (k − q ) · �(χ) + 

√ 

v · ϕ(χ ) 

ar [(k − Q ) + ] = v · (χ2 + 1) · �(χ) + χ · v · ϕ(χ ) 

− ((k − q ) · �(χ) + 

√ 

v · ϕ(χ )) 2 . 

roof. See Appendix. �

.6. Staffing nonstationary queues with risk measures 

In addition to the fact that the risk measures provide perfor-

ance measures for queueing models, the risk measures derived

or these nonstationary queues can also be used as staffing pro-
edures. On the left of Fig. 5 , we use the V@R as a staffing pro-

edure for the Erlang-A queueing model. We see that the V@R

omewhat stabilizes the probability of delay near the value of ε
hat is used for the V@R calculation. This is partly because the

taffing level given by the V@R is similar to the offered load ap-

roach of Jennings et al. (1996) . Moreover, on the right of Fig. 5 ,

e use the AV@R as a staffing procedure for the Erlang-A queue-

ng model. We also see this time that staffing with the AV@R also

omewhat stabilizes the probability of delay. It should be noted

hat the probability of delay using AV@R is lower than the prob-

bility of delay when using V@R. This is because the staffing level

erived from AV@R is larger since AV@R is the average of the tail

alues of the V@R. However, we should also mention that the vari-

tion that one sees for the probability of delay is due to the ad-

ition or removal of one server. This is partially observed when ε
s the smallest since the variation is the smallest and the largest

umber of servers is used for staffing. Thus, the impact of adding

r removing one server is much smaller. 

On the left of Fig. 6 , we use the V@R as a staffing procedure

or the Erlang-A queueing model. We see that the V@R does not

tabilizes the abandonment probability. This is consistent with Liu

nd Whitt (2012) where they show that it is impossible to sta-

ilize both using the same staffing procedure, except when the
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probabilities are very small. Moreover, on the right of Fig. 6 , we

use the AV@R as a staffing procedure for the Erlang-A queueing

model. We also see this time that staffing with the AV@R does

not stabilizes the abandonment probability. Similar to the previous

figure, we also observe that noted that the resuting abandonment

probability using AV@R as the staffing procedure is lower than the

abandonment probability when using V@R. 

4.7. Beyond the Erlang-A queueing model 

This method of using the mean and variance of the queueing

model can be used beyond the Erlang-A model. There are fluid and

diffusion limits for queues with more general arrival, service times,

and abandonment times. See for example , Liu and Whitt (2011) ;

2012 ); Liu, Whitt et al. (2014) and Jelenkovi ́c, Mandelbaum, and

Mom ̌cilovi ́c (2004) ; Mandelbaum and Momcilovic (2012) ; Zeltyn

and Mandelbaum (2005) . The mean and variance of these fluid

and diffusion models can be used as Gaussian approximations of

the underyling stochastic process in the risk measure formulation.

Using the same formulas, one can also derive approximations to

the risk measures for more general queueing models. Although we

do not consider these queueing models in this paper, it is perhaps

interesting to see if the Gaussian fluid and diffusion approxima-

tions help in providing good approximations for the risk measures

of the original queueing model. 

5. Conclusions and future work 

We have analyzed the problem of staffing queueing systems

with risk measures. We have shown that many of the traditional

staffing procedures like square root staffing and the modified of-

fered load procedure can be derived from some of the standard

risk measures. This paper introduces the concept of risk mea-

sures to the queueing theory community and shows how they

can be relevant, especially in the context of healthcare systems.

One extension worth pursing, is to extend our analysis to a multi-

dimensional setting. To pursue this requires extensions of the ap-

proximations of the queueing systems to multi-dimensional set-

tings and also extending the notion of risk measures to a multi-

dimensional setting. Some progress has been made on the risk

measure side see for example ( Klyman, 2011 ). It would be of par-

ticular interest to apply it to variants of the Erlang-R model of

Yom-Tov and Mandelbaum (2014) . Moreover, it is also possible to

analyze many other risk measures that are not presented in this

work, see for example the list of risk measures in Cheridito and

Li (20 08) ; 20 09 ). Lastly, the concept of a conditional risk measure

has been developed recently in the work of Detlefsen and Scandolo

(2005) and these types of risk measures are worth study given new

applications such as queueing theory. 

Another area of interest is to use the fluid and diffusion lim-

its of Mandelbaum and Momcilovic (2012) to approximate the

risk measure performance of more general queueing systems. This

would allow managers to approximate risk measures for more gen-

eral systems that model reality well. Another extension would be

to construct risk measure approximations for the single server

queue as well. In the stationary case, this analysis would in-

volve the geometric distribution. Like the Chen–Stein theorem and

Stein’s lemma, the geometric distribution also has a characterizing

operator and it is of the form 

A f (k ) = (1 − p) · ( f (k + 1) − f (k ) ) − p · f (k ) + p · f (0) . (5.61)

The same analysis used earlier can also be used to calculate risk

measures for the single server queueing model and yield perfor-

mance measures for managers with different risk profiles. 
cknowledgments 
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ppendix A 

.1. Proofs of results 

roof of Proposition 3.5. For the Functional Value at Risk, we

ave that 

 @ R (Q, ε) = inf { y | P { (Q − k ) + ≤ y } ≥ ε} (6.62)

 inf { y | P { Q ≤ y + k } ≥ ε} (6.63)

 inf { y | �(q, y + k ) ≥ ε} (6.64)

 �
−1 

(q, ε, k ) . (6.65)

or the Average Value at Risk, we first let νε = V @ R ((Q − k ) + , ε)

nd thus we obtain the following 

V @ R (Q, ε) = E[(Q − k ) + | (Q − k ) + > νε] (6.66)

= 

E[(Q − k ) + · { (Q − k ) + > νε} ] 
P ((Q − k ) + > νε ) 

(6.67)

= 

E[(Q − k ) + · { Q > νε + k } ] 
P (Q > νε + k ) 

(6.68)

= 

E[(Q − k ) · { Q > k } · { Q > νε + k } ] 
P (Q > νε + k ) 

(6.69)

= 

E[(Q − k ) · { Q > νε + k } ] 
�(q, νε + k ) 

(6.70)

= 

E[ Q · { Q > νε + k } ] − k · E[ { Q > νε + k } ] 
�(q, νε + k ) 

(6.71)

= 

q · �(q, νε + k − 1) − k · �(q, νε + k ) 

�(q, νε + k ) 
. (6.72)

For the Mean-Variance Risk, we just need to compute the mean

nd variance of the function (Q − k ) + . 

ean − Variance ((Q − k ) + , γ , p) = E[(Q − k ) + ] 

+ γ · Var [(Q − k ) + ] (6.73)

= q · �(q, k − 1) − k · �(q, k ) + γ · q (6.74)

[(Q − k ) + ] = E[(Q − k ) · { Q > k } ] 
= E[ Q · { Q > k } ] − k · E[ { Q > k } ] 
= q · �(q, k − 1) − k · �(q, k ) 

ar [(Q − k ) + ] = E[((Q − k ) + ) 2 ] − E[(Q − k ) + ] 2 

= E[(Q 

2 − 2 · Q · k + k 2 ) · { Q > k } ] − E[(Q − k ) + ] 2 

= q 2 · �(q, k − 2) + q · �(q, k − 1) 

− 2 · k · q · �(q, k − 1) + k 2 · �(q, k ) 

− ( q · �(q, k − 1) − k · �(q, k ) ) 

= q 2 · �(q, k − 2) + q · �(q, k − 1) 
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C  

C  

D  

E  

E  
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J  

 

J  

J  

K  

K

K  

 

L  
− 2 · k · q · �(q, k − 1) + k 2 · �(q, k ) 

−q 2 · �2 (q, k − 1) − k 2 · �2 (q, k ) 

+ 2 · q · k · �(q, k − 1) · �(q, k ) 

Lastly, for the functional entropic risk measure, we have that 

ntropic = 

1 

γ
log 

(
E [ e −γ ·(Q−k ) + ] 

)
(6.75) 

= 

1 

γ
log 

( 

k −1 ∑ 

m =0 

e −γ ·(m −k ) + · q m 

m ! 
· e −q + 

∞ ∑ 

m = k 
e −γ ·(m −k ) + · q m 

m ! 
· e −q 

) 

(6.76) 

= 

1 

γ
log 

( 

k −1 ∑ 

m =0 

q m 

m ! 
· e −q + 

∞ ∑ 

m = k 
e −γ ·(m −k ) + · q m 

m ! 
· e −q 

) 

(6.77) 

= 

1 

γ
log 

( 

�(q, k ) + 

∞ ∑ 

m = k 
e −γ ·(m −k ) + · q m 

m ! 
· e −q 

) 

(6.78) 

= 

1 

γ
log 

( 

�(q, k ) + e γ ·k ·
∞ ∑ 

m = k 
e −γ ·m · q m 

m ! 
· e −q 

) 

(6.79) 

= 

1 

γ
log 

(
�(q, k ) + e γ ·k · �(e −γ · q, k ) 

)
(6.80) 

For the terms involving the function f (Q ) = (k − Q ) + , we can

se the same type of analysis as above. We do not derive these

eparately for brevity. �

roof of Proposition 4.5.. We will provide proof of the all of the

erms that involve the function (Q − k ) + and not the terms involv-

ng (k − Q ) + since the terms involving (k − Q ) + can be derived in

 similar manner. We define the functional Value at Risk as: 

 V @ r( f (Q ) , ε) = inf { y : P { f (Q ) ≤ y } ≥ ε} (6.81)

here f (Q ) = (Q − k ) + . 
Using GVA as our approximation for the queueing dynamics and

f (Q ) = (Q − k ) + , we have that 

 V @ r( f (Q ) , ε) = inf 
{

y : P 
{
(Q − k ) + ≤ y 

}
≥ ε

}
= inf 

{
y : P 

{√ 

v · (X − χ) + ≤ y 
}

≥ ε
}

= inf 

{
y : P 

{
(X − χ) + ≤ y √ 

v 

}
≥ ε

}

= inf 

{
y : P 

{
X − χ ≤ y √ 

v 

}
≥ ε

}

= inf 

{
y : �

(
χ + 

y √ 

v 

)
≥ ε

}

= inf 

{
y : �

(
k − q √ 

v 
+ 

y √ 

v 

)
≥ ε

}

= inf 

{
y : �

(
k − q + y √ 

v 

)
≥ ε

}
. 

ow by inversion of the cdf, we finally get that 

 V @ r((Q − k ) + , ε) = k − q + 

√ 

v · �−1 (ε) . 

hich completes the proof for the functional value at risk. 

Now for the AV@R we have that 
[(Q − k ) + | (Q − k ) + > νε] = E[(Q − k ) + | Q > νε + k ] 

= 

E[(Q − k ) + · { Q > νε + k } ] 
P (Q > νε + k ) 

= 

√ 

v · E 

[(
X − k −q √ 

v 

)+ 
· { √ 

v · X > νε + k − q } 
]

�
(

νε+ k −q √ 

v 

)
= 

√ 

v · E 
[
( X − χk ) 

+ · { X > χk,νε
} ]

�
(
χk,νε

)
= 

√ 

v · E 
[
( X − χk ) · { X > χk } · { X > χk,νε

} ]
�

(
χk,νε

)
= 

√ 

v ·
(
ϕ(χk,νε

) − χk,νε
· �

(
χk,νε

))
�

(
χk,νε

)
= νε − k + 

√ 

v · ϕ(χk,νε
) 

�
(
χk,νε

)
For the functional Mean-Variance risk measure it suffices to

ook at the paper of Pender (2014d) . 

Lastly, for the functional entropic risk measure, we have that 

ntropic = 

1 

γ
log 

(
E 

[
e −γ ·(Q−k ) + 

])
(6.82) 

= 

1 

γ
log 

(
E 

[
e −γ ·√ 

v ·(X−χ) + 
])

(6.83) 

= 

1 

γ
log 

(
�(χ) + 

∫ ∞ 

χ
e −γ ·√ 

v ·(x −χ) · ϕ(x ) dx 

)
(6.84) 

= 

1 

γ
log 

(
�(χ) + e γ ·√ 

v ·χ
∫ ∞ 

χ
e −γ ·√ 

v ·x · ϕ(x ) dx 

)
(6.85) 

= 

1 

γ
log 

(
�(χ) + e γ ·√ 

v ·χ−γ ·v / 2 · �(χ + γ · √ 

v ) 
)
. (6.86) 

�
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