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Closure approximations are useful methods for approximating the moments of complex Markovian stochas-
tic systems. However, it has been typically very difficult to prove rigorous error bounds that show that the
closure approximation is close to the stochastic model being approximated. In this paper, we propose a
new methodology for approximating the transient moment dynamics of Markovian birth-death processes by
expanding the transition probabilities of the Markov process in terms of Poisson-Charlier polynomials. We
specifically rely on the novel construction of new weighted discrete Sobolev spaces, which we use to derive
error bounds for the transition probabilities. We also leverage our transition probability approximations
to construct new weak a priori estimates for approximating the moments of the Markov processs using a
truncated form of the expansion. As a result, we are the first to provide explicit error bounds and estimates
on the performance of a moment closure approximation. Finally, we demonstrate through several numerical
examples from the queueing and epidemic literature that our approximations are quite accurate with a small
number of terms.
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1. Introduction Markovian birth-death processes are very important modeling tools in engi-
neering, operations research, mathematics, physics, and a variety of other fields. The development
of Markovian stochastic models has made a profound impact on the way we understand complex
dynamics in these fields of study. One particular way to explore the dynamics of these processes
that transcends a particular application setting is to study the behavior of the transition proba-
bilities and the state probabilities, which provide the entire distribution of the process for all time
points of interest. However, an explicit study of the transition probabilities or state probabilities
has often eluded researchers since the transition or state probabilities do not have explicit solu-
tions in general with some exceptions in some very special cases. Moreover, when analyzing large
models such as large scale service systems or moderately sized queueing networks a full under-
standing of the transition or state probabilities in their explicit form is rather intractable in both
a mathematical and numerical sense.

Thus, many researchers have spent considerable effort in trying to develop ways of understanding
the moments of Markovian birth-death processes. Moments like the mean and variance can provide
considerable insight into understanding the “typical” stochastic behavior of the system. However,
a full understanding of the moments also is quite difficult to obtain. One major difficulty that
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is often encountered in Markovian systems is that the system of differential equations describing
the moments of the birth-death process might not be closed. This means that it is necessary that
one know the true distribution of the Markov process or at least its higher moments in order to
compute the lower moments of the stochastic process.

One common approach to circumvent the lack of closure is to apply asymptotic methods such
as heavy traffic limit theorems. Such results scale or speed up the rates of the stochastic process
in order to simplify the stochastic analysis of the Markov process, see for example Massey [17] and
Mandelbaum et al. [16]. However, these methods are asymptotic and therefore only apply when
the stochastic processes rates are infinite or very large. They do not apply directly to a process
that has moderately sized rates. Moreover, currently, there are no methods to determine how close
our nonstationary approximations are to the true stochastic process for a particular finite rate.

An alternative method for computing the moments of the Markov process is to apply what are
known as closure approximations to the stochastic process under consideration. Closure approxi-
mations attempt to intelligently approximate the distribution of the Markov process and use this
approximate distribution to estimate the moments of the stochastic process. By using the closure
approximation, it should be simple to calculate the moment dynamics and perhaps more impor-
tantly, the moment dynamics should be close to the true dynamics of the original process. See for
example Krishnarajah et al. [14, 15] in the epidemic process setting and Rothkopf and Oren [27],
Clark [3], and Taaffe and Ong [28] in the queueing process setting.

A more recent method developed by Massey and Pender [18, 19], Pender and Massey [25] is to
use Hermite polynomial expansions to approximate the distribution of the queue length process.
Taking two or three terms of the expansion works quite well. Since the Hermite polynomials are
orthogonal to the Gaussian distribution, which has support on the entire real line, these Hermite
polynomial chaos expansions do not take into account the discreteness of the queueing process
and the fact that the queueing process is non-negative. Work by J. Pender [26] uses Laguerre
polynomials, which are orthogonal with respect to the gamma distribution on the positive real
line, but also ignores the discrete nature of the queueing process. Lastly, Pender [23] provides a
Poisson-Charlier expansion for the queue length process, however, this work does not prove error
bounds for the method and nor does it expand the transition or state probabilities, which we will
show is much easier to do. For the continuous distributions like the Hermite and Laguerre it is
also quite difficult to prove error bounds on these approximations due to the discrete nature of
the queueing process. Therefore, in the context of queueing theory, it is still an open problem to
develop closure methods using a discrete reference distribution with provable error bounds for the
truncation error.

We also find it important to mention recent work in approximating queueing networks with
Gaussian distributions. Recent work by Gurvich et al. [9], Huang and Gurvich [10], Dai and Shi
[4], Braverman et al. [1] uses excursions and Stein’s method to provide explicit error bounds for
Gaussian approximations and steady state queue length proceses. With an exception of a small
section in Huang and Gurvich [10] that covers transient systems, all of the work is in steady state
and assumes some type of scaling for the queue length processes. Our approach is complementary
to these approaches, yet is quite different in three major ways. First, we do not use Gaussian
distributions to derive our approximations. Second, we do not assume any type of scaling for
the queue length processes, which we argue is unnatural for finite sized systems. Finally, our
approximations are discrete and not continuous, which is also more natural for discrete queueing
systems.

In this paper, we study one dimensional birth-death models that have nonstationary as well
as non-trivial state dependent rates. To develop approximations for the moments and the state
probabilities, we use the Poisson-Charlier polynomials to expand the state probabilities of the
Markov process in terms of a Poisson reference distribution. This Poisson representation of the
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transition probabilities is quite natural since a linear birth-death process such as an infinite server
queue, has a Poisson distribution when initialized at zero or with a Poisson distribution. Therefore,
the terms that serve to correct the true distribution from the Poisson reference distribution can
be written explicitly in terms of integrals with respect to the Poisson distribution, which is quite
simple. In addition, we should expect that processes that are close to an infinite server queue, should
also be approximated quite well with a small number of terms. Moreover, the Poisson reference
distribution also allows us to derive explicit approximations for many important stochastic models
in the operations research literature such as the nonstationary Erlang-A model, nonstationary
Erlang loss model, and even some quadratic birth-death models that are relevant in the applied
probability literature. This is because we are able to explicit calculate the rate functions that
appear in the functional forward equations using the discrete representation of the incomplete
gamma function.

Our approach, which is similar to the spectral Galerkin method of Wulkow [29, 30], later devel-
oped by Deuflhard et al. [5], and independently by S. Engblom [8], not only exploits the properties
of the Poisson distribution, but also allows us to derive explicit bounds for the transition prob-
abilties and weak a priori estimates for estimating the moments of our approximation method.
These bounds and estimates help us understand how many terms we might need to approximate
the moments of our birth-death process with good accuracy. Moreover, we can show that as we
add more terms to the expansion, the approximate transition probabilities and the moments of
the birth-death model converge to the true transition probabilties and moments of the underlying
Markov process. However, unlike their continuous counterparts, discrete orthogonal polynomials
such as the Poisson-Charlier and their properties are much less studied. This forces us to define
new weighted Sobolev spaces to analyze the convergence of our discrete closure approximation.
These Sobolev spaces allow us to prove spectral convergence of the method, with error estimates
decaying faster than any inverse power of the expansion order N , and also allow us to prove that
the moments converge by adding more terms to the approximation of the transition probabilities.

Contributions to Literature In this work we make the following contributions:
• We expand the state probabilities of one-dimensional birth-death Markov processes in terms

of Poisson-Charlier polynomials.
• We prove the convergence of the state probabilities and the moments of one-dimensional birth-

death Markov processes as we add more terms to the Poisson-Charlier expansion by constructing
the appropriate Sobolev sequence spaces. We also prove explicit error bounds for the transition
probabilities and moments when we truncate the expansion to a finite number of terms. Thus, we
provide the first moment closure with provable error bounds.
• We show numerically that our approximatons are quite accurate at describing the moment

dynamics of the underlying Markov process with only a small number of terms.

Organization of Paper The rest of the paper is organized as follows. In Section 2, we intro-
duce the nonstationary and state dependent birth death model that we consider for the remainder
of the paper. In Section 3, we introduce the Poisson-Charlier expansion method that we use in the
paper and describe the new sequence spaces that are needed to prove convergence of our method.
In Section 4, we derive our error bounds for the transition probabilities and the moments for a
general birth-death process. In Section 5, we provide extensive numerical results illustrating the
power of our method. Finally, in Section 6, we conclude with future work.

2. Nonstationary Birth-Death Model In this section, we give a description of the birth-
death model that is under consideration. Birth-death processes are very important processes in
the stochastic community. They arise in variety of applications from queueing theory, chemical
reaction networks, neuroscience, and healthcare modelling. Thus, it is important to have a good
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understanding of the dynamics of these models. In addition, in all of these applications, it is also
very important to understand the nonstationary and state dependent aspects of these models.
Nonstationary and state dependent dynamics are prevalent in our society, especially in a queueing
context, where arrivals of customers is almost never stationary and often depend substantially on
the size of the queue.

We consider a continuous time one-dimensional nonhomogeneous birth-death process (BDP)
Q(t), t ≥ 0 on the state space Z+ = {0,1,2, . . .} with time dependent and state dependent rate
functions. The rate function for the birth process is denoted by λx(t) and the rate functions for
the death process are denoted by µx(t), t≥ 0, x∈Z+. Moreover, we have that

P(Q(t+h) = j|Q(t) = i) =


λi(t) ·h+ o(h) if j = i+ 1,

µi(t) ·h+ o(h) if j = i− 1,

1−λi(t) ·h−µi(t) ·h+ o(h) if j = i,

o(h) if |i− j|> 1.

(1)

It is assumed that the time interval h > 0 is sufficiently small to eliminate the possibility of
multiple events occurring in the same interval. We also denote o(h) = oi(t, h), i∈Z+ such that

lim
h→0

supi oi(t, h)

h
= 0. (2)

Thus, we define the transition probabilities and the state probabilities respectively as

pij(s, t) = P(Q(t) = j|Q(s) = i), (3)

and
pi(t) = P(Q(t) = i|Q(0) = 0). (4)

If we let p(t)≡ {p0(t), p1(t), ....p∞(t)} and we let A(t) be the matrix induced by (1), then we have
that •

p(t) =A(t)p. (5)

We assume that the rates of birth and death are given by the transition probabilities of a Markov
chain. Mathematically, this means that the changes in the system in a small time interval are
determined by the following transition probabilities

P{∆Q(t+ ∆t) = 1} ≡ ψα(t,Q(t)) ·∆t
P{∆Q(t+ ∆t) =−1} ≡ ψδ(t,Q(t)) ·∆t

Brémaud [2, §8.4.3] gives verifiable conditions for non-explosion of the birth and death generator.
Typically in the physical or chemical literature the functions ψα and ψδ are polynomials functions
of the state Q(t). Although they may be non-linear, they are smooth functions of the state process.
However, in fields such as queueing theory, these functions can be nonlinear and non-smooth with
respect to the state variable Q(t). In fact, these rate functions are sometimes even discontinuous.

From now on for ease of notation, we will suppress the time dependence of the stochastic process
Q(t) and the rate functions. Using the above functional form of the transition probabilities, we can
state the Kolmogorov forward equations of the Markov process. Implicit conditions for the validity
of the forward equations are found in [2, §8.3.2], while general explicit conditions can be found
in Meyn and Tweedie [20]. Compare also the discussion in Engblom [6] targeting applications in
chemical kinetics. In the present case and for the purposes herein, the conditions in Engblom [6]
simplify considerably.
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Proposition 1 (see Theorem 4.5 in Engblom [6]). Suppose the birth and death rates sat-
isfy for x, y ∈Z+,

ψα(x) +ψδ(x)≤C(1 +x), (6)

and suppose further that f : Z+→R is bounded by some finite pth order moment, |f(x)| ≤Cp(1 +
xp). Then the Markovian birth-death process satisfies the following set of functional Kolmogorov
forward equations:

•
E[f(Q(t))] ≡

•
E[f(Q(t)) | Q(0) = 0 ]

= E[ψα(t,Q) · (f(Q+ 1)− f(Q))] +E[ψδ(t,Q) · (f(Q− 1)− f(Q))].

Proposition 2. Suppose that ψα(t,Q) and ψδ(t,Q) satisfy the sufficient conditions given in
Proposition 1, then we have that the mth moment of the birth-death process satisfies the following
differential equation

•
E[Qm(t)] =

m−1∑
k=0

(
m

k

)
·
(
E[Qk ·ψα(t,Q)] + (−1)m−k ·E[Qk ·ψδ(t,Q)]

)
(7)

Proof: Using the binomial theorem, we have that

•
E[Qm(t)] = E[ψα(t,Q) · ((Q+ 1)m−Qm)] +E[ψδ(t,Q) · ((Q− 1)m−Qm)]

= E

[
ψα(t,Q) ·

(
m∑
k=0

(
m

k

)
·Qk−Qm

)]

+ E

[
ψδ(t,Q) ·

(
m∑
k=0

(
m

k

)
· (−1)m−k ·Qk−Qm

)]

=
m−1∑
k=0

(
m

k

)
·E[Qk ·ψα(t,Q)] +

m−1∑
k=0

(
m

k

)
· (−1)m−k ·E[Qk ·ψδ(t,Q)]

=
m−1∑
k=0

(
m

k

)
·
(
E[Qk ·ψα(t,Q)] + (−1)m−k ·E[Qk ·ψδ(t,Q)]

)
�

Corollary 1. Using Proposition 2 the time derivatives of the first four cumulant moments
satisfy the following equations

•
E[Q(t)] = E[ψα(t,Q)]−E[ψδ(t,Q)]
•

Var[Q(t)] = E[ψαt,Q)] +E[ψβ(t,Q)] + 2 ·Cov[Q,ψα(t,Q)]− 2 ·Cov[Q,ψβ(t,Q)]
•

C(3)[Q(t)] = E[ψα(t,Q)]−E[ψβ(t,Q)] + 3 ·Cov[Q,ψα(t,Q)] + 3 ·Cov[Q,ψβ(t,Q)]

+3 ·Cov
[
Q

2
,ψα(t,Q)

]
− 3 ·Cov

[
Q

2
,ψβ(t,Q)

]
•

C(4)[Q(t)] = E[ψα(t,Q)] +E[ψβ(t,Q)] + 4 ·Cov[Q,ψα(t,Q)]− 4 ·Cov[Q,ψβ(t,Q)]

+6 ·Cov
[
Q

2
,ψα(t,Q)

]
+ 6 ·Cov

[
Q

2
,ψβ(t,Q)

]
+4 ·Cov[Q

3
,ψα(t,Q)]− 4 ·Cov[Q

3
,ψβ(t,Q)]

+12 ·Var[Q] · (Cov[Q,ψα(t,Q)] + Cov[Q,ψβ(t,Q)])

where Q=Q−E[Q] and Cov[f(Q), g(Q)] =E[f(Q) · g(Q)]−E[f(Q)] ·E[g(Q)].
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Thus, using the functional forward equations, it appears at first sight that we might be able
to calculate the moments of the birth-death process directly. However, this is quite complicated
unless the rate functions ψα(t,Q) and ψβ(t,Q) are constant, linear, or some other very special case.
One way to see this complication is to make ψβ(t,Q) quadratic. Thus, it is easily seen that the
differential equation for the mean of the birth death process depends on the second moment of
the process, which is unknown. When the moments of lower order either depend on higher order
moments or functions of higher order moment, this system of equations is said to be not closed.
Thus, closure approximations were developed to address this complication by approximating the
higher order moment terms with functions of the lower order moments. However, one complication
is that typically closure approximations have no theoretical guarantees for performance and are
quite heuristic. In the next section, we describe a new closure method based on Poisson-Charlier
polynomials and Sobolev space estimates that not only has theoretical guareentees for approxi-
mating the distribution and its moments, but also has good numerical performance.

3. Poisson-Charlier Expansions In this section we describe our method for approximating
the dynamics of one-dimensional Markovian birth-death processes. We first give an outline and
motivation for the method and how it is extremely useful in our context.

3.1. Motivation Our method expands the state probabilities of the birth-death Markov pro-
cess in terms of Poisson-Charlier polynomials and the Poisson reference distribution. This means
that we project the actual state probabilities onto a finite set of Poisson-Charlier polynomials. We
then use this approximation to derive estimates for the moment of the Markov process, by using
the functional forward equations. One important result is that we can exploit various properties
of the Poisson distribution to derive explicit and closed-form approximations for various Marko-
vian birth-death processes with explicit and rigorous error bounds on the expansion or truncation
error. We know from the theory of Hilbert spaces and the fact that probabilities are bounded
that the transition probabilities of our queueing process can be written in terms of an infinite
Poisson-Charlier polynomial expansion,

P(Q(t) = x) = ω(x)
∞∑
j=0

cj(t) ·Ca
j (x), (8)

where the Cj(a,x) are the Poisson-Charlier polynomials with parameter a and ω(x) is the Poisson
distribution weight function. Now if one truncates the distribution at a finite number of terms,
then one has the following approximation for the value of the state probabilities of the Markovian
birth-death process as

P(N)(Q(t) = x) = ω(x)
N∑
j=0

cj(t) ·Ca
j (x). (9)

This introduces the following error for the state probabilities when approximated by a truncated
expansion

Error≡E(N)
x = P(N)(Q(t) = x)−P(Q(t) = x) = ω(x)

∞∑
j=N+1

cj(t) ·Ca
j (x). (10)

It is obvious that as we add more terms that limN→∞E
(N)
x = 0 for each value of x ∈Z+, however,

the details of this convergence are not trivial.
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In addition to the state probabilities, it is also possible to derive approximations for the moments
of the stochastic process. Using the state probabilities, we have the following expression for the
mth moment of the birth-death process in terms of Poisson-Charlier polynomials

E[Qm(t)] =
∞∑
x=0

xm ·ω(x)
∞∑
j=0

cj(t) ·Ca
j (x). (11)

Moreover, by truncating the Poisson-Charlier expansion at N terms, we have the following approx-
imation for the mth moment of the birth-death process as

E(N)[Qm(t)] =
∞∑
x=0

xm ·ω(x)
N∑
j=0

cj(t) ·Ca
j (x). (12)

Thus, like in the state probability case, we can substract the two and get the error induced by
truncating the two expressions.

3.2. A Review of Poisson Charlier Polynomials and Properties In this section, we
describe how to use Poisson-Charlier polynomials in conjuction with the functional forward equa-
tions in order to construct approximations for our nonstationary queueing processes. The Poisson-
Charlier polynomials are an orthogonal polynomial sequence with respect to the Poisson distribu-
tion with rate a i.e

ω(x) = e−a
ax

x!
x= 0,1,2, ..... (13)

As a result, the Poisson-Charlier polynomials solve the following recurrence relation

C̃a
n+1(x) = (x−n− a) · C̃a

n(x)−n ·α · C̃a
n−1(x). (14)

The first four unnormalized Poisson-Charlier polynomials are defined as

C̃a
0 (x) = 1 (15)

C̃a
1 (x) = x− a (16)

C̃a
2 (x) = x2− 2 ·x · a+ a2−x (17)

C̃a
3 (x) = x3− 3 · (a+ 1) ·x2 + (3 · a2 + 3 · a+ 2) ·x− a3 (18)

and the first few orthonormal Poisson-Charlier polynomials can be generated according to

Ca
0 (x)≡ 1,

Ca
1 (x)≡ a−x√

a
,

Ca
n+1(x) =

n+ a−x√
a(n+ 1)

Ca
n(x)−

√
n

n+ 1
Ca
n−1(x). (19)

Moreover, the Poisson-Charlier polynomials satisfy the following Sturm-Liouville equation

Sp≡−ω−1(x) · [∇ (ω(x) ·4Ca
n(x))] =

n

a
Ca
n(x) (20)

where ∇ and 4 are defined as the backward and forward difference operators respectively and
where S is the following Sturm-Liouville operator

Sp≡ x

a
4p−∇p. (21)
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Although not as well studied as the convergence properties of the Hermite polynomials or the
Laguerre polynomials, the convergence properties of the Poisson-Charlier projection (34)–(35) has
been investigated in S. Engblom [7]. Now suppose that we have a function f(x), which is defined
on the integers and satifies the inequality

∞∑
x=0

f2(x) ·ω(a,x)<∞, for some a> 0. (22)

Then we have the following expansion in terms of Poisson-Charlier polynomials in the Hilbert space
l2(N, ω(a,x)).

Proposition 3. Any function f(x) ∈ l2(N, ω(a,x)) can be expanded into a Poisson-Charlier
series i.e.

f(x) =
∞∑
x=0

cj ·Ca
j (x) (23)

where cj =
∑∞

x=0 f(x)Ca
j (x)ω(a,x).

Proof: See Ogura [21]. �
Remark 1. This expansion can also be extended to the case where the independent variable

of the function f(k) is a stochastic process and also depends on time itself.

Lemma 1. ∞∑
x=0

ω(a,x) ·Ca
j (x) =E[Ca

j (x)] = 0 for all j ≥ 1. (24)

Proof: This follows from the orthogonality of the Poisson-Charlier polynomials with constants,
which is the zeroth order term. �

It is important to know how close our distribution is to the Poisson distribution. The Chen
Stein method can help in our understanding of how close our queueing process is to the Poisson
distribution.

Theorem 1 (Chen-Stein). Let Q be a random variable with values in N. Then, Q has the
Poisson distribution with mean rate q if and only if, for every bounded function f :N→N,

E [Q · f(Q)] = q ·E [f(Q+ 1)] (25)

Proof: See Peccati and Taqqu [22]. �

3.3. Weighted Sobolev sequence spaces In this section we put forward a theory for conver-
gence of orthogonal expansions in terms of Charlier polynomials and associated Poisson functions.
Due to the discreteness of the underlying Poisson measure the theory requires a special hierarchy
of discrtete Sobolev spaces which is devloped in §3.3. Another important reason that the Sobolev
spaces are needed is that polynomials or (moments) are not integrable on unbounded domains
without a sufficiently fast decaying measure. Moreover, the type of convergence we are interested
in is detailed in §4 and forms the basis for our later developments. The material in here draws on
some earlier accounts S. Engblom [7, 8], but several salient and novel extensions are proposed to
deal with our new problems.

First, since in the current work we aim for a consistent moment closure rather than a convergent
spectral method for the probability density itself, the correct Hilbert spaces to work with are not the
same as S. Engblom [7, 8]. More specifically, the targeted densities have to belong to a certain more
restrictive class of weighted Hilbert spaces than what is required for spectral approximations to the
densities themselves. Secondly, we present a general weak error bound of our method which predicts
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the weak convergence of arbitrary functionals in a certain class. This convergence is extremely
relevant for approximating the moments of the Markov process since we want to be confident that
our method also converges for moments based on our transition probability approximations.

For real-valued functions over the non-negative integers Z+ = {0,1,2, . . .} we associate the usual
discrete Euclidean inner product,

(p, q)≡
∑
x≥0

p(x)q(x), (26)

and we define the l2(Z+)-sequence space accordingly,

‖q‖2l2(Z+) ≡ (q, q), (27)

l2(Z+) =
{
q : Z+→R; ‖q‖l2(Z+) <∞

}
. (28)

Now we introduce the important class of discrete Sobolev sequence spaces that are necessary for
our analysis

hm(Z+) =
{
q : Z+→R;

√
xk · q(x)∈ l2(Z+) for 0≤ k≤m

}
, (29)

‖q‖2hm(Z+) ≡
m∑
k=0

a−k‖
√
xk · q(x)‖2l2(Z+), (30)

where the falling factorial power is defiend by xm = x!/(x−m)! =
∏m−1
i=0 (x− i) and where the free

parameter a∈R+.
Define as usual the Poisson weight function by

w(x) =
ax

x!
· e−a. (31)

We need to consider two related weighted inner products. Define (p, q)w := (p, qw) and similarly
(p, q)w−1 := (p, qw−1), where in the latter case clearly some regularity of p and q is understood. A
useful observation is that by the Cauchy-Schwartz inequality we have that,

(p, q) = (pw1/2, qw−1/2) (32)
≤ ‖p‖l2(w;Z+)‖q‖l2(w−1;Z+), (33)

again provided that p and q are measurable in the respective weighted l2-spaces which we denote
by l2(w; Z+) and l2(w−1; Z+), respectively.

From these weighted l2-spaces we readily define two hierarchies of weighted Sobolev sequence
spaces hm(w; Z+) and hm(w−1; Z+) by simply following the prescription in (29)–(30). The following
is a consequence of these definitions and is an important property of the Sobolev spaces hm(w; Z+)
and hm(w−1; Z+) that will be used throughout the rest of the paper.

Proposition 4. The map p 7→wp is an isometry between hm(w; Z+) and hm(w−1; Z+).

Proof: For an arbitrary p∈ hm(w; Z+), put q=wp. Then by (30),

‖q‖2hm(w−1;Z+) =
m∑
k=0

a−k
∞∑
x=0

xk · q(x)2w(x)−1

=
m∑
k=0

a−k
∞∑
x=0

xk · p(x)2w(x)

= ‖p‖2hm(w;Z+)

as claimed. �
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4. Main Results For a given Poisson parameter a > 0, and keeping in mind that different
normalizations are sometimes used, we will let Ca

n(x) denote the normalized nth degree Poisson-
Charlier polynomial Koekoek and Swarttouw [13]. These polynomials are orthonormal with respect
to the l2w-product and hence we may define πN as the orthogonal projection onto the space of
polynomials PN of degree ≤N ;

πNp(x)≡
N∑
n=0

cnC
a
n(x), (34)

cn = (p(x),Ca
n(x))w. (35)

Theorem 2. For any nonnegative integers k and m, k≤m, there exists a positive constant C
depending only on m and a such that, for any function p∈ hm(w; Z+), the following estimate holds

‖πN−1p− p‖hk(w;Z+) ≤C(a/N)m/2(1∨N/a)k/2‖p‖hm(w;Z+). (36)

If a≥ 1 is assumed, then C depends only on m.

Proof: We will prove this result in two steps. The first step is to make the observation that it is
enough to prove our result for the uniformly equivalent norm ‖ · ‖hk(w,4;Z+). The second step is to
prove the subsequent result using induction. Thus, we will show the result for the value k= 0 and
then make the inductive step. Now we show the result for k = 0 and for even integers. A similar
argument can be made for odd integers.

We know that for any integrable function p∈ l2(w; Z+)

‖πN−1p− p‖2l2(w;Z+) =
∞∑
n≥N

p̄2n. (37)

Moreover, we know that

p̄n = (p,Ca
n)ω (38)

=
(a
n

)m/2
·
(
Sm/2p,Ca

n

)
ω
. (39)

Thus, combining our results, we have that

‖πN−1p− p‖2l2(w;Z+) =
∞∑
n≥N

p̄2n (40)

≤
∞∑
n≥N

(a
n

)m
·
(
Sm/2p,Ca

n

)2
ω

(41)

≤
( a
N

)m
·
∞∑
n≥N

(
Sm/2p,Ca

n

)2
ω

(42)

≤
( a
N

)m
· ‖Sm/2p‖2l2(w;Z+) (43)

Thus, we have shown the result for the case k = 0. We will finish the proof by using induction.
First we assume that the result given in Equation 36 holds for the case of k, thus we must show
the result for k+ 1. Using this assumption the decomposition of the discrete Sobolev spaces, we
can then bound the error in terms of the following useful partition

‖πN−1p− p‖hk+1(w,4;Z+) ≤ ‖πN−1p− p‖l2(w;Z+) + ‖πN−14p−4πN−1p‖hk(w,4;Z+)

+ ‖πN−14p−4p‖hk(w,4;Z+). (44)
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Using the case where k= 0, we have that

‖πN−1p− p‖hk+1(w,4;Z+) ≤C
( a
N

)m/2
‖p‖hm(w,4;Z+) + ‖πN−14p−4πN−1p‖hk(w,4;Z+) (45)

+ ‖πN−14p−4p‖hk(w,4;Z+). (46)

Moreover, using the equivalence of norms, we also have that

‖4p‖hm−1(w,4;Z+) ≤ ‖p‖hm(w,4;Z+), (47)

which implies that

‖πN−1p− p‖hk+1(w,4;Z+) ≤C
( a
N

)m/2
‖p‖hm(w,4;Z+) + ‖πN−14p−4πN−1p‖hk(w,4;Z+) (48)

+C
( a
N

)(m−1)/2−k/2
‖4p‖hm−1(w,4;Z+). (49)

Now that we have two terms bounded in terms of the correct norm given in Equation 36, it now
remains to bound the middle term to complete the proof. Thus, we must show that

‖πN−14p−4πN−1p‖hk(w,4;Z+) ≤C
( a
N

)m/2
·max

(
1,
N

a

)(k+1)/2

· ‖4p‖hm−1(w,4;Z+). (50)

To this end, exploit the Poisson-Charlier expansion for the function p, we make the following two
observations that πN−14p≡

∑N

n=0 p̄n4Ca
n and 4πN−1p≡

∑N−1
n=0 p̄n4Ca

n.
Thus, the difference between the two expressions can be bounded by

‖πN−14p−4πN−1p‖hk(w,4;Z+) = ‖
N∑
n=0

p̄n4Ca
n−

N−1∑
n=0

p̄n4Ca
n‖hk(w,4;Z+) (51)

= ‖p̄N4Ca
N‖hk(w,4;Z+) (52)

≤ |p̄N |‖4Ca
N‖hk(w,4;Z+) (53)

≤C · |(p,Ca
N)ω| · ‖4Ca

N‖hk(w,4;Z+). (54)

Finally, by using standard Sobolev bounds for the Poisson-Charlier polynomials, the Sturm-
Liouville representation of the Poisson-Charlier polynomials and the Cauchy-Bunyakovsky-
Schwartz inequality, we have that

‖πN−14p−4πN−1p‖hk(w,4;Z+) ≤C
( a
N

)m/2
·max

(
1,
N

a

)(k+1)/2

· ‖4p‖hm−1(w,4;Z+). (55)

Thus, we complete our proof by combining all of the estimates and bounds together. �
In addition to our approximations in terms of Poisson-Charlier polynomials, we also need to

consider the corresponding approximation results in terms of Poisson-Charlier functions. These are
defined for n= 0,1, . . . by C̃n(a,x)≡Ca

n(x) ·w(x) and spans the space P̃N ≡ {p(x) = q(x) ·w(x); q ∈
PN}. Using orthonormality under the inner product (·, ·)w−1 we define π̃N to denote the orthogonal
projection on P̃N . Thus, we have the following relation between the two projection operators of
which π̃Np will be the most important for our approximations since it is related to the Poisson-
Charlier functions.

Proposition 5.

π̃Np=w(x)πN
[
w(x)−1 · p(x)

]
. (56)
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Proof: For p∈ l2(w−1; Z+) by orthonormality we have the Fourier series

π̃Np=
N−1∑
n=0

(p, C̃a
n)w−1C̃a

n.

Expanding we get

π̃Np=w(x)
N−1∑
n=0

(w−1p,Ca
n)wC

a
n

=w(x)πN
[
w(x)−1 · p(x)

]
by inspection. �

The natural setting for measuring convergence is now the hierarchy of inversely weighted Sobolev-
spaces hm(w−1; Z+). Theorem 2 governs the case of convergence in the weighted l2-space. For
sufficiently regular functions we may use the representation in Proposition 5 and the isometry in
Proposition 4 to arrive at the following result which is crucial to the approach taken in this paper.

Theorem 3 (Poisson-Charlier expansion). For any nonnegative integers k and m, k ≤
m, there exists a positive constant C depending only on m and a such that, for any function
p∈ hm(w−1; Z+), the following estimate holds

‖π̃N−1p− p‖hk(w−1;Z+) ≤C(a/N)m/2(1∨N/a)k/2‖p‖hm(w−1;Z+). (57)

Again, if a≥ 1 is assumed, then C depends only on m.

Proof: By Proposition 4, we know that p 7→ w−1p is an isometry between the Sobolev spaces
hk(w−1; Z+) and hk(w; Z+). Thus, we can move back and forth between the spaces keeping in
mind the different weighting functions. For some p∈ hm(w−1; Z+), put q=w−1p. Then

‖π̃N−1p− p‖2hk(w−1;Z+) = ‖wπN
[
w−1 · p

]
− p‖2hk(w−1;Z+)

= ‖πN
[
w−1 · p

]
−w−1p‖2hk(w;Z+)

= ‖πNq− q‖2hk(w;Z+),

where Theorem 2 clearly applies and yields (57) expressed in terms of the hm(w−1; Z+)-norm of q.
Using the isometry in Proposition 4 again finalizes the proof. �
Example 1. Consider a Poisson distribution p(x) = exp(−λ)λx/x! for some constant λ > 0.

Write pN = π̃N−1p for a 6= λ. We compute explicitly

‖p‖2hm(w−1;Z+) =
m∑
k=0

a−k
∑
x≥0

xk · p(x)2w(x)−1

=
m∑
k=0

a−k
∑
x≥0

x!

(x− k)!
exp(−2λ)

λ2x

(x!)2
· exp(a)

x!

ax

=
m∑
k=0

a−k
∑
x≥0

1

(x− k)!
exp(−2λ) ·λ2x · exp(a)

1

ax

=
m∑
k=0

a−k
∑
x≥0

1

x!
· exp(a− 2λ) ·

(
λ2

a

)x+k
=

m∑
k=0

(
λ

a

)2k

exp((a−λ)2/a)

=
1− (λ/a)2(m+1)

1− (λ/a)2
exp((a−λ)2/a).
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Inspired by this evaluation let us make the abstract assumption that

‖p‖hm(w−1;Z+) ≤Caθma , (58)

for some positive constants (Ca, θa) possibly depending on a, and refer to this class of distributions
as being “highly regular”. We see that for p in this class and for a fix k we obtain from Theorem 3
that for N large enough,

‖π̃N−1p− p‖hk(w−1;Z+) ≤Ca(a/N)(m−k)/2θma .

By selecting N large enough we may now let m→∞ and get an error estimate that decreases
faster than any inverse power of N . Hence in fact, for p sufficiently regular in the sense of (58),

‖π̃N−1p− p‖hk(w−1;Z+) ≤ exp(−cN),

for some c > 0 and any fixed value of k.
Let us write pN = π̃N−1p for p some unknown but sufficiently regular probability distribution.

Assume that X ∼ p and let XN ∼ pN be considered an approximation to X. What can then be
said about weak errors of the form Ef(XN) − Ef(X)? Firstly, note that pN is not guaranteed
to be a probability distribution; it need not hold true that pN(x) ≥ 0 for all x ∈ Z+. However,
(1, pN) = (C̃a

0 , pN)w−1 = (C̃a
0 , p)w−1 = (1, p), and hence the normalization is the correct one. In a

practical setting we can therefore adopt

Ef(XN) =
∑
x≥0

f(x)pN(x) = (f, pN) (59)

as a definition of the numerical expectation value. With these considerations in mind we get the
following result.

Theorem 4 (A Priori Weak Error). Let p ∈ hk(w−1; Z+), f ∈ l2(w; Z+) and put pN =
π̃N−1p. Then

|Ef(XN)−Ef(X)| ≤C(a/N)m/2‖f‖l2(w;Z+)‖p‖hm(w−1;Z+). (60)

Proof: Using the projection as our surrogate distribution for the transition probabilities, we
know that the difference between our approximation and the true expected value of the functional
f(x) is

Ef(XN)−Ef(X) = (f, pN − p)
= (f ·w1/2, (pN − p) ·w−1/2)
≤ ‖f‖l2(w;Z+)‖pN − p‖l2(w−1;Z+)

≤C(a/N)m/2‖f‖l2(w;Z+)‖p‖hm(w−1;Z+)

after invoking Theorem 3 with k= 1. �
Example 2. Continuing with p as in Example 1, put f(x) = xk. Then the error in the kth

mean can be estimated as∣∣EXk
N −EXk

∣∣≤C(a/N)m/2
(
M 2k

a

)1/2(1− (λ/a)2(m+1)

1− (λ/a)2

)1/2

exp((a−λ)2/(2a)),

where M 2k
a is the 2kth moment of a Poisson distribution of parameter a. Reasoning as in Example 1

we find that for sufficiently regular target distrbutions p, and for a fix order of the moment k,∣∣EXk
N −EXk

∣∣≤ exp(−cN),

as N tends to infinity.
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Therefore we have shown in this section that we can approximate our Markov process with
projections onto the Poisson-Charlier functions. Moreover, when we use the projection estimates
for the transition probabilities, we can also extrapolate these approximations for the moments of
the Markov process and bound the truncation error. These estimates are the basis for our explicit
approximations in the next section, which are based on the projections onto the Poisson-Charlier
functions. We will show that a small number of terms of the expansion are all that is needed to
capture much of the dynamics of several Markov processes.

5. Numerical Results In this section, we demonstrate the performance and accuracy of our
approximation methods using several orders of the approximation. Errors were measured in a time
averaged relative sense,

Error≡
∫ T

0

|u−u∗|
|u∗|

dt

T
,

with u an approximation to u∗. For the cases where the initial data at t = 0 caused difficulties
with division by zero the lower limit of integration was simply replaced with 1 and the measure
of integration renormalized accordingly. In practice, the integral was approximated using discrete
points spaced 0.001 units apart. For the exact solution we used a numerical solution of order at
least twice as high the order of the approximation to be judged. Lastly, in all examples we set the
time interval [0,T] to [0,50].

5.1. Erlang-A Model Here we provide some tables for the relative errors of the several orders
of the approximation for the mean, variance, skewness, and kurtosis of the Erlang-A queueing
model. We see in Tables 1 - 5 that the spectral method is performing quite well at approximating the
dynamics of the queueing process. We see that unlike the fluid and diffusion limits, the performance
of the method is independent of the scaling of the queueing process since the method works just
as well in Table 1 as it does for Table 5.

N Mean Variance Skewness Kurtosis
1 2.53 · 10−3 2.71 · 10−1 6.04 · 10−1 4.67 · 10−2

2 5.18 · 10−4 1.60 · 10−2 4.90 · 10−1 1.03 · 10−1

3 2.80 · 10−4 3.10 · 10−3 6.23 · 10−2 8.92 · 10−2

4 1.67 · 10−4 2.44 · 10−3 1.25 · 10−2 6.57 · 10−3

5 1.57 · 10−4 2.04 · 10−3 1.10 · 10−2 3.43 · 10−3

6 1.11 · 10−4 1.72 · 10−3 1.33 · 10−2 2.33 · 10−3

7 7.59 · 10−5 1.24 · 10−3 9.04 · 10−3 1.37 · 10−3

Table 1. Relative error in the first four moments for increasing order N . λ(t) = 100+20 sin(t), µ= 1, β = 0.5, c= 100.
ψα = λ(t), ψδ = µ · (Q∧ c) +β · (Q− c)+.

5.2. Quadratic Rate or SIS Epidemic Model Here we provide some tables for the relative
errors of the several orders of the approximation for the mean, variance, skewness, and kurtosis
for a quadratic rate birth death model, which is also known as the SIS epidemic model in the
mathematical biology literature. We see in Tables 6 - 10 that the spectral method performs quite
well at approximating the dynamics of the quadratic rate birth-death process. Like in the queueing
model before, the performance of the method is independent of the scaling of the queueing process
since the method works just as well in Table 6 as it does for Table 10. Thus, we have confidence
that the spectral method is approximating the nonstationary and state dependent dynamics of the
stochastic model quite well.
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N Mean Variance Skewness Kurtosis
1 1.05 · 10−6 1.05 · 10−6 5.23 · 10−7 3.91 · 10−9

2 1.05 · 10−7 8.41 · 10−8 8.31 · 10−8 8.01 · 10−10

3 1.05 · 10−8 8.49 · 10−9 7.30 · 10−9 5.39 · 10−11

4 1.14 · 10−9 9.28 · 10−10 7.90 · 10−10 2.99 · 10−9

5 2.48 · 10−10 2.24 · 10−10 1.35 · 10−10 1.74 · 10−11

6 1.51 · 10−10 1.53 · 10−10 7.30 · 10−11 8.44 · 10−13

7 3.06 · 10−10 3.07 · 10−10 1.52 · 10−10 1.03 · 10−12

Table 2. Relative error in the first four moments for increasing order N . λ(t) = 100+20 sin(t), µ= 1, β = 1.0, c= 100.
ψα = λ(t), ψδ = µ · (Q∧ c) +β · (Q− c)+.

N Mean Variance Skewness Kurtosis
1 3.05 · 10−3 3.31 · 10−1 9.27 · 100 4.24 · 10−2

2 1.06 · 10−3 3.14 · 10−2 7.29 · 100 2.49 · 10−1

3 6.60 · 10−4 1.05 · 10−2 2.33 · 100 1.90 · 10−1

4 6.12 · 10−4 1.29 · 10−2 1.51 · 100 2.16 · 10−2

5 3.51 · 10−4 7.42 · 10−3 9.65 · 10−1 8.70 · 10−3

6 3.13 · 10−4 6.68 · 10−3 8.87 · 10−1 8.64 · 10−3

7 3.95 · 10−4 7.86 · 10−3 3.78 · 10−1 9.01 · 10−3

Table 3. Relative error in the first four moments for increasing order N . λ(t) = 100+20 sin(t), µ= 1, β = 2.0, c= 100.
ψα = λ(t), ψδ = µ · (Q∧ c) +β · (Q− c)+.

N Mean Variance Skewness Kurtosis
1 7.92 · 10−3 2.75 · 10−1 5.07 · 10−1 4.55 · 10−2

2 1.24 · 10−3 1.03 · 10−2 3.61 · 10−1 1.00 · 10−1

3 1.05 · 10−3 6.84 · 10−3 3.90 · 10−2 6.27 · 10−2

4 9.38 · 10−4 4.89 · 10−3 2.25 · 10−2 8.18 · 10−3

5 8.99 · 10−4 3.16 · 10−3 1.68 · 10−2 4.85 · 10−3

6 5.82 · 10−4 2.92 · 10−3 1.41 · 10−2 3.95 · 10−3

7 3.52 · 10−4 1.71 · 10−3 8.04 · 10−3 2.10 · 10−3

Table 4. Relative error in the first four moments for increasing order N . λ(t) = 25 + 5 sin(t), µ= 1, β = 0.5, c= 25.
ψα = λ(t), ψδ = µ · (Q∧ c) +β · (Q− c)+.

N Mean Variance Skewness Kurtosis
1 1.34 · 10−2 2.67 · 10−1 3.94 · 10−1 4.93 · 10−2

2 2.24 · 10−3 6.11 · 10−3 2.17 · 10−1 8.67 · 10−2

3 2.50 · 10−3 4.10 · 10−3 3.91 · 10−2 4.26 · 10−2

4 2.23 · 10−3 5.74 · 10−3 2.08 · 10−2 5.27 · 10−3

5 1.22 · 10−3 2.15 · 10−3 1.32 · 10−2 2.76 · 10−3

6 1.15 · 10−3 2.30 · 10−3 1.31 · 10−2 3.25 · 10−3

7 1.10 · 10−3 3.63 · 10−3 9.57 · 10−3 3.61 · 10−3

Table 5. Relative error in the first four moments for increasing order N . λ(t) = 10 + 2 sin(t), µ= 1, β = 0.5, c= 10.
ψα = λ(t), ψδ = µ · (Q∧ c) +β · (Q− c)+.

6. Conclusion and Final Remarks In this paper, we have demonstrated that we can
approximate a variety of Markovian birth death processes with nonstationary and state depen-
dent rates. We have used a spectral approach that expands the transition probabilities with the
Poisson-Charlier polynomials, which are orthgonal to the Poisson distribution. We have also proven
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N Mean Variance Skewness Kurtosis
1 1.85 · 10−2 2.80 · 100 1.51 · 100 2.56 · 10−2

2 5.57 · 10−4 8.75 · 10−2 2.84 · 100 6.97 · 100

3 1.01 · 10−3 1.56 · 10−1 7.69 · 100 1.16 · 101

4 1.11 · 10−4 1.74 · 10−2 6.72 · 10−1 9.34 · 10−1

5 8.66 · 10−5 1.34 · 10−2 4.88 · 10−1 6.56 · 10−1

6 2.13 · 10−5 3.33 · 10−3 1.24 · 10−1 1.69 · 10−1

7 9.04 · 10−6 1.39 · 10−3 5.20 · 10−2 7.02 · 10−2

Table 6. Relative error in the first four moments for increasing order N . λ(t) = 0.1 + 0.02 sin(t), Q̃ = 50, β = 1,
Q(0) = 20, ψα = λ(t) ·Q(Q̃−Q), ψδ = β ·Q.

N Mean Variance Skewness Kurtosis
1 8.60 · 10−3 3.61 · 10−1 1.82 · 100 2.72 · 10−2

2 1.24 · 10−3 4.63 · 10−2 1.15 · 100 3.02 · 10−1

3 6.47 · 10−4 2.60 · 10−2 6.45 · 10−1 3.38 · 10−1

4 2.66 · 10−5 1.16 · 10−3 2.53 · 10−2 1.21 · 10−2

5 3.39 · 10−5 1.57 · 10−3 3.93 · 10−2 2.06 · 10−2

6 2.31 · 10−5 9.80 · 10−4 1.88 · 10−2 9.96 · 10−3

7 1.52 · 10−5 6.54 · 10−4 1.39 · 10−2 7.58 · 10−3

Table 7. Relative error in the first four moments for increasing order N . λ(t) = 0.05 + 0.01 sin(t), Q̃ = 50, β = 1,
Q(0) = 20, ψα = λ(t) ·Q(Q̃−Q), ψδ = β ·Q.

N Mean Variance Skewness Kurtosis
1 3.08 · 10−1 6.74 · 10−1 9.25 · 100 3.87 · 10−1

2 1.98 · 10−1 3.49 · 10−1 1.30 · 101 1.57 · 10−1

3 1.96 · 10−1 3.35 · 10−1 9.19 · 100 1.43 · 10−1

4 1.57 · 10−1 2.54 · 10−1 4.42 · 100 1.22 · 10−1

5 1.44 · 10−1 2.25 · 10−1 3.79 · 100 1.17 · 10−1

6 1.16 · 10−1 1.74 · 10−1 3.60 · 100 1.03 · 10−1

7 9.51 · 10−2 1.37 · 10−1 3.26 · 100 8.55 · 10−2

Table 8. Relative error in the first four moments for increasing order N . λ(t) = 0.03 + 0.01 sin(t), Q̃ = 50, β = 1,
Q(0) = 20, ψα = λ(t) ·Q(Q̃−Q), ψδ = β ·Q.

N Mean Variance Skewness Kurtosis
1 9.79 · 10−3 7.94 · 100 1.36 · 100 2.88 · 10−2

2 1.81 · 10−4 1.51 · 10−1 1.04 · 101 5.07 · 101

3 2.83 · 10−4 2.33 · 10−1 3.49 · 101 1.55 · 102

4 1.82 · 10−5 1.52 · 10−2 1.38 · 100 4.93 · 100

5 1.30 · 10−5 1.08 · 10−2 9.35 · 10−1 3.24 · 100

6 1.82 · 10−6 1.52 · 10−3 1.35 · 10−1 4.74 · 10−1

7 7.76 · 10−7 6.41 · 10−4 5.69 · 10−2 1.99 · 10−1

Table 9. Relative error in the first four moments for increasing order N . λ(t) = 0.1 + 0.05 sin(t), Q̃ = 100, β = 1,
Q(0) = 40, ψα = λ(t) ·Q(Q̃−Q), ψδ = β ·Q.

that as we add more terms to the truncated expansion, our approximations converge to the true
stochastic process. We gave explicit error bounds on the convergence rate not only for the transition
probabilities, but also for the moments of the birth-death process.
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N Mean Variance Skewness Kurtosis
1 9.86 · 10−3 7.85 · 100 1.34 · 100 2.87 · 10−2

2 1.86 · 10−4 1.50 · 10−1 1.06 · 101 4.62 · 101

3 2.86 · 10−4 2.30 · 10−1 3.07 · 101 1.08 · 102

4 1.87 · 10−5 1.51 · 10−2 1.36 · 100 4.13 · 100

5 1.32 · 10−5 1.07 · 10−2 9.22 · 10−1 2.77 · 100

6 1.88 · 10−6 1.51 · 10−3 1.33 · 10−1 4.01 · 10−1

7 7.88 · 10−7 6.34 · 10−4 5.59 · 10−2 1.69 · 10−1

Table 10. Relative error in the first four moments for increasing order N . λ(t) = 0.1 + 0.02 sin(t), Q̃= 100, β = 1,
Q(0) = 40, ψα = λ(t) ·Q(Q̃−Q), ψδ = β ·Q.

There are many new problems that emerge from our work. One obvious, but non-trivial extension
to our results that we intend to pursue is the multidimensional setting, where many individual
birth-death processes interact with one another in a more complex network. This would involve
the multi-dimensional analogue of the Poisson-Charlier polynomials. In the context of operations
research and queueing theory problems, this extension would not only provide new approximations
for Jackson networks, but also it would allow us to approximate some non-Markovian queueing
networks that can be modeled with phase type distributions Pender and Ko [24], Ko and Pender
[12, 11]. Moreover, if we were also able to prove error bounds for our approximations, it would give
insight into how close some non-Markovian systems are to the Poisson reference distribution and
what parameters affect this closeness.
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