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ABSTRACT
In real stochastic systems, the arrival and service processes may
not be renewal processes. For example, in many telecommunica-
tion systems suchas internet trafficwheredata traffic is bursty, the
sequence of inter-arrival times and service times are often corre-
lated and dependent. Oneway tomodel this non-renewal behav-
ior is to use Markovian Arrival Processes (MAPs) and Markovian
Service Processes (MSPs). MAPs and MSPs allow for inter-arrival
and service times to be dependent, while providing the analytical
tractability of simpleMarkovprocesses. To this end,weprove fluid
and diffusion limits for MAPt/MSPt/∞ queues by constructing a
new Poisson process representation for the queueing dynamics
and leveraging strong approximations for Poisson processes. As
a result, the fluid and diffusion limit theorems illuminate how the
dependence structure of the arrival or serviceprocesses can affect
the sample path behavior of the queueing process. Finally, our
Poisson representation forMAPs andMSPs is useful for simulation
purposes and may be of independent interest.

1. Introduction

Counting processes are important stochastic processes that have importance in
many applications and areas of study such as biology, finance, telecommunications,
and queueing theory. In the queueing literature, counting processes are used to
model the arrival process of the queue and count the number of jobs or customers
that arrive to the system during a specific time interval. Perhaps the most important
of these counting processes is the Poisson process, which is the canonical arrival
process. There are various extensions of the Poisson process such as the compound
Poisson process, renewal processes, Markov modulated Poisson processes, and
semi-Markov processes just to name a few. These processes are generalizations of
the Poissonprocess and serve to capture realworld phenomena seen in arrival traffic.

Although the Poisson process is a good process to model customer arrivals who
are independent, the Poisson process is known to not be a great stochastic arrival
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process tomodel the arrivals of internet data traffic in telecommunication networks.
Despite the Palm–Khintine theorem, which asserts that the superposition of a large
number of renewal processes will converge to a Poisson process, it is well known in
the teletraffic literature that the arrival traffic is not Poisson. In fact, it is also well
known that the arrival traffic is also not renewal. See, for example,[15,36,40] where
ATM statistical multiplexers superimpose many different kinds of traffic sources
and the resulting arrival process is no longer renewal. Moreover, in applications like
ridesharing or bikesharing, arrivals might not be renewal and are often bursty and
dependent on events such as concerts or shows that are transpiring in a particular
city. For more work in the context of queueing theory or fitting arrival processes,
see, for instance[1,8,13,14,23,38,39].

This is not the first work to study queues where the primitive random vari-
ables have dependence. Much of the current literature in the area of queues with
dependence is where the arrival and service processes are assumed to be positively
dependent, see, for example[9]. In[9], the author assumes that the arrival and service
processes in a single server queue follow a bivariate negative exponential distribu-
tion. Using the bivariate gamma distribution, they derive an integral equation for
the waiting time in terms of the parameters of the bivariate gamma distribution.
In a follow-up paper[10], derives closed-form expressions for the moments greater
than two of the waiting time when the arrival and service processes are dependent.
However, the current literature only considers the single server setting and does not
explore the multi-server or infinite server setting.

Recently, the literature on queues with dependence has expanded to the infi-
nite server setting. For example, the work of[26–28] explores the impact of depen-
dence on the nonstationary infinite server queue, especially when the successive
service times are correlated. This type of dependence is often observed in recalls or
inquiries about consumer products since customers are calling about the same issues
and questions. The authors provide an approximate analysis of the mean and vari-
ance of the queue length as a function of the dependence between service times or
between arrival times. They show that the correlation significantly impacts the vari-
ance but not the mean behavior. Thus, their work is exploring dependence between
arrivals or between services rather than that between arrivals and services. Refs.[25]

and[5] also address dependence in an infinite server setting. The authors introduce a
(semi-)Markov environment process that affects arrival and service processes and
obtain factorial moments of the number of customers in steady state. Unlike our
approach that focuses on the transient behavior (on a compact interval), they obtain
performance measures in steady state.

In this paper, we propose a new approach for analyzing queues where the arrival
process has dependence. The first step is to model the arrival process with a Marko-
vian Arrival Process (MAP). MAPs unlike phase-type distributions, allow one to
consider non-renewal processes for the arrival process. This is because a phase-
type distribution is restarted independently of its past history. MAPs generalize this
feature and allow for dependence on the past history of the Markov chain. In an
MAP, unlike phase-type distributions, the next interarrival time is dependent on the



188 Y. M. KO AND J. PENDER

exit state of the Markov chain and this feature allows one to introduce a notion of
memory into the process. The ultimate goal is for us to describe the sample path
behavior of queues that have an MAP as its arrival process. One main obstacle that
we have is that there exists no obvious way to model an MAP using Poisson pro-
cesses. Since an MAP is constructed from the absorbing times of Markov chains,
one major contribution of this work is to develop a novel way of modeling the MAP
dynamics using unit rate Poisson processes. Given that we have a Poisson represen-
tation for theMAP, we can combine it withMarkovian Service Processes (MSPs) for
the service process to constructMAPt/MSPt/∞ queueing models. Once we have a
Poisson representation for the queue length process, we derive fluid and diffusion
limits taking advantage of the theory of strong approximations.

1.1. Main contributions of paper

The contributions of this work can be summarized as follows. First, we consider
the time-varying dynamics of the MAPt/MSPt/∞ queues as an approximation of
more general queueing processes with non-renewal arrival and service processes.
Even with its Markovian structure, MAPt/MSPt/∞ queueing models are relatively
intractable as we cannot analytically solve for the exact distribution of the queue
length as a function of time. As a result, we derive fluid and diffusion limits for
the MAPt/MSPt/∞ queues using strong approximations of time-changed Poisson
processes by increasing the number of independent and identical input sources,
a.k.a. the many-sources regime described in[3,7,37]. These limit theorems allow us
to gain insight into the sample path behavior of theMAPt/MSPt/∞ queue and pro-
vide estimates of performancemeasures such as the mean and variance of the queue
length process. We partially extend the result of this paper to a network setting in
the follow-up paper[18].

1.2. Organization of paper

The remainder of this paper is organized as follows. Section 2 describes the con-
struction of an MAP and its time-varying extension. Section 3 constructs Poisson
representations and derives fluid and diffusion limits. Section 3.1 constructs a Pois-
son representation of MAPs. Using it, Section 3.2 obtains a Poisson representation
of MAPt/MSPt/∞ queues. We also prove fluid and diffusion limits for this sys-
tem. Lastly, Section 4 concludes and offers suggestions for future research and the
Appendix provides all of the proofs and derivations of our limit theorems.

2. Markovian arrival processes (MAPs)

In this section, we begin with describing MAPs. MAPs, unlike phase-type distribu-
tions, allow one to model the dynamics of non-renewal processes to use a count-
ing processes or interarrival processes. Unlike the phase-type distribution, which
restarts independently of its past history, an MAP restarts dependent on the exit
state of the Markov chain depends on the past history of the chain.
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We follow the construction of an MAP in[4]. We consider anm-state irreducible
continuous time Markov chain (CTMC). After spending exp(λi) amount of time
in state i, there are two possible transitions from state i to state j. The first pos-
sible transition to state j (including the case of i = j) happens with probability
pi j and incurs an event or arrival. The second possible transition to state j (not
allowing the case of i = j) corresponds to no arrival and occurs with probability
qi j. Then, we define matrices [D0]i j = d0i j and [D1]i j = d1i j where d0ii = −λi, 1 ≤
i ≤ m; d0i j = λiqi j, j �= i, 1 ≤ i, j ≤ m; d1i j = λi pi j, 1, ≤ i, j ≤ m, with (

∑m
j=1 pi j +∑m

j �=i qi j) = 1, for 1 ≤ i ≤ m. In our description of theMAP, we have suppressed its
dependence on time. However, all of our results apply to the time-varying setting
and we explain it in Section 2.2.

With the above construction, anMAP is described by the twom × mmatricesD0

andD1. The matrixD0 where [D0]i j = d0i j corresponds to transitions where there is
no arrival and the matrixD1 where [D1]i j = d1i j corresponds to the transitions that
generate an actual arrival. With this construction, it also obvious why this is more
general than phase-type distributions. Dependence is created by the fact that when
an arrival is generated, then the Markov chain can re-enter the same state, however,
when no arrival is generated, it cannot re-enter the same state. Now that we have
defined anMAP, it is now important to understand how theMAP is a generalization
of some well-known stochastic arrival processes.

2.1. Versatility of theMAP

The MAP is a very versatile process for modeling arrival processes that are ubiqui-
tous in service systems or queueing theory. There are various special cases of MAPs
that are important for many queueing processes and we outline some of them below
in the one- and two-dimensional cases:

Poisson process : D0 = [−λ], D1 = [λ]

Erlang renewal process : D0 =
(−λ λ

0 −λ

)
, D1 =

(
0 0
λ 0

)

Hyperexponential renewal process : D0 =
(−λ1 0

0 −λ2

)
,D1 =

(
p1λ1 p2λ1

p1λ2 p2λ2

)
,

p1 + p2 = 1

Markov modulated Poisson process : D0 =
(−λ1 λ1,2

λ2,1 −λ2

)
, D1 =

(
λ∗
1,1 0
0 λ∗

2,2

)

Interrupted Poisson process : D0 =
(−λ1 λ1,2

λ2,1 −λ2

)
, D1 =

(
λ∗
1,1 λ∗

1,2
0 0

)

Acyclic MAP(2) : D0 =
(−λ1 λ1,2

0 −λ2

)
, D1 =

(
λ∗
1,1 0

λ∗
2,1 λ∗

2,2

)

MAP(2) : D0 =
(−λ1 λ1,2

λ2,1 −λ2

)
, D1 =

(
λ∗
1,1 λ∗

1,2
λ∗
2,1 λ∗

2,2

)
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Beyond the fact that the MAP generalizes many well-known arrival processes, it
is also important to note that the MAP is still a Markov process. Therefore, much
of the analysis of Markov processes is still applicable in the MAP setting. The only
drawback is that fitting an MAP is slightly more involved than a Poisson process
and the MAP is high dimensional when there are a large number of transient states.
However, with the added dimensionality, it allows for more flexibility in fitting and
more realistic performance approximations for stochastic models in practice. Now
that we have defined an MAP, it is important to understand how to derive a Pois-
son process representation for the MAP. This Poisson representation of the MAP
is integral to proving the fluid and diffusion limits of the MAPt/MSPt/∞ queues
since we will leverage strong approximations developed for time-changed Pois-
son processes[11,19,20]. The Poisson representation naturally allows time-varying rate
functions.We, therefore, explain the time-varying extension of theMAP in the next
section.

2.2. Time-varying extension of theMAP

The MAP described in the previous section does not have a time-varying struc-
ture. The extension to time-varying parameters can be made by changing constant
parameters into the functions of time, i.e., d0i j → d0i j(t ) and d1i j → d1i j(t ). However,
in order to derive the limit theorems in Section 3.2, the time-varying rates should
be locally bounded as follows:∫ T

0
d0i j(t )dt < ∞,

∫ T

0
d1i j(t )dt < ∞ for i, j ∈ {1, . . . ,m} and T < ∞.

In the rest of the paper, wewill assume that all time-varying rates are locally bounded
with respect to time t .

3. Poisson construction and limit theorems

In this section, we construct the Poisson representation for the MAPt/MSPt/∞
queues and derive fluid and diffusion limits of the queue length process. We first
explain the Poisson representation for MAPs in Section 3.1 Extending the represen-
tation, Section 3.2 constructs the Poisson representation ofMAPt/MSPt/∞ queues
and derives fluid/diffusion limits for them.

3.1. Poisson construction ofMAPs

In this section, we describe the Poisson process construction of the MAP. Our
construction uses Poisson processes since they are well studied and strong approxi-
mations for Poisson processes yield Brownian motion approximations. To this end,
assuming mA number of phases in the MAP, we let Uj(t ) be the number of cus-
tomers in phase j of theMAP at time t . SinceUj(t )’s keep track of the current phase
of the MAP,

∑mA
j=1Uj(t ) = 1. Then, we construct a Poisson process representation
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for the MAP as follows:

Uj(t ) = Uj(0) +
mA∑
k �= j

�A0
k j

(∫ t

0
dA0k j (s)Uk(s)ds

)
+

mA∑
k=1

�A1
k j

(∫ t

0
dA1k j (s)Uj(s)ds

)

−
mA∑
k �= j

�A0
jk

(∫ t

0
dA0jk (s)Uj(s)ds

)

−
mA∑
k=1

�A1
jk

(∫ t

0
dA1jk (s)Uj(s)ds

)
for 1 ≤ j ≤ mA. (3.1)

Poisson processes, �A0
k j (·)’s and �A1

k j (·)’s count the phase transition from k to j
without and with arrivals, respectively. Note that we assume that the Poisson pro-
cesses explained above have rate 1 (with random time changes) and are mutually
independent. One way to view the Poisson construction of the MAP is to view it as
a token moving across the phases since we have that

∑mA
j=1Uj(t ) = 1. Sometimes,

it will not generate an arrival and when an arrival is not generated, the continuous
time Markov chain must move to different phase than it is currently in. However,
when an arrival is generated, the Markov chain can move to another state or stay in
the same state according to the transition probabilities.

3.2. Poisson construction ofMAPt/MSPt/∞ queue

In this section, we construct a Poisson representation and derive the fluid and diffu-
sion limits for the case where both interarrival and service times are not necessarily
independent and identically distributed random variables. Dependent service times
are very practical and often arise in telephone call centers when customers call about
recalled or defective products. For example, the work of[26] explores the impact of
dependence on the nonstationary infinite server queue, especially when the succes-
sive service times are correlated with one another. However, the combination of the
non-renewal arrival and service times has not be explored in the literature in the
infinite server context. Moreover, our approach lends itself to computational meth-
ods that have been developed for MAPs and MSPs. The MAPt/MSPt/∞ has the
following representation in terms of unit rate Poisson processes:

Uj(t ) = Uj(0)︸ ︷︷ ︸
Initial Value of Token

+
mA∑
k �= j

�A0
k j

(∫ t

0
dA0k j (s)Uk(s)ds

)
︸ ︷︷ ︸

MAP moves from state k to j (no arrival generated)

+
mA∑
k=1

mS∑
i=1

�A1
k ji

(∫ t

0
dA1k j (s)β jiUk(s)ds

)
︸ ︷︷ ︸

MAP moves from state k to j (arrival is placed in phase i of service)
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−
mA∑
k �= j

�A0
jk

(∫ t

0
dA0jk (s)Uj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (no arrival generated)

−
mA∑
k=1

mS∑
i=1

�A1
jki

(∫ t

0
dA1jk (s)βkiUj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (arrival is placed in phase i of service)

for 1 ≤ j ≤ mA,

(3.2)

Xi(t ) =
mA∑
j=1

mA∑
k=1

�A1
jki

(∫ t

0
dA1jk (s)βkiUj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (arrival is placed in phase i of service)

+
mS∑
l �=i

�S0
li

(∫ t

0
dS0li (s)Xl(s)ds

)
︸ ︷︷ ︸

MSP moves from state l to i (no service completion)

−
mS∑
l �=i

�S0
il

(∫ t

0
dS0il (s)Xi(s)ds

)
︸ ︷︷ ︸

MSP moves from state i to l (no service completion)

− �S1
i

(∫ t

0
dS1i (s)Xi(s)ds

)
︸ ︷︷ ︸

MSP leaves the system from state i (service completion)

for 1 ≤ i ≤ mS. (3.3)

In this construction, Xi(t ) represents the number of customers that are in phase
i of the MSP at time t . This can be also interpreted as the number of customers that
are in phase i of service. The probability vector, β j = (β j1, . . . , β jmS ), is the initial
distribution to the service process when the arrival is generated in phase j of the
MAP. Moreover, Poisson processes, �S0

il (·)’s count the number of transitions from
phase i to phase l without service completions and Poisson processes,�S1

i (·)’s count
the number of service completions. For the remainder of the paper, we will use the
following notation for the stochastic queue length process:

Q(t ) = (U1(t ), . . . ,UmA (t ),X1(t ), . . . ,XmS (t ))
′.

q = (u1, . . . , umA, x1, . . . , xmS )
′.

f A0jk (t, q) : rate function of the (integrand) in �A0
jk (·),

f A1jki (t, q) : rate function of the (integrand) in �A1
jki(·),

f S0il (t, q) : rate function of the (integrand) in �S0
il (·),

f S1i (t, q) : rate function of the (integrand) in �S1
i (·)

lA0jk : (mA + mA) × 1 vector, jth element is −1, kth element is 1, and other
elements are 0.
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lA1jki : (mA + mS) × 1 vector, jth element is −1, kth element is 1,
(mA + i)th element is 1, and other elements are 0.

lS0il : (mA + mS) × 1 vector, (mA + i)th element is −1, (mA + l)th element
is 1, and other elements are 0.

lS1i : (mA + mS) × 1 vector, (mA + i)th element is −1, and other elements
are 0.

Then, we can express Equations (3.2) and (3.3) as follows:

Q(t ) = Q(0) +
mA∑
j=1

mA∑
k �= j

lA0jk �A0
jk

(∫ t

0
f A0jk (s,Q(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki�
A1
jki

(∫ t

0
f A1jki (s,Q(s))ds

)

+
mS∑
i=1

mS∑
l �=i

lS0il �S0
il

(∫ t

0
f S0il (s,Q(s))ds

)

+
mS∑
i=1

lS1i �S1
i

(∫ t

0
f S1i (s,Q(s))ds

)
.

Remark. If the β j’s are the same for all j ∈ {1, . . . ,mA}, the Poisson representa-
tion in Equations (3.2)–(3.3) is for the MAPt/Pht/∞ queue, a special case of the
MAPt/MSPt/∞ queue.

... Fluid limits
We prove fluid limits for the queue length process using the Poisson representa-
tion and strong approximations. We first define a sequence of processes {Qη(t ), η ∈
N , t ∈ R+} as follows:

Qη(t ) = Qη(0) +
mA∑
j=1

mA∑
k �= j

lA0jk �A0
jk

(∫ t

0
f A0jk (s,Qη(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki�
A1
jki

(∫ t

0
f A1jki (s,Q

η(s))ds
)

+
mS∑
i=1

mS∑
l �=i

lS0il �S0
il

(∫ t

0
f S0il (s,Qη(s))ds

)

+
mS∑
i=1

lS1i �S1
i

(∫ t

0
f S1i (s,Qη(s))ds

)

= Qη(0) +
mA∑
j=1

mA∑
k �= j

lA0jk �A0
jk

(∫ t

0
η f A0jk (s, Q̄η(s))ds

)
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+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki�
A1
jki

(∫ t

0
η f A1jki (s, Q̄

η(s))ds
)

+
mS∑
i=1

mS∑
l �=i

lS0il �S0
il

(∫ t

0
η f S0il (s, Q̄η(s))ds

)

+
mS∑
i=1

lS1i �S1
i

(∫ t

0
η f S1i (s, Q̄η(s))ds

)
by the linearity of the functions

f ·
· (·, ·)’s,

where we define Q̄η(t ) = Qη(t )/η.
Note thatwe increase the number of independent arrival processes (sources) from

the MAP by setting
∑mA

j=1U
η
j (t ) = η for t ≥ 0 instead of accelerating the transition

rates (dA0k j ’s and dA1k j ’s). By doing that, we can directly find a sequence satisfying the
initial condition for deriving the fluid limit. One should also note that this scaling
is equivalent to scaling the rates where

∑mA
j=1 Ū

η
j (t ) = ∑mA

j=1U
η
j (t )/η = 1 and the

transitions rates are η · d·
i j(t ). The following theorem explains the fluid limits for the

MAPt/MSPt/∞ queue.

Theorem 3.1. SupposeQη(0)η → q(0) almost surely as η → ∞, then

lim
η→∞

1
η
Qη(t ) = q(t ) almost surely,

where q(t ) = (u1(t ), . . . , umA (t ), x1(t ), . . . , xmS (t ))′ is the solution to the following
system of ordinary differential equations:

d
dt

q(t ) =
mA∑
j=1

mA∑
k �= j

lA0jk f A0jk (t, q(t )) +
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki f
A1
jki (t, q(t ))

+
mS∑
i=1

mS∑
l �=i

lS0il f
S0
il (t, q(t )) +

mS∑
i=1

lS1i f S1i (t, q(t )). (3.4)

Proof. See the Appendix. �

... Diffusion limits
With the fluid limit, q(t ), derived in Section 3.2.1., we can derive the diffusion limit
as follows:

Theorem 3.2. Let Dη(t ) = √
η( 1

η
Qη(t ) − q(t )) and suppose that √

η( 1
η
Qη(0) −

q(0)) ⇒ D(0) in distribution as η → ∞, then we have that

lim
η→∞Dη(t ) = D(t ) in distribution,

whereD(t ) is the solution to the following stochastic differential equation

dD(t ) = dH(t, q(t )) + ∂F(t, q(t ))D(t )dt, (3.5)
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and ∂F(t, q(t )) is the gradient matrix of F(t, q(t )) with respect to q(t ). Moreover,

F(t, q(t )) =
mA∑
j=1

mA∑
k �= j

lA0jk f A0jk (t, q(t )) +
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki f
A1
jki (t, q(t ))

+
mS∑
i=1

mS∑
l �=i

lS0il f
S0
il (t, q(t )) +

mS∑
i=1

lS1i f S1i (t, q(t ))

dH(t, q(t )) =
mA∑
j=1

mA∑
k �= j

lA0jk
√

f A0jk (t, q(t ))dWA0
jk (t )

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki
√

f A1jki (t, q(t ))dWA1
jki (t )

+
mS∑
i=1

mS∑
l �=i

lS0il
√

f S0il (t, q(t ))dWS0
il (t )+

mS∑
i=1

lS1i
√

f S1i (t, q(t ))dWS1
i (t ),

where WA0
jk (t ),WA1

jki (t ),W
S0
il (t ),WS1

i (t ) are mutually independent standard
Brownian motions.

Proof. See the Appendix. �

... Performancemeasures

Proposition 3.3. Let M(t ) = E[D(t )] and �(t ) = Cov[D(t ),D(t )]. Then, M(t )
and �(t ) are the unique solution to the following ordinary equations:

d
dt

M(t ) = ∂F(t, q(t ))M(t ), (3.6)

d
dt

�(t ) = ∂F(t, q(t ))�(t ) + �(t )∂F(t, q(t ))′ + G(t, q(t )), (3.7)

where

G(t, q(t )) =
mA∑
j=1

mA∑
k �= j

lA0jk l
A0
jk

′ f A0jk (t, q(t )) +
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkil
A1
jki

′ f A1jki (t, q(t ))(3.8)

+
mS∑
i=1

mS∑
l �=i

lS0il l
S0
il

′ f S0il (t, q(t )) +
mS∑
i=1

lS1i l
S1
i

′ f S1i (t, q(t )). (3.9)

IfM(0) = 0,M(t ) = 0 for all t ≥ 0.

Proof. See,[2] Theorem 8.2.6 on page 131. �

Recall that we start with an empty queue, which implies that we do not have to
solve Equation (3.6), i.e., M(t ) = 0 for all t ≥ 0. By solving differential Equations
(3.4) and (3.7), we can approximate E[Q(t )] and Cov[Q(t ),Q(t )] as follows:

E[Q(t )] ≈ q(t ),
Cov[Q(t ),Q(t )] ≈ �(t ).
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Let Z∗(t ) be the number of customers in the queueing system at time t . Then,

Z∗(t ) =
mS∑
i=1

Xi(t ).

Note that {Z∗(t ), t ≥ 0} is a Gaussian process and therefore, we can obtain themean
and variance of the number of customers in the queue at time t , Z∗(t ), as follows:

m∗(t ) ≡ E[Z∗(t )] =
mS∑
i=1

E[Xi(t )],

σ ∗(t ) ≡
√
Var[Z∗(t )] =

√√√√ mS∑
i=1

Var[Xi(t )] +
mS∑
i=1

mS∑
l �=i

Cov[Xi(t ),Xl(t )].

4. Conclusion and final remarks

In this paper, we analyze the MAPt/MSPt/∞ queues and prove fluid and dif-
fusion limits via strong approximation techniques. It is our hope that the
our analysis of the infinite server queue will guide us in the analysis for the
MAPt/MSPt/nt and MAPt/MSPt/nt + MAPt queues. Note the second MAP term
in theMAPt/MSPt/nt + MAPt queue can be regarded as the Markovian Abandon-
ment Process (MAP). By extending our analysis to these types queues will allow
us to model queueing systems with non-renewal arrival, service, and abandonment
random variables, which will advance the state of the art with queueingmodels with
dependence and correlation structures. The finite server setting is especially inter-
esting because it is well known in[17,21,22,34,35] that the fluid and diffusion limits need
refining when the number of servers is not large. Moreover, in the finite server set-
ting, we also know that lingering can have a substantial impact on the accuracy of the
fluid and diffusion approximations. Thus, methods by[6,29–33] could be very relevant
to improving the fluid and diffusion limits in the finite server setting.

Another extension that is even more interesting is the control of these networks
with general distributions.Methods such as the fluid control of[12,24] seempromising
as ways to optimally control the stochastic network on the fluid and diffusion scale,
respectively. We plan to pursue these extensions in later work.

5. Proofs of main results

A. Appendix

In this section, we nowprovide the proof for the fluid and diffusion limit theorems of
the queue length process for theMAPt/MSPt/∞ queue. Before we begin the proof,
we present two lemmas that are vital to understanding and constructing the proof
via strong approximation theory.
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LemmaA.1 (Kurtz 1978). A standard Poisson process {�(t )}t≥0 can be realized on
the same probability space as a standard Brownian motion {W (t )}t≥0 in such a way
that the almost surely finite random variable

Z ≡ sup
t≥0

|�(t ) − t −W (t )|
log(2 ∨ t )

has finite moment generating function in the neighborhood of the origin and in
particular finite mean.

Lemma A.2 (Kurtz 1978). For any standard Brownian motion {W (t )}t≥0 and any
ε > 0, n ∈ N, and T > 0

M̃ ≡ sup
u,v,≤nεT

|W (u) −W (v )|√
|u − v| (1 + log (nεT/ |u − v|)) < ∞ a.s.

A.1. Proof of fluid limit

In this section, we will provide the proof of the fluid limit. From Equations (3.2) and (3.3), we
know the scaled queue length satisfies the following equation:

Qη(t ) = Qη(0) +
mA∑
j=1

mA∑
k�= j

lA0jk �A0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki�
A1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)

+
mS∑
i=1

mS∑
l �=i

lS0il �S0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)

+
mS∑
i=1

lS1i �S1
i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)
.

Thus, by adding and subtracting the integrand of each Poisson process, we now have the fol-
lowing bound of the scaled queue length and the fluid limit,

∣∣∣∣ 1ηQη(t ) − q(t )
∣∣∣∣ ≤

∣∣∣∣ 1ηQη(0) − q(0)
∣∣∣∣+

∣∣∣∣
mA∑
j=1

mA∑
k�= j

lA0jk

∫ t

0

(
f A0jk (s, Q̄η(s)) − f A0jk (s, q(s))

)
ds

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki

∫ t

0

(
f A1jki (s, Q̄

η(s)) − f A1jki (s, q(s))
)
ds

+
mS∑
i=1

mS∑
l �=i

lS0il

∫ t

0

(
f S0il (s, Q̄η(s)) − f S0il (s, q(s))

)
ds

+
mS∑
i=1

lS1i

∫ t

0

(
f S1i (s, Q̄η(s)) − f S1i (s, q(s))

)
ds
∣∣∣∣

+
mA∑
j=1

mA∑
k�= j

∣∣∣∣lA0jk 1η
(

�
A0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

))∣∣∣∣
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+
mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1η�
A1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)∣∣∣∣

+
mS∑
i=1

mS∑
l �=i

∣∣∣∣lS0il 1η�
S0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)∣∣∣∣
+

mS∑
i=1

∣∣∣∣lS1i 1
η

�
S1
i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)∣∣∣∣
where we define �(·) as

�

(
η

∫ t

0
f (s, Q̄η(s))ds

)
= �

(
η

∫ t

0
f (s, Q̄η(s))ds

)
− η

∫ t

0
f (s, Q̄η(s))ds.

Nowwe use the Lipschitz continuity of the rate functions in the integrand of each Poisson process
to show that∣∣∣∣ 1ηQη(t ) − q(t )

∣∣∣∣ ≤
∣∣∣∣ 1ηQη(0) − q(0)

∣∣∣∣+C
∫ t

0

∣∣∣∣ 1ηQη(s) − q(s)
∣∣∣∣ ds

+
mA∑
j=1

mA∑
k�= j

∣∣∣∣lA0jk 1η�
A0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1η�
A1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)∣∣∣∣

+
mS∑
i=1

mS∑
l �=i

∣∣∣∣lS0il 1η�
S0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)∣∣∣∣
+

mS∑
i=1

∣∣∣∣lS1i 1
η

�
S1
i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)∣∣∣∣ .
In view of the strong approximation results given in Lemma A.1,

mA∑
j=1

mA∑
k�= j

∣∣∣∣lA0jk
[
�

A0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)]∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki
[
�

A1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)

−WA1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)]∣∣∣∣

+
mS∑
i=1

mS∑
l �=i

∣∣∣∣lS0il
[
�

S0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)
−WS0

il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)]∣∣∣∣
+

mS∑
i=1

∣∣∣∣lS1i
[
�

S1
i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)
−WS1

i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)]∣∣∣∣
is of the order �(log(η)) almost surely. Since theW (·) terms are standard Brownian motions
and the rate functions or integrands of the Brownian motion processes are Lipschitz continuous,
the law of the iterated logarithm for Brownian motion asserts that

lim
η→∞ sup

t≤T

1
η
WA0

jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)
= 0 almost surely,
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lim
η→∞ sup

t≤T

1
η
WA1

jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)

= 0 almost surely,

lim
η→∞ sup

t≤T

1
η
WS0

il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)
= 0 almost surely,

lim
η→∞ sup

t≤T

1
η
WS1

i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)
= 0 almost surely.

This implies that
mA∑
j=1

mA∑
k�= j

∣∣∣∣lA0jk 1ηWA0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηWA1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)∣∣∣∣

+
mS∑
i=1

mS∑
l �=i

∣∣∣∣lS0il 1ηWS0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)∣∣∣∣+
mS∑
i=1

∣∣∣∣lS1i 1
η
WS1

i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)∣∣∣∣
converges to zero uniformly over compact sets of time as η goes to ∞. As a result, for sufficiently
large η∗ ∈ N and ε > 0, we have that for all η ≥ η∗, that

ε/2 ≥
mA∑
j=1

mA∑
k�= j

∣∣∣∣lA0jk 1ηWA0
jk

(
η

∫ t

0
f A0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηWA1
jki

(
η

∫ t

0
f A1jki (s, Q̄

η(s))ds
)∣∣∣∣

+
mS∑
i=1

mS∑
l �=i

∣∣∣∣lS0il 1ηWS0
il

(
η

∫ t

0
f S0il (s, Q̄η(s))ds

)∣∣∣∣
+

mS∑
i=1

lS1i
1
η

∣∣∣∣�S1
i

(
η

∫ t

0
f S1i (s, Q̄η(s))ds

)∣∣∣∣+ �(log(η))

η
.

Thus, for some large enough constant C̃ and sufficiently large enough η∗, we have that∣∣∣∣ 1ηQη(t ) − q(t )
∣∣∣∣ ≤

∣∣∣∣ 1ηQη(0) − q(0)
∣∣∣∣+C

∫ t

0

∣∣∣∣ 1ηQη(s) − q(s)
∣∣∣∣ ds + ε/2.

Now by assuming that η is large enough that

ε/2 ≥
∣∣∣∣ 1ηQη(0) − q(0)

∣∣∣∣ ,
then we have that ∣∣∣∣ 1ηQη(t ) − q(t )

∣∣∣∣ ≤ ε +C
∫ t

0

∣∣∣∣ 1ηQη(s) − q(s)
∣∣∣∣ ds.

Finally, our fluid limit result follows by Gronwall’s lemma given in Problem 2.7 of[16].

A.2. Proof of diffusion limit

In order to construct the diffusion limit, we need to subtract the fluid limit and multiply by √
η.

This yields the following expression for Dη(t ):
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Dη(t ) = √
η

(
1
η
Qη(t ) − q(t )

)

= √
η

∫ t

0

(
F(s, Q̄η(s)) − F(s, q(s))

)
ds + Vη(t ),

where

√
ηVη(t ) =

mA∑
j=1

mA∑
k�= j

lA0jk �
A0
jk

(∫ t

0
η f A0jk (s, Q̄η(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki�
A1
jki

(∫ t

0
η f A1jki (s, Q̄

η(s))ds
)

+
mS∑
i=1

mS∑
l �=i

lS0il �
S0
il

(∫ t

0
η f S0il (s, Q̄η(s))ds

)
+

mS∑
i=1

lS1i �
S1
i

(∫ t

0
η f S1i (s, Q̄η(s))ds

)
.

Now we need two propositions that will helpful in proving our main result.

Proposition A.3. LetMη(t ) be defined by the following equation

Mη(t ) =
mA∑
j=1

mA∑
k�= j

lA0jkW
A0
jk

(∫ t

0
f A0jk (s, Q̄η(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiW
A1
jki

(∫ t

0
f A1jki (s, Q̄

η(s))ds
)

+
mS∑
i=1

mS∑
l �=i

lS0il W
S0
il

(∫ t

0
f S0il (s, Q̄η(s))ds

)
+

mS∑
i=1

lS1i W
S1
i

(∫ t

0
f S1i (s, Q̄η(s))ds

)
,

then

lim
η→∞ sup

0≤t≤T
|Mη(t ) − Vη(t )| = 0 in distribution. (A.1)

We will show the result for one of the Brownian motion terms and one of the centered Poisson pro-
cesses. The proof for the remaining terms will follow in a similar manner and are therefore omitted.

Proof. Using the strong approximation result of Lemma A.1, we obtain

sup
t≥0

1√
η

∣∣∣�A0
jk

(
η
∫ t
0 f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(
η
∫ t
0 f A0jk (s, Q̄η(s))ds

)∣∣∣
log

(
2 ∨ η

∫ t
0 f A0jk (s, Q̄η(s))ds

) ≤
BA0
jk√
η

, (A.2)

where the distribution of BA
jk is independent η. Using the above strong approximation result,

which the assumption that the rate functions are locally bounded by a constant K, then we have
that

sup
0≤t≤T

|Mη(t ) − Vη(t )| ≤ log (2 ∨ ηKT ) sup
0≤t≤T

|Mη(t ) − Vη(t )|
log (2 ∨ ηKt )

(A.3)

≤ log (2 ∨ ηKT )
BA0
jk√
η

. (A.4)
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Since the distribution of BA0
jk is independent η and we have that

lim
η→∞

log (2 ∨ ηKT )√
η

= 0,

it implies that as η → ∞ we have that

sup
0≤t≤T

|Mη(t ) − Vη(t )| ⇒ 0 in distribution as η → ∞. (A.5)

All the other terms can be proved similarly with the same technique. �

Now that we have related the centered Poisson processes with time changed Brownian
motions, it remains for us to show that the fluid scaled randomly time-changed Brownianmotion
terms converge to Brownian motions time changed with the deterministic fluid equations. The
following Proposition A.4 proves this result.

PropositionA.4. The sequence of stochastic processesMη(t ) converges in distribution to the process
M(t ) where

M(t ) =
mA∑
j=1

mA∑
k�= j

lA0jkW
A0
jk

(∫ t

0
f A0jk (s, q(s))ds

)

+
mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiW
A1
jki

(∫ t

0
f A1jki (s, q(s))ds

)

+
mS∑
i=1

mS∑
l �=i

lS0il W
S0
il

(∫ t

0
f S0il (s, q(s))ds

)
+

mS∑
i=1

lS1i W
S1
i

(∫ t

0
f S1i (s, q(s))ds

)
(A.6)

In order to prove the convergence of the scaled Brownianmotions, we will use LemmaA.2.Moreover,
we will provide the full proof for one term and the proofs for the remaining terms follow analogously.
We now define a new function γ η(t ) as follows.

Proof.

γ η(t ) ≡
∣∣∣∣
∫ t

0
f A0jk (s, Q̄η(s))ds −

∫ t

0
f A0jk (s, q(s))ds

∣∣∣∣
and

γ η ≡ sup
0≤t≤T

γ η(t ).

This implies that ∣∣∣∣WA0
jk

(∫ t

0
f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0
f A0jk (s, q(s))ds

)∣∣∣∣
=

∣∣∣WA0
jk

(∫ t
0 f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t
0 f A0jk (s, q(s))ds

)∣∣∣√
γ η(t ) · (1 + log (KT/γ η(t )))

·
√

γ η(t ) · (1 + log (KT/γ η(t ))).

However, from Lemma A.2, we obtain∣∣∣∣WA0
jk

(∫ t

0
f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0
f A0jk (s, q(s))ds

)∣∣∣∣
≤ M̃ ·

√
γ η(t ) · (1 + log (KT/γ η(t ))).
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From the Lipschitz continuity of the rate functions, we have that

γ η ≤ KT · sup
0≤t≤T

∣∣∣∣ 1ηQη(t ) − q(t )
∣∣∣∣ .

Therefore, by convergence of the fluid limit, we have that

γ η ⇒ 0.

By observing that the distribution of M̃ is independent of η and that the following limit

lim
δ→0

√
δ · (1 + log (KT/δ)) = 0,

we conclude that

M̃ ·
√

γ η · (1 + log (KT/γ η)) ⇒ 0

and therefore,

lim
η→∞ sup

0≤t≤T

∣∣∣∣WA0
jk

(∫ t

0
f A0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0
f A0jk (s, q(s))ds

)∣∣∣∣ ⇒ 0.

The remaining terms can be shown to converge by identical arguments and therefore, we do not
provide their proofs. �

The following lemma shows that the sequenceDη(t ) is stochastically bounded.

Lemma A.5. For any ε > 0, there exists η∗ ∈ N and K < ∞ such that

P

(
sup

0≤t≤T
|Dη(t )| > K

)
< ε for all η ≥ η∗. (A.7)

Proof. The strong approximation for the Brownian motion yields the following representation

Dη(t ) = √
η

∫ t

0

(
F(s, Q̄η(s)) − F(s, q(s))

)
ds + Vη(t ).

We know that Vη(t ) is tight since it converges to a time-changed Brownian motion, which is a
continuous stochastic processes. Therefore, the tightness of Vη(t ) implies that it is bounded in
probability. Moreover, by using the Lipschitz continuity of the rate functions we have that

sup
0≤t≤T

|Dη(t )| ≤ L
∫ T

0
sup
0≤t≤s

|Dη(s)|ds + sup
0≤t≤T

|Vη(t )|

for some Lipschitz constant L. Thus, byGronwall’s inequality in Problem 2.7 of[16] we have almost
surely that

sup
0≤t≤T

Dη(t ) ≤ eLT sup
0≤t≤T

Vη(t )

and this concludes the proof. �

Lemma A.6. If { f η(t ), η ∈ N , t ∈ R+} be a sequence of non-negative random processes such
that

lim
η→∞

∫ T

0
f η(s)ds = 0 in probability, (A.8)
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then, for all δ > 0,

lim
η→∞P

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
f η(s)Dη(s)ds

∣∣∣∣ > δ

)
= 0. (A.9)

Proof. If we fix ε > 0, then we know that there exists a constant η∗ ∈ N such that for all η > η∗,
there exists sets �η,1 and �η,2 such that∫ T

0
f η(s)ds < ε/2 on �η,1 and such that P(�η,1) ≥ 1 − ε/2, (A.10)

and

sup
0≤t≤T

|Dη(t )| < K on �η,2 and such that P(�η,2) ≥ 1 − ε/2, (A.11)

Therefore, we have that

sup
0≤t≤T

∣∣∣∣
∫ t

0
f η(s)Dη(s)ds

∣∣∣∣ ≤ sup
0≤t≤T

|Dη(t )|
∫ T

0
f η(s)ds < Kε on �η,1 ∩ �η,2. (A.12)

The result follows since ε was chosen arbitrarily. �

Theorem A.7. Suppose that we define D̃η(t ) as

D̃η(t ) ≡
∫ t

0
∂F(s, q(s))D̃η(s)ds + Vη(t ), (A.13)

then

lim
η→∞ sup

0≤t≤T
|Dη(t ) − D̃η(t )| = 0 in probability. (A.14)

We know by the continuous mapping theorem and Proposition A.4, which shows that Vη(t )
converges to M(t ) in Equation (A.6), then we know that that D̃η(t ) converges to D̃(t ) given in
Equation (3.5). Thus, in order to show our diffusion limit results in Theorem 3.2, it now suffices
to show the following convergence:

lim
η→∞ sup

0≤t≤T
|Dη(t ) − D̃η(t )| = 0 in probability. (A.15)

To prove this, we define the difference between the two processes as

Eη(t ) = Dη(t ) − D̃η(t )

= √
η

∫ t

0

(
F(s, Q̄η(s)) − F(s, q(s))

)
ds + Vη(t ) −

(∫ t

0
∂F(s, q(s))D̃η(s)ds + Vη(t )

)

= √
η

∫ t

0

(
F(s, Q̄η(s)) − F(s, q(s))

)
ds −

∫ t

0
∂F(s, q(s))D̃η(s)ds

=
∫ t

0
∂F(s, q(s))Eη(s)ds + √

η

∫ t

0

(
F(s, Q̄η(s)) − F(s, q(s))

)
ds

−
∫ t

0
∂F(s, q(s))Dη(s)ds.

Thus, by the mean value theorem and the fact that the rate functions in the Poisson repre-
sentations are continuously differentiable, there exists a vector ζ η(s) that is in between q(s) and
Q̄η(s) such that
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F
(
s, Q̄η(s)

)− F(s, q(s)) = ∂F(s, ζ η(s)) · (Q̄η(s) − q(s)
)

= ∂F(s, ζ η(s)) · 1√
η

· √
η
(
Q̄η(s) − q(s)

)
= 1√

η
∂F(s, ζ η(s))Dη(s).

From this equivalence provided by the mean value theorem, it now implies that

Eη(t ) =
∫ t

0

(
∂F(s, ζ η(s)) − ∂F(s, q(s))

)
Dη(s)ds +

∫ t

0
∂F(s, q(s))Eη(s)ds.

We also know that

lim
η→∞ sup

0≤t≤T
‖∂F(t, ζ η(t )) − ∂F(t, q(t ))‖ = 0 a.s (A.16)

in lieu of the fluid limit convergence and the continuity of the function ∂F(·, ζ η(·)). Moreover,
sinceDη(u) is bounded in probability and Lemma A.6 is true, we have that the process

lim
η→∞ sup

0≤t≤T

∫ t

0

(
∂F(s, ζ η(s)) − ∂F(s, q(s))

)
Dη(s)ds = 0 in probability.

Finally by the application ofGronwall’s inequality in Problem2.7 of[16] and LemmaA.6, we obtain
our diffusion limit result.
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