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a b s t r a c t

In this paper, we develop a new approximation for nonstationary multiserver queues with abandon-
ment. Our method uses the Poisson–Charlier polynomials, which are a discrete orthogonal polynomial
sequence that is orthogonal with respect to the Poisson distribution. We show that by appealing to the
Poisson–Charlier polynomials that we can estimate the mean, variance, and probability of delay of our
nonstationary queueing system with good accuracy. Lastly, we provide a numerical example that illus-
trates that our approximations are effective.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Many real time service processes can be modeled using non-
stationary queueing models. Some of the most prevalent appli-
cations of nonstationary queueing models include but are not
limited to telecommunication networks, healthcare systems, call
centers, hospitality networks, airline reservations, and transporta-
tion systems. See for example the papers of [1,3,4]. Healthcare sys-
tems in particular often are subject to nonstationary dynamics that
depends on the time of day and the state of the system. In fact,mass
casualty events and large scale accidents, changes in demand, and
the availability of nurses and beds are just some of the many ways
that healthcare systems can experience transient and nonstation-
ary dynamics.

Fluid and diffusion limit theorems are popular tools to ana-
lyze nonstationary queueing systems. Indeed authors of [8] proved
fluid and diffusion limit theorems for these nonstationary systems
when the processes are Markovian and [7] proved fluid and diffu-
sion limit theorems when the service and abandonment distribu-
tions are non-exponential. However, as pointed out by [6], these
limit theorems are not valid when the arrival rate or the number of
servers is not large. Thus, newmethodsmust be developed in order
to estimate the nonstationary dynamics of queues with abandon-
ment.

As the model that we consider is Markovian, we exploit
the functional Kolmogorov forward equations for the queueing

E-mail address: jjp274@cornell.edu.

http://dx.doi.org/10.1016/j.orl.2014.05.001
0167-6377/© 2014 Elsevier B.V. All rights reserved.
process. Like [16] or [15], we encounter difficulties from the for-
ward equations since the differential equations are not a closed
system. This definition of closed should not be confused with a
closed queueing process with no external arrivals. When a dynam-
ical system is not closed, this implies that the forward equations
for the nth moment cannot be written in terms of functions of the
nth moment and lower order moments, see for example [13] for
a mathematical definition. However, there are three exceptions to
when the dynamics of the multiserver queue with abandonment
is a closed dynamical system. They are the infinite server, a no-
server queue, or when the mean service rate is equal to the mean
abandonment rate. Thus, it is necessary to prescribe an appropri-
ate surrogate distribution for the queue length process in order to
close the forward equations, which is non-trivial for systems with
abandonment.

Our new approach to approximate the dynamics of the queue-
ing process is to expand the queue length process in terms
of a truncated sequence of Poisson–Charlier polynomials. This
method is unlike the methods of [9,10,14,13] since we use a
discrete orthogonal polynomial sequence, which is more natural
for approximating the discrete queueing process. Moreover, the
Poisson–Charlier polynomials are orthogonal with respect to the
Poisson distribution. Using a polynomial sequence that is related
to the Poisson distribution is also natural because in the nonsta-
tionary setting when the queueing process is an infinite server
queue or a birth–death process with a deterministic birth rate
and a linear death rate, the distribution is a Poisson distribution
that changes dynamically through time. Thus, by using the Pois-
son–Charlier polynomials, we preserve the discrete nature of the
queueing process, while being able to provide accurate estimates
for various performance measures.

http://dx.doi.org/10.1016/j.orl.2014.05.001
http://www.elsevier.com/locate/orl
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2. The nonstationary queueing model

In this section we first consider the nonstationary Erlang-A
queue, which is known as the Mt/Mt/ct + Mt queue. In the work
of Mandelbaum et al. [8], they show that the Erlang-A queueing
process Q ≡ {Q (t)|t ≥ 0} can be represented by the following
stochastic, time changed integral equation:

Q (t) = Q (0) + Π1

 t

0
λ(s)ds


− Π2

 t

0
µ · (Q (s) ∧ c(s))ds


− Π3

 t

0
β · (Q (s) − c(s))+ds


,

where Πi ≡ {Πi(t)|t ≥ 0} for i = 1, 2, 3 are i.i.d. standard
(rate 1) Poisson processes. Deterministic and random time changes
easily make the three unit rate Poisson processes into counting
processes that keep track of the arrivals, service departures, and
abandonments respectively.

The Erlang-A model is not only an important model to study
because of its ability to approximatemany service systems, but also
it is a special case of a Markovian service network. Like in the work
of [8], this means that we can construct an associated, scaled or
uniformly accelerated queueing process where the new arrival rate
function is η · λ and the new number of servers is η · c for some
scale factor η > 0. Taking the following pointwise limits gives us
the fluid models of [8], where convergence is with respect to the
space D[0, ∞) with the J1 topology, i.e.

lim
η→∞

Q η

η
= q a.s. u.o.c

where the deterministic process q, the fluid mean, is governed by
the following one dimensional dynamical system:

•

q= λ − µ · (q ∧ c) − β · (q − c)+. (1)

If we subtract the fluid limit and rescale we obtain the diffusion
limits of [8] i.e.

lim
η→∞

√
η ·


Q η

η
− q


d
= Q̂ .

Moreover, as pointed out in [8], if the set of time points A

A ≡ {t | q(t) = c(t)}

has measure zero, then Q̂ is a Gaussian diffusion process whose
variance combines with the fluid mean to form the following two-
dimensional dynamical system:
•

q= λ − µ · (q ∧ c) − β · (q − c)+
•

v = λ + µ · (q ∧ c) + β · (q − c)+ − 2 · µ · v · {q < c}
− 2 · β · v · {q > c}

where {q < c} denotes an indicator function that equals one if the
statement is true i.e. if q < c , and zero if the statement is false.

As noted in [9], the fluid and diffusion limits provide good
estimates of the performance of the queueing process when the
rates are large and the set A has measure zero. However, there are
many practical reasons why the set A should not have measure
zero. From a fluid optimal control perspective, often the optimal
staffing level is when the number of servers is equal to the fluid
limit, see for example [3]. Moreover, in some service settings such
as a moderate sized hospital, it is not clear that the rates should be
very large either. This inaccuracy of the fluid and diffusion limits,
motivated [9] to explore alternativemethods that can approximate
the performance of the queueing model in a large or small rate
regime.
2.1. Functional Kolmogorov forward equations

Our approach to studying the Erlang-A model is to use the
functional Kolmogorov forward equations. The functional version
of the forward equations for the Mt/Mt/ct + Mt queue has the
following form:
•

E [f (Q )] = λ(t) · E [f (Q + 1) − f (Q )] + µ(t)
· E [(Q ∧ c) · (f (Q − 1) − f (Q ))]
+ β(t) · E


(Q − c)+ · (f (Q − 1) − f (Q ))


,

for all appropriate functions f whose expectations arewell defined.
For notational convenience we suppress the time dependence of
λ, µ, β, c. Moreover, we use the ‘‘•’’ notation to denote its time
derivative i.e.
•

E [f (Q )] ≡
d
dt

E [f (Q (t))] .

For special cases of f such as Q , (Q − E[Q ])2, we obtain the
following set of cumulantmoment, Kolmogorov forward equations
for the mean and variance as:
•

E [Q ] = λ − µ · E[Q ∧ c] − β · E

(Q − c)+


•

Var [Q ] = λ + µ · E [Q ∧ c] + β · E

(Q − c)+


− 2


µ · Cov [Q ,Q ∧ c] + β · Cov


Q , (Q − c)+


.

Although it appears that we have exact formulas for the mean
and variance of the forward equations, one must observe that
in order to compute the expectation and covariance terms, we
need to know the true distribution of the queue length process.
However, we do not know the distribution of the queue length
process a priori. This unknown distributionmotivated [9,10,14,13]
to approximate the queueing process by a surrogate distribution.
However, their approachwasmotivated by fluid anddiffusion limit
theorems and use continuous surrogate distributions that have
mass on the entire real line and do not capture the discrete nature
of the queueing process.

2.2. Ineffectiveness of the Poisson surrogate distribution

The first discrete distribution that ariseswhen consideringmul-
tiserver queues is the Poisson distribution. The Poisson distribu-
tion is quite natural since it is the distribution of an infinite server
queue, even in the nonstationary setting. In [2], they use the prop-
erties of the Poisson arrival process and exploit Poisson random
measures to show that the Mt/G/∞ queue Q∞(t), has a Poisson
distribution with time varying rate q∞(t). The exact analysis of the
infinite server queue is often useful since it represents the dynam-
ics of the queueing process if there was an unlimited amount of
resources to satisfy the demand process. As observed in [2], the
mean of the queue length process q∞(t) has the following repre-
sentation:

q∞(t) ≡ E[Q∞(t)] =

 t

−∞

G(t − u)λ(u)du = E
 t

t−S
λ(u)du


= E[λ(t − Se)] · E[S]

where S represents a service time with distribution G, G = 1 −

G(t) = P(S > t), and Se is a random variable with distribution that
follows the stationary excess of residual-lifetime cdf Ge, defined by

Ge(t) ≡ P(Se < t) =
1

E[S]

 t

0
G(u)du, t ≥ 0.

Thus, our first idea is to use a Poisson distribution to approxi-
mate the dynamics of the queueing process. This is equivalent to
projecting our queueing process onto a birth–death process with
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Fig. 1. Mean (Left). Variance (Right). λ = 25 + 5 · sin(t), µ = 1, β = 0.5, T = 24, q(0) = 1.
a nonstationary and deterministic arrival rate and a linear death
rate. This is equivalent to

Q (t)
D
≈ Poisson(q(t)) (2)

for all t ≥ 0, where {q(t)|t ≥ 0} is some one-dimensional dy-
namical system. This Poisson approximation for the queue length
process leads us to our first theorem.

Theorem 2.1. The rate functions for the mean of the functional
forward equations have the following closed form expressions when
queue length distribution is given by Eq. (2)

E [(Q ∧ c)] = q − q · 0(c − 1, q) + c · 0(c, q) (3)

E

(Q − c)+


= q · 0(c − 1, q) − c · 0(c, q). (4)

Remark 2.2. It is important to mention that we do not consider
the functional forward equations for the variancewhenwe assume
that the queue length distribution is Poisson. This is because the
Poisson distribution is characterized by its mean and all cumulant
moments of the Poisson are equal to its mean. Thus, the variance
is identical to the mean.
Proof. To prove this result, we must show that under the Poisson
(q(t)) assumption, that the rate functions of the mean satisfy the
closed form expressions of Eqs. (3) and (4). Before we prove the re-
sults, we provide a lemma that shows that the tail distribution of
a Poisson distribution can be expressed in terms of the incomplete
gamma function.

Lemma 2.3.

0(c, x) =

∞
m=c+1

e−x
·
xm

m!
=

1
0(c)

 x

0
e−yyc−1dy

0(c, x) =

c
m=0

e−x
·
xm

m!
=

1
0(c)


∞

x
e−yyc−1dy.

Proof. See [5]. �

Now to complete the proof of the theorem, we have for the ser-
vice rate function that

E [(Q ∧ c)] = E[Q ] − E

(Q − c)+


= q − E [(Q − c) · {Q ≥ c}]

= q −

∞
m=c+1

m · e−q
·
qm

m!
+ c ·

∞
m=c+1

e−q
·
qm

m!

= q − q ·

∞
m=c

e−q
·
qm

m!
+ c · 0(c, q(t))

= q · 0(c − 1, q(t)) + c · 0(c, q(t)).
Moreover, for the abandonment rate function, we have that

E

(Q − c)+


= E[Q ] − E [(Q ∧ c)]

= q − q · 0(c − 1, q(t)) − c · 0(c, q(t))
= q · 0(c − 1, q(t)) − c · 0(c, q(t)). �

We see on the left of Fig. 1 that the fluid limit is doing a good
job of estimating the mean performance. However, on the right of
Fig. 1 we see that the diffusion limit is not doing well at estimating
the performance of the queueing system. Moreover, we see that
the diffusion limit is the most inaccurate when the fluid limit is
near the number of servers i.e. q(t) ≈ c(t). We also see that the
Poisson approximation is also doing well for the mean on the left
of Fig. 1, but fails for the variance on the right of Fig. 1. Thus, we are
led to find a better approximation for the queueing process that
is also centered around the Poisson process and this leads to the
Poisson–Charlier polynomials.

3. The Poisson–Charlier approximation

In this section, we describe how to use Poisson–Charlier poly-
nomials in conjunction with the functional forward equations in
order to construct approximations for our nonstationary queue-
ing processes. The Poisson–Charlier polynomials are an orthogonal
polynomial sequence with respect to the Poisson distribution with
rate α i.e.

φ(α, k) = e−α αk

k!
k = 0, 1, 2, . . . .

As a result, the Poisson–Charlier polynomials solve the following
recurrence relation:

Cn+1(k, α) = (k − n − α) · Cn(k, α) − n · α · Cn−1(k, α).

The first three Poisson–Charlier polynomials are defined as

C0(k, α) = 1
C1(k, α) = k − α

C2(k, α) = k2 − 2 · k · α + α2
− k.

Now suppose that we have a function f (k), which is defined on the
integers and satisfies the inequality
∞
k=0

f 2(k)φ(k, α) < ∞, for some α > 0.

Thenwehave the following expansion in terms of Poisson–Charlier
polynomials in the Hilbert space l2(N, φ(α, k)).
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Proposition 3.1. Any function f (k) ∈ l2(N, φ(α, k)) can be ex-
panded into a Poisson–Charlier series i.e.

f (k) =

∞
m=0

qm · Cm(k, α) (5)

where qm =


∞

k=0 f (k)Cm(k, α)φ(k, α).

Proof. See [11]. �

Remark 3.2. This expansion can also be extended to the case
where the independent variable of the function f (k) is a stochastic
process and also depends on time itself.

Inspired by the expansion of the function f (k) on the integers,
we can apply this expansion to our queueing process Q (t) where

Q (t) d
=

∞
m=0

qm(t) · Cm(k, α). (6)

Moreover, if we only use the first n polynomials to approximate
our queueing process, we have that

Q (n)(t) d
=

n
m=0

qm(t) · Cm(k, α). (7)

3.1. First order expansion

The first order expansion of our method uses the first polyno-
mial of the Poisson–Charlier family. The first polynomials is the
identity and yields a deterministic constant i.e.

Q (0)(t) d
= q0(t) ≡ q(t).

Using the deterministic function for as an approximation for the
queue length leads us to our first theorem.

Theorem 3.3. By substituting q(t) into the functional Kolmogorov
forward equations for the mean of the queue length process, we have
that
•

q= λ − µ · (q ∧ c) − β · (q − c)+.

Proof.
•

E [Q ] =
•

q

= λ − µ · E[Q ∧ c] − β · E

(Q − c)+


= λ − µ · E[q ∧ c] − β · E


(q − c)+


= λ − µ · (q ∧ c) − β · (q − c)+. �

The resulting process is the same as the fluid limit of the
queueing process of [8] and the deterministicmean approximation
(DMA) of [10]. It was shown in [10] that the DMA estimates the
mean of the queue length quite well when the number of servers
is large and the queue is not critically loaded. However, the DMA
does not estimate the mean well when the number of servers is
small or when the queue is critically loaded. Furthermore, DMA
gives no insight into the variations of the queueing process since
it implicitly assumes that these variations are zero. As a result, we
are led to another approximation that is not purely deterministic
and incorporates the stochastic behavior of the queueing process
into the estimation of the functional forward equations.

3.2. Second order Poisson–Charlier expansion

In this section, we add an additional Poisson–Charlier polyno-
mial to approximate the queue length distribution. This second
approximationdeveloped is called the SecondOrder Poisson–Charlier
Expansion (SOPCE). The SOPCE is constructed by assuming that
Q ≡ {Q (t)|t ≥ 0} such that

Q (t) d
= q(t) +


v(t) ·

K − α
√

α
(8)

for all t ≥ 0, where {q(t), v(t)|t ≥ 0} is some two-dimensional,
deterministic, dynamical system where the v process is always
positive and K is a Poisson random variable with rate α. This new
approximation for the queue length distribution is based on the
Poisson distribution, however, it allows for a mean and variance
that are not identical. This approximation also leads us to our next
theorem using the functional forward equations.

Theorem 3.4. The rate functions for the mean and variance of
the functional forward equations have the following closed form
expressions when queue length distribution is given by Eq. (8)

E

(Q − c)+


=

√
v

√
α

· (α · 0(⌈ξ⌉ − 1, α) − ξ · 0(⌈ξ⌉, α))

E[Q ∧ c] = q −

√
v

√
α

· (α · 0(⌈ξ⌉ − 1, α) − ξ · 0(⌈ξ⌉, α))

Cov

Q , (Q − c)+


= v · α · 0(⌈ξ⌉ − 2, α) + v · 0(⌈ξ⌉ − 1, α)

− (α + ξ) · v · 0(⌈ξ⌉ − 1, α) + v · ξ · 0(⌈ξ⌉, α)

Cov [Q ,Q ∧ c] = v − v · α · 0(⌈ξ⌉ − 2, α) − v · 0(⌈ξ⌉ − 1, α)

+ (α + ξ) · v · 0(⌈ξ⌉ − 1, α) − v · ξ · 0(⌈ξ⌉, α),

ξ = α +
√

α ·
c − q
√

v
.

Proof. It suffices to show the proof for the terms of the max
function (Q − c)+ since we have that (Q − c)+ = Q − Q ∧ c.

E

(Q − c)+


= E


q +

√
v ·

K − α
√

α
− c

+


=

√
v

√
α

· E

(K − ξ)+


=

√
v

√
α

·

∞
m=⌈ξ⌉

(m − ξ) · e−α
·
αm

m!

=

√
v

√
α

·

∞
m=⌈ξ⌉

m · e−α
·
αm

m!

−

√
v

√
α

·

∞
m=⌈ξ⌉

ξ · e−α
·
αm

m!

=

√
v

√
α

· (α · 0(⌈ξ⌉ − 1, α) − ξ · 0(⌈ξ⌉, α))

Cov

Q , (Q − c)+


= E


Q · (Q − c)+


− E[Q ] · E


(Q − c)+


=

v

α
·

∞
m=⌈ξ⌉

(m − α) · (m − ξ) · e−α
·
αm

m!

=
v

α
·

∞
m=⌈ξ⌉

(m2
− (α + ξ) · m + α · ξ) · e−α

·
αm

m!

=
v

α
·

∞
m=⌈ξ⌉

(m2
− (α + ξ) · m + α · ξ) · e−α

·
αm

m!

= v · α · 0(⌈ξ⌉ − 2, α) + v · 0(⌈ξ⌉ − 1, α)

− (α + ξ) · v · 0(⌈ξ⌉ − 1, α) + v · ξ · 0(⌈ξ⌉, α). �
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Fig. 2. Mean (Left). Variance (Right). λ = 25 + 5 · sin(t), µ = 1, β = 0.5, T = 24, q(0) = 1.
Fig. 3. Poisson delay probability (Left). Poisson–Charlier delay probability (Right). λ = 25 + 5 · sin(t), µ = 1, β = 0.5, T = 24, q(0) = 1.
On the left of Fig. 2 we see that the second order Poisson–
Charlier approximation is also approximating the mean of the
queueing process very well. Moreover, on the right of the Fig. 2
we see that the SOPCE is also estimating the variance of the queue-
ing process accurately. This is because we are able to separate the
mean and variance of the distribution unlike the Poisson distribu-
tion, which has the same distribution and is defined only through
its mean. Thus, the SOPCE is the approximation that is working
quite well.

3.3. Probability of delay

In this section, we derive a simple approximation for the delay
probability of the queueing process using the SOPCE method. The
delay probability can be approximated by

P(Q ≥ c) = P(K ≥ ξ)

=

∞
m=⌈ξ⌉

e−α
·
αm

m!

= 0(⌈ξ⌉, α).

On the left of Fig. 3we see that the Poisson approximationdoes a
decent job of approximating the delay probability, however, on the
right of Fig. 3 we see that the SOPCE does a better job of estimating
the delay probability of the queueing process. This is also because
we are able to separate the mean and variance of the distribution
unlike the Poisson distribution, which has the same distribution
and is defined only through its mean. Thus, the SOPCE performs
better than the Poisson surrogate distribution.
4. Conclusion and contributions

We have shown that the Poisson–Charlier polynomials can be
used to generate approximations for the dynamics of nonstation-
ary queueing systems. We have illustrated that our method is able
to estimate the mean, variance, and probability of delay with good
accuracy. Although we have applied this theory to nonstation-
ary queueing processes, our method also generally applies to any
Markovian birth–death process such as nonstationary loss queues
where the functional forward equations have the following repre-
sentation like in [12]

•

E [f (Q )] = λ(t) · E [(f (Q + 1) − f (Q )) · {Q < c + k}]
+ µ(t) · E [(Q ∧ c) · (f (Q − 1) − f (Q ))]
+ β(t) · E


(Q − c)+ · (f (Q − 1) − f (Q ))


.

Moreover, our method can be applied to nonstationary stochas-
tic epidemic systems where the forward equations are also not
a closed system. Lastly, the use of the Poisson distribution is not
unique. One can also apply the same method using the negative
binomial distribution where the Meixner polynomials are espe-
cially relevant.We hope to explore theMeixner polynomials in the
infinite support setting and the Hahn and Racah polynomials for
birth–death processes with finite support. Lastly, we believe that
we can continue the expansion method to study other cumulant
moments such as the skewness and kurtosis, however, this can eas-
ily be continued via the method of [10].
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