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Abstract

Nonstationary queueing networks are notoriously difficult to analyze and control.
One reason is that steady state analysis and techniques are not useful since the model
parameters in practice are not constant and depend on time. In this work, we analyze
two optimal control problems for nonstationary Jackson networks with abandonment
where our main goal is to optimally control the number of servers in the network. The
first control problem approximates the stochastic dynamics of the Jackson network
with a deterministic fluid model and optimizes with respect to the fluid model. In this
case, we prove that the optimal solution is bang-bang and prove an asymptotic opti-
mality result, which shows the fluid model optimal solution is asymptotically optimal
for the scaled stochastic control problem. Our second approach exploits a Gaussian
infinite server approximation for the queue length process and optimizes with respect
to the number of servers. Unlike the fluid model’s bang-bang solution, the infinite
server approximation yields an square root staffing formula that depends on the cost
to revenue ratio at each station. This proves the optimality of the square root staffing
formula in a network setting.

Keywords Healthcare; service systems; optimal control; Jackson networks, Erlang-A net-
works, fluid model, infinite server queue, square root staffing, functional forward equations.

1 Introduction

Motivated by large scale service systems such as healthcare delivery organizations, call cen-
ters, and telecommunication networks, we formulate and analyze optimal control problems
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for appropriately staffing these large scale systems. To model the stochastic dynamics of
these service systems, it is necessary to construct an appropriate queueing model. In order
to construct the most realistic, yet tractable queueing model, we need to understand the
individual actions and collective dynamics of customers, patients, and the agents that serve
them.

One common feature of these large scale service systems is time varying arrival rates. The
customer arrival process of any queueing model must be able to handle time varying arrivals
as customers do not arrive at constant rates as much of the current literature assumes.
However, the analysis of queues with time varying rates is often quite complicated and
requires non-trivial stochastic analysis. Moreover, customers that arrive to the system act
independently of other customers, which allows us to model each customer as an independent
entity. The second feature that a queueing model must have is parallel service. At any time
there are multiple agents that are willing to assist customers with their needs, which means
that customers have access to agents in a parallel fashion. In a hospital for example, these
agents may be the hospital beds, the number of x-ray machines, the number of nurses, or the
number of available doctors. In a call center for example, the parallel service could be the
call center agents or interactive voice response lines Khudyakov et al. [13]. A third feature
of these systems is customer abandonment since customers are impatient. In both of the
previous examples, arriving customers wanting to engage in service may be delayed if all the
available agents are busy with other customers or patients. The customers that are delayed
waiting for service may decide to leave the system if they feel that their delay in receiving
quality service has been excessive. In a healthcare context, this type of abandonment is
called Left Without Being Seen (LWBS).

If these were the only features of service systems, then it would be tempting to model
the dynamics with a Mt/M/Ct + M queue, or the time varying Erlang-A queue. However,
in many applications customers may go through many stages of service, which suggests that
our queueing model should have multiple stations for service. For example, in hospitals, it
is common for patients to interact with many different parts of the hospital, especially if the
patient’s condition is not life-threatening. A patient with a dislocated shoulder would not
only interact with a doctor, but also would have to get an x-ray to determine the severity
of the dislocation. This routing to multiple parties within healthcare is common because
one doctor or nurse may not be sufficient to address all the needs of the patient. Inspired
by these intrinsic features of these large scale systems, leads us to model these systems
with nonstationary Jackson networks with abandonment or the (Mt/M/Ct +M)N queueing
network where N is the number of stations.

To understand how to staff our Jackson network optimally, we need to derive approxi-
mations for the queueing process since it is intractable in its current form. The first method
we use approximates the stochastic behavior of our queueing system via a fluid model. More
recently, fluid models have been receiving more attention in the queueing theory literature,
see for example Bäuerle et al. [2], Pang and Day [23], Cudina and Ramanan [4], Niyirora
and Pender [22]. One reason is that there is a intimate connection between fluid models and
stochastic stability of the queueing network. Furthermore, fluid models are derived rigor-
ously from functional strong law of large number limit theorems and provide insight on the
average sample path dynamics of the stochastic system and how to control it optimally see
for example Bäuerle and Rieder [1] and Nazarathy and Weiss [21]. Using the fluid limit as a
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simplified model for the dynamics of the queueing network, we then optimize with respect to
the number of servers in the network. Thus, we generalize the seminal work of Hampshire
et al. [10], Hampshire [9] by analyzing the Competing Lagrangian problem within a Jackson
network. We derive a near-optimal staffing schedule by analyzing the fluid approximation
and show that fluid optimal staffing reduces the queueing dynamics to maximizing over the
set of 2N Competing Lagrangians where N is the number of stations in the network. More-
over, we show that the profit generated from using this fluid optimal staffing procedure is
asymptotically optimal for the scaled system as we let η → ∞, which gives us justification
for using the fluid limit to perform our approximate optimal staffing analysis. However, the
fluid model is purely deterministic and does not incorporate any stochastic effects from the
original stochastic queueing model.

Our second method of approximation is inspired by the infinite server queue. Since the
infinite server queue, even in the nonstationary setting, has a Poisson distribution, then the
mean and variance of the infinite server queue are identical. Thus, we propose to approximate
the queue length by a Gaussian distribution with the same mean and variance. We show
that this yields a good approximation for the queue length and also preserves the fact that
the mean queue length only depends on differential equations for the mean queue length.
More importantly, this approximation not only includes stochastic effects that the fluid
model does not capture, but also the allows us to derive a closed form square root optimal
staffing formula that has an elegant managerial interpretation in terms of the cost to revenue
ratio at each station. Unlike the fluid model optimization, the Gaussian approximation does
not require optimization and is known in closed form. Thus, this approach allows for new
analysis and managerial insights into nonstationary optimal staffing of queueing networks,
especially when the objective is to maximize profitability. Throughout the paper, we provide
theoretical support of our analysis and conduct numerical experiments to complement our
findings. Finally, we should mention that we have written a Matlab script to compute the
optimal staffing policy for an arbitrary network and this code has been made avaialble on
the first author’s website.

1.1 Contributions

Thus, to the best of our knowledge, our contributions in this work are the following:

• We derive the optimal staffing function for time varying Jackson networks with aban-
donment approximated by a fluid model.

• We prove the asymptotic profit optimality of the fluid model approximation.

• We show that a square root staffing function is optimal when we approximate the
Jackson network with by an infinite server queue and show that this square root staffing
function only depends on the queue length and local parameters of each station.

1.2 Organization of the Paper

The rest of the paper continues as follows. In Section 2, we present our model for large
scale service systems as a dynamic rate Jackson network with abandonment. We discuss
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many of the different applications and the primitive data that is used for constructing our
model. We also show that an appropriately scaled version of our Jackson network model
fits into the Markovian service network framework, which allows us to derive a deterministic
dynamical system or fluid model to approximate the mean behavior of our stochastic network
model. We also show that the Jackson network framework encompasses many special cases
of queueing networks such as tandem queues, queues with abandonments and retrials, and
loss networks via fast abandonment. In Section 3, we describe the optimization problem that
we intend to approximate and solve. In Section 4, we present a fluid model approximation
and show that the optimal staffing policy is asymptotically optimal as we scale the system
up. In Section 5, we present a Gaussian infinite server approximation for the queue length
derive a square root staffing optimal solution. In Section 6, we present our numerical results
and finally in the Appendix we provide all necessary proofs.

1.3 Notation

The paper will use the following notation:

• λi(t) is the external arrival rate to node i at time t

• θi(t) is the abandonment rate for node i at time t

• µi(t) is the service rate for node i at time t

• γij(t) is the abandonment routing probability from node i to node j at time t

• τij(t) is the service routing probability from node i to node j at time t

• γi(t) is the abandonment departure probability from node i at time t

• τi(t) is the service departure probability from node i at time t

• ci(t) is the number of servers for node i at time t

• x ∧ y = min(x , y)

• (x− y)+ = max(0, x - y)

• x⊗ y = Kronecker product of two vectors x and y

• vi = jump vectors as explained in Section 2 of [18]

• ∆(µ) = diagonalization of vector µ

• {x < y} denotes an indicator function that equals one if the statement is true i.e. if
x < y, and zero if the statement is false.

• P s denotes the matrix of service departure routing probabilities.

• P a denotes the matrix of abandonment routing probabilities.

4



Qj (t)

µt
iφt

ij (Qi (t)∧ ct
i )

βt
kψ t

kj (Qk (t) − ct
k )+

λt
j

µt
j (Qj (t)∧ ct

j )

βt
j (Qj (t) − ct

j )+

2

1

ct
j

Qη
j (t)

µt
iφt

ij (Qη
i (t)∧ηct

i )

βt
kψ t

kj (Qη
k (t) −ηct

k )+

ηλt
j

µt
j (Qη

j (t)∧ηct
j )

βt
j (Qη

j (t) −ηct
j )+

2

1

ηct
j

Figure 1: Jackson network with abandonment unscaled (Left) and scaled by η (Right).

• ei = binary expansion vector for integer the i− 1.

Moreover, we also require the following relations

τi(t) +
N∑
j=1

τij(t) = 1 and γi(t) +
N∑
j=1

γij(t) = 1. (1.1)

These conditions ensure that the outflow from each node matches the number of depatures
from the system and the inflow to other nodes. Lastly, we define functions related to Gaussian
random variables i.e.

ϕ(x) ≡ 1√
2π
e−x

2/2, Φ(x) ≡
∫ x

−∞
ϕ(y)dy, Φ(x) ≡ 1− Φ(x) =

∫ ∞
x

ϕ(y)dy. (1.2)

2 Jackson Network Model

In this section, we formulate a general Jackson network model that will be used later to
represent the dynamics of large scale service systems such as call centers or healthcare centers.
We assume that there are N ∈ N stations or nodes of the Jackson network. We also assume
that each node j ∈ [1, 2..., N ] has cj(t) statistically identical servers at time t. A simple
schematic of our nonstationary Jackson network model is given in Figure 1.

2.1 Model Parameters

We now provide a detailed explanation of the parameters and flows of the Jackson network
queueing model.

2.1.1 Arrivals

In our model we assume that the customer arrival process for each node follows an inde-
pendent non-homogeneous Poisson process. We denote λi(t) as the arrival rate function for
a non-homogeneous Poisson process of node i. Probabilistically, the integral 1

t−s

∫ t
s
λi(u)du

represents the average number of arriving customers to node i during the time interval (s,t].
A non-homogeneous Poisson process is a natural model for arrivals if you assume that the
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customers arriving to each are statistically independent in disjoint time intervals and if they
are arriving as single entities (single jumps). These are natural assumptions when modeling
call centers and healthcare centers since customers act independently of other customers.

2.1.2 Service Completions

For the service completions, we assume that each node of the Jackson network has its own
service completion rate of µi. This means that the 1

µi
is the average service time of a customer

of receiving service from node i. We assume as in the formal theory of Markovian service
networks, that these inter-service times are exponentially distributed.

2.1.3 Abandonments

For abandonments, we assume that each node of the Jackson network has its own abandon-
ment rate of θi. Probabilistically, this means that the 1

θi
is the average time that a customer

who has not received service is willing to wait in order to start to receive service at node i.
The abandonment times are also exponentially distributed.

2.1.4 Routing

After a service completion or an abandonment from a node, each customer can leave the
system entirely, be routed to another node of the network, or even stay at the same node for
another service opportunity.

2.2 Jackson Network Model

Now that we understand the parameters of the Jackson network model, we now give a
mathematical description of the queueing process in terms of Poisson random measures.
The corresponding mathematical expression for our Jackson network Q ≡ {Q(t)|t ≥ 0} is
defined by the following implicit equation

Q(t) = Q(0) +
N∑
i=1

N∑
j=1

Πb
ij

(∫ t

0

(Qi(s)− ci(s))+θi(s)γij(s)ds
)

(vj − vi) (2.3)

+
N∑
i=1

N∑
j=1

Πc
ij

(∫ t

0

(Qi(s) ∧ ci(s))µi(s)τij(s)ds
)

(vj − vi) +
N∑
i=1

Πa
i

(∫ t

0

λi(s)ds

)
vi

−Πb
i

(∫ t

0

(Qi(s)− ci(s))+θi(s)γi(s)ds
)

vi − Πc
i

(∫ t

0

(Qi(s) ∧ ci(s))µi(s)τi(s)ds
)

vi

where each of the Πi’s are independent unit rate Poisson processes.

2.3 Applications in Healthcare

Jackson networks are also used in healthcare for staffing nurses and beds as seen in De Véricourt
and Jennings [5], Véricourt and Jennings [31] and Yom-Tov and Mandelbaum [32]. Figure
2 provides an illustration of a hospital system as a Jackson network. In this model, patients

6



 NeedyPatients

 Discharge Mode

 Content Patients

 Arrivals - λ(t) 

 p 

 1− p

Figure 2: Erlang-R Model of De Véricourt and Jennings [5], Yom-Tov and Mandelbaum [32].

arrive to the hospital according to a non-homogenous Poisson process with arrival rate λ(t).
In the initial state patients are needy and are in need of a nurse. Once the nurse or doctor has
made the patient stable or taken care of their needs, the patient transitions either to home
(discharge) or they transition to a state where they do not need the assistance of a nurse.
Yom-Tov and Mandelbaum [32] has coined this model the Erlang R model since patients are
allowed to re-enter the needy state if necessary. The schematic of Figure 2 does not show
any abandonments, however, this can be easily added to make the model more realistic.

2.4 Applications to Call Centers with Interactive Voice Response

Figure 3 shows how service systems such as call centers with IVR’s can be modeled using
Jackson networks. In this model, the arrival process is a non-homogenous Poisson process
with arrival rate λ1(t). In this setting, the number of interactive voice processors is c1(t) and
the number of human agents is c2(t). A customer is first served by an IVR processor at rate
θ when one becomes available. Next, the customer may leave the system with probability
1 − φ(t) if they were able to be serviced properly from the IVR or they may proceed to a
human agent with probability φ(t). Although not explicitly shown in Figure 3, our model
is general enough to consider abandonment at all states of the IVR. However, this model is
not just restricted to call center applications.

From the variety of applications, it is obvious that Jackson networks are important mod-
eling tools for large scale service systems. As a manager of these systems, it is vital to
understand how to use these models or simplify these models to manage systems effectively
and optimally. As the equation of our queueing system is expressed in terms of Poisson
random measures, we cannot use the standard calculus of variations or stochastic control
tools to optimally staff our queueing system. In order to take advantage of standard dy-
namic optimization tools, it is necessary to obtain approximate queueing models that cap-
ture a great deal of information about the original queueing system. In the next section
via uniform acceleration we will show how the fluid limit of a scaled version of the Jackson
network can be used as an approximate model to staff our service systems near optimality.
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2.5 Fluid Model

As our implicit equation for the queue length dynamics is not amenable for standard control
methods, it is necessary to simplify the dynamics of our model in order to use standard
optimization tools. With this in mind, we use the functional strong law of large numbers
to construct a deterministic approximation for the sample path (and mean) behavior of
our Jackson network. To this end, we first construct the uniformly accelerated version (see
Mandelbaum et al. [18]) of our Jackson network model (3.1) with scale factor η > 0. This
uniformly accelerated version of our model scales the arrival rate (λi(t) → η · λi(t)) and
the number servers (ci(t) → η · ci(t)) by a scale factor η. In healthcare applications, this
scaling is appropriate when there are a large number of patients and nurses in medium and
large sized hospitals. Furthermore, for modeling call centers, this scaling is also natural as
the number of customers making phone calls and the number of agents are very large. The
right of Figure 1 highlights the new dynamics of our Jackson network under the uniform
acceleration scaling. Figure 1 also illustrates that uniform acceleration does not change the
service rate or the abandonment rate, which is appropriate for call centers and hospitals
because managers do not have the ability to change how fast agents answer phone calls or
the time that doctors spend with their patients. However, managers do have the ability to
hire more agents, which will be used as our control parameter in the sequel.

The uniformly accelerated version of the queue length dynamics is given by the following
implicit equation with scale factor η > 0

8



Qη
i (t) = Qη

i (0) + Πa
i

(∫ t

0

η · λi(s)ds
)
−

N∑
j=1

Πb
ij

(∫ t

0

(Qη
i (s)− η · ci(s))+ · θi(s) · γij(s)ds

)

+
N∑
j=1

Πb
ji

(∫ t

0

(Qη
j (s)− η · cj(s))+ · θj(s) · γji(s)ds

)

−
N∑
j=1

Πc
ij

(∫ t

0

(Qη
i (s) ∧ (η · ci(s))) · µi(s) · τij(s)ds

)

+
N∑
j=1

Πc
ji

(∫ t

0

(Qη
j (s) ∧ (η · cj(s))) · µj(s) · τji(s)ds

)
− Πb

i

(∫ t

0

(Qη
i (s)− η · ci(s))+ · θi(s) · γi(s)ds

)
− Πc

i

(∫ t

0

(Qη
i (s) ∧ (η · ci(s))) · µi(s) · τi(s)ds

)
. (2.4)

Although our equation for the queue length is accelerated with scale factor η the queue
length dynamics are still expressed in terms of time changed unit rate Poisson processes. In
order to simplify our dynamics, we must take the pointwise limit as η → ∞ to construct
our deterministic process q(t), which satisfies simpler dynamics. This yields the following
proposition.

Proposition 2.1. Suppose that limη→∞Q
η(0)/η = q(0), then

lim
η→∞

sup
0≤t≤T

∣∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣∣ = 0 a.s u.o.c (2.5)

where q(t) ≡ {q1(t), q2(t), ...., qn(t)|t ≥ 0} is the solution to the following dynamical system

•
qi = λi − µi · (qi ∧ ci)− θi · (qi − ci)+ (2.6)

+
N∑
j=1

(qj − cj)+ · θj · γji +
N∑
j=1

(qj ∧ cj) · µj · τji, 1 ≤ i ≤ N.

Proof. See Mandelbaum et al. [18].

The above proposition rigorously shows via strong approximations that for large η the
dynamical system q(t) ≡ {q1(t), ...., qn(t)|t ≥ 0} is a good approximation for the mean sample
path behavior of the original queueing system. Throughout the rest of the paper we will
refer to q as the fluid model for our queue length dynamics. Although our dynamical system
approximation is true for all Jackson networks, there are many special cases of Jackson
networks that of independent interest that may be used to model specific aspects of large
scale service systems.
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2.6 Functional Kolmogorov Forward Equations

The functional Kolmogorov forward equations for the mean queue length and covariance
matrix for the Jackson network with abandonment satisfy the following differential equations
in matrix form

Proposition 2.2. Let Q = {Q1, Q2, ...Qn}, then the forward equations for the mean vector
of queue lengths and the covariance matrix are given by the following dynamical systems

•
E[Q] =

d

dt
E[Q]

= λ+ µ ◦ E[(Q ∧ c)] · (P s − I) + β ◦ E[(Q− c)+] · (P a − I)
= λ− µ ◦ E[(Q ∧ c)] · (I− P s)− β ◦ E[(Q− c)+] · (I− P a)

•
Cov[Q,Q] =

d

dt
(E[Q⊗Q]− E[Q]⊗ E[Q])

= −Cov[Q,Q ∧ c] · I⊗ (∆(µ) · (I− P s))− Cov[Q ∧ c, Q] · (∆(µ) · (I− P s))⊗ I
−Cov[Q, (Q− c)+] · I⊗ (∆(β) · (I− P a))− Cov[(Q− c)+, Q] · (∆(β) · (I− P a))⊗ I
+∆

(
λ+ µ ◦ E[(Q ∧ c)] · (I− P s) + β ◦ E[(Q− c)+] · (I− P a)

)
−∆ (µ ◦ E[(Q ∧ c)] · (P s ⊕ P s))−∆

(
β ◦ E[(Q− c)+] · (P a ⊕ P a)

)
.

Proof. See Pender and Massey [28].

Corollary 2.3. The mean queue length for station i of the Jackson network with abandon-
ment can be written as the following differential equation

•
E[Qi] = λi − µi · E [(Qi ∧ ci)]− θi · E

[
(Qi − ci)+

]
(2.7)

+
N∑
j=1

µj · γji · E [(Qj ∧ cj)] +
N∑
j=1

θj · τji · E
[
(Qj − cj)+

]
.

Now that we have a good understanding of the model dynamics and various approxima-
tions, we now return to the main question of the paper. What is the proper level of staffing
for our network given managerial and customer constraints?

3 Optimal Control of the Jackson Network

Now that we have constructed a queueing model to represent the dynamics of a service
system network, we now turn our attention to understanding the issues that are important
for the operator of the network to acheive profitability while maintaining a high quality
service for customers. It is clear from the functional forward equations that {Qj(t)|t ≥ 0}
represents the total number of customers at station j (in the queue or in service) at time t.
The term Qj(t) ∧ cj(t) represents the number of customers in currently being served by cj
agents and service while term (Qj(t)− cj(t))+ is used to represent the number of customers
at station j that are waiting for service.

Thus, the fundamental question that we attempt to answer in this paper is how to find
the optimal number of customer representatives or agents cj(t) to maximize profitability of
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the service system network and to meet some given quality standard related to customer
satisfaction. In clinical and healthcare settings, it is quite natural to minimize the waiting
times of patients. By minimizing the waiting times of customers, we first preclude the
abandonment phenomenon that is common in most queueing systems; in the context of
healthcare this abandonment is called Left Without Being Seen (LWBS). In our model we
choose to represent the customer or customer satisfaction constraint at station j by the
following inequality: ∫ T

0

θj · E[(Qj(t)− cj(t))+]dt ≤ E j (3.8)

where

E j ≡ εj

∫ T

0

λj(t)dt (3.9)

and εj is the threshold of abandonment probability. This constraint enforces that during

the time interval [0, T ], the number of customers that abandon,
∫ T
0
θj ·E[(Qj(t)− cj(t))+]dt,

must be less or equal to the maximum allowable fraction of the total number patient arrivals
E j. The objective function seeks maximize the profit of the queueing network by optimizing
with respect to the number of servers c(t) = {c1(t), c2(t), ..., cN(t)}. This may be formulated
as the following dynamic optimization problem where L(c(t)) is called the Lagrangian.

L(c(t)) = max
{c(t)≥0: 0≤t≤T}

∫ T

0

(
N∑
j=1

rj · µj · E[(Qj(t) ∧ cj(t)]− wj · cj(t)

)
dt. (3.10)

This objective function indicates that optimal number of servers c(t) = {c1(t), c2(t), ..., cN(t)}
must be found to maximize the operating net profit of the network. The operating net profit
of the network can be obtained by substracting the operating cost wj · cj(t) of each station j
from the operating revenue rj ·µj ·E[(Qj(t)∧cj(t)] obtained at each station j. Summing over
all of the stations in the network yields the main optimal control problem that we intend to
solve in this paper.

Problem 3.1 (Network Optimal Staffing Control Problem).

L(c(t)) = max
{c(t)≥0: 0≤t≤T}

∫ T

0

(
N∑
j=1

rj · µj · E[(Qj(t) ∧ cj(t)]− wj · cj(t)

)
dt (3.11)

subject to

•
E[Qj(t)] = λj(t)− µj · E[Qj(t) ∧ cj(t)]− θj · E[(Qj(t)− cj(t))+] (3.12)

+
N∑
i=1

µi · γij · E [(Qi ∧ ci)] +
N∑
i=1

θi · τij · E
[
(Qi − ci)+

]
, 1 ≤ j ≤ N.∫ T

0

θj · E[(Qj(t)− cj(t))+]dt ≤ εj

∫ T

0

λj(t) = E j, 1 ≤ j ≤ N. (3.13)
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Although the optimal control problem is not glaringly difficult, many issues arise when
trying to solve this control problem. One of the main issues is obtaining the solution of the
forward equations for the mean queue length and its max and min functionals. This is difficult
since the forward equations are not a closed system and are not autonomous. This is because
the min and max functions are not explicit functions of the mean queue length process. For
more insight on this problem and a more rigorous explanation of this problem, see Pender
[25], Engblom and Pender [7]. We should also mention that this problem is not isolated to
just the state dynamics, but is also an issue for the objective function and the abandonment
constraint since the queue length distributions are not known in closed form. Thus, in order
to make the optimal control problem more tractable, we must develop approximations for
the queue length processes in order to estimate and compute the expectation terms that
appear in the optimal control problem. We describe two such methods of approximation in
the sequel.

4 Optimal Control via Fluid Models

In order to approximate the solution to the optimal control problem presented in Problem
3.1, we will use the fluid approximation or Equation 2.6 for the queueing network dynamics
to approximate the solution. Thus, we replace the expectations of functions of the queue
length in Problem 3.1 with their deterministic counterparts from Equation 2.6 and we have
that

L(c, p, q) =

∫ T

0

(
N∑
j=1

rj · µj · (qj ∧ cj)− wj · cj

)
dt (4.14)

+

∫ T

0

(
N∑
j=1

pj ·
(•
qj − fj(t, q, c)

))
dt+

∫ T

0

(
N∑
j=1

xj ·
(•
zj − gj(t, q, c)

))
dt

where

fj(t, q, c) = λj − µj · (qj ∧ cj)− θj · (qj − cj)+ (4.15)

+
N∑
i=1

θi · γij · (qi − ci)+ +
N∑
i=1

µi · τij · (qi ∧ ci), 1 ≤ j ≤ N.

gj(t, q, c) = −θj · (qj − cj)+, 1 ≤ j ≤ N. (4.16)

Here pj is the Lagrange multiplier of the state variable qj and xj is the co-state variable of
some auxiliary variable zj where

zj = −
∫ t

0

θj · (qj − cj)+ dt (4.17)

•
zj = −θj · (qj − cj)+ (4.18)
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and

zj(T ) ≥ −E j . (4.19)

Since zj does not appear in Equation 4.14, then
•
xj = −∂H /∂zj = 0, meaning that xj is a

constant that satisfies the following complementary of slackness equation:

xj ·
[
E j −

∫ T

0

θj · (qj − cj)+ dt

]
= 0. (4.20)

Thus, xj = 0 when E j −
∫ T
0
θj · (qj − cj)+ dt > 0, else xj > 0. Moreover, the parameters of

the Lagrangian have the following economic interpretation

• rj is the (reward) per customer that leaves from queue j due to a completion of service.

• wj is the (wage) or cost of each server used at the jth queue.

We can also form the Hamiltonian of the optimal control problem as

H(c, p, q) =

∫ T

0

(
N∑
j=1

rj · µj · (qj ∧ cj)− wj · cj

)
dt (4.21)

+

∫ T

0

(
N∑
j=1

pj · fj(t, q, c)

)
dt+

∫ T

0

(
N∑
j=1

xj · gj(t, q, c)

)
dt.

With the Hamiltonian we are now ready to perform our optimal control analysis. The first
insight is that since the wages of the healthcare providers are linear, we can show that our
profit maximization problem [4.14] reduces to the analysis of 2N Competing Lagrangians
L1,L2, .....,L2N where ek ∈ RN is the binary expansion vector for the integer i ∈ {1, 2, ..., N},
and

Lk ≡ L(q, p, ek ◦ q).

To give the reader more intuition about this result, we provide the exact dynamics for the
case where N = 2. In this case, we have that

e1 =

[
0
0

]
, e2 =

[
1
0

]
, e3 =

[
0
1

]
, e4 =

[
1
1

]
. (4.22)

This yields the following optimal staffing vectors respectively for each Lagrangian

c∗ = e1 ◦ q =

[
0
0

]
, c∗ = e2 ◦ q =

[
q1
0

]
, c∗ = e3 ◦ q =

[
0
q2

]
, c∗ = e4 ◦ q =

[
q1
q2

]
. (4.23)

In the case that the optimal solution is c∗ = {0, 0}, then we have the following dynamics
for the time derivatives of p and q

•
p1 = −(−p1 · θ1 + p1 · θ1 · γ11 + p2 · θ1 · γ12 − x1 · θ1) (4.24)
•
p2 = −(p1 · θ2 · γ21 − p2 · θ2 + p2 · θ2 · γ22 − x2 · θ2) (4.25)
•
q1 = λ1 − θ1 · q1 + θ1 · γ11 · q1 + θ2 · γ21 · q2 (4.26)
•
q2 = λ2 − θ2 · q2 + θ1 · γ12 · q1 + θ2 · γ22 · q2, (4.27)
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and in the case that the optimal solution is c∗ = {q1, 0}, then we have the following dynamics
for the time derivatives of p and q

•
p1 = −(r1 · µ1 − w1 − p1 · µ1 + p1 · µ1 · τ11 + p2 · µ1 · τ12) (4.28)
•
p2 = −(p1 · θ2 · γ21 − p2 · θ2 + p2 · θ2 · γ22 − x2 · θ2) (4.29)
•
q1 = λ1 − µ1 · q1 + µ1 · τ11 · q1 + θ2 · γ21 · q2 (4.30)
•
q2 = λ2 − θ2 · q2 + µ1 · τ12 · q1 + θ2 · γ22 · q2, (4.31)

and in the case that the optimal solution is c∗ = {0, q2}, then we have the following dynamics
for the time derivatives of p and q

•
p1 = −(−p1 · θ1 + p1 · θ1 · γ11 + p2 · θ1 · γ12 − x1 · θ1) (4.32)
•
p2 = −(r2 · µ2 − w2 + p1 · µ2 · τ21 − p2 · µ2 + p2 · µ2 · τ22) (4.33)
•
q1 = λ1 − θ1 · q1 + θ1 · γ11 · q1 + µ2 · τ21 · q2 (4.34)
•
q2 = λ2 − µ2 · q2 + θ1 · γ12 · q1 + µ2 · τ22 · q2, (4.35)

and finally in the case that the optimal solution is c∗ = {q1, q2}, then we have the following
dynamics for the time derivatives of p and q

•
p1 = −(r1 · µ1 − w1 − p1 · µ1 + p1 · µ1 · τ11 + p2 · µ1 · τ12) (4.36)
•
p2 = −(r2 · µ2 − w2 + p1 · µ2 · τ21 − p2 · µ2 + p2 · µ2 · τ22) (4.37)
•
q1 = λ1 − µ1 · q1 + µ1 · τ11 · q1 + µ2 · τ21 · q2 (4.38)
•
q2 = λ2 − µ2 · q2 + µ1 · τ12 · q1 + µ2 · τ22 · q2, (4.39)

Proposition 4.1. Since the staffing costs are a linear function of the number of servers,
then we have

max
c≥0
L(p, q, c) = max

{k:0≤k≤2N}
Lk

where

Lk ≡ L(q, p, ek ◦ q)

and where ek is the binary expansion vector for the integer i ∈ {1, 2, ..., N}. This also implies
that

max
c≥0

∫ T

0

L(p, q, c) =

∫ T

0

max
c≥0
L(p, q, c)

Proof. The proof follows from a similar argument given in Hampshire et al. [10], thus we
omit it.

At a given time t, we define the largest of these 2N Lagrangians to be the one that is
dominant. Using this dominant Lagrangian approach we are able to derive the following
optimal staffing policy for our value function.
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Theorem 4.2. Given {p, q}, the optimal staffing procedure c∗(t) is the following:

c∗(t) = ek ◦ q if Lk is dominant

Proof. The proof follows from the fact that the Lagrangian is piecewise linear. By invoking
the maximum modulus property of piecewise linear functions and the boundedness of p
and q, then we have that the maximum must occurs at one of the vertices given by the
competing Lagrangians. Now one invokes the Pontryagin maximum principle and the proof
is complete.

Summarizing the Lagrangian analysis, we see that our fluid model has 2N operational
modes of behavior. In mode k ∈ {1, 2, 3...2N} we serve all customers that have non-zero
entries in the corresponding binary expansion vector ek.

Remark 4.3. We should also mention that it is possible to also consider control sets such as
[cmin, cmax] where 0 ≤ cmin ≤ cmax. These might be more suitable in a healthcare environment
where there are government regulations on the minimum number of nurses at each hospital
and a maximum is given the capacity of the hospital.

Thus, with the Euler-Lagrange equations in all of the different optimal solution scenarios,
we have a complete characterization of the optimal solution and the state dynamics of the
Jackson network under our fluid model approximation.

4.1 Asymptotic Profit Rate Optimality

We have shown that using the fluid model as an approximation for the original stochastic
network reduces our optimization to finding the maximal Competing Lagrangian. Although
this gives us an optimal staffing schedule we now want to understand how close our approx-
imate staffing schedule is to the optimal staffing schedule for the original problem. Here we
show that the profit generated by the fluid limit control problem is asymptotically optimal
for our original problem as we let the arrival rate and the number of servers tend to∞. How-
ever, before we give the main result, we need to prove a few lemmas that are fundamental
to the proof.

Lemma 4.4. The maximum and minimum functions are Lipschitz continuous.

Proof. Let f and g be any functions, then for the maximum function we have that

|f(x) ∨ g(x)− f(y) ∨ g(y)| = |f(x) ∨ g(x)− f(x) ∨ g(y) + f(x) ∨ g(y)− f(y) ∨ g(y)|
≤ |f(x) ∨ g(x)− f(x) ∨ g(y)|+ |f(x) ∨ g(y)− f(y) ∨ g(y)|
≤ (||f ||∞ + ||g||∞) · |x− y|.

Lastly, for the minimum function, we have that

|f(x) ∧ g(x)− f(y) ∧ g(y)| = |f(x) ∧ g(x)− f(x) ∧ g(y) + f(x) ∧ g(y)− f(y) ∧ g(y)|
≤ |f(x) ∧ g(x)− f(x) ∧ g(y)|+ |f(x) ∧ g(y)− f(y) ∧ g(y)|
≤ (||f ||∞ + ||g||∞) · |x− y|.
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Lemma 4.5. Let f be a Lipschitz continuous function and let

lim
η→∞

1

η
Qη(t)→ q(t) a.s. (4.40)

Then, we have that

lim
η→∞

f

(
sup

0≤t≤T

1

η
Qη(t)

)
= f

(
sup

0≤t≤T
q(t)

)
a.s. (4.41)

and

lim
η→∞

∫ T

0

f

(
1

η
Qη(t)

)
=

∫ T

0

f (q(t)) dt a.s. (4.42)

Proof. This follows from the continuous mapping theorem and the Lipschitz continuity of
the function f .

Mathematically, we define the profit rate R(x,C) to be:

R(x, c) =
N∑
j=1

rj · µj · (xj ∧ cj)−
N∑
j=1

wj · cj (4.43)

Theorem 4.6. If we let cη ≡ {cη(t)|0 ≤ t ≤ T} be the optimal staffing function associated
with the scaled queueing process {Qη(t)/η|0 ≤ t ≤ T} and we let cη → c almost surely, then
we have

lim
η→∞

∣∣∣∣sup
cη

∫ T

0

R
(
Qη(s)

η
, cη(t)

)
ds− sup

c

∫ T

0

R (q(s), c(s)) ds

∣∣∣∣ = 0 a.s (4.44)

Proof. First we exchange the supremum from outside to inside the integral, which gives us

lim
η→∞

∣∣∣∣sup
cη

∫ T

0

R
(
Qη(s)

η
, cη(s)

)
ds− sup

c

∫ T

0

R (q(s), c(s)) ds

∣∣∣∣ (4.45)

= lim
η→∞

∣∣∣∣∫ T

0

sup
cη
R
(
Qη(s)

η
, cη(s)

)
ds−

∫ T

0

sup
c
R (q(s), c(s)) ds

∣∣∣∣ (4.46)

In addition, we know that

sup
c
R (x, c) ds = max

{i:1≤i≤2n}
Ri(x, ei ◦ q) (4.47)

Now as the profit rate function is Lipschitz continuous, we can apply Lemma 4.4 to get that∣∣∣∣sup
cη
R
(
Qη(t)

η
, cη(t)

)
− sup

c
R (q(t), c(t))

∣∣∣∣ ≤M ·
(∣∣∣∣Qη(t)

η
− q(t)

∣∣∣∣+ |cη(t)− c(t)|
)

(4.48)
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where M is the following constant

M =
N∑
j=1

rj · µj + wj. (4.49)

Now making using Lemma 4.5, the proof is completed by using the assumptions and the
fluid limit from Equation 2.6.

This theorem highlights the effectiveness of the fluid model. By optimizing the fluid
model, we obtain a staffing schedule that is nearly optimal for our original stochastic Jackson
network queueing model in the uniform acceleration regime. Thus, for large scale systems
like call centers and hospitals where η is large, the profit that we make is near the optimal
profit that we would make under the stochastic setting.

5 Optimal Control via Infinite Server Approximation

In our pursuit of a refined approximation for the queue length process we choose to use
the infinite server queue as our motivation. The infinite server queue is quite natural for
modeling multiserver systems that are lightly loaded or provide a high quality of service.
Perhaps the most important advantage of studying the infinite server queue is that the
M/G/∞ queue is very tractable, even when the arrival process is nonstationary. In the
nonstationary Mt/G/∞ queue, we know from Eick et al. [6] that the queue length process
has a Poission distribution with time varying rate q∞(t). The exact analysis of the infinite
server queue is often useful since it represents the dynamics of the queueing process as if
there were an unlimited amount of resources to satisfy the demand process. As observed in
Eick et al. [6], the mean of the queue length process q∞(t) has the following representation

q∞(t) ≡ E[Q∞(t)] =

∫ t

−∞
G(t− u)λ(u)du = E

[∫ t

t−S
λ(u)du

]
= E[λ(t− Se)] · E[S]

where S represents a service time with distribution G, G = 1−G(t) = P(S > t), and Se is a
random variable with distribution that follows the stationary excess of residual-lifetime cdf
Ge, defined by

Ge(t) ≡ P(Se < t) =
1

E[S]

∫ t

0

G(u)du, t ≥ 0.

It turns out the Poisson distribution is also characterized by the fact that all of its
cumulant moments are equal to its mean. Thus, we have that the mean and variance of
the Mt/G/∞ queue are equal to one another when initialized with a Poisson distribution
or at zero. This cumulant moment property of the Mt/G/∞ queue motivates our next
approximation for the queue length process in order to incorporate stochastic effects of the
queueing process. To allow for general solutions and to relax the assumption on increasing
and concave operating costs, we propose approximating the queue length at station j, Qj(t),
using a Gaussian random variable with equal mean and variance such that

Qj(t) ≈ qj(t) +Xj ·
√
qj(t) (5.50)
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Here Xj is a standard Gaussian random variable with mean 0 and variance 1 and is inde-
pendent of all other Xi random variables where i 6= j. Then following from the methods of
optimal control theory Sethi and Thompson [29], after omitting t to simplify notation, the
Gaussian approximated Hamiltonian function related to Problem 3.1 is given by:

H(c, p, q, x) =
N∑
i=1

(ri · µi · E[Qi ∧ ci]− ci · wi) (5.51)

+
N∑
i=1

pi ·
(
λi − µi · E[Qi]− (θi − µi) · E[(Qi − ci)+]

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · E [Qj] +
N∑
j=1

(θj · τji − µj · γji) · E
[
(Qj − cj)+

])

−
N∑
i=1

xi · θi · E[(Qi − ci)+].

Here pj is the momentum variable (co-state of qj) and xj is the co-state variable of some
auxiliary variable Zj where

Zj = −
∫ t

0

θj · E[((qj +Xj ·
√
qj)− cj)+] dt (5.52)

•
Zj = −θj · E[((qj +Xj ·

√
qj)− cj)+] (5.53)

where Zj(T ) ≥ −E j. Since Zj does not appear in equation 5.51 , then
•
xj = −∂H /∂Zj =

0, meaning that xj is a constant that satisfies the following complementary of slackness
equation:

xj ·
[
E j −

∫ T

0

θj · E[((qj +Xj ·
√
qj)− cj)+] dt

]
= 0 (5.54)

Accordingly, xj = 0 when E j −
∫ T
0
θj · E[((qj + Xj ·

√
qj) − cj)+] dt > 0, else xj > 0. Now

by exploiting Stein’s Lemma 8.2, we obtain the following expression for the Hamiltonian in
Equation 5.51.

Proposition 5.1. By substituing Qj = qj +
√
qj ·Xj into the Hamiltonian of Equation 5.51

and taking expectations, we obtain the following Hamiltonian

H(c, p, q, x) =
N∑
i=1

(
ri · µi ·

(
qi +
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

))
− ci · wi

)
(5.55)

+
N∑
i=1

pi · (λi − µi · qi − (µi − θi) ·
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · qj +
N∑
j=1

(θj · τji − µj · γji) ·
(
ϕ(χj)− χj · Φ(χj)

)
· √qj

)

−
N∑
i=1

xi · θi ·
(
ϕ(χi)− χi · Φ(χi)

)
· √qi
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Proof. It is sufficient to show that

E[(Qj − cj)+] =
√
qj ·
(
ϕ(χj)− χj · Φ(χj)

)
(5.56)

E[Qj ∧ cj] = qj −
√
qj ·
(
ϕ(χj) + χj · Φ(χj)

)
(5.57)

where

χj ≡
cj − qj√

qj
. (5.58)

This is demonstrated in Appendix 8.2, by using Stein’s Lemma 8.2 for Gaussian random
variables.

Now that we have the Hamiltonian for our Gaussian approximated control problem,
we can use it to compute the necessary conditions and optimal staffing procedures for the
optimal control problem. In the next theorem, we present the necessary conditions of our
optimal control problem, which are essential for the numerical work that we present later.

Theorem 5.2 (Necessary conditions). If for all t, Qj(t) is Gaussian with equal mean and
variance with Hamiltonian given by Equation 5.55, then the queueing dynamics q∗j (t) and the
corresponding momentum variable p∗j(t) satisfy the following system of differential equations
for 1 ≤ j ≤ N :

•
q∗j = λj − µj · q∗j − (µj − θj) ·

(
χ∗j · Φ(χ∗j)− ϕ(χ∗j)

)
·
√
q∗j (5.59)

+
N∑
i=1

µi · τij · q∗i +
N∑
i=1

(θi · γij − µi · τij) ·
(
χ∗i · Φ(χ∗i )− ϕ(χ∗i )

)
·
√
q∗i

•
p∗j =

(
µj · (rj − p∗j) + θj · (p∗j + xj)

)
·

(
Φ(χ∗j) +

ϕ(χ∗j)

2
√
q∗j

)
− µj · (rj − p∗j) (5.60)

Proof: The proof is given in the Appendix 8.3.

With the necessary conditions for our optimal control problem, we know what trajectory
the state variables and the multiplier variables must take. In fact they solve differential
equations, which depend on the optimal staffing levels or the cj functions. We now show ex-
actly what the optimal staffing functions are under our Gaussian assumptions for the queue
length distributions.

Theorem 5.3 (Optimal Staffing Policy). The optimal control policy for the Gaussian ap-
proximated Problem 3.1 at station j is given by

c∗j = q∗j + Φ−1 (1− %j) ·
√
q∗j (5.61)

where

%j =
wj

µj · (rj − p∗j) + θj · (p∗j + xj)
(5.62)

and where ∗ signifies optimality.
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Proof: The proof is given in the Appendix 8.4.
Observing the optimal control policy, we notice that the optimal policy is a closed form
function of the state and multiplier variables. Moreover, it also depends on the parameters of
the optimal control problem, which lends itself to an economic and managerial interpretation.
We present the managerial insights that can be obtained from this problem in the sequel.

Remark 5.4. The only case where the Jackson network is autonomous is when P s = P a and
µi = θi, when the queueing network has the same dynamics as an infinite server queueing
network. In this case the dynamics are much simplier and the work of Massey and Whitt
[20] provides more insights for this case. In fact, we can derive an optimal control policy
that is exact in this particular case.

Theorem 5.5 (Exact Optimal Staffing). The exact optimal control policy when P s = P a

and µi = θi is given by

c∗j = Γ−1(q∗j , 1− %j)

where Γ−1(q∗j , 1−%j) is the inverse incomplete Gamma function with parameters (q∗j , 1−%j).
Moreover, we have that

%j =
wj

µj · (rj − p∗j) + θj · (p∗j + xj)

=
wj

µj · (rj + xj)

Proof. The solution when P s = P a and µi = θi is exact since the queue length distribution
is known to be Poisson in this case. The readers are encouraged to read Massey and Whitt
[20] for a proof of this fact. In order to derive the optimal staffing policy in this special case,
we use the Chen-Stein Lemma of [7]. The proof of this is derived in the Appendix 8.4.

Remark 5.6. We should mention that it is quite standard to obtain numerical solutions for
Theorems 5.2 and 5.3. One can use the forward-backward algorithm presented in Lenhart
and Workman [16]. For the convenience of the reader we provide the most important steps
of the forward-backward algorithm and how to implement them in Appendix 8.6.

5.1 The dynamics of the optimal control c∗j(t)

The optimal staffing policy at station j, c∗j(t), presented in Equation 5.61 of Theorem 5.3 is
the recommended optimal staffing levels in the service system network. While the formula for
c∗j(t) takes the form of traditional SRS models like that of Jennings et al. [12], the intuitions
and insights generated from our model are quite different. First, in traditional SRS models,
%j in Equation 5.62 would generally be the probability of delay, but for our model this is the
cost-to-revenue ratio at station j given by

%j =
wj
Rj(t)

(5.63)
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where Rj(t) ≡ µj · (rj − pj(t)) + θj · (pj(t) + xj). As noted earlier µj · (rj − pj(t)) is the
revenue rate from serviced patients at station j while θj · (pj(t)+xj) is the revenue rate from
abandoned patients at station j.

It should be noted that as the abandonment threshold εj → 1, the penalty costs xj → 0,
which implies that Rj(t) = µj · rj + (θj − µj) · pj(t). Accordingly, a special case of θj = µj
eliminates the dependence of the optimal solution on the shadow price pj(t) from staffing
policy decisions. Moreover, Φ−1, is often interpreted as the quality service grade in traditional
SRS models Mandelbaum and Zeltyn [17]. For our model, Φ−1 can be viewed more as the
a profitability-and-quality service grade since it’s not only dictated by the abandonment
threshold ε, but also by the objective of maximizing profitability.

5.2 Profitability Analysis of the optimal control

A Hamiltonian function in optimal control problems can be considered a profit rate Sethi
and Thompson [29] and Chiang [3]. For our control problem, this is Equation 5.51, af-
ter applying the Gaussian refinement. The first term of our Hamiltonian function, rj · µj ·(
qj +

√
qj ·
(
χj · Φ(χj)− ϕ(χj)

))
−wj ·cj, represents the realized profit or simply the net oper-

ating income from patient care reimbursements. Here rj ·µj ·
(
qj +

√
qj ·
(
χj · Φ(χj)− ϕ(χj)

))
is the approximate operating revenue and wj · cj is the operating cost. For the center to
be profitable, it’s imperative that rj > cj. To measure the degree of profitability, we follow
Gapenski [8] and define the operating margin for station j, Oj, as follows:

Oj =

∫ T
0
rj · µj ·

(
qj +

√
qj ·
(
χj · Φ(χj)− ϕ(χj)

))
− wj · cj∫ T

0
rj · µj ·

(
qj +

√
qj ·
(
χj · Φ(χj)− ϕ(χj)

)) (5.64)

The closer to 1 the operating margin Oj is, the more profitable that station j is.

5.3 Probability of Waiting for Service

The probability of delay or waiting for service at each individual station can be calculated by
the probability that the queue length at that station is larger than the number of servers at
time t. Using the infinite server approximation again, we have the following approximation
for this quantity in terms of the parameters of our optimal control problem

P(Qj(t) ≥ cj(t)) ≈ P(Q∞j (t) ≥ cj(t)) (5.65)

≈ P
(
qj +

√
qj ·Xj ≥ qj +

√
qj · Φ−1 (1− %j)

)
(5.66)

= P
(
Xj ≥ Φ−1 (1− %j)

)
(5.67)

= 1− Φ
(
Φ−1 (1− %j)

)
(5.68)

= %j (5.69)

where %j is the cost-to-revenue ratio at station j. Thus, we can give a performance mea-
sure interpretation of the delay experienced by customers at station j in terms of the cost
to revenue ratio at that station. Thus, as the cost to revenue ratio increases, we should
experience more delay since it is more expensive for the service provider to provide better
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service. Similarly, when the cost to revenue ratio goes down we can staff the system with
more servers at a low cost, which causes the delay probability to decrease. This result is
important as it gives us a profitability interpretation of the delay costs.

6 Numerical Results

In this section, we present numerical results for both the fluid control and the Gaussian
control problems.

6.1 Fluid Model

In Figure 4, we show the results from the fluid optimal control method where we dynamically
control the number of servers in two queues. Going from the top to the bottom of the top
graph in 4 we plot for the first queue, the arrival rate, the queue length, the optimal staffing
function, the adjoint variable p, and the probability of delay. In the bottom graph of 4,
we plot the same thing, however, for the second queue. We see that the optimal solution
is to staff no one for all of the time. This can be quite problematic in healthcare staffing
since this could risk patients lives, however, it does indicate that the hospital might not be
as profitable as it could and perhaps it should be shut down to not lose money. In Figure
??, we use the same parameters, however, we scale up the arrival rate. We see once again
that the optimal procedure is to do nothing and to shut down service. Although, we do not
add this plot, by increasing the revenue generated from the service of each customer, we can
construct a solution that staffs only at the mean level of the queue length.

6.2 Infinite Server Approximation

In Figure 6, we show the results from the Gaussian optimal control method where we dy-
namically control the number of servers in two queues. Going from the top to the bottom
of the top graph in 6 we plot for the first queue, the arrival rate, the queue length, the
optimal staffing function, the adjoint variable p, and the probability of delay. In the bottom
graph of 6, we plot the same thing, however, for the second queue. We see that the optimal
solution is to staff according to our square root staffing policy. We use the same parameters
from the fluid model plots, however, in contrast to the fluid control, you should not staff
zero servers. The mean number of customers is a baseline and you staff around the baseline
according to the cost to revenue ratio at each station. From a managerial perspective, this
is a great option since it clear relates the ratio of profitability to the staffing number in a
elegant way. In Figure 7, we use the same parameters, however, we scale up the arrival rate.
We see once again as our theoretical results predict, the optimal solution is to do square
root staffing. It is also important to note that the staffing in the Gaussian approximation
somewhat stabilizes the probability of delay as the revenue to cost ratio. This is a nice result
since the delay that customers experience is directly related to the revenue and costs that
the system incurs. We will once again mention that the code for optimal staffing is available
on the first author’s website.
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7 Conclusion and Additional Research

Dynamic control of nonstationary queues is a very difficult problem. In this work, we have
proposed two different solutions to tackle this problem. Our first method is to use a fluid
limit approximation to approximate the queueing control problem as a dynamical systems
control problem using the fluid limit of the queueing process. In this setting we proved that
the fluid control problem is asypmptotically optimal for the original queueing process.

Our second method exploits the infinite server queueing process and its tractability. By
approximating the queue length process with a Gaussian distribution where the mean is equal
to the variance, we proved the optimal control policy is the celebrated square root staffing
policy. Moreover, the square root staffing policy for each station only depends on the local
parameters of each station and not the other parameters. Unlike in most traditional square
root staffing formulas, the main parameter in our formula was not the probability of delay
but rather a cost-to-revenue ratio that depends on the shadow price of each station. We also
showed that the probability of delay can be expressed in terms of this cost-to-revenue ratio.
One main insight is that as the cost-to-revenue ratio increased, customers experienced more
delay since it was more expensive for the center to increase the number of servers. Thus, we
show a unique relationship between profitability of the queueing network and the probability
of delay in the network.

There are several avenues that are still open for further research. One main idea is to
use other queueing approximation techniques such as spectral and orthogonal polynomial
approximations as in Massey and Pender [19], Engblom and Pender [7], Pender and Massey
[28] to approximate the queue length process. Also an extension to more complicated net-
works of queues like priority queues for example would be an interesting extension, especially
in the healthcare literature. Another area for further research is to consider optimal staffing
of queues with non-Markovian dynamics like in the work of Ko and Pender [15, 14], Pender
and Ko [27]. Lastly, it would be interesting to use risk measures like in the work of Pender
[26] and generate optimal control policies for nonstationary queues using risk measures in
the objective function or constraints.

8 Appendix

8.1 Stein’s Lemma

One important property that will be useful for calculating the optimal control solution is
the following derivative property of min and max functions.

Lemma 8.1. Let Qj be any random variable and cj(t) be a deterministic function of time,
then we have that

∂

∂cj
E[Qj ∧ cj] = − ∂

∂cj
E[(Qj − cj)+]. (8.70)

In addition to understanding the derivative of the Hamiltonian, we first need to compute
the expectations of Problem 3.1. To tackle this problem, we exploit Stein’s Lemma for
Gaussian random variables. Stein’s Lemma states the following:
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Lemma 8.2 (Stein [30]). X is a standard Gaussian random variable mean 0 and variance
1 if and only if

E[X · f(X)] = E [f ′(X)]

for all generalized functions that satisfy E [f ′(X)] <∞.

In this section, we present many of the proofs and derivations needed to compute our
optimal staffing schedule. We begin with the derivation of the Hamiltonian.

8.2 Derivation of the Hamiltonian in the Equation 5.51

In this section of the Appendix, we derive the Hamiltonian equation that is presented in
Equation 5.51. We use Stein’s lemma to derive the Hamiltonian and our derivation will allow
us to calculate our optimal staffing schedule. From our optimal control problem formulation,
we know that the Hamiltonian is given by

H(c, p, q, x) =
N∑
i=1

(ri · µi · E[Qi ∧ ci]− ci · wi)

+
N∑
i=1

pi ·
(
λi − µi · E[Qi]− (θi − µi) · E[(Qi − ci)+]

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · E [Qj] +
N∑
j=1

(θj · τji − µj · γji) · E
[
(Qj − cj)+

])

−
N∑
i=1

xi · θi · E[(Qi − ci)+].

≈
N∑
i=1

(ri · µi · E[(qi +
√
qi ·Xi) ∧ ci]− ci · wi)

+
N∑
i=1

pi ·
(
λi − µi · E[(qi +

√
qi ·Xi)]− (θi − µi) · E[((qi +

√
qi ·Xi)− ci)+]

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · E
[
(qj +

√
qj ·Xj)

])

+
N∑
i=1

pi ·

(
N∑
j=1

(θj · τji − µj · γji) · E
[
((qj +

√
qj ·Xj)− cj)+

])

−
N∑
i=1

xi · θi · E[((qi +
√
qi ·Xi)− ci)+].

Using Stein’s Lemma 8.2, we derive the following expression for the maximum function
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for a standard Gaussian random variable

E
[
(X − χj)+

]
= E [(X − χj) · {X ≥ χj}]

= E [X · {X ≥ χj}]− χj · P{X ≥ χj}

=

∫ ∞
−∞

δχj(y) · ϕ(y)dy − χj · Φ(χj)

= ϕ(χj)− χj · Φ(χj). (8.71)

Moreover, since the max and min functions satisfy the following equality

E [X ∧ χj] = E [X]− E
[
(X − χj)+

]
,

we have that the min function of a standard Gaussian random variable satisfies the following
expression

E [X ∧ χj] = E
[
X − (X − χj)+

]
= −E

[
(X − χj)+

]
= χj · Φ(χj)− ϕ(χj). (8.72)

After substituting the approximate expectations 8.71 and 8.72 of the queue lengths into
Equation 5.51, our Hamiltonian function becomes:

H(c, p, q, x) =
N∑
i=1

(
ri · µi ·

(
qi +
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

))
− ci · wi

)
(8.73)

+
N∑
i=1

pi · (λi − µi · qi − (µi − θi) ·
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · qj +
N∑
j=1

(θj · τji − µj · γji) ·
(
ϕ(χj)− χj · Φ(χj)

)
· √qj

)

−
N∑
i=1

xi · θi ·
(
ϕ(χi)− χi · Φ(χi)

)
· √qi

8.3 Proof of Theorem 5.2

In order to prove that our optimal staffing schedule is optimal, we need the state variables
and the Lagrange multipliers to satisfy the necessary conditions of the Pontryagin maximum
principle. In our case, it suffices to calculate the partial derivatives of the Hamiltonian
with respect to the state and multiplier variables. In this section we compute the partial
derivatives of the Hamiltonian and use them to construct the differential equations that
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describe the dynamics of the queue lengths and the opportunity costs or shadow prices.
From our earlier analysis, we know the Hamiltonian can be written as

H(c, p, q, x) =
N∑
i=1

(
ri · µi ·

(
qi +
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

))
− ci · wi

)
(8.74)

+
N∑
i=1

pi · (λi − µi · qi − (µi − θi) ·
√
qi ·
(
χi · Φ(χi)− ϕ(χi)

)
+

N∑
i=1

pi ·

(
N∑
j=1

µj · γji · qj +
N∑
j=1

(θj · τji − µj · γji) ·
(
ϕ(χj)− χj · Φ(χj)

)
· √qj

)

−
N∑
i=1

xi · θi ·
(
ϕ(χi)− χi · Φ(χi)

)
· √qi

Thus, the partial derivatives of the Hamiltonian can be computed by computing the deriva-
tives of the Gaussian pdf and cdf functions that appear in the Hamiltonian. They are

∂H
∂pj
≡ •qj = λj − µj · qj − (µj − θj) ·

(
χj · Φ(χj)− ϕ(χj)

)
· √qj (8.75)

+
N∑
i=1

µi · τij · qi +
N∑
i=1

(θi · γij − µi · τij) ·
(
χi · Φ(χi)− ϕ(χi)

)
· √qi

−∂H
∂qj
≡ •pj = (µj · (rj − pj) + θj · (pj + xj)) ·

(
Φ(χj) +

ϕ(χj)

2
√
qj

)
(8.76)

− µj · (rj − pj)

8.4 Proof of Theorem 5.3

From the Pontryagin’s Maximum Principle, the optimal control policy c∗ that maximizes
the Hamiltonian function in Equation 8.74, such that H(c∗, p∗, q∗, x∗, t) ≥ H(c, p, q, x, t), is
obtained by ∂H

∂cj
= 0. Thus, by differentiating the Hamiltonian by cj we obtain the following

expression

∂H
∂cj

= rj · µj · Φ(χj)− wj − pj · (µj − θj) · Φ(χj) + xj · θj · Φ(χj) = 0

= (µj · (rj − pj) + θj · (pj + xj)) · Φ(χj)− wj = 0 (8.77)
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We now solve for cj given that χj =
cj−qj√
qj

:

(µj · (rj − pj) + θj · (pj + xj)) · Φ(χj) = wj

Φ

(
cj − qj√

qj

)
=

wj
µj · (rj − pj) + θj · (pj + xj)

Φ

(
cj − qj√

qj

)
= 1− wj

µj · (rj − pj) + θj · (pj + xj)

cj − qj√
qj

= Φ−1
(

1− wj
µj · (rj − pj) + θj · (pj + xj)

)
Finally we obtain optimal control policy c∗j as:

c∗j = qj + Φ−1
(

1− wj
µj · (rj − pj) + θj · (pj + xj)

)
· √qj. (8.78)

8.5 Proof of Theorem 5.5

Theorem 8.3 (Chen-Stein). Let Q be a random variable with values in N. Then, Q has the
Poisson distribution with mean rate q if and only if, for every bounded function f : N→ N,

E [Q · f(Q)] = q · E [f(Q+ 1)]

Proof. See Peccati and Taqqu [24].

Lemma 8.4.

Γ(s, x) =
∞∑
m=s

e−x · x
m

m!
=

1

Γ(s)

∫ x

0

e−yys−1dy

Γ(s, x) =
s−1∑
m=0

e−x · x
m

m!
=

1

Γ(s)

∫ ∞
x

e−yys−1dy.

where

Γ(s, x) =
1

Γ(s)

∫ x

0

e−yys−1dy and Γ(s, x) =
1

Γ(s)

∫ ∞
x

e−yys−1dy

are the lower and upper incomplete gamma functions respectively. Moreover, we define

Γ−1(x, ε) and Γ
−1

(x, ε) to be the functional inverses of Γ(s, x) and Γ(s, x) respectively.

Proof. See Janssen et al. [11].

Lemma 8.5.

E[(Qj − cj)+] = E[(Qj − cj) · {Q > cj}]
= E[Qj · {Q > cj}]− s · E[{Q > cj}]
= E[Qj · {Q > cj}]− s · Γ(cj + 1, q)

= qj · E[{Q+ 1 > cj}]− cj · Γ(cj + 1, qj)

= qj · Γ(cj, qj)− cj · Γ(cj + 1, qj)
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∂

∂cj
E[(Qj − cj)+] = −Γ(cj + 1, qj)

∂

∂cj
E[Qj ∧ cj] = Γ(cj + 1, qj)

Now we prove Theorem 5.5 using the results of the profit model. In the case where
P s = P a and µi = θi, we have that

∂H
∂cj

= r · µ · Γ(cj + 1, qj)− wj − pj · (µ− θ) · Γ(cj + 1, qj) + x · θ · Γ(cj + 1, qj) = 0

= µj · (rj + xj) · Γ(cj + 1, q)− wj = 0.

We now solve for cj given that χj =
cj−qj√
qj

:

µj · (rj + xj) · Γ(cj + 1, qj)− wj = 0

Γ(cj + 1, qj) =
wj

µj · (rj + xj)
.

Finally by inverting the incomplete gamma function, we obtain optimal control policy c∗j as

c∗j = Γ−1
(
qj,

wj
µj · (rj + xj)

)
.

8.6 Numerical Algorithms for Optimal Control

In this section, we explain the numerical algorithm that is needed to construct the dynamical
systems that are needed to produce the optimal solution. We cannot obtain the close form
solution of the optimal staffing policy indicated in equation 8.79 as c(t), q(t), and p(t) still
depend on time. To obtained needed solutions, we use the standard Euler scheme for integrat-
ing differential equations and the Forward-Backward method as described in Algorithm 8.6.
When solving for cj(t),qj(t), and pj(t), Algorithm 8.6 follows from the Forward-Backward
method introduced in Lenhart and Workman [16]. Our method is a slight modification in
that we use standard Euler and not the Runge-Kutta method for numerically integrating
equations. Here we add steps to also solving for the constant xj when there are inequality
constraints in the optimal control problem.

Algorithm 8.6 (Steps to numerically solve for cj(t), qj(t), pj(t), and xj).

Step 0: Set initial conditions for q(0) and terminal conditions for p(T ) and the initial guess
of the control policy −→c (t), for all 0 < t < T . Also initialize number of iterations n = 0
and the abandonment penalty x = 0

Step 1: Given {qn−1(t)|0 ≤ t ≤ T}, solve the dynamical system ṗ(t) = −∂H
∂q

(pn, qn−1)(t)

backward in time for all 0 ≤ t ≤ T , starting with the terminal condition pn(T ) = 0
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Step 2: Given {pn(t)|0 ≤ t ≤ T}, solve the dynamical system q̇(t) = ∂H
∂p

(pn, qn)(t) forward

in time for all 0 ≤ t ≤ T , starting with the initial condition qn(0) = q0

Step 3: For all 0 < t < T , determine the staffing policy sn by solving

cn(t) = qn(t) + Φ−1 (1− %n(t)) ∗
√

(qn)

Step 4: If E −
∫ T
0
θ · (qn(t)− cn(t))+ < 0, ∀ 0 < t < T

1. n=n+1

2. xn+1 = xn + h

where h is a very small number.

Step 5: Repeat Step 1-3 until the relative error is negligible, in that:∫ T

0

θ · (qn(t)− cn(t))+ < E and
‖−→c ‖n − ‖−→c ‖n−1

‖−→c ‖n
≤ δ

where δ is the accepted convergence tolerance.
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Figure 4: λ1 = λ2 = 10 + 2 sin(t), µ1 = µ2 = 1, θ1 = θ2 = 2, r1 = r2 = 20 + 10 sin(t)
w1 = w2 = 10, x1 = x2 = 100 τ11 = τ22 = 0, τ12 = τ21 = .25, τ10 = τ20 = .75

γ11 = γ22 = 0, γ12 = γ21 = .25, γ10 = γ20 = .75.
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Figure 5: λ1 = λ2 = 100 + 20 sin(t), µ1 = µ2 = 1, θ1 = θ2 = 2, r1 = r2 = 20 + 10 sin(t)
w1 = w2 = 10, x1 = x2 = 100 τ11 = τ22 = 0, τ12 = τ21 = .25, τ10 = τ20 = .75

γ11 = γ22 = 0, γ12 = γ21 = .25, γ10 = γ20 = .75.
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Figure 6: λ1 = λ2 = 10 + 2 sin(t), µ1 = µ2 = 1, θ1 = θ2 = 2, r1 = r2 = 20 + 10 sin(t)
w1 = w2 = 10, x1 = x2 = 100 τ11 = τ22 = 0, τ12 = τ21 = .25, τ10 = τ20 = .75

γ11 = γ22 = 0, γ12 = γ21 = .25, γ10 = γ20 = .75.
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Figure 7: λ1 = λ2 = 100 + 20 sin(t), µ1 = µ2 = 1, θ1 = θ2 = 2, r1 = r2 = 20 + 10 sin(t)
w1 = w2 = 10, x1 = x2 = 100 τ11 = τ22 = 0, τ12 = τ21 = .25, τ10 = τ20 = .75

γ11 = γ22 = 0, γ12 = γ21 = .25, γ10 = γ20 = .75.
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