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Many stochastic systems have arrival processes that exhibit clustering behavior. In these systems, arriving

entities influence additional arrivals to occur through self-excitation of the arrival process. In this paper,

we analyze an infinite server queueing system in which the arrivals are driven by the self-exciting Hawkes

process and where service follows a phase-type distribution or is deterministic. In the phase-type setting, we

derive differential equations for the moments and a partial differential equation for the moment generating

function; we also derive exact expressions for the transient and steady-state mean, variance, and covariances.

Furthermore, we also derive exact expressions for the auto-covariance of the queue and provide an expression

for the cumulant moment generating function in terms of a single ordinary differential equation. In the

deterministic service setting, we provide exact expressions for the first and second moments and the queue

auto-covariance. As motivation for our Hawkes queueing model, we demonstrate its usefulness through two

novel applications. These applications are trending internet traffic and arrivals to nightclubs. In the web

traffic setting, we investigate the impact of a click. In the nightclub or Club Queue setting, we design an

optimal control problem for the optimal rate to admit club-goers.
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MSC2000 subject classification : Primary 60K25; Secondary 90B22, 93E20

1. Introduction

The arrival process is a fundamental component of stochastic queueing models. In most models,

these arrival processes are driven by a Poisson process, which is well suited for environments in

which arrivals have no influence on one another. If the arrival process is a simple (single jump)

random counting process with independent increments, Prékopa (1957) shows that this is equivalent

to a non-homogeneous Poisson process. However, this can be unrealistic for many situations. For

example, in the trading of financial assets, transactions tend to occur together as traders are

often responding to the same information as their peers or to their actions Azizpour et al. (2016).
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Additionally, earthquakes and other forms of geological tension frequently occur in quick succession,

as aftershocks can continue to affect an area soon after the initial tremors Ogata (1988). Even

patterns of violent crime have been known to occur in clusters, as victims may decide to retaliate

Mohler et al. (2011). In each of these examples, the occurrence of an event makes the occurrence

of the next more likely to happen in quick succession, which means that the sequence of arrivals

tends to form clusters. This type of phenomena would be better modeled by variables that are

not memoryless, so that the occurrences can have an influence on those that follow soon after and

increments are not independent.

One stochastic arrival process that captures clustering of arrivals was introduced in 1971 by

Hawkes (1971), and is referred to as the Hawkes process. This stochastic process counts the number

of arrivals and, unlike the Poisson process, it self-excites. This means that when one arrival occurs, it

increases the likelihood that another arrival will occur soon afterwards. The Hawkes process does so

through treating both the counting process and the rate of arrivals as coupled stochastic processes.

Because the arrival rate increases, it is treated in a general sense as the arrival “intensity,” which

can be thought of as a representation of the excitement at that time. The higher the intensity, the

more likely it is that an arrival will occur. In this setting, the number of arrivals and the arrival

intensity represent the system together as a pair.

Historically, the Hawkes process has been studied predominantly in financial settings. However,

it has only recently received a significant amount of attention in broader and more general contexts.

For a general overview, a review of the Hawkes process was written by Laub et al. (2015). In

our work, we are particularly interested in socially informed queueing systems, and we use these

systems as a motivation for both studying the Hawkes process and applying it to queueing models.

For example, in situations in which a person does not know the value of competing offers or services,

she may decide to pursue the option that has the most other people already waiting for it. When

one can’t be sure of what is earned by waiting, the willingness of others to wait can often be the

best indicator.

As a quick example for the sake of building intuition, consider walking past a street performer.

If there is only a handful of other people watching, one may not feel a desire to stop and see the

performance. However, if there is a large crowd already watching it is more enticing to join the

group and see what is happening. This is the basic motivation of self-exciting and clustering arrival

processes. Although this example is simple, the concept itself has powerful implications for service

systems. Several naturally occurring examples of these systems were detailed in a recent Chicago

Booth Review article, Mordfin (2015). These examples include cellular companies paying employees

to join the lines outside stores during product launches and pastry enthusiasts waiting hours in

queue to buy baked goods from the famed Dominique Ansel Bakery in New York. (The article even
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includes a story of a German man joining a long queue in 1947 without any knowledge of what

awaited him, only to find it was for visas to the United States!) Another example of self exciting

arrivals in service settings are flight cancellations, discussed in a recent Business Insider article,

Zhang (2016). Because of widespread events like inclement weather and information technology

infrastructure failures, flights are often cancelled in mass. However, as that article notes, even one

plane experiencing mechanical issues can cause a cluster of downstream cancellations throughout

its flight legs.

In this paper, we apply our results to two main applications: the viral nature of modern web

traffic and the appeal associated with the lengths of queues for nightclubs. In socially informed

internet traffic, webpages experience arrivals of users in clusters due to the contagion-like spread of

information. If one user shares a webpage, others become more likely to view and share it as well.

We demonstrate this through an example from Twitter data and explore the impact of a click.

The night club example can be seen as an effect of having to pay a cover fee up front to enter

the venue. Because club-goers must pay before ever seeing inside, the number of others already in

queue to enter the club gives a sense of the attraction they are awaiting. In this setting we consider

the managerial control problem of how quickly to admit customers to maximize earnings. Again,

in these examples the occurrence of an event or arrival of a customer increases the likelihood that

another will happen soon after.

We model these sort of settings through queueing systems in which the arrivals occur according

to a Hawkes process and in which service times follow phase-type distributions. This general type

of service allows for accurate and robust modeling while preserving key characteristics for queues,

such as the Markov property. Mathematically, this work is most similar to recent work by Gao

and Zhu (2016) and Koops et al. (2017). Moreover, transient moments for infinite server queues

with Markovian arrivals are also among the findings in Koops et al. (2017), an independent and

concurrent work. However the moments in Koops et al. (2017) are only derived for exponential

service distributions, whereas we give expressions for any phase-type service distribution. Addi-

tionally, we analyze the Hawkes/D/∞ queue and give an explicit analysis for its first two moments.

Conceptually, our motivation is most similar to Debo et al. (2012). While the model in Debo et al.

(2012) is similar to this one in concept, it is quite different in its probabilistic structure. Rather

than using a Hawkes process for the arrivals, the authors model the scenario through a Poisson

process with a probability of arrivals joining or balking that increases with the length of the queue.

This describes the setting well, but there are a few limitations and room for additional considera-

tions. For example, recency plays no role in the influence of the next arrival. For queues of identical

length, that model considers the most recent arrival occurring a minute ago to be equivalent to

it occurring an hour ago. Additionally, because events arrive according to a time-homogeneous
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Poisson process and then either join or balk, the rate at which arrivals join the queue is bounded

by the overall arrival rate, a constant. This prevents any kind of “viral” behavior for the events,

so a large influx of arrivals over a short time is unlikely to occur. By contrast, these behaviors are

inherent to our model. We will explore these ideas and others after the following descriptions of

this paper’s composition.

1.1. Main Contributions of Paper

In this paper, we provide exact expressions for the mean, variance, and covariance of the Hawkes

process driven queue for all time, in both transient and steady state. These moments are derived

for general phase-type service; we also provide examples for hyper-exponential and Erlang service.

These results are derived by exploiting linear ordinary differential equations. We also derive expres-

sions for all moments of the queue. We verify these functions via comparisons to simulations. We

also derive a partial differential equation for the moment generating function and the cumulant

moment generating function for the Hawkes/PH/∞ queue. We are able to show that the solution

of the potentially high dimensional PDE for the MGF can be reduced to solving one differential

equation, which does not have a closed form expression except in some special cases. Moreover,

we analyze the Hawkes/D/∞ queue where the service times are deterministic. We derive exact

expressions for the mean, variance, and auto-covariance of the queue length process. Through-

out this work we show the relevance of the Hawkes process by direct comparison to the Poisson

process and through novel applications. In our applications, we investigate the long run effects

of the self-excitement structure, design an optimal control problem, and describe how to solve it

numerically.

1.2. Organization of Paper

The remainder of this paper is organized into three main sections. In Section 2, we give an

overview of results and properties in the Hawkes process literature that are relevant to this work

and we then investigate the infinite server Hawkes process driven queue with deterministic service.

In Section 3, we perform the main analysis of this work, which is the investigation of infinite

server queues with Hawkes process arrivals and phase-type distributed service. In doing so, we

first provide model definitions and technical lemmas, then derive expressions for the moments

of the queue, followed by the auto-covariance and moment and cumulant generating functions.

In Section 4, we apply this work to two novel settings, trending web traffic and night clubs. To

facilitate comprehension of subject-specific notation, we provide the following table of terminology.

Listed by order of appearance, these terms are also stated and defined at their first use. Thus,

this reference is simply intended as an aid for the reader. In particular, we draw attention to this

paper’s use of v to represent the vector of all ones. While such a vector may be more commonly
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denoted as e, we avoid that notation as these vectors are frequently used near matrix exponentials

since v is more distinct from e than e is.

Symbol Definition

Nt Hawkes counting process, the self-exciting point process

λt Hawkes process intensity, represents the excitement of the process at time t

α Hawkes process jump parameter, represents the jump in intensity upon an arrival

β Hawkes process decay parameter, governs the exponential decrease of λt
λ∗ Hawkes process baseline intensity

λ0 Initial value of λt
λ∞ Equal to βλ∗

β−α , represents the limit of the mean intensity as t→∞
Qt Queueing system, where Qt,i is the number in phase i of service at time t

S Phase-type distribution transient state sub-generator matrix, represents the exponen-
tially distributed rate of transitions of an entity from one phase of service to another
with state 0 designated as the absorbing state for the end of the entity’s service. Off
diagonal elements are µij and diagonal elements are −µi

µij Transition rate from phase i to phase j where i 6= j

µi Overall transition rate out of phase i

θ Queueing system initial distribution of arrivals over the n phases of service

v The n-dimensional vector of all ones

vi The n-dimensional vector of all zeros other than the value 1 at the ith element

Vi The n×n matrix with one at (i, i) and zero otherwise

2. Hawkes Arrival Process

The Hawkes process, introduced in Hawkes (1971), is a self-exciting point process whose arrival

intensity is dependent on the point process sample path. This is defined through the following

dependence on the intensity process λt:

P(Nt+h−Nt = 1|Ft) = λt ·h+ o(h) (1)

P(Nt+h−Nt > 1|Ft) = o(h) (2)

P(Nt+h−Nt = 0|Ft) = 1−λt ·h+ o(h) (3)

where Ft is a filtration on the underlying probability space (Ω,F ,P) generated by (Nt)t≥0. The

arrival intensity is governed by the following stochastic dynamics:

dλt = β(λ∗−λt)dt+αdNt. (4)

Here λ∗ represents an underlying stationary arrival rate called the baseline intensity, α> 0 is the

height of the jump in the intensity upon an arrival, and β > 0 describes the decay of the intensity

as time passes after an arrival. That is, when the number of arrivals Nt increases by one, the arrival

intensity will jump up by amount α, and this increases the probability of another jump occurring.
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This is why the Hawkes process is called self-exciting: its prior activity increases the likelihood of

its future activity. However, as soon as an arrival occurs the intensity begins to decay exponentially

at rate β to the baseline intensity λ∗. Because of the jumps and the decay, the arrivals tend to

cluster. If one applies Ito’s lemma to the kernel function e−βtλt, then one can show that

λt = λ∗+ e−βt(λ0−λ∗) +α

∫ t

0

e−β(t−s)dNs, (5)

as in Da Fonseca and Zaatour (2014), which also discusses the impact of the initial value of the

intensity λ0. This process is known to be stable for α< β, see Laub et al. (2015). Additionally, it is

Markovian when conditioned on the present value of both the counting process and the intensity,

which is also given in Laub et al. (2015). For the rest of this study we will restrict our setting to

this exponential kernel assumption. When we use the term “Hawkes process” we assume that it

has such a kernel. Before proceeding with a review of relevant Hawkes process results from the

literature, we motivate the use of this process by showing both its similarities and its differences

with the Poisson process.

2.1. Comparison to the Poisson Process

In Equation 5, note that if α = 0 and λ0 = λ∗ then λt = λ∗ for all t. In this case, the Hawkes

process is equivalent to a stationary Poisson process with rate λ∗. However, if α= 0 but λ0 6= λ∗ it

is equivalent to a non-stationary Poisson process. So, conceptually, a Poisson process is a Hawkes

process without excitement. Furthermore, a Hawkes process with λ0 = λ∗ is in essence a stationary

Poisson process until the first arrival occurs. However, once an arrival occurs the intensity process

jumps by an amount α from the initial value and then begins to decay towards the baseline rate

according to the exponential decay rate β. This is demonstrated in the example in Figure 1 below.

This simulation, in addition to all the others throughout this work, is constructed by use of the

algorithm described in Ogata (1981).

Figure 1 Simulated λt, where α= 3
4
, β=1, and λ∗ =1.

This example also shows another key difference between the Hawkes and Poisson processes.

Because the self-excitation increases the likelihood of an arrival occurring soon after another, the
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Hawkes process tends to cluster arrivals together across time. This means that the variance of

a Hawkes process will be larger than that of a Poisson process, which is known to be equal to

its mean. Below we demonstrate this through simulated limit distributions of the Hawkes process

compared with the known Poisson probability mass function (PMF), each with the same mean.

Figure 2 Limit Distributions for λ∗ =β=1 and α=0 (left) and 0.6 (right).

The simulated results are based on 10,000 replications, each with an end time of 500. As described

previously, the two processes are equivalent for α = 0. However, as α increases, the similarity

between the Hawkes process and the Poisson process starts to disappear. Through these examples,

we observe that the Hawkes process behaves quite differently from the Poisson process since it

has heavier tails and therefore, is more variable. Thus, this provides theoretical motivation for our

following investigation.

2.2. Review of Relevant Hawkes Process Literature

We now review a brief selection of Hawkes process results that support our following analysis of

Hawkes process driven queueing systems. These results can be found in greater detail in Dassios

and Zhao (2011), Da Fonseca and Zaatour (2014, 2015), as discussed specifically after each result

statement. This review is primarily focused on the transient and stationary moments of the Hawkes

process, and is included both for the sake of completeness and understanding of the problem,

but also so that it may be incorporated later in this work. In the first statement, Proposition 1,

differential equations for the moments of the Hawkes process are provided.

Proposition 1. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equation 4, then

we have the following differential equations for the moments of Nt and λt,

d

dt
E[Nm

t ] =
m−1∑
j=0

(
m

j

)
E
[
λtN

j
t

]
(6)

d

dt
E[λmt ] =mβλ∗E

[
λm−1
t

]
−mβE[λmt ] +

m−1∑
j=0

(
m

j

)
αm−jE

[
λj+1
t

]
(7)

d

dt
E
[
λmt N

l
t

]
=mβλ∗E

[
λm−1
t N l

t

]
−mβE

[
λmt N

l
t

]
+
∑

(j,k)∈S

(
m

j

)(
l

k

)
αm−jE

[
λj+1
t Nk

t

]
(8)
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where S = ({0, . . . ,m}×{0, . . . , l}) \ {(m, l)}.

Proof. This follows directly from the approach involving the infinitesimal generator described

in Sections 2.1 and 2.2 of Da Fonseca and Zaatour (2014), followed by simplification using the

binomial theorem. For the first and second moments of Nt and λt and the first product moment,

these equations are stated exactly in that work. �

As has been observed in the literature, the differential equations for the moments form a system

of linear ordinary differential equations that have explicit solutions. We now provide the exact

dynamics of the first two moments of the Hawkes process since this is of particular relevance to our

later analysis. We also define notation that will be used throughout the remainder of this work.

Proposition 2. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equation 4 with

α< β, then the mean, variance, and covariance of Nt and λt are provided by the following equations

for all t≥ 0,

E[λt] = λ∞+ (λ0−λ∞)e−(β−α)t (9)

E [Nt] = λ∞t+
λ0−λ∞
β−α

(
1− e−(β−α)t

)
(10)

Var (λt) =
α2λ∞

2(β−α)
+
α2(λ0−λ∞)

β−α
e−(β−α)t− α

2(2λ0−λ∞)

2(β−α)
e−2(β−α)t (11)

Var (Nt) =
β2λ∞

(β−α)2
t+

α2(2λ0−λ∞)

2(β−α)3

(
1− e−2(β−α)t

)
− 2αβ(λ0−λ∞)

(β−α)2
te−(β−α)t

+

(
β+α

(β−α)2
(λ0−λ∞)− 2αβ

(β−α)3
λ∞

)
(1− e−(β−α)t) (12)

Cov [λt,Nt] =

(
αλ∞
β−α

+
α2λ∞

2(β−α)2

)(
1− e−(β−α)t

)
+
α2(2λ0−λ∞)

2(β−α)2

(
e−2(β−α)t− e−(β−α)t

)
+
αβ(λ0−λ∞)

β−α
te−(β−α)t (13)

where

λ∞ =
βλ∗

β−α
.

Proof. The proof of this result can be found in Section 3.4 of Dassios and Zhao (2011) (as a

particular case where ρ= 0) and in Section 3.2 of Da Fonseca and Zaatour (2015), or by solving

the corresponding ODE system stated above Proposition 1. �

By further observation of Proposition 2 or simply by further review of the references in this

section, the steady-state behavior of various Hawkes process statistics is also available. These

expressions are stated in the following corollary.
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Corollary 1. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equation 4 with

α< β, then the steady state values of the mean and variance of the intensity and of the covariance

between the intensity and the counting process are as follows:

lim
t→∞

E[λt] =
βλ∗

β−α
= λ∞, (14)

lim
t→∞

Var (λt) =
α2λ∞

2(β−α)
, (15)

lim
t→∞

Cov [λt,Nt] =
αλ∞
β−α

+
α2λ∞

2(β−α)2
. (16)

In Proposition 2 and Corollary 1, we assume that α< β, which is a known stability condition in

the literature, as detailed in Laub et al. (2015). However, we can also consider the case where α≥ β

and investigate the behavior of the system through its transient mean values. This is performed in

the following corollary.

Corollary 2. Given a Hawkes process Xt = (λt,Nt) with dynamics given by Equation 4 with

α≥ β, the transient mean intensity and transient mean of the counting process for t≥ 0 are

E[λt] =
βλ∗

α−β
(
e(α−β)t− 1

)
+λ0e

(α−β)t (17)

E [Nt] =

(
βλ∗

(α−β)2
+

λ0

α−β

)(
e(α−β)t− 1

)
− βλ∗

α−β
t (18)

when α> β, and

E[λt] = βλ∗t+λ0 (19)

E [Nt] =
βλ∗

2
t2 +λ0t (20)

when α= β.

As is stated in the stability condition, we see that the limits of these functions as t goes to

infinity diverge for α≥ β. The effect of the relationship of α and β on the system can be observed

in the following graph.
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β

2

α =
3 β

4

3 α

4
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α

2
= β

α

4
= β

t

Figure 3 Transient Mean Intensity for α<β, α=β, and α>β.

For the majority of this work we will consider settings in which the arrival process is stable

and so we will assume α < β. However, there are settings in which the transient behavior of the

unstable arrival process is of interest, and so in our analysis of the queueing system we will also

explore the mean behavior of queues under such arrival conditions.

2.3. Hawkes/D/∞ Queue

Before moving on to the phase-type distributed service systems, we will first investigate the deter-

ministic service setting. Since we have a good understanding about the Hawkes process itself, we

can leverage our knowledge to analyze the Hawkes/D/∞ queue where D is deterministic and is

equal to the exact amount of time each customer spends in service. We exploit the fact that the

Hawkes/D/∞ queue can be written as the difference between the Hawkes process evaluated at

time t and the Hawkes process evaluated at time t−D i.e.

Qt =Nt−Nt−D. (21)

This representation of the Hawkes/D/∞ queue leads us to a theorem that provides explicit expres-

sions for the mean, variance, and auto-covariance of the Hawkes/D/∞ queueing process. However,

before we state the result, we need a lemma that describes the transient auto-covariance of the

Hawkes process. This lemma will be extremely useful for our future calculations of other quantities

of interest for the Hawkes/D/∞ queue.
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Lemma 1. Let Nt be a Hawkes process with dynamics given by Equation 4 with α < β and

suppose Nt is initialized at zero. If we define C(t, τ) as the following function

C(t, τ)≡Cov[Nt,Nt−τ ], (22)

then

C(t, τ) =
α
(
1− e−(β−α)τ

)
2(β−α)3

(
(2β−α)λ∞− 2e−(β−α)(t−τ) (αλ0 +β(λ∞−λ0)(β−α)(t− τ) + (β−α)λ∞)

)
+

(
λ∞+

2αλ∞
β−α

+
α2λ∞

(β−α)2

)
(t− τ) +

α2(2λ0−λ∞)

2(β−α)3

(
1− e−(β−α)(2t−τ)

)
− 2αβ(λ0−λ∞)

(β−α)2

· (t− τ)e−(β−α)(t−τ) +

(
β+α

(β−α)2
(λ0−λ∞)− 2αβ

(β−α)3
λ∞

)
(1− e−(β−α)(t−τ)) (23)

for all t≥ τ ≥ 0; otherwise C(t, τ) = 0.

Proof. To see this, we manipulate the definition of the auto-covariance to find an expression in

terms of other known functions. Starting from the definition of covariance, we have

Cov [Nt,Nt−τ ] = E [NtNt−τ ]−E[Nt]E [Nt−τ ]

and by Proposition 2 we have expressions for E [Nt] and E [Nt−τ ]. Thus, we focus on E [NtNt−τ ].

However, for brevity’s sake we do not yet substitute these known expressions into the equation. By

the tower property, we have that

C(t, τ) = E [E [NtNt−τ | Ft−τ ]]−E[Nt]E [Nt−τ ]

where Ft−τ is the filtration of the Hawkes process up to time t − τ . Through this condi-

tioning, Nt−τ is known in the inner expectation, and so we can replace E [E [NtNt−τ | Ft−τ ]]
with E [E [Nt | Ft−τ ]Nt−τ ]. Then, again by Proposition 2 we have that E [Nt | Ft−τ ] = λ∞τ +
λt−τ−λ∞
β−α

(
1− e−(β−α)τ

)
+Nt−τ . Making use of this, we now have that

C(t, τ) = λ∞τE[Nt−τ ] + E [λt−τNt−τ ]
1− e−(β−α)τ

β−α
− λ∞
β−α

E[Nt−τ ]

·
(
1− e−(β−α)τ

)
+ E

[
N 2
t−τ
]
−E[Nt]E [Nt−τ ],

and by the definitions of covariance and variance this is equivalent to

C(t, τ) = λ∞τE[Nt−τ ] +
Cov [λt−τ ,Nt−τ ] + E [λt−τ ]E [Nt−τ ]

β−α
(
1− e−(β−α)τ

)
− λ∞
β−α

E[Nt−τ ]
(
1− e−(β−α)τ

)
−E[Nt]E [Nt−τ ] + Var (Nt−τ ) + E [Nt−τ ]

2
.

Here we can recognize that each term in this expression has a known form from Proposition 2.

Hence, by substituting these expressions and simplifying, we achieve the stated result. �
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Figure 4 Auto-covariance of the Hawkes Process with D= 5, λ∗ = 1, α= 3
4
, and β= 5

4
.

With the expression for the transient auto-covariance of the Hawkes process in hand, we can

now give explicit forms of the mean, variance, and auto-covariance of the Hawkes/D/∞ queue.

Theorem 1. The transient mean of the Hawkes/D/∞ when α < β is given by the following

expression

E[Qt] =

{
λ∞t+ λ0−λ∞

β−α

(
1− e−(β−α)t

)
if t≤D,

λ∞D+ λ0−λ∞
β−α

(
e−(β−α)(t−D)− e−(β−α)t

)
if t >D.

(24)

Thus, in steady state the mean queue length is

E[Q∞] = λ∞D. (25)

Moreover, the transient variance of the Hawkes/D/∞ queue is given by the following expression

Var[Qt] =

{
C(t,0) if t≤D,
C(t,0) + C(t−D,0)− 2C(t,D) if t >D.

(26)

Lastly, the transient auto-covariance of the Hawkes/D/∞ queue is given by the following expres-

sion when τ ≥D,

Cov[Qt,Qt−τ ] =


0 if t≤ τ ,

C(t, τ)−C(t−D,τ −D) if τ < t≤ τ +D

C(t, τ) + C(t−D,τ)−C(t, τ +D)−C(t−D,τ −D) if τ +D< t

(27)

and when τ <D, then

Cov[Qt,Qt−τ ] =


0 if t≤ τ ,

C(t, τ) if τ < t≤D,

C(t, τ)−C(t− τ,D− τ) if D< t≤ τ +D

C(t, τ) + C(t−D,τ)−C(t, τ +D)−C(t− τ,D− τ) if τ +D< t.

(28)
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Proof. Throughout this proof we make use of the form of the auto-covariance of Nt given in

Lemma 1. The transient mean is straightforward since it follows from the linearity property of

expectation and just taking the difference of the two means. Moreover, for the variance we have

Var[Qt] = Var[Nt−Nt−D]

= Var[Nt] + Var[Nt−D]− 2Cov[Nt,Nt−D]

= Var[Nt] + Var[Nt−D]− 2C(t,D)

= C(t,0) + C(t−D,0)− 2C(t,D).

Finally for the auto-covariance, if τ ≥D we have that

Cov[Qt,Qt−τ ] =


0 if t≤ τ ,

Cov [Nt−Nt−D,Nt−τ ] if τ < t≤ τ +D

Cov [Nt−Nt−D,Nt−τ −Nt−τ−D] if τ +D< t

by the definition of the Hawkes/D/∞ queue and from the linearity of covariance. Now, for τ <D,

we have that

Cov[Qt,Qt−τ ] =


0 if t≤ τ ,

Cov [Nt,Nt−τ ] if τ < t≤D,

Cov [Nt−Nt−D,Nt−τ ] if D< t≤ τ +D

Cov [Nt−Nt−D,Nt−τ −Nt−τ−D] if τ +D< t.

Again by the definition of the deterministic, Hawkes-driven, infinite server queue and the linearity

of covariance, we achieve the stated result. �

Figure 5 Mean of the Hawkes/D/∞ Queue with D= 5, λ∗ = 1, α= 3
4
, and β= 5

4
.
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3. Hawkes/PH/∞ Queue

In this section, we will explore queueing systems in which arrivals occur according to a Hawkes

process. This section is organized in the following manner. In Subsection 3.1, we provide key model

definitions such as the phase-type distribution and we detail technical lemmas that support our

analysis. Next, in Subsection 3.2, we derive differential equations for all moments of the queueing

system and solve for exact expressions for the first and second moments. In Subsection 3.3, we

consider the stationary limits of queues with stable arrival processes and investigate the transient

behavior of those with unstable arrivals. Afterwards, we consider the auto-covariance of the queue

in Subsection 3.4. Finally, in Subsection 3.5 we derive partial differential equations for the moment

generating function and the cumulant moment generating function for this system.

3.1. Model Definitions and Technical Lemmas

To begin, we define the phase-type distribution. This form of service, formally defined below, can

be thought of as a sequence of sub-services that have independent and exponentially distributed

durations. We use this primarily for two factors. The first is that this is more general than just

exponential service, and it can be shown that phase-type distributions can approximate any non-

negative continuous distribution, see Cox (1955). Secondly, because the phase-type distribution is

comprised of independent exponential service times, a queueing system with such service distri-

butions is Markovian. Thus, these two properties together give us a system that is both flexible

in application and practical in terms of analysis. A phase-type distribution with n phases repre-

sents the time taken from an initial state to an absorbing state of a continuous time Markov chain

(CTMC) with the following infinitesimal generator matrix,

Γ =

[
0 0
s S

]
.

Here 0 is a 1×n zero vector, s is an n× 1 vector, and S is an n×n matrix. Note s =−Sv where

v is an n× 1 vector of ones. The matrix S and the initial distribution θ, which is a 1× n vector,

identify the phase-type distributions. The number of phases in S is n. The matrix S and vector s

can be expressed as:

S =

−µ1 · · · µ1,n

...
. . .

...
µn,1 · · · −µn

 , s = (µ1,0, . . . , µn,0)T, (29)

where the µij’s agree with the definition of the infinitesimal generator matrix Γ. For notational

consistency, we use a term phase to indicate the state of CTMC of the phase-type distributions

throughout this paper. Additionally, we now note that in all following use of the matrix S we will

not use a bold notation as in those settings additional emphasis that it is a matrix is not necessary.
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With the phase-type distributions as described above, we build a Markovian queueing model

referred to as the Hawkes/PH/∞ queue. We assume that the system starts with no customers and

that there are infinitely many servers. Further, we suppose that there are n phases of service and the

transition rate between two distinct phases i and j is µij. Let θ ∈ [0,1]n be a distribution over the

phases such that the probability that an arriving entity joins the ith phase is θi, with
∑n

i=1 θi = 1.

An entity departs the system at rate µi0, where i is the entity’s phase of service before leaving.

For brevity of notation, define µi ≡ µi0 +µi1 + · · ·+µi,i−1 +µi,i+1 +µi,n. Let Qt ∈Nn represent the

number of entities in the queueing system, with Qt,i representing the number in phase i of service

i.e.

Qt =
n∑
i=1

Qt,ivi (30)

where vi is the unit column vector in the ith coordinate. We let (λt,Nt) represent a Hawkes process

as described in Equation 4. We will now find the infinitesimal generator for real valued functions

of the state space, f :R+×N×Nn→R. For simplicity of notation, when describing the difference

in values of f for changed arguments we will only list the variables that change, rather than listing

all n queueing phase variables. This generator is shown below.

Lf(x) = β(λ∗−λt)
∂f(x)

∂λt︸ ︷︷ ︸
Excitation Decay

+
n∑
i=1

λtθi (f(λt +α,Nt + 1,Qt,i + 1)− f(x))︸ ︷︷ ︸
Arrivals

(31)

+
n∑
i=1

n∑
j=1
j 6=i

µijQt,i (f(λt,Nt,Qt,i− 1,Qt,j + 1)− f(x))

︸ ︷︷ ︸
Transfers

+
n∑
i=1

µi0Qt,i (f(λt,Nt,Qt,i− 1)− f(x))︸ ︷︷ ︸
Departures

Here, x is an element of the state space (R+×N×Nn). We can use this to obtain Dynkin’s formula

for the full Hawkes/PH/∞ queueing system. We have that

Et [f(Xs)] = f(Xt) +Et

[∫ s

t

Lf(Xu)du

]
, (32)

where Xt = (λt,Nt,Qt). This gives rise to the following lemma.

Lemma 2. Let f be a function such that Equation 32 holds. Then,

d

dt
E[f(Xt)] = E [Lf(Xt)]

for all t≥ 0.

Proof. This is achieved through use of Fubini’s theorem and the fundamental theorem of cal-

culus. Using Equation 32 we have that

d

dt
E[f(Xt)] =

d

dt

(
f(X0) + E

[∫ t

0

Lf(Xu)du

])
=

d

dt
E

[∫ t

0

Lf(Xu)du

]
=

d

dt

∫ t

0

E[Lf(Xu)]du= E[Lf(Xt)]
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and this completes this proof. �

Remark 1. It is important for the reader to recognize that this is equivalent to Dynkin’s

theorem. In most textbooks, Dynkin’s theorem is proved for sufficiently differentiable and more

importantly bounded functions. However, this assumption of boundedness can often be relaxed.

In fact this relaxation of the boundedness is very common for extending results like Ito’s lemma

and the Feynman Kac formula for unbounded, but polynomial bounded functions. This is often

extended by stopping the process when it hits a certain level by using stopping times. Then one

applies the previous results for bounded functions and takes limits as the bound tends to infinity.

For the interested reader, see Lemma 2 of Oelschlager (1984) for a proof.

Now, before using these differential equations to find explicit functions as we did previously, we

will first introduce a series of technical lemmas to aid our analysis. These lemmas are presented

without proof as they follow from standard approaches for matrix exponentials and integration.

First, we give a form for the indefinite integral of the exponential of a non-singular matrix.

Lemma 3. Let L∈Rn×n be invertible. Then, if the integral of eLt exists it can be expressed∫
eLt dt=L−1eLt + c

where c is some constant of integration.

Proof. The proof follows from standard approaches. �

The second lemma now provides explicit forms for the definite integral from 0 to t of the product

of an exponential of an invertible matrix, a vector, a scalar power of the variable of integration,

and a scalar exponential function of the variable of integration.

Lemma 4. Let L ∈ Rn×n be invertible, let ν ∈ Rn, let η ∈ N, and let γ ∈ R. Then, if L+ γI is

invertible,∫ t

0

eLsνsηeγs ds=

η∑
k=0

η!

(η− k)!
(−1)k (L+ γI)

−(k+1) (
eLtνtη−keγt

)
− η!(−1)η (L+ γI)

−(η+1)
ν

for t > 0.

Proof. The proof follows from the preceding lemma, induction, and integration by parts. �

The next lemma is a quick demonstration of commutativity of the inverse of a matrix exponential

and an inverse of the same matrix shifted in the direction of the identity.



Daw and Pender: Queues Driven by Hawkes Processes
Article submitted to Stochastic Systems; manuscript no. SSy-2017-533.R3 17

Lemma 5. Let A ∈ Rn×n be invertible and let b, c ∈ R be such that cA+ bI is also invertible.

Then,

e−A (cA+ bI)
−1

= (cA+ bI)
−1
e−A.

Proof. The proof follows from the definition of the matrix exponential. �

These lemmas now come together to give the general solution to differential equations of a certain

form.

Lemma 6. Let g(t)∈Rn be a function described by the dynamics

•
g(t) =−Lg(t) +

∑
i∈S

νit
ηieγit

with an initial condition of g(0) = g0, where L∈Rn×n is invertible and S is a finite index set such

that νi ∈Rn, ηi ∈N, and γi ∈R for each i∈ S. Then, if L+γiI is invertible for all i∈ S the explicit

function for g(t) is given by

g(t) =
∑
i∈S

ηi∑
k=0

ηi!(−1)k

(ηi− k)!
(L+ γiI)

−(k+1) (
νit

ηi−keγit
)
− ηi!(−1)ηi (L+ γiI)

−(ηi+1)
e−Ltνi + e−Ltg0

for all t≥ 0.

Proof. The proof follows from standard differential equation techniques and the three preceding

lemmas. �

Now, before introducing one final lemma we first define a useful matrix. For γ, c ∈ R, ν ∈ Rn,

and L∈Rn×n, let Mγ,ν,L(t)∈Rn×n be such that

Mγ,ν,L(t) =

∫ t

0

e(γI−LT)sννTe−Ls ds (33)

for all t≥ 0. Element-wise, we can express this matrix after integration as

(Mγ,ν,L(t))i,j =


∑n

k=1

∑n

l=1 νkνl
∑∞

r=0

∑∞
w=0

(Lr)k,i(L
w)l,j

γr+w+1

(
r+w
r

)(
eγt
∑r+w

z=0
(−γt)z
z!
− 1
)

if γ 6= 0,∑n

k=1

∑n

l=1 νkνl
∑∞

r=0

∑∞
w=0

(Lr)k,i(L
w)l,jt

r+w+1

r!w!(r+w+1)
if γ = 0.

This function provides shorthand when integrating a particular function that otherwise does not

produce a nice linear algebraic form. The difficulty of expressing this integral in matrix form stems

from the fact that L and ννT need not commute. With defining Mγ,ν,L(t) we circumvent this issue

by integrating on the element-level, but if L and ννT were to commute we could avoid this function

entirely, as we will later see. For now, this definition leads us to our next lemma.
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Lemma 7. Let η, γ, c∈R, ν ∈Rn, L∈Rn×n be such that L, γI +L, and (η+ 1)γI −L are each

invertible. Then,∫ t

0

((
(η+ 1)γI −LT

)−1
(
e(ηγI−LT)s− e−γIs

)
ννTce−Ls + e−L

TsννTc
(
e(ηγI−L)s− e−γIs

)
· ((η+ 1)γI −L)

−1

)
ds

=c
(
(η+ 1)γI −LT

)−1
(

(η+ 2)γMηγ,ν,L(t) + e(ηγI−LT)tννTe−Lt− ννT + ννT
(
e−(γI+L)t− I

)
(γI +L)−1

· ((η+ 1)γI −L) +
(
(η+ 1)γI −LT

)
(γI +LT)−1

(
e−(γI+LT)t− I

)
ννT

)
((η+ 1)γI −L)

−1

for all t≥ 0.

Proof. The proof follows from the given definition of Mγ,ν,L(t), the product rule, and the

preceding lemma. �

With these lemmas and definitions now in hand we can proceed to our analysis of the

Hawkes/PH/∞ queueing system. These results, stated in the following theorem, make use of the

form of the infinitesimal generator in Lemma 2, with simplification through linearity of expectation

and the binomial theorem.

3.2. Mean Dynamics of the Hawkes/PH/∞ Queue

To begin investigation of theHawkes/PH/∞ queueing system, we first derive differential equations

for the moments of the number in each phase of service and the intensity.

Theorem 2. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 and phase-type distributed service. Then we

have differential equations for the moments of Qt,i given by

d

dt
E
[
Qm
t,i

]
= θi

m−1∑
g=0

(
m

g

)
E
[
λtQ

g
t,i

]
+
m−1∑
g=0

n∑
j=1
j 6=i

(
m

g

)
µjiE

[
Qt,jQ

g
t,i

]
(34)

+
m∑
g=1

(
m

g− 1

)
µi(−1)m−g+1E

[
Qg
t,i

]
,

for the products of Qt,i and Qt,j where i 6= j given by

d

dt
E
[
Qm
t,iQ

l
t,j

]
= θi

m−1∑
g=0

(
m

g

)
E
[
λtQ

l
t,jQ

g
t,i

]
+ θj

l−1∑
h=0

(
l

h

)
E
[
λtQ

m
t,iQ

h
t,j

]
(35)

+
n∑
k=1
i6=k 6=j

m−1∑
g=0

(
m

g

)
µkiE

[
Qt,kQ

g
t,iQ

l
t,j

]
+

n∑
k=1
j 6=k 6=i

l−1∑
h=0

(
l

h

)
µkjE

[
Qt,kQ

m
t,iQ

h
t,j

]
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+µi

m−1∑
g=0

(
m

g

)
(−1)m−gE

[
Ql
t,jQ

g+1
t,i

]
+µij

m∑
g=0

l−1∑
h=0

(
m

g

)(
l

h

)
(−1)m−gE

[
Qg+1
t,i Q

h
t,j

]
+µj

l−1∑
h=0

(
l

h

)
(−1)l−hE

[
Qm
t,iQ

h+1
t,j

]
+µji

l∑
h=0

m−1∑
g=0

(
l

h

)(
m

g

)
(−1)l−hE

[
Qh+1
t,j Q

g
t,i

]
,

and for the products of λt and Qt,i given by

d

dt
E
[
λmt Q

l
t,i

]
= βλ∗mE

[
λm−1
t Ql

t,i

]
−βmE

[
λmt Q

l
t,i

]
+ θi

m∑
g=0

l−1∑
h=0

(
m

g

)(
l

h

)
(36)

·αm−gE
[
λg+1
t Qh

t,i

]
+
m−1∑
g=0

(
m

g

)
αm−gE

[
λg+1
t Ql

t,i

]
+µi

l−1∑
h=0

(
l

h

)

· (−1)l−hE
[
λmt Q

h+1
t,i

]
+

n∑
j=1
j 6=i

l−1∑
h=0

(
l

h

)
µjiE

[
λmt Qt,jQ

h
t,i

]
,

where t≥ 0.

Proof. We can first observe that each of these moments can be generalized to E
[
λmt Q

l
t,iQ

k
t,j

]
.

From Lemma 2 we see that

d

dt
E
[
λmt Q

l
t,iQ

k
t,j

]
= E

[
β(λ∗−λt)mλm−1

t Ql
t,iQ

k
t,j +λtθi

(
(λt +α)m(Qt,i + 1)lQk

t,j −λmt Ql
t,iQ

k
t,j

)
+λtθj

(
(λt +α)mQl

t,i(Qt,j + 1)k−λmt Ql
t,iQ

k
t,j

)
+

n∑
x=1
j 6=x6=i

λtθxQ
l
t,iQ

k
t,j ((λt +α)m−λmt )

+
n∑
x=1
i 6=x6=j

µxiQt,xλ
m
t Q

k
t,j

(
(Qt,i + 1)l−Ql

t,i

)
+

n∑
x=1
j 6=k 6=i

µxjQt,xλ
m
t Q

l
t,i

(
(Qt,j + 1)k−Qk

t,j

)
+

n∑
x=0
i 6=x 6=j

µixQt,iλ
m
t Q

k
t,j

(
(Qt,i− 1)l−Ql

t,i

)
+

n∑
x=0
j 6=x6=i

µjxQt,jλ
m
t Q

l
t,i

(
(Qt,j − 1)k−Qk

t,j

)

+µijQt,iλ
m
t

(
(Qt,i− 1)l(Qt,j + 1)k−Ql

t,iQ
k
t,j

)
+µjiQt,jλ

m
t

(
(Qt,j − 1)k(Qt,i + 1)l−Ql

t,iQ
k
t,j

)]

where we have combined the transfers from one phase to another and departures from that phase
into the same summation by starting the index at 0. Using the binomial theorem and linearity of
expectation, we have the following:

d

dt
E
[
λmt Q

l
t,iQ

k
t,j

]
= βλ∗mE

[
λm−1
t Ql

t,iQ
k
t,j

]
−βmE

[
λmt Q

l
t,iQ

k
t,j

]
+

n∑
x=1
j 6=x 6=i

m−1∑
y=0

(
m

y

)
θxα

m−y

·E
[
λy+1
t Ql

t,iQ
k
t,j

]
+ θi

(
m∑
x=0

l∑
y=0

(
m

x

)(
l

y

)
αm−xE

[
λx+1
t Qy

t,iQ
k
t,j

]
−E

[
λm+1
t Ql

t,iQ
k
t,j

])
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+ θj

(
m∑
x=0

k∑
y=0

(
m

x

)(
k

y

)
αm−xE

[
λx+1
t Ql

t,iQ
y
t,j

]
−E

[
λm+1
t Ql

t,iQ
k
t,j

])
+

n∑
x=1
i 6=x 6=j

l−1∑
y=0

(
l

y

)
µxi

·E
[
λmt Qt,xQ

y
t,iQ

k
t,j

]
+

n∑
x=1
i 6=x 6=j

k−1∑
y=0

(
k

y

)
µxjE

[
λmt Qt,xQ

l
t,iQ

y
t,j

]
+

n∑
x=0
i6=x 6=j

l−1∑
y=0

(
l

y

)
(−1)l−yµixE

[
λmt Q

y+1
t,i Q

k
t,j

]

+
n∑
x=0
i 6=x6=j

k−1∑
y=0

(
k

y

)
(−1)k−yµjxE

[
λmt Q

l
t,iQ

y+1
t,j

]
+µij

(
l∑

x=0

k∑
y=0

(
l

x

)(
k

y

)
(−1)l−xE

[
λmt Q

x+1
t,i Q

y
t,j

]

−E
[
λmt Q

l+1
t,i Q

k
t,j

])
+µji

(
l∑

x=0

k∑
y=0

(
l

x

)(
k

y

)
(−1)k−yE

[
λmt Q

x
t,iQ

y+1
t,j

]
−E

[
λmt Q

l
t,iQ

k+1
t,j

])
.

Now we simplify by recognizing that
∑

x 6=j µix = µi − µij and
∑

i 6=x 6=j θx = 1− θi − θj. This leaves
us with

d

dt
E
[
λmt Q

l
t,iQ

k
t,j

]
= βλ∗mE

[
λm−1
t Ql

t,iQ
k
t,j

]
−βmE

[
λmt Q

l
t,iQ

k
t,j

]
+
m−1∑
y=0

(
m

y

)
αm−yE

[
λy+1
t Ql

t,iQ
k
t,j

]
+ θi

m∑
x=0

l−1∑
y=0

(
m

x

)(
l

y

)
αm−xE

[
λx+1
t Qy

t,iQ
k
t,j

]
+ θj

m∑
x=0

k−1∑
y=0

(
m

x

)(
k

y

)
αm−xE

[
λx+1
t Ql

t,iQ
y
t,j

]
+

n∑
x=1
i 6=x 6=j

l−1∑
y=0

(
l

y

)
µxiE

[
λmt Qt,xQ

y
t,iQ

k
t,j

]
+

n∑
x=1
i 6=x 6=j

k−1∑
y=0

(
k

y

)
µxjE

[
λmt Qt,xQ

l
t,iQ

y
t,j

]

+µi

l−1∑
y=0

(
l

y

)
(−1)l−yE

[
λmt Q

y+1
t,i Q

k
t,j

]
+µij

l∑
x=0

k−1∑
y=0

(
l

x

)(
k

y

)
(−1)l−xE

[
λmt Q

x+1
t,i Q

y
t,j

]
+µj

k−1∑
y=0

(
k

y

)
(−1)k−yE

[
λmt Q

l
t,iQ

y+1
t,j

]
+µji

k∑
y=0

l−1∑
x=0

(
l

x

)(
k

y

)
(−1)k−yE

[
λmt Q

x
t,iQ

y+1
t,j

]
which is equivalent to each stated result when m= k= 0, k= 0, and m= 0, respectively. �

We can now observe that we can form closed systems of linear ordinary differential equations

from these equations. To do so, we restrict our focus to the equations for moments of combined

power at most m ∈ Z+. Of course, the collection of equations that is of most practical interest is

found by setting m= 2, as this yields a system for the means and variances. This now gives rise

to Corollary 3, which states the differential equations for the mean, variance, and covariances of

queues driven by Hawkes processes.

Corollary 3. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 and phase-type distributed service. Then, we
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have the following differential equations for the mean, variance, and covariances of the number of

entities in each phase and in the system as a whole:

d

dt
E[Qt,i] = θiE[λt] +

n∑
j=1
j 6=i

µjiE[Qt,j]−µiE[Qt,i] (37)

d

dt
Var (Qt,i) = θiE[λt] + 2θiCov [λt,Qt,i] + 2

n∑
j=1
j 6=i

µjiCov [Qt,i,Qt,j] +µiE[Qt,i] (38)

+
n∑
j=1
j 6=i

µjiE[Qt,j]− 2µiVar (Qt,i)

d

dt
Cov [λt,Qt,i] = (α−β−µi)Cov [λt,Qt,i] +αθiE[λt] +

n∑
j=1
j 6=i

µjiCov [λt,Qt,j] (39)

+ θiVar (λt)

d

dt
Cov [Qt,i,Qt,j] = θiCov [λt,Qt,j] + θjCov [λt,Qt,i]− (µi +µj)Cov [Qt,i,Qt,j] (40)

+
n∑
k=1
k 6=i

µkiCov [Qt,k,Qt,j] +
n∑
k=1
k 6=i

µkjCov [Qt,k,Qt,i]−µijE[Qt,i]−µjiE[Qt,j].

We will find that it is quite useful to also be able to state the equations in Corollary 3 in linear

algebraic form. Recall that the vector of the number in each phase of service is Qt ∈ Nn, the

distribution of arrivals into phases is θ ∈ [0,1]n, and the sub-generator-matrix for the n phases of

service is S ∈ Rn×n so that Si,i =−µi for each i ∈ {1, . . . , n} and Si,j = µi,j for all j 6= i. We now

also incorporate the notation diag (x) ∈Rn×n for x ∈Rn as diag (x)≡
∑n

i=1 VixvT
i , where vi ∈Rn

is the unit column vector in the direction of the ith coordinate and Vi = viv
T
i , meaning that the

ith diagonal element is 1 and the rest are 0. Together, we have that the vector form of Equation 37

is
d

dt
E[Qt] = θE[λt] +STE[Qt],

the vector form of Equation 39 is

d

dt
Cov [λt,Qt] =

(
ST− (β−α)I

)
Cov [λt,Qt] +αθE[λt] + θVar (λt),

and the matrix form of Equations 38 and 40 is

d

dt
Cov [Qt,Qt] = STCov [Qt,Qt] + Cov [Qt,Qt]S+ θCov [λt,Qt]

T
+ Cov [λt,Qt]θ

T

+ diag
(
θE[λt] +STE[Qt]

)
−STdiag (E [Qt])−diag (E [Qt])S

where the diagonal elements of the matrix Cov [Qt,Qt] correspond to the variance of the number

in each phase of service and the off-diagonal elements represent the covariance between two phases

of service. We can now use the technical lemmas in Subsection 3.1 to find explicit linear algebraic

solutions to the closed system of differential equations in Corollary 3.
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Theorem 3. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α< β and phase-type distributed service.

Let S ∈Rn×n be the sub-generator matrix for the transient states in the phase-distribution CTMC

and let θ ∈ [0,1]n be the initial distribution for arrivals to these states. If S+ (β−α)I is invertible,

then the vector of the mean number in service in each phase of service is

E[Qt] = λ∞
(
−ST

)−1 (
I − eS

Tt
)
θ− (λ0−λ∞)

(
ST + (β−α)I

)−1(
e−(β−α)tI − eS

Tt
)
θ (41)

where λ∞ = βλ∗

β−α . Further, the vector of covariances between the intensity and each phase of service
is

Cov [λt,Qt] =
α(2β−α)λ∞

2(β−α)

(
(β−α)I −ST

)−1
(
I − e(ST−(β−α)I)t

)
θ− αβ(λ0−λ∞)

β−α

·
(
ST
)−1
(
e−(β−α)tI − e(ST−(β−α)I)t

)
θ+

α2(2λ0−λ∞)

2(β−α)

(
ST + (β−α)I

)−1

·
(
e−2(β−α)tI − e(ST−(β−α)I)t

)
θ . (42)

Finally, the matrix of covariances between phases of service is given by

Cov [Qt,Qt] =
α(2β−α)λ∞

2(β−α)

(
(β−α)I −ST

)−1

(
2(β−α)eS

TtM0,θ,S(t)eSt + θθT− eS
TtθθTeSt

+ eS
TtθθT

(
e−(β−α)tI − eSt

)
((β−α)I +S)−1((β−α)I −S) +

(
(β−α)I −ST

) (
(β−α)I +ST

)−1

·
(
e−(β−α)tI − eS

Tt
)
θθTeSt

)
((β−α)I −S)

−1
+
αβ(λ0−λ∞)

β−α
(
ST
)−1

(
(β−α)eS

TtM−(β−α),θ,S(t)eSt

+ e−(β−α)tθθT− eS
TtθθTeSt− eS

TtθθT
(
e−(β−α)tI − eSt

)
((β−α)I +S)−1S−ST

(
(β−α)I +ST

)−1

·
(
e−(β−α)tI − eS

Tt
)
θθTeSt

)
S−1− α

2(2λ0−λ∞)

2(β−α)

(
(β−α)I +ST

)−1

(
e−2(β−α)tθθT− eS

TtθθTeSt

− eS
TtθθT

(
e−(β−α)tI − eSt

)
−
(
e−(β−α)tI − eS

Tt
)
θθTeSt

)
((β−α)I +S)

−1−λ∞diag
((
ST
)−1

·
(
I − eS

Tt
)
θ
)
− (λ0−λ∞)diag

((
ST + (β−α)I

)−1
(
e−(β−α)tI − eS

Tt
)
θ
)

(43)

where all t≥ 0.

Proof. Throughout this proof we use the fact that a matrix being invertible implies that its

transpose is invertible as well. To begin, we can see from Corollary 3 that

d

dt
E[Qt] = STE[Qt] + θE[λt] = STE[Qt] + θ

(
λ∞+ (λ0−λ∞)e−(β−α)t

)
and so we apply Lemma 6. Let ν1 = θλ∞ and η1 = γ1 = 0, and let ν2 = θ(λ0 − λ∞), η2 = 0, and

γ2 =−(β−α). We assume that the queue starts empty. Then, we have

E [Qt] =−
(
ST
)−1

θλ∞+
(
ST
)−1

e−S
Ttθλ∞−

(
ST + (β−α)I

)−1
θ(λ0−λ∞)e−(β−α)t

+
(
ST + (β−α)I

)−1
e−S

Ttθ(λ0−λ∞)
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which now simplifies to the stated result. Note that S is invertible because it is diagonally dominant

by definition and we have assumed the invertibility of S+ (β−α)I, which implies non-singularity

of the respective transposes. We find the stated result for Cov [λt,Qt] through repeating the same

technique to the corresponding differential equation systems, where again we make use of the

linear algebraic representation. Thus, we are left to solve for the covariance matrix. Note that from

Corollary 3, the variance of each phase and the covariance between phases can form one linear

algebraic form as the covariance matrix, as shown below.

d

dt
Cov [Qt,Qt] = STCov [Qt,Qt] + Cov [Qt,Qt]S+ θCov [λt,Qt]

T
+ Cov [λt,Qt]θ

T

+ diag
(
θE[λt] +STE[Qt]

)
−STdiag (E [Qt])−diag (E [Qt])S

Using the product rule and multiplying through by matrix exponentials on the right and left, we

can also express this as below:

d

dt

(
e−S

TtCov [Qt,Qt]e
−St
)

= e−S
TtθCov [λt,Qt]

T
e−St + e−S

TtCov [λt,Qt]θ
Te−St

+ e−S
Ttdiag

(
θE[λt] +STE[Qt]

)
e−St− e−S

TtSTdiag (E [Qt])e
−St

− e−S
Ttdiag (E [Qt])Se

−St.

For the pair of Cov [λt,Qt] terms, we use Lemma 7 in conjunction with the explicit function for

Cov [λt,Qt] to find∫ t

0

(
e−S

TsθCov [λs,Qs]
T
e−Ss + e−S

TsCov [λs,Qs]θ
Te−Ss

)
ds

=
α(2β−α)λ∞

2(β−α)

(
(β−α)I −ST

)−1

(
2(β−α)M0,θ,S(t) + e−S

TtθθTe−St− θθT + θθT
(
e−((β−α)I+S)t− I

)
· ((β−α)I +S)−1((β−α)I −S) +

(
(β−α)I −ST

) (
(β−α)I +ST

)−1
(
e−((β−α)I+ST)t− I

)
θθT

)

· ((β−α)I −S)
−1

+
αβ(λ0−λ∞)

β−α
(
ST
)−1

(
(β−α)M−(β−α),θ,S(t) + e−((β−α)I+ST)tθθTe−St− θθT

− θθT
(
e−((β−α)I+S)t− I

)
((β−α)I +S)−1S−ST

(
(β−α)I +ST

)−1
(
e−((β−α)I+ST)t− I

)
θθT

)
S−1

− α
2(2λ0−λ∞)

2(β−α)

(
(β−α)I +ST

)−1

(
e−(2(β−α)I+ST)tθθTe−St− θθT− θθT

(
e−((β−α)I+S)t− I

)
−
(
e−((β−α)I+ST)t− I

)
θθT

)
((β−α)I +S)

−1

and so we now integrate the remaining terms in the covariance matrix differential equations. Note

that the product rule for three terms is (fgh)′ = f ′gh+ fg′h+ fgh′. We have already used this
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in concatenating the covariance matrix terms in the differential equation, and we can now make

use of it again. Recall that d
dt

E[Qt] = STE[Qt] + θE[λt]. Using this realization, the integral of the

remaining three terms is∫ t

0

(
e−S

Tsdiag
(
θE[λs] +STE[Qs]

)
e−Ss− e−S

TsSTdiag (E [Qs])e
−Ss− e−S

Tsdiag (E [Qs])Se
−Ss
)

ds

= e−S
Ttdiag (E [Qt])e

−St

=−e−S
Ttdiag

((
ST
)−1
(
I − eS

Tt
)
θ
)
e−Stλ∞− e−S

Ttdiag
((
ST + (β−α)I

)−1
(
e−(β−α)tI − eS

Tt
)
θ
)

· e−St(λ0−λ∞)

where we are justified in moving the differentiation through the diagonalization and distributing

it across sums via the definition of diagonalization as a linear combination. Combining this with

the integral for the covariance between the queue and intensity and multiplying each side by the

corresponding exponentials, we achieve the stated result. �

Figure 6 Example Mean of the Hawkes/PH/∞ Queue with Sub-Generator Matrix SCox as in Equation 44.

As a brief example, consider a Hawkes process driven queueing system with infinite servers and

suppose that the service is phase-type distributed with initial distribution θ= v1 and the following

sub-generator matrix:

SCox =


−4 3 0 0 0
0 −2 1 0 0
0 0 −3 2 0
0 0 0 −5 4
0 0 0 0 −1

 . (44)
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This is referred to as a Coxian distribution. It is characterized by each phase of service having

an associated probability of either system departure or advancement to the next phase upon ser-

vice completion. In this example, λ∗ = 1, α = 3
4
, and β = 1. The simulation is based on 100,000

replications.

Remark 2. We now note that the assumed nonsingularity of S + (β − α)I is necessary to

implement the technical lemmas, but need not hold in order for a closed form solution to exist.

If these conditions do not hold, one can instead make use of the structure of invertibility that

is implied by a specific phase-type distribution. In Corollaries 4 and 5, we demonstrate this

for Erlang and hyper-exponential service, respectively. Like we have seen in Theorem 3, these

expressions can be found through solving systems of differential equations provided by Corollary 3.

We start with the case of service times following a Erlang distribution. In this case, we define

N ∈ Rn×n as the matrix of all ones on the first lower diagonal and zeros otherwise. Then, ST =

nµ(N − I) for this phase-type distribution. Observe that N is a nilpotent matrix of a particular

structure: for k ∈N, Nk is the matrix of all ones on the kth lower diagonal if k ≤ n− 1 and is the

zero matrix otherwise. Additionally, in this case θ= v1 as all arrivals occur in the first phase. With

this in hand, we see that(
Mγ,v1,nµ(I−NT)(t)

)
i,j

=
(
Mγ+2nµ,v1,nµNT(t)

)
i,j

=


(
i+j−2
i−1

)
(nµ)i+j−2 e

(γ+2nµ)t∑i+j−2
k=0

(−(γ+2nµ)t)k

k! −1

(γ+2nµ)i+j−1 if γ+ 2nµ 6= 0
(tnµ)i+j−1

nµ(i−1)!(j−1)!(i+j−1)
if γ+ 2nµ= 0

and we make use of this in the following corollary.

Corollary 4. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α< β and Erlang distributed service with

n phases and mean 1
µ

. Then, when nµ 6= β−α, the vector of mean number in each phase of service

is given by

E[Qt] =
λ∞
nµ

(
I − enµ(N−I)t)v− (λ0−λ∞) (nµN − (nµ−β+α)I)

−1 (
e−(β−α)tI − enµ(N−I)t)v1, (45)

and when nµ= β−α, this vector is

E[Qt] =
λ∞
nµ

(
I − enµ(N−I)t)v + (λ0−λ∞)enµ(N−I)tx(t), (46)

where λ∞ = βλ∗

β−α and x : R+→ Rn is such that xi(t) = (−nµ)i−1ti

i!
. Further, when nµ 6= β − α the

vector of covariances between the number in each phase of service and the intensity is

Cov [λt,Qt] = λ∞

(
α+

α2

2(β−α)

)
((nµ+β−α)I −nµN)

−1 (
I − e(nµN−(nµ+β−α)I)t

)
v1
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+
αβ(λ0−λ∞)

nµ(β−α)

(
e−(β−α)tI − e(nµN−(nµ+β−α)I)t

)
v +

α2(2λ0−λ∞)

2(β−α)
(nµN − (nµ−β+α)I)

−1

·
(
e−2(β−α)tI − e(nµN−(nµ+β−α)I)t

)
v1, (47)

and when nµ= β−α, this is

Cov [λt,Qt] = λ∞

(
α

nµ
+

α2

2(nµ)2

)
(2I −N)

−1 (
I − enµ(N−2I)t

)
v1 + (λ0−λ∞)

(
α

nµ
+

α2

(nµ)2

)
·
(
e−nµtI − enµ(N−2I)t

)
v− α

2(2λ0−λ∞)

2nµ
enµ(N−2I)tx(t). (48)

Finally, when nµ 6= β−α, the matrix of the covariance between the number in the phases of service

is given by

Cov [Qt,Qt] =
α(2β−α)λ∞

2(β−α)
((nµ+β−α)I −nµN)

−1

(
2(β−α)enµ(N−I)tM2nµ,v1,nµNT(t)enµ(NT−I)t

+ v1v1
T− enµ(N−I)tv1v1

Tenµ(NT−I)t + enµ(N−I)tv1v1
T
(
e−(β−α)tI − enµ(NT−I)t

)
(nµNT− (nµ−β+α)I)−1

· ((nµ+β−α)I −nµNT) + ((nµ+β−α)I −nµN)(nµN − (nµ−β+α)I)−1
(
e−(β−α)tI − enµ(N−I)t)

·v1v1
Tenµ(NT−I)t

)(
(nµ+β−α)I −nµNT

)−1
+
αβ(λ0−λ∞)

(nµ)2(β−α)
(N − I)

−1

(
(β−α)enµ(N−I)t

·M2nµ−β+α,v1,nµNT(t)enµ(NT−I)t + e−(β−α)tv1v1
T− enµ(N−I)tv1v1

Tenµ(NT−I)t−nµenµ(N−I)tv1v1
T

·
(
e−(β−α)tI − enµ(NT−I)t

)
(nµNT− (nµ−β+α)I)−1(NT− I)−nµ(N − I)(nµN − (nµ−β+α)I)−1

·
(
e−(β−α)tI − enµ(N−I)t

)
v1v1

Tenµ(NT−I)t

)
(NT− I)−1− α

2(2λ0−λ∞)

2(β−α)
(nµN − (nµ−β+α)I)−1

·

(
e−2(β−α)tv1v1

T− enµ(N−I)tv1v1
Tenµ(NT−I)t− enµ(N−I)tv1v1

T
(
e−(β−α)tI − enµ(NT−I)t

)
−
(
e−(β−α)tI − enµ(N−I)t)v1v1

Tenµ(NT−I)t

)
(nµNT− (nµ−β+α)I)−1 +

λ∞
nµ

diag
((
I − enµ(N−I)t)v)

− (λ0−λ∞)diag
(

(nµN − (nµ−β+α)I)
−1 (

e−(β−α)tI − enµ(N−I)t)v1

)
, (49)

whereas when nµ= β−α, this matrix is

Cov [Qt,Qt] = diag

(
λ∞
nµ

(
I − enµ(N−I)t)v + (λ0−λ∞)enµ(N−I)tx(t)

)
+ enµ(N−I)t

(
λ∞

(
α

nµ
+

α2

2(nµ)2

)
·
((

M2nµ,v1,nµNT(t)−x(t)v1
T
) (

2I −NT
)−1

+ (2I −N)
−1 (

M2nµ,v1,nµNT(t)−v1x
T(t)

))
+ (λ0−λ∞)

·
(
α

nµ
+

α2

(nµ)2

)(
M2nµ,v1,nµNT(t)

(
I −NT

)−1
+ (I −N)

−1
M2nµ,v1,nµNT(t)−x(t)vT−vxT(t)

)
− α

2(2λ0−λ∞)

2nµ

(
X(t) +XT(t)

))
enµ(NT−I)t, (50)

where all t≥ 0 and X :R+→Rn×n is such that Xi,j(t) = (−nµ)i+j−2ti+j−1

(i−1)!j!(i+j)
.
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As with the Erlang, we also provide explicit formulas for the hyper-exponential distribution. In

this case we have that S =−D where D is a diagonal matrix of the rates of service in each phase.

This allows it to commute with the symmetric θθT, giving us

Mγ,θ,−D(t) =

∫ t

0

e(γI+D)sθθTeDs ds=

∫ t

0

e(γI+2D)s dsθθT = (γI + 2D)−1
(
e(γI+2D)t− I

)
θθT

as long as γI + 2D is invertible. However, we also seek to address the case where (β −α)I + S =

(β−α)I−D is not invertible. In the hyper-exponential service setting, (β−α)I−D being singular

implies that some µi = β − α, but it is not clear which or for how many µi this is the case. So,

we instead use the element-level equations in Corollary 3 to solve for the explicit expressions. This

method is preferable to the linear algebra approach for hyper-exponential service since in this

setting µij = 0 for every i and j.

Corollary 5. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α < β and hyper-exponential distributed

service with n phases and distinct service rates µ1, . . . , µn. Then, the mean number in phase i ∈

{1, . . . , n} of service is

E[Qt,i] =

{
λ∞
µi

(1− e−µit)θi + λ0−λ∞
µi−β+α

(
e−(β−α)t− e−µit

)
θi if µi 6= β−α,

λ∞
µi

(1− e−µit)θi + (λ0−λ∞)θite
−µit if µi = β−α,

(51)

where λ∞ = βλ∗

β−α . Furthermore the covariance between the number in phase i of service and the

intensity is

Cov [λt,Qt,i] =



αθi(2β−α)λ∞
2(β−α)(µi+β−α)

(
1− e−(µi+β−α)t

)
+ αβθi(λ0−λ∞)

µi(β−α)

(
e−(β−α)t

−e−(µi+β−α)t
)
− α2θi(2λ0−λ∞)

2(β−α)(µi−β+α)

(
e−2(β−α)t− e−(µi+β−α)t

)
if µi 6= β−α,

αθi(2µi+α)λ∞
4µ2i

(1− e−2µit) + αβθi(λ0−λ∞)

µ2i

(
e−µit− e−2µit

)
−α2θi(2λ0−λ∞)

2µi
te−2µit if µi = β−α.

(52)
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Then, the covariance between the number in phase i of service and the number in phase j of service

where i, j ∈ {1, . . . ,} and i 6= j is

Cov [Qt,i,Qt,j] =



αθiθj(2β−α)λ∞
2(β−α)(µj+β−α)

(
1−e−(µi+µj)t

µi+µj
− e

−(µj+β−α)t−e−(µi+µj)t

µi−β+α

)
+
αβθiθj(λ0−λ∞)

µj(β−α)

(
e−(β−α)t−e−(µi+µj)t

µi+µj−β+α
− e

−(µj+β−α)t−e−(µi+µj)t

µi−β+α

)
− α2θiθj(2λ0−λ∞)

2(β−α)(µj−β+α)

(
e2(β−α)t−e−(µi+µj)t

µi+µj−2β+2α
− e

−(µj+β−α)t−e−(µi+µj)t

µi−β+α

)
+

αθiθj(2β−α)λ∞
2(β−α)(µi+β−α)

(
1−e−(µi+µj)t

µi+µj
− e−(µi+β−α)t−e−(µi+µj)t

µj−β+α

)
+
αβθiθj(λ0−λ∞)

µi(β−α)

(
e−(β−α)t−e−(µi+µj)t

µi+µj−β+α
− e−(µi+β−α)t−e−(µi+µj)t

µj−β+α

)
− α2θiθj(2λ0−λ∞)

2(β−α)(µi−β+α)

(
e2(β−α)t−e−(µi+µj)t

µi+µj−2β+2α
− e−(µi+β−α)t−e−(µi+µj)t

µj−β+α

)
if µi 6= β−α 6= µj,

αθiθj(2β−α)λ∞
4µ2j

(
1−e−(µi+µj)t

µi+µj
− e

−2µjt−e−(µi+µj)t

µi−µj

)
+

αβθiθj(λ0−λ∞)

µ2j

·
(
e
−µjt−e−(µi+µj)t

µi
− e

−2µjt−e−(µi+µj)t

µi−µj

)
− α2θiθj(2λ0−λ∞)

2µj

·
(
te−2µit

µj−µi
+ e

−(µi+µj)t−e−2µit

(µj−µi)2

)
+

αθiθj(2β−α)λ∞
2µj(µi+µj)

(
1−e−(µi+µj)t

µi+µj

−te−(µi+µj)t

)
+

αβθiθj(λ0−λ∞)

µiµj

(
e
−µjt−e−(µi+µj)t

µi
− te−(µi+µj)t

)
−α2θiθj(2λ0−λ∞)

2µj(µi−µj)

(
e
2µjt−e−(µi+µj)t

µi−µj
− te−(µi+µj)t

)
if µi 6= β−α= µj,

(53)

Finally, the variance of the number in phase i∈ {1, . . . , n} of service is given by

Var (Qt,i) =



λ∞θi
µi

(1− e−µit) +
αθ2i (2β−α)λ∞

2µi(β−α)(µi+β−α)
(1− e−2µit)−

(
αθ2i (2β−α)λ∞

(β−α)(µi+β−α)

+
2αβθ2i (λ0−λ∞)

µi(β−α)
− α2θ2i (2λ0−λ∞)

(β−α)(µi−β+α)

)
e−(µi+β−α)t−e−2µit

µi−β+α
+
(

(λ0−λ∞)θi

+µi(λ0−λ∞)θi
µi−β+α

+
2αβθ2i (λ0−λ∞)

µi(β−α)

)
e−(β−α)t−e−2µit

2µi−β+α
− α2θ2i (2λ0−λ∞)

2(β−α)(µi−β+α)2

·
(
e−2(β−α)t− e−2µit

)
− (λ0−λ∞)θi

µi−β+α
(e−µit− e−2µit) if µi 6= β−α 6= 2µi,

λ∞θi
µi

(1− e−µit) +
αθ2i (2β−α)λ∞

2µi(β−α)(µi+β−α)
(1− e−2µit)−

(
αθ2i (2β−α)λ∞

(β−α)(µi+β−α)

+
2αβθ2i (λ0−λ∞)

µi(β−α)
− α2θ2i (2λ0−λ∞)

(β−α)(µi−β+α)

)
e−(µi+β−α)t−e−2µit

µi−β+α
+
(

(λ0−λ∞)θi

+µi(λ0−λ∞)θi
µi−β+α

+
2αβθ2i (λ0−λ∞)

µi(β−α)

)
te−2µit− α2θ2i (2λ0−λ∞)

2(β−α)(µi−β+α)2

(
e−2(β−α)t

−e−2µit
)
− (λ0−λ∞)θi

µi−β+α
(e−µit− e−2µit) if 2µi = β−α,

λ∞θi
µi

(1− e−µit) +
αθ2i (2β−α)λ∞

4µ3i
(1− e−2µit)−

(
αθ2i (2β−α)λ∞

2µ2i

+
2αβθ2i (λ0−λ∞)

µ2i

)
te−2µit +

(
(λ0−λ∞)θi +

2αβθ2i (λ0−λ∞)

µ2i

)
· e−µit−e−2µit

µi
− α2θ2i (2λ0−λ∞)

2µi
t2e−2µit + (λ0−λ∞)θi

(
te−µit

µi

+ e−2µit−e−µit
µ2i

)
if µi = β−α,

(54)

where all t≥ 0.

We now note that in both Corollary 4 and Corollary 5, taking n = 1 reduces the setting to

exponential service. We demonstrate the simplification and use of the singe-phase expressions in
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finding the auto-covariance of the Hawkes/M/∞ queue, shown in Proposition 3. We also note that

these findings compare quite nicely to simulations in numerical demonstrations. In Subsection 3.6,

we provide several example figures of these equations and their simulated counterparts.

Now that we have investigated the transient behavior of the Hawkes/PH/∞ queue for a variety

of settings it is natural to consider the behavior of the system in steady-state. This, along with the

behavior of the system with an unstable arrival process, is the focus of the next subsection.

3.3. Limiting Behavior of the Hawkes/PH/∞ Queue

In many situations, the steady-state behavior of a queueing system may be of particular interest.

With that in mind, we now investigate the mean and variance of the Hawkes/PH/∞ queue as

time goes to infinity.

Corollary 6. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 and phase-type distributed service. Let S ∈Rn×n

be the sub-generator matrix for the transient states in the phase-distribution CTMC and let θ ∈

[0,1]n be the initial distribution for arrivals to these states. Then, the steady-state mean number in

each phase of service is given by the vector

Q∞ ≡ lim
t→∞

E[Qt] = λ∞
(
−ST

)−1
θ (55)

where λ∞ = βλ∗

β−α . Further, the vector of steady-state covariances between the number in each phase

of service and the intensity is

C∞ ≡ lim
t→∞

Cov [λt,Qt] = λ∞
α(2β−α)

2(β−α)

(
(β−α)I −ST

)−1
θ . (56)

Finally, the matrix of steady-state covariances between each phase of service limt→∞Cov [Qt,Qt],

denoted V∞, is given by the solution to the Lyapunov equation

STV∞+V∞S+M= 0 (57)

where M= θCT
∞+ C∞θT−STdiag (Q∞)−diag (Q∞)S. If S is symmetric, then V∞ =− 1

2
S−1M.

Proof. The proof follows by either taking the limit of the equations in Theorem 3 or setting

the corresponding differential equations to 0 and finding the equilibrium solution. �

Remark 3. We note that in steady-state the invertibility conditions from Theorem 3 are no

longer necessary. We can further observe that these equations reveal an interesting relationship
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among these steady-state values for the case of single phase service. For µ as the rate of exponential

service, Corollary 6 yields

V∞ =Q∞+
1

µ
C∞ =

λ∞
µ

(
1 +

α(2β−α)

2(β−α)(µ+β−α)

)
. (58)

Thus, we have that the steady-state variance of the number in system for the Hawkes/M/∞

queue is equal to the mean number in system plus the expected service duration times the

steady-state covariance between the number in system and the intensity. Thus this provides an

explicit contrast with Poisson-driven queues, as the steady-state distribution of a M/M/∞ system

is known to be Poisson distributed with rate equal to the steady-state mean number in system.

This implies that the steady-state variance for such a queue is equal to its steady-state mean,

unlike the relationship we observe for the Hawkes/M/∞ system in Equation 58.

However, as we have noted, if α≥ β the Hawkes process is unstable and so steady-state analysis

of the queue will not apply. Thus, in this scenario we instead investigate the transient behavior of

the mean of the queue under the unstable arrival process.

Corollary 7. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α≥ β and phase-type distributed service.

Let S ∈Rn×n be the sub-generator matrix for the transient states in the phase-distribution CTMC

and let θ ∈ [0,1]n be the initial distribution for arrivals to these states. Then the vector of mean

number in service in each phase of service is given by

E[Qt] =
(
(α−β)I −ST

)−1
(
e(α−β)tI − eS

Tt
)
θ

(
βλ∗

α−β
+λ0

)
+ (ST)−1

(
I − eS

Tt
)
θ
βλ∗

α−β
(59)

when α> β and

E[Qt] =−(ST)−1
(
I − eS

Tt
)
θ(λ0−βλ∗)− (ST)−1θβλ∗t (60)

when α= β.

3.4. Auto-covariance of the Hawkes/PH/∞ Queue

We now consider the auto-covariance of the number in this queueing system, Qt ∈Rn. Analogous to

the auto-covariance for the number of arrivals from the Hawkes process discussed in Subsection 2.3,

this matrix quantity is defined as

Cov [Qt,Qt−τ ] = E
[
QtQ

T
t−τ
]
−E[Qt]E [Qt−τ ]

T
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where t ≥ τ ≥ 0 and otherwise the covariance is equal to 0. For an infinite server queue with

Hawkes process arrivals and phase-type distributed service, the findings in Subsection 3.2 give us

expressions for E [Qt] and E [Qt−τ ]. Let Fs be the filtration of the queueing system, the Hawkes

process, and the intensity at time s ≥ 0. Then, assuming S + (β − α)I is invertible, conditional

expectation yields

E
[
QtQ

T
t−τ
]

= E
[
E[Qt | Ft−τ ]QT

t−τ
]

= E
[(
λ∞
(
−ST

)−1 (
I − eS

Tτ
)
θ− (λt−τ −λ∞)

(
ST + (β−α)I

)−1 (
e−(β−α)τI

− eS
Tτ
)
θ+ eS

TτQt−τ

)
QT
t−τ

]
= λ∞

(
−ST

)−1 (
I − eS

Tτ
)
θE[Qt−τ ]

T−
(
ST + (β−α)I

)−1 (
e−(β−α)τI − eS

Tτ
)
θ

·
(

E
[
λt−τQ

T
t−τ
]
−λ∞E[Qt−τ ]

T
)

+ eS
TτE

[
Qt−τQ

T
t−τ
]

by application of the expression for the vector of the mean number in each phase given in The-

orem 3, modified to start at time t− τ . Upon recognizing that E
[
λt−τQ

T
t−τ
]

= Cov [λt−τ ,Qt−τ ] +

E [λt−τ ]E [Qt−τ ]
T

and E
[
Qt−τQ

T
t−τ
]

= Cov
[
Qt−τ ,Q

T
t−τ
]

+ E[Qt−τ ]E [Qt−τ ]
T

, we have that

Cov [Qt,Qt−τ ] = λ∞
(
−ST

)−1
(
I − eS

Tτ
)
θE[Qt−τ ]

T−
(
ST + (β−α)I

)−1
(
e−(β−α)τI − eS

Tτ
)

· θ
(

Cov [λt−τ ,Qt−τ ]
T

+ E[λt−τ ]E [Qt−τ ]
T−λ∞E[Qt−τ ]

T
)

+ eS
TτCov [Qt−τ ,Qt−τ ]

+
(
eS

TτE[Qt−τ ]−E[Qt]
)

E[Qt−τ ]
T

(61)

and that each term in this expression can be calculated by applying Theorem 3. An explicit

expression for the transient auto-covariance using this approach is given in the Appendix. In this

section we give an explicit expression for the auto-covariance of the Hawkes/M/∞ queue. In this

setting with service rate µ, the same approach as above yields

Cov [Qt,Qt−τ ] =
λ∞
µ

(
1− e−µτ

)
E[Qt−τ ] + e−µτVar (Qt−τ ) + Cov [λt−τ ,Qt−τ ]

e−(β−α)τ − e−µτ

µ−β+α

+ (E [λt−τ ]−λ∞)E [Qt−τ ]
e−(β−α)τ − e−µτ

µ−β+α
+ e−µτE[Qt−τ ]

2−E[Qt]E [Qt−τ ] (62)

when µ 6= β−α and

Cov [Qt,Qt−τ ] =
λ∞
µ

(
1− e−µτ

)
E[Qt−τ ] + e−µτVar (Qt−τ ) + Cov [λt−τ ,Qt−τ ]τe

−µτ

+ (E [λt−τ ]−λ∞)E [Qt−τ ]τe
−µτ + e−µτE[Qt−τ ]

2−E[Qt]E [Qt−τ ] (63)

when µ= β−α, where each of these makes use of Corollary 5 with n= 1, θ1 = 1, and µi = µ. These

expressions are made explicit in the following proposition.
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Proposition 3. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α< β and exponentially distributed service

with rate µ. Then, for t≥ τ ≥ 0 the auto-covariance of the number in system is

Cov [Qt,Qt−τ ] =
λ∞
µ

(
1− e−µτ

)(λ∞
µ

(
1− e−µ(t−τ)

)
+

λ0−λ∞
µ−β+α

(
e−(β−α)(t−τ)− e−µ(t−τ)

))
+
λ∞
µ

·
(
e−µτ − e−µt

)
+

α(2β−α)λ∞
2µ(β−α)(µ+β−α)

(
e−µτ − e−µ(2t−τ)

)
−
(

α(2β−α)λ∞
(β−α)(µ+β−α)

+
2αβ(λ0−λ∞)

µ(β−α)

− α2(2λ0−λ∞)

(β−α)(µ−β+α)

)
e−(µ+β−α)t+(β−α)τ − e−µ(2t−τ)

µ−β+α
+

(
λ0−λ∞+

µ(λ0−λ∞)

µ−β+α
+

2αβ(λ0−λ∞)

µ(β−α)

)
·h(t− τ)e−µτ − α2(2λ0−λ∞)

2(β−α)(µ−β+α)2

(
e−2(β−α)t−(µ−2β+2α)τ − e−µ(2t−τ)

)
− λ0−λ∞
µ−β+α

(
e−µt

− e−µ(2t−τ)
)

+ e−µτ
(
λ∞
µ

(
1− e−µ(t−τ)

)
+

λ0−λ∞
µ−β+α

(
e−(β−α)(t−τ)− e−µ(t−τ)

))2

+
e−(β−α)τ − e−µτ

µ−β+α

·

(
α(2β−α)λ∞

2(β−α)(µ+β−α)

(
1− e−(µ+β−α)(t−τ)

)
+
αβ(λ0−λ∞)

µ(β−α)

(
e−(β−α)(t−τ)− e−(µ+β−α)(t−τ)

)
− α2(2λ0−λ∞)

2(β−α)(µ−β+α)

(
e−2(β−α)(t−τ)− e−(µ+β−α)(t−τ)

))
+ (λ0−λ∞)

e−(β−α)τ − e−µτ

µ−β+α

(
λ0−λ∞
µ−β+α

·
(
e−2(β−α)(t−τ)− e−(µ+β−α)(t−τ)

)
+
λ∞
µ

(
e−(β−α)(t−τ)− e−(µ+β−α)(t−τ)

))
−
(
λ∞
µ

(
1− e−µt

)
+

λ0−λ∞
µ−β+α

·
(
e−(β−α)t− e−µt

))(λ∞
µ

(
1− e−µ(t−τ)

)
+

λ0−λ∞
µ−β+α

(
e−(β−α)(t−τ)− e−µ(t−τ)

))
(64)

when µ 6= β−α and

Cov [Qt,Qt−τ ] =
λ∞
µ

(
1− e−µτ

)(λ∞
µ

(
1− e−µ(t−τ)

)
+ (λ0−λ∞) (t− τ)e−µ(t−τ)

)
+
λ∞
µ

(
e−µτ − e−µt

)
+
α(2β−α)λ∞

4µ3

(
e−µτ − e−µ(2t−τ)

)
−
(α(2β−α)λ∞

2µ2
+

2αβ(λ0−λ∞)

µ2

)
(t− τ)e−µ(2t−τ) +

(
λ0−λ∞

+
2αβ(λ0−λ∞)

µ2

)e−(β−α)t−(µ−β+α)τ − e−µ(2t−τ)

µ
− α

2(2λ0−λ∞)

2µ
(t− τ)2e−µ(2t−τ) + (λ0−λ∞)

·
(

(t− τ)e−µt

µ
+
e−µ(2t−τ)− e−µt

µ2

)
+ e−µτ

(
λ∞
µ

(
1− e−µ(t−τ)

)
+ (λ0−λ∞) (t− τ)e−µ(t−τ)

)2

+

(
α(2µ+α)λ∞

4µ2

(
1− e−2µ(t−τ)

)
+
αβ(λ0−λ∞)

µ2

(
e−µ(t−τ)− e−2µ(t−τ)

)
− α

2(2λ0−λ∞)

2µ
(t− τ)e−2µ(t−τ)

)
· τe−µτ + τ(λ0−λ∞)e−µt

(
λ∞
µ

(
1− e−µ(t−τ)

)
+ (λ0−λ∞) (t− τ)e−µ(t−τ)

)
−
(
λ∞
µ

(
1− e−µt

)
+ (λ0−λ∞) te−µt

)(
λ∞
µ

(
1− e−µ(t−τ)

)
+ (λ0−λ∞) (t− τ)e−µ(t−τ)

)
(65)

when µ= β −α, where h(s) = se−2µs if 2µ= β −α and h(s) = e−(β−α)s−e−2µs

2µ−β+α
if 2µ 6= β −α for all

s≥ 0.
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Proof. The stated forms follow by simplification of the expressions in Corollary 5, yielding

E [Qt] =
λ∞
µ

(
1− e−µt

)
+

λ0−λ∞
µ−β+α

(
e−(β−α)t− e−µt

)
for the mean of the Hawkes/M/∞ queue,

Cov [λt,Qt] =
α(2β−α)λ∞

2(β−α)(µ+β−α)

(
1− e−(µ+β−α)t

)
+
αβ(λ0−λ∞)

µ(β−α)

(
e−(β−α)t− e−(µ+β−α)t

)
− α2(2λ0−λ∞)

2(β−α)(µ−β+α)

(
e−2(β−α)t− e−(µ+β−α)t

)
for the covariance between the queue and the intensity, and

Var (Qt) =
λ∞
µ

(
1− e−µt

)
+

α(2β−α)λ∞
2µ(β−α)(µ+β−α)

(
1− e−2µt

)
−
(

α(2β−α)λ∞
(β−α)(µ+β−α)

+
2αβ(λ0−λ∞)

µ(β−α)

− α2(2λ0−λ∞)

(β−α)(µ−β+α)

)
e−(µ+β−α)t− e−2µt

µ−β+α
+

(
λ0−λ∞+

µ(λ0−λ∞)

µ−β+α
+

2αβ(λ0−λ∞)

µ(β−α)

)
· e
−(β−α)t− e−2µt

2µ−β+α
− α2(2λ0−λ∞)

2(β−α)(µ−β+α)2

(
e−2(β−α)t− e−2µt

)
− λ0−λ∞
µ−β+α

(
e−µt− e−2µt

)
for the variance of the queue, all in the case where µ 6= β − α. The remaining derivation follows

directly from substitution of these functions and the corresponding expressions for remaining

cases and epochs into Equations 62 and 63. �

Figure 7 Auto-covariance of the Hawkes/M/∞ Queue for τ =5, where α= 3
4
, β= 5

4
, λ∗ =µ=1 (left)

and α=1, β=2, λ∗ =µ=1 (right).

In Figure 7 the expressions in Proposition 3 are compared to simulations, based on 100,000

replications.
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3.5. Generating Functions for the Hawkes/PH/∞ Queue

To complement these findings, we also derive a form for the moment generating function for a

general queueing system driven by a Hawkes process.

Theorem 4. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 with α< β and phase-type distributed service.

Let δ ∈Rn+1
+ and let M(δ, t) =M(δ0, . . . , δn, t) = E

[
eδ0λt+

∑n
i=1 δiQt,i

]
. Then, the moment generating

function for the queueing system M(δ, t) is given by the solution to the following partial differential

equation,

∂M(δ, t)

∂t
= δ0βλ

∗M(δ, t) +

(
n∑
i=1

θi(e
δ0α+δi − 1)− δ0β

)
∂M(δ, t)

∂δ0

(66)

+
n∑
i=1

(
µi0(e−δi − 1) +

∑
k 6=i

µik(e
δk−δi − 1)

)
∂M(δ, t)

∂δi
.

Proof. This proof makes use of techniques similar to the prior theorems, and so we omit the

preceding infinitesimal generator steps. Note that ∂M(δ,t)

∂t
= ∂

∂t
E
[
eδ0λt+

∑n
i=1 δiQt,i

]
. From this, we

start with the following.

∂M(δ, t)

∂t
= E

[
δ0β(λ∗−λt)eδ0λt+

∑n
i=1 δiQt,i +

n∑
j=1

λtθj

(
eδ0(λt+α)+

∑
k 6=j δkQt,k+δj(Qt,j+1)− eδλt+

∑n
i=1 δiQt,i

)
+

n∑
k=1

∑
j 6=k

µjkQt,j

(
eδ0λt+

∑
l6=j∧l 6=k δlQt,l+δj(Qt,j−1)+δk(Qt,k+1)− eδ0λt+

∑n
i=1 δiQt,i

)
+

n∑
j=1

µj0Qt,j

(
eδ0λt+

∑
k 6=j δkQt,k+δj(Qt,k−1)− eδ0λt+

∑n
i=1 δiQt,i

)]

Now, we distribute terms and notice that the difference of exponentials here can be expressed as
the following products.

∂M(δ, t)

∂t
= E

[
δ0βλ

∗eδ0λt+
∑n
i=1 δiQt,i − δ0βλte

δ0λt+
∑n
i=1 δiQt,i +

n∑
j=1

λtθje
δ0λt+

∑n
i=1 δiQt,i

(
eδ0α+δj − 1

)
+

n∑
k=1

∑
j 6=k

µjkQt,je
δ0λt+

∑n
i=1 δiQt,i

(
eδk−δj − 1

)
+

n∑
j=1

µj0Qt,je
δ0λt+

∑n
i=1 δiQt,i

(
e−δj − 1

)]

Here, we can now use linearity of expectation and group like terms.

∂M(δ, t)

∂t
= δ0βλ

∗E
[
eδ0λt+

∑n
i=1 δiQt,i

]
+

(
n∑
j=1

θj(e
δ0α+δj − 1)− δ0β

)
E
[
λte

δ0λt+
∑n
i=1 δiQt,i

]
+

n∑
j=1

(
µj0(e−δj − 1) +

∑
k 6=j

µjk(e
δk−δj − 1)

)
E
[
Qt,je

δ0λt+
∑n
i=1 δiQt,i

]
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Finally, here we recognize the form of partial derivatives of M(δ, t) in each expectation, and so we

simplify to the desired result. �

We can use this to also find a partial differential equation for the natural logarithm of the moment

generating function. This is called the cumulant moment generating function, as the derivative of

this function yields the cumulant moments.

Corollary 8. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 and phase-type distributed service. Let δ ∈Rn+1
+

and let G(δ, t) =G(δ0, . . . , δn, t) = log
(
E
[
eδ0λt+

∑n
i=1 δiQt,i

])
. Then, the cumulant moment generating

function for the queueing system G(δ, t) is given by the solution to the following partial differential

equation,

∂G(δ, t)

∂t
= δ0βλ

∗+

(
n∑
i=1

θi(e
δ0α+δi − 1)− δ0β

)
∂G(δ, t)

∂δ0

(67)

+
n∑
i=1

(
µi0(e−δi − 1) +

∑
k 6=i

µik(e
δk−δi − 1)

)
∂G(δ, t)

∂δi
.

Proof. To begin, we see from the derivative of the logarithm and the chain rule that

∂G(δ, t)

∂t
=
∂

∂t
log
(

E
[
eδ0λt+

∑n
i=1 δiQt,i

])
=

∂
∂t

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E
[
eδ0λt+

∑n
i=1 δiQt,i

]
and here we can recognize that these expectations are the moment generating function. Using
Theorem 4, we have

∂G(δ, t)

∂t
= δ0βλ

∗+

(
n∑
i=1

θi(e
δ0α+δi − 1)− δ0β

)
∂
∂δ0

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E
[
eδ0λt+

∑n
i=1 δiQt,i

]
+

n∑
i=1

(
µi0(e−δi − 1) +

∑
k 6=i

µik(e
δk−δi − 1)

)
∂
∂δi

E
[
eδ0λt+

∑n
i=1 δiQt,i

]
E
[
eδ0λt+

∑n
i=1 δiQt,i

] .

Now we recognize that
∂
∂δi

E

[
e
δ0λt+

∑n
i=1 δiQt,i

]
E
[
e
δ0λt+

∑n
i=1

δiQt,i
] = ∂G(δ,t)

∂δi
, and so we have the stated result. �

Comparing these two partial differential equations, we see that the expression for the cumulant

moment generating function only depends on the partial derivatives, not on the function itself. In

some cases the cumulant moment generating function is better since it directly will compute the

variance, skewness, and higher order cumulants directly without having to know the relationships

between cumulants and moments. Moreover, the cumulant moments have shift and scale invariance

properties, which are often desired. The PDE in Corollary 8 produces a form that provides insight

to the solution through use of the method of characteristics, which we now show in the following

theorem.
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Theorem 5. Consider a queueing system with arrivals occurring in accordance to a Hawkes

process (λt,Nt) with dynamics given in Equation 4 and phase-type distributed service with tran-

sient state sub-generator matrix S ∈ Rn×n. Let δ ∈ Rn+1
+ and let G(δ, t) = G(δ0, . . . , δn, t) =

log
(
E
[
eδ0λt+

∑n
i=1 δiQt,i

])
. Then, the cumulant moment generating function for the queueing system

G(δ, t) is given by

G(δ, t) = βλ∗
∫ t

0

h(z)dz+h(0)λ0 (68)

where h(z) is the solution to the ordinary differential equation

•
h(z) = 1− eαh(z)θT

(
v+ e−S(z−t) (ediag(δ)− I

)
v
)

+βh(z)

with initial value h(t) = δ0.

Proof. We proceed by the method of characteristics for the PDE given in Corollary 8. To do

so, let z be a parametrization variable and let ∆0,∆1, . . . ,∆n be characteristics variables. From

recognizing the linearity of the PDE, we see that we can implement the method of characteristics

by setting
•
∆i(z) := d∆i(z)

dz
equal to the function serving as coefficient of ∂G(δ,t)

∂δi
in the PDE for

each i ∈ {0, . . . , n}, each with initial condition that ∆i(t) = δi. This yields the following system of

characteristic ODE’s:

•
∆0(z) = 1− e∆0α

∑
j 6=i

θje
∆j + ∆0β,

•
∆i(z) = µi−µi0e−∆i −

∑
j 6=i

µije
∆j−∆i ∀i∈ {1, . . . , n}.

We now let x ∈ Rn be such that xi = e∆i . Note that this substitution can also be expressed x=

ediag(∆)v, as this will be of use in solving the system. Then, we have that
•
xi(z) = xi(z)

•
∆i(z). In

this form, the last n characteristic ODE’s can be expressed as

•
x(z) =−Sx(z) +Sv

which means that

x(z) = v+ e−S(z−t) (ediag(δ)− I
)
v

where we have used the initial condition x(t) = ediag(∆(t)) = ediag(δ). We now note that to follow the

method of characteristics fully and receive a closed form solution to the PDE we would want to

solve the remaining characteristic ODE

•
∆0(z) = 1− e∆0α

∑
j 6=i

θje
∆j + ∆0β = 1− e∆0αθTx+ ∆iβ
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which has initial condition that ∆0(t) = δ0. Because this form of ODE is not known to have a closed

form solution in terms of standard math functions, we let h(z) be defined as the solution to this

initial value problem. Then, we now complete the method of characteristics by solving

•
g(z) = βλ∗∆0(z) = βλ∗h(z)

with the initial condition that g(0) = G(∆(0),0) = ∆0(0)λ0 = h(0)λ0. Since this ODE is already

separated, we have

g(z)−h(0)λ0 = g(z)− g(0) =

∫ z

0

•
g(ξ)dξ = βλ∗

∫ z

0

h(ξ)dξ.

Thus, we now have

G(δ, t) = g(t) = βλ∗
∫ t

0

h(ξ)dξ+h(0)λ0

and this is the stated result. �

While the ODE in this statement may not be able to be solved for a closed form expression

outside of special cases, this reduction of the PDE to an ODE simplifies numerical implementations.

We now note that this of course extends to the moment generating function as well by simply

taking the exponential of the cumulant generating function.

3.6. Simulation Study

To conclude Section 3 we provide a collection of simulation examples that verify the accuracy of

our expressions for the moments in a variety of settings. In each example we derive the simulated

functions via 100,000 replications of the procedure described in Ogata (1981). We start with the

mean and variance of a single phase system, as shown in the pair of plots below in Figure 8.

Figure 8 Mean (left) and Variance (right) of Qt in Hawkes/M/∞, α= 1
2
, β= 3

4
, λ∗ =µ=1.
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As a second example, we also consider a three-phase Erlang distributed service. We use two

different parameter settings, one in which the mean service duration is 1 and another in which the

mean service length is 6. In the first case, α= 1
2
, β = 3

4
, and λ∗ = 1. In the latter, α= 3

4
, β = 5

4
, and

λ∗ = 1. The mean is shown in Figure 9, the variance in Figure 10, the covariance of the queue and

the intensity in Figure 11, and the covariance of the phases of the queue in Figure 12.

Figure 9 Mean of the Hawkes/E3/∞ Queue, where α= 1
2
, β= 3

4
, λ∗ =1, 1

µ
=1 (left) and α= 3

4
, β= 5

4
,

λ∗ =1, 1
µ
=6 (right).

Figure 10 Variance of the Hawkes/E3/∞ Queue, where α= 1
2
, β= 3

4
, λ∗ =1, 1

µ
=1 (left) and α= 3

4
,

β= 5
4
, λ∗ =1, 1

µ
=6 (right).

In addition to the Erlang setting, we also verify the performance of the hyper-exponential service

equations. We again consider a three phase distributed service and display a pair of scenarios. In

both parameter groups θ = [.15, .4, .45]T and µ= [1,4,6]T. In the first setting we consider α = 1
2
,

β = 1, and λ∗ = 2, whereas in the second setting α= 1, β = 2, and λ∗ = 2. These are displayed in

the same order as the Erlang examples are: mean in Figure 13, variance in Figure 14, covariance

with the intensity in Figure 15, and covariance of the queues in Figure 16.
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Figure 11 Covariance of Hawkes/E3/∞ Queue, where α= 1
2
, β= 3

4
, λ∗ =1, 1

µ
=1 (left) and α= 3

4
,

β= 5
4
, λ∗ =1, 1

µ
=6 (right).

Figure 12 Covariance between Phases in the Hawkes/E3/∞ Queue, where α= 1
2
, β= 3

4
, λ∗ =1, 1

µ
=1

(left) and α= 3
4
, β= 5

4
, λ∗ =1, 1

µ
=6 (right).

Figure 13 Mean of the Hawkes/H3/∞ Queue, where α= 1
2
, β=1, λ∗ =2, θ= [.15, .4, .45]T,

µ= [1,4,6]T (left) and α=1, β=2, λ∗ =2, θ= [.15, .4, .45]T, µ= [1,4,6]T (right).
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Figure 14 Variance of the Hawkes/H3/∞ Queue, where α= 1
2
, β=1, λ∗ =2, θ= [.15, .4, .45]T,

µ= [1,4,6]T (left) and α=1, β=2, λ∗ =2, θ= [.15, .4, .45]T, µ= [1,4,6]T (right).

Figure 15 Covariance of λt and the Hawkes/H3/∞ Queue, where α= 1
2
, β=1, λ∗ =2, θ= [.15, .4, .45]T,

µ= [1,4,6]T (left) and α=1, β=2, λ∗ =2, θ= [.15, .4, .45]T, µ= [1,4,6]T (right).

Figure 16 Covariance between Phases in the Hawkes/H3/∞ Queue, where α= 1
2
, β=1, λ∗ =2,

θ= [.15, .4, .45]T, µ= [1,4,6]T (left) and α=1, β=2, λ∗ =2, θ= [.15, .4, .45]T, µ= [1,4,6]T (right).
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In conducting these simulation experiments we have made an interesting observation. Consider

the following example: let λ∗ = 1, α = 1, and β = 2. Then, let D = 1 be the fixed service length

in a Hawkes/D/∞ system and let µ = 1 be the parameter of the exponential distribution in a

Hawkes/M/∞ system. We plot the simulated variances of these two systems in Figure 17 based on

10,000 replications, in which we find that the variance is larger in the deterministic service setting.

Figure 17 Comparison of Variances in Hawkes/M/∞ and Hawkes/D/∞ Queues when 1
µ
=D=1, with

λ∗ =1, α=1, and β=2.

While this relationship may seem unexpected, there is an intuitive explanation for it. Because

the Hawkes process exhibits clustering behavior in the arrival times, a service system with fixed

service length will also experience clusters of departures times. By comparison, a system with

random service durations has the opportunity to counteract the clustering behavior and disperse

the departure times. In Proposition 4 we show that the steady-state variance in the deterministic

service setting is greater than that of the exponential service setting.

Proposition 4. For equal Hawkes process parameters λ∗, α, and β and equivalent service

parameters D = 1
µ
> 0, the steady-state variance of the Hawkes/D/∞ queue is greater than the

steady-state variance of the Hawkes/M/∞ queue.

Proof. Let β > α > 0 and let λ∗ > 0. Further, let D = 1
µ
> 0. By Theorem 1, the steady-state

variance of the Hawkes/D/∞ queue is

VD ≡ λ∞D
(

1 +
2αβ−α2

(β−α)2

)
−λ∞(1− e−(β−α)D)

2αβ−α2

(β−α)3
.

Likewise, Corollary 6 gives the steady-state variance in the exponential service case as

VM ≡
λ∞
µ

(
1 +

2αβ−α2

2(β−α)(µ+β−α)

)
,
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as noted in Remark 3. Then, the difference between these terms is

VD−VM =
λ∞
µ

(
2αβ−α2

(β−α)2

)(
1− β−α

2(µ+β−α)
− µ−µe

−(β−α) 1
µ

β−α

)
,

where we have substituted 1
µ

for D. Because of the assumed relationships among the parameters,

VD −VM is positive if and only if the expression inside the lattermost parenthesis is. Multiplying

this expression by 2
µ2

(µ+β−α)(β−α)> 0 and simplifying yields

Υ

(
β−α
µ

)
≡
(
β−α
µ

)2

− 2
(

1− e−
β−α
µ

)
+ 2

(
β−α
µ

)
e−

β−α
µ .

We can re-parameterize this expression as Υ(x) for x ≡ β−α
µ

. By checking the first derivative of

Υ(x), we see that it is strictly increasing for x≥ 0. Since Υ(0) = 0 and β−α
µ
> 0 for any valid α, β,

and µ, we have that VD−VM > 0. �

In Figure 18 we observe that this behavior can also occur in non-Markovian service settings,

shown here for lognormal distributions based on 10,000 simulation replications. In this experiment

each lognormal distribution has a mean of 1 and the variances increase from 0 to 5 with a step size

of 0.5. Note that all the mean queue lengths appear to be converging to 1 in steady-state. Further,

we see that the means of systems with higher variance in the lognormal service distribution are

converging more slowly than those of lower lognormal variance. However, the opposite relationship

appears to hold in terms of the variances of the queues: the higher the variance of the lognormal,

the lower the variance of the queue.

Figure 18 Mean (left) and Variance (right) of the Hawkes/Lognormal/∞ with λ∗ =1, α=1, and β=2

where Mean Service Durations is 1 and Service Variance Increases from 0 to 5.
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4. Applications

To motivate this study and demonstrate its findings, we now briefly discuss two applications of this

work, one concerned with viral internet traffic and one covering night clubs. Each is inspired by

the self-excitement behavior of the Hawkes process, and in these settings we consider the impact

and influence one arrival can have on a system and how managers of such systems might try to

harness that influence for some kind of benefit.

4.1. Trending Web Traffic

In May 2017 website rankings for the United States, Youtube, Facebook, and Reddit each ranked

among the top 5 most visited websites, with Twitter in the top 10 and LinkedIn and Instagram

both in the top 15, per Alexa the Web Information Company (2017). For Facebook, Reddit, and

Twitter in particular, users’ interactions with the sites frequently involve viewing links to external

media like videos, articles, and shopping sales. A user’s exposure to a webpage and her likelihood

to share it herself is directly influenced by whether she sees the link from other users. As users

choose to visit and potentially re-share links posted by other users, the link may start trending or

become “viral.” This means that it is receiving high levels of traffic and arrivals to the site, and

this may lead to even more arrivals while the users continue to share it on various social platforms.

For a business or organization, going viral can lead to significant jumps in exposure, interest, and

revenue.

As a basic example, we analyzed publicly available Twitter data McKelvey and Menczer (2013).

This data set covers all tweets featuring both a URL and a hashtag from November 2012 and

includes the tweet timestamp, the hashtags used, and the URL’s linked, as well as an anonymous

user ID. Perhaps the most notable event captured among the reactions in this data set is the 2012

U.S. Presidential election, which was held on November 6. Among the bountiful election-related

tweets are 106 posts of the music video for Young Jeezy’s 2008 song My President from the start

of November 5 to midday on November 7. A plot of the timestamps of these tweets along with the

total number of tweets occurring by that time is below. Note the flurry of posts once the election

results were announced; 60 of the data’s 106 postings of the video occur within an hour’s time.

A quick numerical investigation suggests that this type of extreme viral reaction may be more

likely in certain parameter settings. In 100,000 simulation replications of a system with λ∗ = 0.5,

α= 19.5, and β = 20, 82.4% of the trials had a majority of arrivals occur within one time quartile.

By comparison, in the same number of replications for a system with λ∗ = 1, α= 0.5, and β = 1,

this only occurred for 18.0% of the experiments. However, even outside of the main spike in this

data, users seem to be posting the video in clustered time segments, approximately at the 6, 20, 45,

48, and 52 hour marks. These clusters suggest that these arrivals could be appropriately modeled

by a Hawkes process, particularly when compared to a Poisson process.
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Figure 19 Tweets of Young Jeezy - My President music video from November 5 - 7, 2012.

Using what we have observed from this data as inspiration, we now model users arriving to a

webpage as a Hawkes process. Because of the viral behavior we have seen in this type of arrivals,

we will investigate the impact of a click. Consider a Hawkes Process Nt with baseline intensity λ∗,

initial intensity λ0, jump size α, and decay parameter β. Now, let N̂t represent an independent

Hawkes process that is identical to Nt in terms of parameters with the exception that it experienced

an arrival at time 0, whereas Nt starts empty. This means that the baseline intensity, jump size,

and decay parameter are the same for N̂t as they were for Nt, but the initial intensity is λ0 + α

and N̂0 = 1. Then, by Proposition 1,

E
[
N̂t

]
−E[Nt] = λ∞t+

λ0 +α−λ∞
β−α

(
1− e−(β−α)t

)
+ 1−λ∞t−

λ0−λ∞
β−α

(
1− e−(β−α)t

)
=

β

β−α
− α

β−α
e−(β−α)t −→ β

β−α
as t→∞

which shows that the gap between the two expectations is positive and grows throughout time.

However, this is simply tracking the number of visitors; it does not account for the time the users

spend on the site. To capture this, we can extend this arrival model to a queueing model in which

the service represents the time the user spends on the webpage. Provided the website is well hosted,

this can be modeled as an infinite server queue as any user can visit the webpage that chooses

to do so. If the time each user spends on the page is independently and exponentially distributed

with rate µ, we see that the expected number of users on the page at time t is E [Qt]. Then, from

time 0 to time T the expected total time spent on the page across all users σ(T ) is

σ(T ) =

∫ T

0

E[Qt] dt=

∫ T

0

(
λ∞
µ

(
1− e−µt

)
+

λ0−λ∞
µ−β+α

(
e−(β−α)t− e−µt

))
dt

=
λ∞
µ

(
T − 1− e−µT

µ

)
+

λ0−λ∞
µ−β+α

(
1− e−(β−α)T

β−α
− 1− e−µT

µ

)
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where we have applied the results of Corollary 5 for hyper-exponential service with n = 1 and

µ 6= β−α, thus yielding exponential service. Now, suppose that a website earns m dollars per unit

of time in advertising revenue for each user on the site. Then, the expected earnings by time T is

A(T ) =mσ(T ). We can now repeat the value of a click experiment when also considering service.

Let Qt be a queueing system with exponential service at rate µ, infinite servers, and Hawkes process

arrivals with parameters λ∗, α, and β and assume the queue starts empty. Then, let Q̂t be the

analogous adaptation of Qt that N̂t is to Nt. Let A(T ) and Â(T ) be the corresponding expected

dwell time revenues, each with earning rate m. Note that the expected time the initial customer

has spent in the system by time T is min{S,T} where S is the duration of her service. Hence the

revenue associated with her visit to the page by time T is m 1−e−µT
µ

. Then,

Â(T )−A(T ) =m
1− e−µT

µ
+m

α

µ−β+α

(
1− e−(β−α)T

β−α
− 1− e−µT

µ

)
=
m

µ

(
1 +

1

β−α

)
−m αe−(β−α)T

(β−α)(µ−β+α)
−m (µ−β)e−µT

µ(µ−β+α)
,

which can be shown to also always grow with T via its first derivative. We can also further observe

that as α→ β each of these gaps grows towards infinity, and thus so grows the impact of a click in

viral settings.

Note that this model can also be used for internet-inspired applications other than users arriving

to internet pages. For example, as mobile carriers continue to add cloud storage based services

and allow customers to upload pictures from their smart phones as soon as they are taken, the

Hawkes/M/∞ queue can be used to describe the number of pictures being uploaded at once. For

further reading on the Hawkes process and its use in internet traffic applications see Rizoiu et al.

(2017), in which the authors develop a novel Hawkes-process-based model for the popularity of

online content in great detail.

4.2. Club Queue

From our Hawkes driven infinite server queue with phase-type service distributions, we can

construct what we refer to as the Club Queue. This stems from an application perhaps uncommon

to queueing systems, a nightclub. This setting features a key characteristic: the best club has the

most people waiting for it. Because of this, the Hawkes process naturally represents the excitation

exhibited by club-goers joining a queue as many club-goers might call their friends to join them.

With this application in mind, it is important to understand the characteristics of nightclubs.

Many nightclubs have waiting spaces for potential customers outside the club. Moreover, inside

the club is where much of the activity happens. Thus, using phase-type distributions we can model

the inside and outside of the club as two phases of services or a two dimensional phase-type queue.
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The first phase of service can be considered “admittance” to the service with the second step

being the service itself. Because the clubs’ bouncers have the ability to admit customers into the

venue from any position in the external queue and because each customer determines how long

she stays in the club, we model this scenario as an infinite server queue. This process is visualized

below, where µO and µI are the rates of each step of service.

µO

Admittance

µIλt

Arrivals Service

QO QI

Figure 20 Club Queue Process Diagram.

We can represent the Club Queue using the two dimensional vector of queue lengths Q(t) for

t ≥ 0, with coordinates QI(t) and QO(t) representing the service systems inside and outside the

club, respectively. A fundamental managerial task is to figure out at what rate to admit club-goers

into the club to maximize profitability while making the club attractive from the outside. This is

non-trivial as a short line outside the club might signal to others that the club is not interesting

and make them choose to not go inside the club. However, if the line is too long, there are many

customers not actively generating revenue for the club and becoming frustrated with the wait

outside. With this in mind, we construct the following objective function that maximizes the rate

at which the bouncer of the club should let club-goers inside the club over the finite time horizon

[0, T ], where T > 0.

ζ(µO(t)) = rOµOE[QO(t)] + rIE[QI(t)]− c(µOE[QO(t)]− k)2−wµ2
O (69)

Here rO ≥ 0 and rI ≥ 0 are revenues generated from the cover outside and inside the club respec-

tively. We also have that c is a penalty for having the overall admittance rate be too slow or too

fast and finally, w is a penalty for admitting each individual customer too quickly. A complete

formulation of this optimal control problem is presented next.

Problem 1 (Unconstrained Club Profit Model).

max{µO≥0}

∫ T

0

[
rOµO(t)E [QO(t)] + rIE[QI(t)]− c(µO(t)E [QO(t)]− k)2−wµO(t)2

]
dt

subject to
•
E[λ(t)] = β · (λ∗−E[λ(t)]) +α ·E[λ(t)]
•
E[QO(t)] = E[λ(t)]−µO(t) ·E[QO(t)]
•
E[QI(t)] = µO(t) ·E[QO(t)]−µI ·E[QI(t)]
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The solution to this problem gives the optimal rate to admit club-goers across time in order to

maximize the difference between club revenue and the queue length and admittance rate penalties.

This is characterized by the following theorem.

Theorem 6. The optimal solution to Problem 1 is given by µ∗O(t), where

µ∗O(t) =
(rO + 2ck− γ1 + γ2)E [QO(t)]

2w+ 2cE[QO(t)]
2 (70)

for all t∈ [0, T ].

Proof. We start by transforming the optimization model into a single Hamiltonian equation,

which can be thought of as an unconstrained version of the Lagrangian. For this problem, we have

the Hamiltonian H as

H(t, γ) = ζ(µO(t))− γ1

(
•
E[QO(t)]−E[λ(t)] +µOE[QO(t)]

)
− γ2

(
•
E[QI(t)]−µOE[QO(t)]

+µIE[QI(t)]

)
− γ3

(
•
E[λ(t)]−β · (λ∗(t)−E[λ(t)])−α ·E[λ(t)]

)

where each γi ∈R for i∈ {1,2,3}. To achieve optimality in the control problem, the method ensures

that µO(t) is such that dH
dµO(t)

= 0 for all t ∈ [0, T ]. We see that the derivative of the Hamiltonian

with respect to µO(t) is

dH
dµO(t)

= rOE[QO(t)]− 2cµO(t)E [QO(t)]
2

+ 2ckE[QO(t)]− 2wµO(t)− γ1E[QO(t)] + γ2E[QO(t)].

Thus, the optimal µ∗O(t) is found by solving

0 =
dH

dµO(t)
= (rO + 2ck− γ1 + γ2)E [QO(t)]− (2cE[QO(t)]

2
+ 2w)µ∗O(t)

for µ∗O(t), which yields the expression in Equation 70. Because the objective function is concave

in µO(t) at every t, we have that this solution corresponds to a maximum. �

Using the differential equations shown in Section 3, this optimization problem can be solved

numerically by the Forward Backward sweep method as in Niyirora and Pender (2016), Qin and

Pender (2017), Lenhart and Workman (2007). We now give two example outputs of this method

below.
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Figure 21 Example Forward Backward Sweep Implementation.

In the scenario on the left, the parameters are as follows: rO, the external entrance revenue rate,

is equal to 100 units of currency per units of time. The revenue per person inside, rI , is equal to

100 units of currency per person. The cost of deviating from the desired admittance rate k, c, is

also 100, whereas k = 8. Finally, the penalty for admitting individuals too quickly, w = 150. On

the right, w is instead 100 and k = 12. These changes have significant impacts on the resulting

solution. On the left the outside queue is allowed to grow roughly three times as large whereas on

the right µO is approximately twice the size of that on the left.

5. Conclusion and Final Remarks

In this paper, we analyze a new infinite server stochastic queueing model that is driven by a Hawkes

arrival process and phase-type distributed service. We are able to derive the exact moments and

moment generating function for the Hawkes driven queue as well as the Hawkes process itself.

Although we have analyzed this queueing model in great detail, there are many extensions that

are worthy of future study. One extension that we intend to explore is the impact of a non-stationary

baseline intensity in the spirit of Massey and Pender (2013), Pender (2014a), Engblom and Pender

(2014), Pender (2016a, 2015a,b, 2016b). In one simple example, we could set the baseline be

λ∗(t) = λ∗ + ρ · sin(t). This analysis of a non-stationary baseline intensity is important not only

because arrival rates of customers are not constant over time, but also because it is important to

know how to distinguish and separate the impact of the time varying arrival rate from the impact

of the stochastic dynamics of the self-excitation. The extension of one periodic function such as

sin(t) seems analytically tractable, however, additional functions may require Fourier analysis.

Other extensions include the modeling of different types of queueing models other than the

infinite server model. For example, it would be interesting to apply our analysis to the Erlang-

A queueing model with abandonments. With regard to obtaining analytical expressions for the
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Erlang-A model, this is a non-trivial problem because even the Erlang-A queueing model with

a Poisson arrival process is analytically somewhat intractable. This presents new challenges for

deriving analytical formulas and approximations for the moment behavior of this type of queueing

model. Work by Massey and Pender (2011), Pender (2014c,b, 2015a, 2016c), Daw and Pender (2017)

shows that simple closure approximations or spectral expansions can be effective at approximating

the dynamics of the Erlang-A model and variants. Thus, a natural extension is to apply these

techniques to the Erlang-A setting when it is driven by a Hawkes process. Not only do these

approximations have the potential to describe the moment dynamics, but they can be used to

stabilize performance measures like in Pender and Massey (2017). A detailed analysis of these

extensions will provide a better understanding how the information that operations managers

provide to their customers will affect the dynamics of these real world systems like in Pender et al.

(2017a, 2018, 2017b). We plan to explore these extensions in subsequent work.
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Appendix
A.1. Auto-covariance of the Hawkes/PH/∞ Queue

Proposition 5. Consider the Hawkes/PH/∞ queue described in Section 3 with sub-generator

matrix S ∈Rn×n such that S+ (β−α)I is nonsingular. Then, for t≥ τ ≥ 0,

Cov [Qt,Qt−τ ] = λ∞
(
−ST

)−1
(
I − eS

Tτ
)
θ

(
λ∞
(
−ST

)−1 (
I − eS

T(t−τ)
)
θ− (λ0−λ∞)

(
ST + (β−α)I

)−1

·
(
e−(β−α)(t−τ)I − eS

T(t−τ)
)
θ

)T

−
(
ST + (β−α)I

)−1
(
e−(β−α)τI − eS

Tτ
)
θ

(
α(2β−α)λ∞

2(β−α)
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·
(
(β−α)I −ST

)−1
(
I − e(ST−(β−α)I)(t−τ)

)
θ− αβ(λ0−λ∞)

β−α
(
ST
)−1
(
e−(β−α)(t−τ)I

− e(ST−(β−α)I)(t−τ)
)
θ+

α2(2λ0−λ∞)

2(β−α)

(
ST + (β−α)I

)−1
(
e−2(β−α)(t−τ)I

− e(ST−(β−α)I)(t−τ)
)
θ+

(
λ∞+ (λ0−λ∞)e−(β−α)(t−τ)

)(
λ∞
(
−ST

)−1 (
I − eS

T(t−τ)
)
θ

− (λ0−λ∞)
(
ST + (β−α)I

)−1 (
e−(β−α)(t−τ)I − eS

T(t−τ)
)
θ
))T

+λ∞
(
ST + (β−α)I

)−1

·
(
e−(β−α)τI − eS

Tτ
)
θ
(
λ∞
(
−ST

)−1 (
I − eS

T(t−τ)
)
θ− (λ0−λ∞)

(
ST + (β−α)I

)−1

·
(
e−(β−α)(t−τ)I − eS

T(t−τ)
)
θ
)T

+
α(2β−α)λ∞

2(β−α)

(
(β−α)I −ST

)−1
eS

Tτ

(
2(β−α)eS

T(t−τ)

·M0,θ,S(t− τ)eS(t−τ) + θθT− eS
T(t−τ)θθTeS(t−τ) + eS

T(t−τ)θθT
(
e−(β−α)(t−τ)I − eS(t−τ)

)
· ((β−α)I +S)−1((β−α)I −S) +

(
(β−α)I −ST

) (
(β−α)I +ST

)−1
(
e−(β−α)(t−τ)I

− eS
T(t−τ)

)
θθTeS(t−τ)

)
((β−α)I −S)

−1
+
αβ(λ0−λ∞)

β−α
(
ST
)−1

eS
Tτ

(
(β−α)eS

T(t−τ)

·M−(β−α),θ,S(t− τ)eS(t−τ) + e−(β−α)(t−τ)θθT− eS
T(t−τ)θθTeS(t−τ)− eS

T(t−τ)θθT

·
(
e−(β−α)(t−τ)I − eS(t−τ)

)
((β−α)I +S)−1S−ST

(
(β−α)I +ST

)−1
(
e−(β−α)(t−τ)I

− eS
T(t−τ)

)
θθTeS(t−τ)

)
S−1− α

2(2λ0−λ∞)

2(β−α)

(
(β−α)I +ST

)−1
eS

Tτ

(
e−2(β−α)(t−τ)θθT

− eS
T(t−τ)θθTeS(t−τ)− eS

T(t−τ)θθT
(
e−(β−α)(t−τ)I − eS(t−τ)

)
−
(
e−(β−α)(t−τ)I − eS

T(t−τ)
)

· θθTeS(t−τ)

)
((β−α)I +S)

−1−λ∞eS
Tτdiag

((
ST
)−1
(
I − eS

T(t−τ)
)
θ
)
− (λ0−λ∞)

· eS
Tτdiag

((
ST + (β−α)I

)−1
(
e−(β−α)(t−τ)I − eS

T(t−τ)
)
θ
)

+
(
λ∞
(
−ST

)−1(
eS

Tτ − I
)
θ

− (λ0−λ∞)
(
ST + (β−α)I

)−1(
e−(β−α)It+(ST+(β−α)I)τI − e−(β−α)tI + eS

Tt− eS
Tt
)
θ
)(
λ∞
(
−ST

)−1

·
(
I − eS

Tt
)
θ− (λ0−λ∞)

(
ST + (β−α)I

)−1(
e−(β−α)tI − eS

Tt
)
θ
)T

.

Proof. The stated result follows directly from substitution of the expressions in Theorem 3

into Equation 61. �


