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Abstract: This paper considers optimal staffing in service centers. We construct models for profit and cost centers using dynamic
rate queues. To allow for practical optimal controls, we approximate the queueing process using a Gaussian random variable with
equal mean and variance. We then appeal to the Pontryagin’s maximum principle to derive a closed form square root staffing
(SRS) rule for optimal staffing. Unlike most traditional SRS formulas, the main parameter in our formula is not the probability of
delay but rather a cost-to-benefit ratio that depends on the shadow price. We show that the delay experienced by customers can
be interpreted in terms of this ratio. Throughout the article, we provide theoretical support of our analysis and conduct extensive
numerical experiments to reinforce our findings. To this end, various scenarios are considered to evaluate the change in the staffing
levels as the cost-to-benefit ratio changes. We also assess the change in the service grade and the effects of a service-level agreement
constraint. Our analysis indicates that the variation in the ratio of customer abandonment over service rate particularly influences
staffing levels and can lead to drastically different policies between profit and cost service centers. Our main contribution is the
introduction of new analysis and managerial insights into the nonstationary optimal staffing of service centers, especially when the
objective is to maximize profitability. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 615–630, 2017
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1. INTRODUCTION

Managers of service centers are constantly challenged with
the problem of optimal staffing. In service cost centers, such
as most call centers [33], managers are responsible for find-
ing the right number of servers to control expenses [59].
In service profit centers, such as clinical departments in the
hospitals [16, 19], managers are responsible for both the rev-
enues and the expenses, which makes profitability a key
performance measure [44, 59].

This article is motivated by the problem of a profit cen-
ter manager who is trying to find optimal staffing levels to
maximize profitability given some service-level agreement
(SLA). It is assumed that the center’s queueing dynam-
ics are characterized by a nonstationary Erlang-A queue
(M(t)/M/s(t) + M). The staffing solution we propose fol-
lows the square root staffing (SRS) rule [14]. A general
formula of this rule is s = q + β

√
q, where s is the number

of servers, q is the offered load (or resource demand), and

Correspondence to: Jerome Niyirora (jerome.niyirora
@sunyit.edu)

β is the service grade that typically depends on the proba-
bility of delay [20, 22]. This rule is commonly proposed for
staffing service systems such as call centers [18, 24, 28, 58]
and healthcare units [26, 60].

1.1. Literature Review

A problem similar to that of ours is considered for call
centers [24] and for Emergency Departments (EDs) [53]. In
both [24] and [53], variational calculus is employed to find the
optimal number of servers via Lagrangian mechanics. Addi-
tionally, in [24], a fluid version of the modified offered load
is proposed for SRS. In [1], a similar problem is considered,
but for stationary Erlang-A queueing systems. The authors
devise optimal staffing policies, under alternate SLAs, to
maximize profit in outsourced call centers. The proposed pol-
icy for the horizon-based SLA systems follows a SRS rule.
The optimal number of servers is found by searching for the
smallest integer that satisfies the model constraint. Similarly,
in [33], a stationary queueing system, M/M/s/B + M , is
analyzed and an algorithm is introduced to find the optimal
number of servers that maximizes profitability. In [34], profit
maximization is pursued under stationary and deterministic
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assumptions. Based on the optimal level for each period, a
schedule of optimal shifts is obtained using mathematical
programming techniques. In [25, 29], the same approach is
used.

Other papers pursue the cost minimization variation of
our problem. In [6], optimal staffing policies for call cen-
ters are devised where the manager’s goal is to minimize
both the delay and the staffing costs for Erlang-C (M/M/s)
queueing systems. Through asymptotic approximations, an
SRS rule is derived for optimal staffing with the service
grade being a function of the ratio of delay over staffing
costs. A similar problem for stationary Erlang-A queueing
systems is discussed in [39]. In [52], appropriate staffing
levels for an M/M/s/B queueing system are sought on half-
hour intervals to minimize staffing, time in the system, and
lost service costs. In [4], a constrained dynamic optimiza-
tion problem is considered to determine the optimal number
of permanent and temporary servers in call centers, given
the SLA. The objective is to minimize the time-average hir-
ing and opportunity costs. In [17], dynamic programming
with a finite horizon is applied to study optimal staffing in
call centers over multiple time periods where during each
period the arrival rate is assumed constant. The manager opti-
mizes staffing levels at the beginning of each period with the
goal of minimizing waiting and staffing costs. An admis-
sion control problem is considered in [32] for the stationary
Erlang-A queueing system and is analyzed as a Markov deci-
sion process and as a diffusion control problem (DCP). The
objective is to minimize infinite horizon costs associated
with customer abandonments, server idleness, and the turn-
ing away of customers. In [57], a DCP is also considered
but for a finite horizon problem where the queueing type is
G/M/n/B + GI and the objective is to minimize costs by
trading off blocking versus abandonment costs. The optimal
staffing decisions are made in discrete short time intervals
where the arrival rate is assumed to be constant. In [2], also
an admission control problem is considered but for multiclass
customer and for servers with different skills. The objective
is to minimize the expected costs of blocking, waiting, and
defection. A linear program is used to solve a corresponding
stochastic fluid approximation.

1.2. Contributions

Our article extends existing work on optimization of sta-
tionary queues (e.g., see [1, 6, 33, 39]) to address nonstation-
ary systems. Our model differs from DCP models that also
consider nonstationary queues [2, 57] in that our optimal con-
trol applies to the entire finite horizon planning period and the
manager does not have to make staffing decisions over dis-
crete time intervals. As a result, our optimal control approach
is less computationally intensive since staffing policies are
easily expressed in closed form.

The approach we propose resembles the Lagrangian
mechanics adopted in [24, 53]. A new feature in our model is a
Gaussian refinement for the queueing process to allow for the
formulation of a smooth control problem and the derivation
of practical staffing solutions. For our purposes, we appeal to
the Pontryagin’s maximum principle and are able to derive a
closed form SRS formula. The main parameter in the service
grade function of our formula is a cost-to-benefit ratio. We
show that staffing levels are not dictated by a preset prob-
ability of delay target but rather a fraction of the center’s
operating costs and expected revenues.

Overall our modeling approach allows for new analysis
and managerial insights into nonstationary optimal staffing
of service centers, especially when the objective is to maxi-
mize profitability. Throughout the article, we pair theoretical
analyses with extensive numerical experiments to illustrate
our findings.

1.3. Organization of the Article

In Section 2, we present our nonstationary Erlang-A queue-
ing model and also formulate the control problem. In this
section, the issues with existing fluid approximations are dis-
cussed and a Gaussian refinement is introduced. In Section
3, we establish optimal control theorems for both the profit
and cost centers. In Section 4, we provide managerial insights
into our optimal solutions, including the analysis of dynamic
solutions, the mean staffing, profitability, and intuitions into
the cost-to-benefit ratio. We provide concluding remarks in
Section 5. Finally, in the Appendix, we present the proofs of
the main theorems and a numerical integration algorithm of
our model.

2. QUEUEING MODEL AND CONTROL
PROBLEM

In this section, we describe our queueing model and the
control problem faced by the profit center manager. We start
by introducing the most frequent model notations used in
the article. Particular notations are introduced in respective
sections.

Notation Description

SLA Service-level agreement
SRS Square root staffing
s(t) Number of servers
q(t) Mean queue length
p(t) Shadow price
λ(t) Customer arrival rate
a Abandonment costs
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Notation Description

b Benefits
c Staffing costs
d Delay costs
T Planning period
� Cost-to-benefit ratio
μ Service rate
θ Abandonment rate
O Operating margin
X Penalty costs
ε Maximum allowable probability of

abandonment

2.1. Stochastic Queueing Model

A graphical view of a typical service center is portrayed
in Fig. 1 where it is assumed that the queueing dynamics are
characterized by a nonstationary Erlang-A.

Erlang-A models have received considerable attention in
the literature since they incorporate many natural features of
a service system but also because they are tractable. A nonsta-
tionary Erlang-A model incorporates time-varying customer
arrivals, which is a more realistic representation of a typi-
cal service system. Mathematically, a nonstationary Erlang-
A model can be written in terms of time-changed Poisson
processes, which makes the analysis more manageable. From
a sample path perspective, it is shown in [38] that the queue-
ing system process Q ≡ {Q(t)|t ≥ 0} is represented by the
following stochastic, time changed integral equation:

Q(t) = Q(0) + �1

(∫ t

0
λ(u)du

)

− �2

(∫ t

0
μ · (Q(u) ∧ s(u))du

)

− �3(

∫ t

0
θ · (Q(u) − s(u))+du),

Figure 1. A nonstationary Erlang-A model for a typical service
center.

where the ∧ symbol indicates minimum and x+ = max(x, 0).
Moreover, the parameters μ and θ are service and aban-
donment rates, respectively. The �i ≡ {�i(t)|t ≥ 0} for
i = 1, 2, 3 are i.i.d. standard (rate 1) Poisson processes.
The deterministic time change for �1 transforms it into a
non-homogeneous Poisson arrival process with rate λ(t) that
counts the customer arrivals. Subjecting �2 to a random time
change rate μ · (Q(t) ∧ s(t)), at time t, gives us a departure
process that counts the number of customers that complete
service. Here we assume that there are a deterministic number
of s(t) servers, at time t, and i.i.d. exponentially distributed
service times of mean 1/μ. Lastly, the random time change of
�3 gives us a counting process for the number of abandon-
ments from s(t) servers and i.i.d. exponentially distributed
abandonment times of mean 1/θ . When the mean number in
the system E[Q(t)] is less than the number of servers s(t)

or E[Q(t)] < s(t), we say that the system is underloaded.
Conversely, when E[Q(t)] > s(t), we say that the system is
overloaded. Finally, when E[Q(t)] = s(t), we say that the
system is critically loaded. It turns out that our sample path
representation also leads us to a Markovian queueing process
that obeys the following Kolmogorov forward equation for
the mean queue length.

•
E [Q(t)|Q(0) = 0] = λ(t) − μ · E[Q(t) ∧ s(t)]

− θ · E[(Q(t) − s(t))+] (2.1)

We use E to symbolize expectation and • to indicate the time
derivative. The functional forward equations for any continu-
ous and bounded function can be computed using the method
described in [13] and are given below as

•
E [f (Q(t))|Q(0) = 0]

= λ(t) · E[f (Q(t) + 1) − f (Q(t))]
+ μ · E[Q(t) ∧ s(t) · (f (Q(t) − 1) − f (Q(t)))]
+ θ · E[(Q(t) − s(t))+ · (f (Q(t) − 1) − f (Q(t)))].

We should point out that, as observed in [5, 7], both the ser-
vice time and time-to-abandon distributions tend to be non-
exponential in service systems. But the exponential assump-
tion is necessary for mathematical tractability of dynamic
rate queues [21, 23, 24, 41, 42]. In practice, as long as the
squared coefficient of variation is not far from one, the expo-
nential assumption tends to work well [21]. Otherwise for
general nonstationary distributions, simulation based algo-
rithms may have to be used (e.g., see [10, 15]) or dynamic
programs that consider optimal staffing over discrete time
periods (e.g., see [2, 57]).

2.2. Optimal Control Problems

From the forward equations, we have that {Q(t)|t ≥ 0}
represents the total number of customers in the system (in
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the queue or service) at time t. The term E[Q(t) ∧ s(t)] ≡
E[min(Q(t), s(t))] is used to indicate the mean number of
customers in service while the term E[(Q(t) − s(t))+] ≡
E[max(0, Q(t)−s(t))] is used to represent the mean number
of customers in the queue. For a profit center, a fundamen-
tal managerial question is how to find the optimal number
of servers s(t) to maximize profitability. The corresponding
objective function ζ(s(t)) may be formulated as follows:

ζ(s(t)) = max
{s(t)≥0: 0≤t≤T }

∫ T

0
[r · μ · E[(Q(t) ∧ s(t)] − c · s(t)]dt

(2.2)

Here r > 0 and 0 ≤ c < r are revenue and staffing costs,
respectively. Equation (2.2) indicates that an optimal num-
ber of servers s(t) must be found to maximize the operating
net income obtained from the difference between the oper-
ating revenue, r · μ · E[(Q(t) ∧ s(t)], and staffing costs,
c ·s(t). It is natural for the manager to also aim at minimizing
waiting times, which ultimately translates into fewer cus-
tomers abandoning. Such quality control may be formulated
as follows:

∫ T

0
θ · E[(Q(t) − s(t))+]dt ≤ E (2.3)

where

E ≡ ε

∫ T

0
λ(t)dt (2.4)

and ε is the maximum allowable probability of abandon-
ment. This quality control is basically an isoperimetric
SLA constraint [23] that specifies that during the plan-
ning period [0, T ], the number of customers that abandon,∫ T

0 θ ·E[(Q(t) − s(t))+]dt , must be less or equal to the max-
imum allowable fraction of abandonments E . A complete
optimal control problem is presented next.

PROBLEM1 2.1: (Profit Model):

ζp(s(t))

= max
{s(t)≥0: 0≤t≤T }

∫ T

0
[r · μ · E[(Q(t) ∧ s(t)] − c · s(t)]dt

subject to

•
E [Q(t)] = λ(t) − μ · E[Q(t) ∧ s(t)]

− θ · E[(Q(t) − s(t))+]∫ T

0
θ · E[(Q(t) − s(t))+]dt ≤ E

For cost centers, where the managerial goal is to mini-
mize costs, a corresponding optimal control problem may be
formulated as

PROBLEM2 2.2: (Cost Model).

ζc(s(t)) = max
{s(t)≥0: 0≤t≤T }

−
∫ T

0
[(a · θ + d) · E[(Q(t) − s(t))+]

+ c · s(t)]dt

subject to

•
E [Q(t)] = λ(t) − μ · E[Q(t) ∧ s(t)]

− θ · E[(Q(t) − s(t))+]

where a ≥ 0 and d ≥ 0 are abandonment and delay costs,
respectively. SLA constraints are not necessary in Prob-
lem 2.2 since penalty costs for delay and abandonment are
assumed incorporated into a and d.

Both Problems 2.1 and 2.2 are not glaringly difficult, but
they pose non-trivial mathematical challenges. The main
issue is that the forward equations are neither a closed system
nor autonomous since the min (x∧y) and the max ((x − y)+)
terms are not explicit functions of the queueing process [46].
The same issue also applies to the objective and constraint
functions. The other issue, discussed in the sequel, relates to
the challenges of approximating the queueing process Q(t).

2.3. Approximating the Queueing Process

2.3.1. The Fluid Approach

The distribution of the queueing process Q(t) is essentially
unknown and intractable. One method of simplification com-
monly used to characterize Q(t) is the fluid limits based on
[38]. The basic idea is to scale both the arrival rate and the
number of servers by parameter η > 0 such that

lim
η→∞ sup

0≤t≤T

1

η
Qη(t) = q(t) a.s u.o.c. (2.5)

Here q(t) solves the following ordinary differential equation

•
q (t) = λ(t) − μ · (q(t) ∧ s(t)) − θ · (q(t) − s(t))+

This limit theorem, which approximates a stochastic queue
length process with a deterministic dynamical system,
allowed [24] to use variational calculus to find optimal
staffing levels in call centers and [53] to find optimal staffing
for EDs. One issue with fluid approximations of Q(t) is that
the Langrangian function is not differentiable everywhere
since it still contains the min and max functions. Thus, to find
optimal staffing levels, special methods are imperative such
as the Competing Lagrangians approach used in [24, 53].
Additionally, the Hamiltonian function H is a piecewise con-
cave function, which leads to boundary solutions also known
as bang-bang [8, 9, 54]. For example, in [24], the optimal
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staffing policy, s∗(t), indicates that the manager should either
staff no one or staff the system with the number of servers
equivalent to the number of customers currently in the sys-
tem, q(t). Implementing such solutions may be challenging
for the manager. In fact, it seems somewhat unreasonable for
the center to open or shut their doors when it is optimal to do
so since a few customers may have to be, purposely, subjected
to long waits. Moreover, switching costs may be prohibitive.

We will show in the sequel that by adding a stochastic
refinement to the fluid approximation of Q(t), one obtains
more practical staffing policies for service centers.

2.3.2. A Gaussian Refinement

In our pursuit of a refinement for the queue length process,
Q(t), we choose to use the infinite server queue as our moti-
vation. The infinite server queue is natural for modeling
multiserver systems that are lightly loaded or provide a high
quality of service. Perhaps the most important advantage of
studying the infinite server queue is that the M/G/∞ queue
is tractable, even when the arrival process is nonstationary.
In the nonstationary M t /G/∞ queue, we know from [11, 12]
that the queue length process has a Poisson distribution with
time varying rate q∞(t) as given by Eq. (2.6). The exact
analysis of the infinite server queue is often useful since it
represents the dynamics of the queueing process as if there
were an unlimited amount of resources to satisfy the demand
process. As observed in [11], the mean of the queue length
process q∞(t) has the following representation

q∞(t) ≡ E[Q∞(t)] (2.6)

=
∫ t

−∞
Ḡ(t − u)λ(u)du (2.7)

= E

[∫ t

t−S

λ(u)du

]
(2.8)

= E[λ(t − Se)] · E[S] (2.9)

where S represents a service time with distribution G, Ḡ =
1−G(t) = P(S > t), and Se is a random variable with distri-
bution that follows the stationary excess of residual-lifetime
cdf Ge, defined by

Ge(t) ≡ P(Se < t) = 1

E[S]
∫ t

0
Ḡ(u)du, t ≥ 0

It turns out that the Poisson distribution is also character-
ized by the fact that all of its cumulant moments are equal
to its mean. Thus, we have that the mean and variance of
the M t /G/∞ queue are equal to one another when initialized
with a Poisson distribution or at zero. This cumulant moment
property of the M t /G/∞ queue motivates our approximation

of the queue length Q(t) using a Gaussian random variable
with equal mean and variance such that

Q(t) ≈ q(t) + X · √
q(t) (2.10)

Here X is a standard Gaussian random variable with mean 0
and variance 1.

One important property that will be useful for calculating
the optimal control solution is the following derivative prop-
erty of min and max functions. From now on we disregard
the time dependence t to simplify notation.

LEMMA 2.3: Let Q be any random variable and s be a
deterministic function of time, then we have that

∂

∂s
E[Q ∧ s] = − ∂

∂s
E[(Q − s)+]

PROOF:

∂

∂s
E[Q ∧ s] = ∂

∂s
(E[Q] − E[(Q − s)+])

= − ∂

∂s
E[(Q − s)+] �

To compute the expectations in Lemma 2.3, we exploit the
Stein’s Lemma for Gaussian random variables [55].

Stein’s Lemma states the following:

LEMMA 2.4 (Stein’s lemma [55]): X is a standard Gauss-
ian random variable mean 0 and variance 1 if and only
if

E[X · f (X)] = E[f ′(X)]

for all generalized functions that satisfy E[f ′(X)] < ∞.

Using Lemma 2.4 we obtain the expectation of the min and
max functions as

E[(Q − s)+] = φ(χ) − χ · (χ) (2.11)

E[Q ∧ s] = q − φ(χ) + χ · (χ) (2.12)

where

φ(x) ≡ 1√
2π

e−x2/2, (x) ≡
∫ x

−∞
φ(y)dy,

(x) ≡ 1 − (x) =
∫ ∞

x

φ(y)dy

and

χ ≡ s − q√
q
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3. OPTIMAL CONTROL

Using the results in Eqs. (2.11) and (2.12) and the Pon-
tryagin’s maximum principle [51], we next present two
fundamental theorems of our optimal control model.

THEOREM 3.1 (Optimal control in a profit center): The opti-
mal control s∗ under the managerial goals of maximizing
profitability is given by

s∗ = q∗ + −1(1 − �) · √
q∗

where

� = c

μ · (r − p∗) + θ · (p∗ + x)

and the optimal queue dynamics q∗ and the shadow price p∗
conform to

•
q∗= λ − μ · q∗ − (μ − θ) · (χ · (χ) − φ(χ)) · √

q∗
•

p∗= (μ · (r − p∗) + θ · (p∗ + x)) ·
(

(χ) + φ(χ)

2
√

q∗

)

− μ · (r − p∗)

PROOF: see Proof of Theorem 3.1 in Appendix. �

THEOREM 3.2 (Optimal control in a cost center): The
optimal control s∗ under the managerial goals of minimizing
costs is given by

s∗ = q∗ + −1(1 − �) · √
q∗

where

� = c

d + θ · a + p∗ · (θ − μ)

and the optimal queue dynamics q∗ and the shadow price p∗
conform to

•
q∗= λ − μ · q∗ − (μ − θ) · (χ · (χ) − φ(χ)) · √

q∗
•

p∗= (d + θ · a + p∗ · (θ − μ)) ·
(

(χ) + φ(χ)

2
√

q∗

)

+ μ · p∗

PROOF: see Proof of Theorem 3.2 in Appendix. �

The algorithm for obtaining solutions in both Theorem
3.1 and 3.2 is given in Numerical Integration Algorithm in
Appendix. We next present managerial insights from our
model.

4. MANAGERIAL INSIGHTS

4.1. The Dynamics of the Optimal Control s∗

The optimal control s∗ is the recommended staffing level
to maximize profitability in a profit center (see Theorem 3.1)
or to minimize costs in a cost center (see Theorem 3.2). We
now let b represent the denominator of � in both Theorems
3.1 and 3.2 such that

� = c

b
(4.13)

and b > c. Operationally speaking, b can be interpreted as ben-
efits and c, as before, represents staffing costs. Accordingly,
we refer to � as the cost-to-benefit ratio. For a profit center,
b = μ · (r − p∗) + θ · (p∗ + x), as indicated in Theorem 3.1.
From the general theory of optimal control, p∗ is viewed as
the shadow price of one additional service unit or simply the
marginal cost rate of one additional server (e.g., see [23, 54]).
This means that μ · (r − p∗) is the difference of the revenue
r, from served customers, and the marginal cost p∗, for the
rendered service. Similarly, θ ·(p∗ +x) is the sum of the mar-
ginal cost p∗, for the forgone service, and the penalty cost x,
for abandoned customers. As illustrated in the next theorem,
a special case of θ = μ eliminates the shadow price p∗ from
staffing policy decisions.

THEOREM 4.1: (Exact Optimal Staffing Policy when
θ = μ): The optimal control policy when θ = μ is given
by

s∗ = �−1(q∗, 1 − �)

where �−1(q∗, 1 − �) is the inverse incomplete Gamma
function with parameters (q∗, 1−�). Moreover, we have that

� = c

μ · (r + x)

PROOF: The solution, when θ = μ, is exact since the
queue length distribution is known to be Poisson (see Proof
of Theorem 4.1 in Appendix). �

Figure 2 portrays the dynamics of optimal solutions for
both the cost and profit centers. In the special case of θ = μ,
both the profit and the cost models yield similar staffing poli-
cies. For the cases of θ �= μ, p∗ influences staffing solutions.
In some cases, p∗ induces b ≤ c, which leads to infeasible
solutions.

Figures 2a, 2c, and 2e correspond to the cost model with
the abandonment costs a held to zero and delay costs d varied.
Figures 2b, 2d, and 2f correspond to the profit model. In this
case, the maximum allowable probability of abandonment ε
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Figure 2. Optimal staffing when model parameters are varied and λ(t) = 100 + 20 · sin(t). [Color figure can be viewed at
wileyonlinelibrary.com.]

is set to 1, which means that the SLA constraint is not binding.
Given the ratios c / d and c / r in Fig. 2, it can be concluded
that more servers are affordable as the cost-to-benefit ratio
tends to zero.

To finalize this sub-section, we point to the improvement of
our solutions over the fluid approximations used in [24, 53].
For example, using the competing Lagrangian method in the
case of μ = θ , the maximum staffing level would have been

Naval Research Logistics DOI 10.1002/nav
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Figure 3. Planes of 1/� versus the meaning staffing s̄∗ when λ(t) = 100+20 ·sin(t). [Color figure can be viewed at wileyonlinelibrary.com.]

the offered-load, q;
•
q= λ − μq, meaning that the changes in

c / r would have no effect on the staffing levels. In contrast,
our solutions indicate that staffing levels can be increased, to
maximize profitability, as c / r decreases (see Fig. 2d).

4.2. Mean Staffing Analysis

The dynamic solutions in Fig. 2 do not allow for in-depth
analysis of the changes in staffing levels as the cost-to-benefit
ratio changes. In an attempt to examine such changes, we
analyze the evolution of the mean staffing levels by plotting
s̄∗ ≡ 1

T

∫ T

0 s∗dt against 1/� (see Fig. 3). In the cost model,
1/� represents the ratio of delay over staffing costs whereas
for the profit model 1/� represents the ratio of revenue over
staffing costs. As also observed in [6, 39], Fig. 3 confirms that
the mean staffing levels converge to particular values as 1/�

increases. But there is a clear difference in staffing policies
dictated by the ratio θ/μ and the type of model being con-
sidered (profit versus cost). For example, in the profit model,

when ε is binding, there is a minimum number of servers
required to ensure that the SLA constraint is satisfied (see
Fig. 3b for the truncated tail at the lower end of 1/�). For the
cost model, staffing policies are also influenced by the setting
of abandonment costs a versus that of the delay costs d. When
a > 0, it is expected that as θ/μ increases, also staffing levels
should increase to minimize abandonment costs (see Fig. 3d).
Likewise, it is expected that more servers would be needed
as θ/μ → 0, for the case of d > 0, to minimize delay costs.
What is remarkable for the latter case is that the increase in
θ/μ, as 1/� increases, has little impact on staffing levels (see
Fig. 3c).

4.3. Profitability Analysis

Hamiltonian functions in optimal control theory are gen-
erally interpreted as profit rates [54]. For our purposes, such
interpretation is natural for profit centers. Accordingly, from
Theorem 3.1, we obtain the following Hamiltonian function
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Figure 4. Planes of −1 versus O when λ(t) = 100 + 20 · sin(t), r = 100, and 0 < c < 100. [Color figure can be viewed at
wileyonlinelibrary.com.]

(see derivation in Derivation of the Hamiltonian Function for
the Profit Model in Appendix):

H(s, p, q, x)

= (r · μ · (q + √
q · (χ · (χ) − φ(χ))) − c · s)

+ p · (λ − μ · q − (μ − θ) · √
q · (χ · (χ) − φ(χ))

− x · θ · (φ(χ) − χ · (χ)) · √
q (4.14)

The first term of Eq. (4.14), r · μ · (q + √
q · (χ · (χ) −

φ(χ)))− c · s, represents the operating income. This implies
that r · μ · (q + √

q · (χ · (χ) − φ(χ))) is the operating
revenue and that c · s is the operating cost. The second term,
p ·(λ−μ ·q−(μ−θ) ·√q ·(χ ·(χ)−φ(χ)), represents the

shadow income from the marginal customer
•
q. In optimality,

the Pontryagin’s maximum principle [51] guarantees that the

marginal revenue p∗· •
q∗ equals the marginal cost

•
p∗ [54].

The third term, x · θ · (φ(χ) − χ · (χ)) · √
q, represents

penalty costs for violating the SLA constraint.
Under optimal conditions, the shadow income and the

penalty costs do not materialize. These quantities rather serve
as a guide for pricing the marginal increase in the number of
servers. On the contrary, the operating income does materi-
alize and from it we are able to measure profitability using
the operating margin, O, defined as follows:

O = 1

T

∫ T

0

r · μ · (q∗ + √
q∗ · (χ · (χ) − φ(χ))) − c · s∗

r · μ · (q∗ + √
q∗ · (χ · (χ) − φ(χ)))

dt ,

0 < O < 1 (4.15)

A common interpretation of the operating margin is that the
closer to 1 O is, the more profitable a business is [19]. As it

can be noted in Eq. (4.15), factors leading to a lower profit
margin include higher staffing costs c or lower operating rev-
enues r. The relationship between the quality of the service
grade −1 and the operating margin O is captured in Fig. 4.
The SLA constraint in Fig. 4a is non-binding, with ε = 1.
In this figure, it is apparent that as θ/μ increases the O curve
shifts to the right, which increases the service grade −1.
In turn, staffing levels are increased, which eventually leads
to lower profitability. In Fig. 4b, the constraint is binding,
with ε = 0.1. As a result, there is a minimum service grade
required, which limits the profitability region of the service
center. It should be remarked that as θ/μ gets smaller (see
both Figs. 4a and 4b), more profitability is likely since cus-
tomers are more patient, hence more of them will eventually
be served.

The graphical results in Fig. 5 add more insights into the
profitability of the service center, given the service grade
−1. In this figure, we observe that as � decreases, or sim-
ply as the benefits far outweigh the costs, the service grade
−1 converges to a particular value. This conclusion was
also reached in [39], where it was observed that in cost cen-
ters, −1 < 2, when d/c ≤ 20, and that −1 < 3, when
d/c ≤ 500. We also observe similar results for the cost model
in Fig. 5a. The results in Fig. 5b suggest that the service grades
remain remarkably apart under various ratios of θ/μ, even
as 1/� becomes large. The operational intuition is that the
less patient customers are, the more servers are needed to
maximize profitability.

4.4. Probability of Delay

We have earlier interpreted � as the cost-to-benefit ratio. In
addition, � can also be interpreted as the probability of delay.
Since delay for service happens when the queue length is
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Figure 5. Planes of 1/� versus −1 when λ(t) = 100 + 20 · sin(t). [Color figure can be viewed at wileyonlinelibrary.com.]

larger than the number of servers available, then our new
interpretation of � is justified, given that

P(Q ≥ s) ≈ P(Q∞ ≥ s)

≈ P(q + √
q · X ≥ q + √

q · −1(1 − �))

= P(X ≥ −1(1 − �))

= 1 − (−1(1 − �))

= � (4.16)

We can now give a performance measure interpretation
of the delay experienced by customers in terms of �. It fol-
lows that as � increases, we should expect more delay since
servers are expensive in light of either increasing staffing
costs or decreasing benefits. Similarly, as � goes down, we
should expect the delay to decrease since servers are relatively
cheaper.

In the context of the newsvendor problem [3], � can
conceivably be interpreted as a stock-out probability where
P(Q ≥ s) symbolizes the probability of the demand Q being
greater that the current stock s.

A high-level view of the relationship between −1 and �

is as follows:

−1

⎧⎪⎨
⎪⎩

< 0 when � > 0.5

= 0 when � = 0.5

> 0 when � < 0.5

This relationship is also graphically displayed in Fig. 6.
Additionally, Fig. 6 portrays the relationship of � and −1

versus the operating margin O. It can be concluded that the
higher �, the lower O, implying that when the probability of
delay is high, low profitability is expected. An operational
explanation of such phenomenon is that more servers cannot

Figure 6. Plane −1 versus � and O when λ(t) = 100+20·sin(t)
and θ = μ. [Color figure can be viewed at wileyonlinelibrary.com.]

be afforded, which leads to a high probability of delay and
low profitability since fewer customers are served.

The final point about the probability of delay in our
model, is that our proposed staffing solutions mostly stabi-
lize this performance as portrayed in Fig. 7. In some cases,
a refinement factor may be necessary for better stability.
This will be one of the subjects of our future research.
For more discussion on stabilizing queueing parameters see
[28, 15, 40, 42, 36, 47, 48].

5. CONCLUDING REMARKS AND FURTHER
RESEARCH

We constructed models for profit and cost centers using the
concepts of queueing and optimal control theories. We jus-
tified the Gaussian approximation of the queueing process
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Figure 7. Simulated probability of delay (squiggly lines) versus mean � (straight horizontal lines) when λ(t) = 100 + 20 · sin(t). For the
profit model, c = 1, r = {1.01, 1.5, 2, 4, 8, 16, 32, 128}, and ε = 1. For the cost model, c = 1, d = {1.01, 1.5, 2, 4, 8, 16, 32, 128}, and a = 0.
Only feasible solutions are presented. [Color figure can be viewed at wileyonlinelibrary.com.]
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and invoked the Pontryagin’s maximum principle to derive a
closed form SRS rule for optimal staffing.

Unlike in most traditional SRS formulas, the main parame-
ter in our formula was not the probability of delay but rather
a cost-to-benefit ratio that depends on the shadow price. We
showed that the delay experienced by customers can be inter-
preted in terms of this ratio. One of the conclusions was that
as the cost-to-benefit ratio increased, customers experienced
more delay since it was more expensive for the center to
increase the number of servers. Additionally, it was estab-
lished that as the probability of delay increased, profitability
decreased.

Throughout the article, we provided theoretical support
of our analysis and conducted extensive numerical experi-
ments of our findings. To this end, various scenarios were
considered to assess the change in the staffing levels as the
cost-to-benefit ratio changed. We also assessed the change in
the service grade and the effects of SLA constraints. We found
that as the cost-to-benefit ratio became smaller both the mean
staffing and the service grade converged to particular values.
In all cases, we have observed that the ratio of abandonment
over service rate particularly affected staffing levels and, in
some instances, led to drastically different policies between
the cost and profit centers.

For future research, we will investigate further the stabi-
lization of performance from our model. Also, other queueing
approximation techniques will be contemplated. An exten-
sion to more complicated networks of queues will be studied
for optimal staffing when customers seek service in different
types of centers of the same organization. It seems reason-
able that our approach might extend to Jackson networks with
abandonment. Another area for further research is to consider
optimal staffing of queues with non-Markovian dynamics like
in the work of [31, 30, 50]. Lastly, it would be interesting
to use risk measures like in the work of [49] and generate
optimal control policies for nonstationary queues using risk
measures in the objective function or constraints.

APPENDIX

In “Derivation of the Hamiltonian Function for the Profit Model,” we con-
struct the Hamiltonian function using optimal control theory. In “Necessary
Conditions,” we appeal to the Pontryagin’s maximum principle to obtain
the necessary conditions of our optimal solutions. Proofs to Theorems 3.1,
3.2, and 4.1 are, respectively, provided in “Proof of Theorem 3.1,” “Proof
of Theorem 3.2,” and “Proof of Theorem 4.1.” Lastly, the algorithm we use
to numerically integrate our dynamical systems is presented in “Numerical
Integration Algorithm.”.

Derivation of the Hamiltonian Function for the Profit
Model

We follow the methods of optimal control theory (e.g. [8, 9, 35, 54]) and
proceed to construct a Hamiltonian function of our profit model using the
approximation in Eq. (2.10). From Problem 2.1, we obtain the Hamiltonian

function as follows:

H(s, p, q, x) = r · μ · E[(Q ∧ s)] − c · s

+ p · (λ − μ · E[(Q ∧ s)] − θ · E[(Q − s)+])
− x · θ · E[(Q − s)+]

= r · μ · E[((q + √
q · X) ∧ s)] − c · s

+ p · (λ − μ · E[((q + √
q · X) ∧ s)]

− θ · E[((q + √
q · X) − s)

+])
− x · θ · E[((q + √

q · X) − s)
+]. (1.17)

The p in the Hamiltonian function H is the shadow price and x is the mul-
tiplier (interpreted as a penalty cost) of some auxiliary variable Z given
by

Z = −
∫ t

0
θ · E[((q(u) + X · √

q(u)) − s)
+]du

•
Z = −θ · E[((q + X · √

q) − s)
+]

where Z(T ) ≥ −E . Again E = ε ·∫ T

0 λdt with ε being the maximum allow-
able probability of abandonment. Since Z does not appear in Eq. (1.17), then
•
x= −∂H/∂Z = 0, meaning that x is a constant that satisfies the following
complementary of slackness equation:

x · [E −
∫ T

0
θ · E[((q + X · √

q) − s)
+]dt] = 0 (1.18)

Accordingly, x = 0 when E − ∫ T

0 θ · E[((q + X · √
q) − s)+]dt > 0, else

x > 0. It follows that

H(s, p, q, x)

≈ r · μ · E[(q + X · √
q) ∧ s] − c · s

+ p · (λ − μ · E[(q + X · √
q) ∧ s]

− θ · E[((q + X · √
q) − s)

+] − x · θ · E[((q + X · √
q) − s)

+]
= r · μ · (q + E[(X ∧ χ)] · √

q) − c · s

+ p · (λ − μ · (q + E[(X ∧ χ)] · √
q) − θ · E[(X − χ)+] · √

q)

− x · θ · E[(X − χ)+] · √
q

where

χ ≡ s − q√
q

.

By appealing to Stein’s Lemma 2.4 we are able to compute

E[(X − χ)+] = E[(X − χ) · {X ≥ χ}]
= E[X · {X ≥ χ}] − χ · P {X ≥ χ}
=

∫ ∞

−∞
δχ (y) · φ(y)dy − χ · (χ)

= φ(χ) − χ · (χ).

Given

E[X ∧ χ ] = E[X] − E[(X − χ)+],
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we easily compute

E[X ∧ χ ] = E[X − (X − χ)+]
= 0 − E[(X − χ)+]
= χ · (χ) − φ(χ)

Finally, we obtain

H(s, p, q, x)

= (r · μ · (q + √
q · (χ · (χ) − φ(χ))) − c · s)

+ p · (λ − μ · q − (μ − θ) · √
q · (χ · (χ) − φ(χ))

− x · θ · (φ(χ) − χ · (χ)) · √
q (1.19)

Necessary Conditions

In order to prove that our staffing solutions are optimal, we need the state
variables and the Lagrange multipliers to satisfy the necessary conditions of
the Pontryagin maximum principle. In our case, it suffices to calculate the
partial derivatives of H with respect to the queue length q and the shadow
price p. We proceed as follows:

∂

∂q
(χ

√
q · ) − ∂

∂q
(
√

q · φ) = χ · φ ·
(

s + q

2q

)
−  − χ · φ ·

(
s + q

2q

)

− φ

2
√

q

= −
(

 + φ

2
√

q

)
,

∂

∂q
(χ

√
q · ) = ∂

∂q
((s − q) · )

= (s − q) · (φ) ·
(

s + q

2q · √
q

)
− 

= χ · φ ·
(

s + q

2q

)
− ,

and

∂

∂q
(
√

q · φ) = √
q · χ · φ ·

(
s + q

2q
√

q

)
+ 1

2
√

q
· φ

= χ · φ ·
(

s + q

2q

)
+ φ

2
√

q
.

The necessary conditions are then given by:

∂H
∂p

≡ •
q = λ − μ · q − (μ − θ) · (χ · (χ) − φ(χ)) · √

q

− ∂H
∂q

≡ •
p = −r · μ + r · μ ·

(
∂

∂q
(χ · √

q · ) − ∂

∂q
(
√

q · φ)

)

− p

(
−μ + (μ − θ) ·

(
∂

∂q
(χ · √

q · ) − ∂

∂q
(
√

q · φ)

))

− x · θ ·
(

∂

∂q
(χ · √

q · ) − ∂

∂q
(
√

q · φ)

)

= (μ · (r − p) + θ · (p + x)) ·
(

 + φ

2
√

q

)
− μ · (r − p)

Proof of Theorem 3.1

From the Pontryagin’s maximum principle, the optimal control pol-
icy s∗ that maximizes the Hamiltonian function in Eq. (1.19), such that
H(s∗, p∗, q∗, x∗, t) ≥ H(s, p, q, x, t), is obtained by ∂H

∂s
= 0.

Given

∂

∂s
(χ

√
q · ) = ∂

∂s
(s − q) · 

= (s − q) · −φ√
q

+ 

=  − χ · φ

and

∂

∂s
(
√

q · φ) = −χ · φ(χ)√
q

· √
q = −χ · φ

We obtain

∂H
∂s

= r · μ · (χ) − c − p · (μ − θ) · (χ) + x · θ · (χ) = 0

= (μ · (r − p) + θ · (p + x)) · (χ) − c = 0

We now solve for s by recalling that χ = s−q√
q

. We proceed as follows:

μ · (r − p)

+ θ · (p + x)) · 

(
s − q√

q

)
= c



(
s − q√

q

)
= c

μ(r − p) + θ(p + x)



(
s − q√

q

)
= 1 − c

μ · (r − p) + θ · (p + x)

s − q√
q

= −1
(

1 − c

μ · (r − p) + θ · (p + x)

)

Finally we obtain the optimal staffing s∗ given by

s∗ = q + −1
(

1 − c

μ · (r − p) + θ · (p + x)

)
· √

q

Proof of Theorem 3.2

The Hamiltonian function associated with the cost model (see Problem
2.2) is given by

H(s, p, q, x) = −c · s − (d + θ · a) · √
q · (φ(χ) − χ · (χ))

+ p · (λ − μ · q − (μ − θ) · √
q · (χ · (χ) − φ(χ))

(1.20)

The resulting necessary conditions follow.

∂H
∂p

≡ •
q= λ − μ · q − (μ − θ) · (χ · (χ) − φ(χ)) · √

q

− ∂H
∂q

≡ •
p= (d + θ · a + p · (θ − μ)) ·

(
 + φ

2
√

q

)
+ μ · p

The optimal staffing policy s∗ is obtained by

∂H
∂s

= 0 ⇒ s∗ = q + −1
(

1 − c

d + θ · a + p · (θ − μ)

)
· √

q
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Proof of Theorem 4.1

THEOREM A.1: (Chen-Stein): Let Q be a random variable with values
in N. Then, Q has the Poisson distribution with mean rate q if and only if,
for every bounded function f : N → N,

E[Q · f (Q)] = q · E[f (Q + 1)]

PROOF: See Ref. [45]. �

LEMMA A.2:

�(s, x) =
∞∑

m=s

e−x · xm

m! = 1

�(s)

∫ x

0
e−yys−1dy

�(s, x) =
s−1∑
m=0

e−x · xm

m! = 1

�(s)

∫ ∞

x

e−yys−1dy.

where

�(s, x) = 1

�(s)

∫ x

0
e−yys−1dy and �(s, x) = 1

�(s)

∫ ∞

x

e−yys−1dy

are the lower and upper incomplete gamma functions, respectively. More-

over, we define �−1(x, ε) and �
−1

(x, ε) to be the functional inverses of
�(s, x) and �(s, x), respectively.

PROOF: See Ref. [27]. �

LEMMA A.3:

E[(Q − s)+] = E[(Q − s) · {Q > s}]
= E[Q · {Q > s}] − s · E[{Q > s}]
= E[Q · {Q > s}] − s · �(s + 1, q)

= q · E[{Q + 1 > s}] − s · �(s + 1, q)

= q · �(s, q) − s · �(s + 1, q)

∂

∂s
E[(Q − s)+] = −�(s + 1, q)

∂

∂s
E[Q ∧ s] = �(s + 1, q)

Now we prove Theorem 4.1 using the results of the profit model. In the
case where θ = μ, we have that

∂H
∂s

= r · μ · �(s + 1, q) − c − p · (μ − θ) · �(s + 1, q)

+ x · θ · �(s + 1, q) = 0

= μ · (r + x) · �(s + 1, q) − c = 0

We now solve for s given that χ = s−q√
q

:

μ · (r + x) · �(s + 1, q) − c = 0

�(s + 1, q) = c

μ · (r + x)
.

Finally we obtain optimal control policy s∗ as:

s∗ = �−1
(

q,
c

μ · (r + x)

)
.

Numerical Integration Algorithm

Our algorithm, detailed next, is based on the Forward-Backward method
[35]. The new element to the algorithm is step 4 to allow for the computation
of the complementary of slackness in Eq. (1.18).

Step 0: Set initial conditions for q(0) and terminal conditions for p(T ) and
the initial guess of the control policy −→

s (t), for all 0 < t < T . Also
initialize the number of iterations n = 0 and the multiplier x = 0.

Step 1: Given {qn−1(t)|0 ≤ t ≤ T }, solve the dynamical system ṗ(t) =
− ∂H

∂q
(pn, qn−1)(t) backward in time for all 0 ≤ t ≤ T , starting with

the terminal condition pn(T ) = 0

Step 2: Given {pn(t)|0 ≤ t ≤ T }, solve the dynamical system q̇(t) =
∂H
∂p

(pn, qn)(t) forward in time for all 0 ≤ t ≤ T , starting with the

initial condition qn(0) = q0

Step 3: For all 0 < t < T , compute the staffing policy sn by

sn(t) = qn(t) + −1(1 − �n(t)) · √
(qn)

Step 4:
If E − ∫ T

0 θ · (qn(t) − sn(t))
+ < 0, ∀ 0 < t < T

1. n = n + 1
2. x n+1 = xn + h

where h is a very small increment.

Step 5: Repeat Step 1–3 until the relative error is negligible, in accordance
to

∫ T

0
θ · (qn(t) − sn(t))

+ < E and
||−→s ||n − ||−→s ||n−1

||−→s ||n ≤ δ

where δ is the accepted convergence tolerance.

For further discussion on convergence of forward-backward algorithms
see [37, 43, 56].
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