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Abstract. In this paper, we introduce a new approximation for estimating the dynamics of
multiserver queues with abandonment. The approximation involves a four-dimensional dynamical
system that uses the skewness and kurtosis of the queueing distribution via the Gram Charlier
expansion. We show that the additional information captured in the skewness and kurtosis allows
us to estimate the dynamics of the mean and variance much better than fluid and diffusion limit
theorems or other methods that use only mean and variance behavior. Lastly, our approach also
yields accurate approximations for the probability of delay, which is an important metric for quality
of service.
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1. Introduction. Motivated by the need for better approximations for the per-
formance of small and medium sized service systems, such as emergency care centers
and small data centers, we introduce a new, four-dimensional dynamical system ap-
proximation for queueing systems using the mean, variance, skewness, and kurtosis
of these of dynamic rate Markov processes. Better approximations for these queueing
models are needed as they help managers to optimally staff and accurately maintain
quality of service metrics imposed by service level agreements. Since real service sys-
tems like call centers experience time varying behavior and large arrivals of customers
and have multiple agents ready to deliver service, Markovian service networks are the
class of time inhomogeneous stochastic processes that capture all these dynamics.

Our canonical queueing model assumes the customer arrival process is a nonhomo-
geneous Poisson process. We also have c(t) servers at time t with i.i.d. (independent
identically distributed) service times that are exponentially distributed with time de-
pendent rate μ(t). Finally, all the customers have i.i.d. abandonment times that are
also exponentially distributed with time varying rate β(t). This model is known as
the Mt/Mt/Ct + Mt queueing model, where the +M is included for abandonment.
Using the functional strong law of large numbers (FSLLN) developed for our family of
Markovian service networks in Mandelbaum, Massey, and Reiman [8], one can show
that the limiting behavior of Markovian service networks can be described by a de-
terministic nonlinear ordinary differential equation. A more refined functional central
limit theorem (FCLT), also developed in [8], yields that the behavior of the network
can be described by a Gaussian diffusion that solves a stochastic differential equation.

The Gaussian diffusion from the FCLT relies on the fact that the amount of time
that the mean number of customers is equal to the number of servers is of measure
zero. However, when the mean number of customers lingers around the number of
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agents, the limiting diffusion is not as good an approximation of the unscaled queueing
process. Numerical examples fromMandelbaum et al. [9] support these limit theorems
for when the number of arrivals and the number of servers are large. However, the
authors of [9] note that the fluid and diffusion limits do not approximate the simulated
queueing dynamics well in the critically loaded regime where the number of servers is
equal to the mean number in the system, i.e., q = c or when the numbers of arrivals
and servers are small. Some might think that the condition q = c might have measure
zero; however, if one considers optimal control of queueing systems via fluid limits,
such as in the work of Hampshire and coworkers [3, 4], the optimal staffing policy
c∗ = q forces the dynamics of the queueing system in the critical region. Thus, it is
important to have accurate dynamics of the queueing process in order to yield reliable
staffing procedures and policies.

To address some of these concerns Ko and Gautam [7] developed a Gaussian
smoothing technique to better approximate the mean and variance of the original
queueing system. Since the rate functions of the queueing system are not smooth,
they propose mollifying them with a Gaussian density. Using this approach they show
that they can improve the approximation of the mean behavior; however, they indicate
that the variance still needs some improvement in the critically loaded regions. Thus,
the method of [7] implicitly assumes that the distribution is symmetric. However,
since the queueing process distribution lies on the positive real line and is unbounded,
the distribution should be asymmetric. This would imply that the distribution has
nonzero skewness and kurtosis values, which a Gaussian distribution cannot replicate.

The present work summarizes and extends [7] as follows. First, we summarize
their results using the moment-forward equations for the actual queueing process.
Second, we impose a new distribution on the queue length, which we believe to be
quite natural given the work of [7]. In fact, our approximate distribution for the
queue length is constructed by using a Gram Charlier expansion with a Gaussian ref-
erence density. We choose to use only the skewness and kurtosis terms as refinements
as they are the most relevant to the queueing process behavior. We then use the
skewness and kurtosis to correct the estimates of the mean and variance of the queue
system in the critical regions where it is not approximated very well. Our simulation
experiments show that our method outperforms the method of [7] significantly. We
should also mention that recent work by Massey and Pender [10, 11] uses a Hermite
polynomial expansion for the queueing process to model the non-Gaussian behavior
of the queueing process. However, our work is different and complementary. Massey
and Pender [11] provide a truncated Hermite polynomial L2 expansion of the queue-
ing process, while we provide an L2 expansion of the queue length density. Using
the Gram Charlier expansion allows us to explore higher cumulant moments using
standard asymptotic techniques and yields much simpler approximations than the
method of [11], which relies on the computation of polynomial roots. Moreover, our
correction terms are linear in the skewness and kurtosis parameters, while they are
nonlinear in [11]. Lastly, we explore the kurtosis of the queueing process, which is not
explored in any of the previous literature.

In addition to estimating the time varying moments, we are able to estimate the
probability of delay. To this end, there has been an explosion of research that is
dedicated to refining square root staffing procedures or analyzing asymptotic expan-
sions for Poisson processes; see, for instance, Janssen, van Leeuwaarden, and Zwart
[5, 6] and Zhang et al. [16]. However, much of the research has focused on time
homogeneous queueing models. This is because in the time homogeneous models,
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1240 JAMOL PENDER

one can exploit rigorous asymptotic expansions for the Poisson process and use these
asymptotic expansions for refining the probability of delay for the queueing models.
For time inhomogeneous models, these asymptotic expansions are not warranted, and
new approaches are needed to address the staffing issues. To address this we show
that, using the Gram Charlier expansions with skewness and kurtosis corrections, we
are better able to estimate the probability of delay in our time varying queueing sys-
tems. Finally, these approximations help us save substantial computational time since
it is now unnecessary to simulate the queueing processes to obtain approximate per-
formance measures. Instead, one can numerically integrate four differential equations
and obtain accurate information regarding the stochastic behavior of our queueing
model in much less time.

1.1. Contributions. To the best of our knowledge our contributions in this
work are the following:

• We obtain very accurate estimates for the mean and variance of theMt/Mt/Ct

+Mt queue in critical regions.
• We show how higher order moments of the Mt/Mt/Ct + Mt queue can add
valuable information for the mean and variance behavior and show that in
some cases it is not sufficient to use fluid and diffusion limits without adjust-
ments.

• We give explicit approximations for the mean, variance, skewness, kurtosis,
and probability of delay for the Mt/Mt/Ct + Mt queue via Gram Charlier
expansions and reduce much of the stochastic dynamics to the numerical
integration of four differential equations.

1.2. Organization of the paper. The rest of the paper continues as follows. In
section 2, we review our queueing model and the associated fluid and diffusion limits
derived in [8]. We also provide expressions for the functional Kolmogorov forward
equations for our queueing model. In section 3, we give a summary of previous
methods that analyze the dynamics of mean and variance using these methods. In
section 4, we give a summary of the Gram Charlier expansion and give insight into
why we use it. In section 5, we illustrate how the skewness helps in estimating the
mean and variance behavior of our queueing process. In section 6, we analyze how
the kurtosis affects the estimation of the queueing process dynamics. In section 7, we
show how to use the skewness and kurtosis corrections to estimate the probability of
delay. In section 8, we give more numerical examples to show that our method works
in a variety of parameter settings. In section 9, we give concluding remarks and some
simple extensions to other types of Markovian queueing models that are important
in the literature. Lastly, in Appendix A we provide the proofs of our main theorems
and lemmas that are needed to construct the approximations of the paper.

2. Analysis of time varying Erlang-A model. Motivated by small and
medium sized health care centers and data centers, we study methods for approx-
imating the transient and time varying behavior of a multiserver queue with aban-
donment. Mandelbaum, Massey, and Reiman [8] showed that the Mt/Mt/Ct + Mt

queueing system process {Q(t)|t ≥ 0} is represented by the following equation:

Q(t) = Q(0) +Π1

(∫ t

0

λ(s)ds

)
−Π2

(∫ t

0

μ · (Q(s) ∧ c(s))ds

)

−Π3

(∫ t

0

β · (Q(s)− c(s))+ds

)
,
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Fig. 1. Left: Simulation of mean and variance of the queueing process. Right: Simulation of
skewness and kurtosis of the queueing process.

where Πi ≡ {Πi(t)|t ≥ 0} for i = 1, 2, 3 are i.i.d. standard (rate 1) Poisson processes.
A deterministic time change for Π1 transforms it into a nonhomogeneous Poisson
arrival process with rate λ(t). Thus, Π1(

∫ t

0
λ(s)ds) serves to count the number of

customers that have arrived to the queue within the interval (0, t]. Moreover, if we
subject Π2 to a random time change, Π2 counts the number of service departures
from c(s) servers and an exponentially distributed service times function of rate μ(t).
Lastly, if we subject Π3 to a random time change, then Π3 represents the number of
abandonments from c(t) servers and exponentially distributed abandonment times of
rate β(t). Since our process is a linear combination of Poisson random measures and is
Markovian, the Mt/Mt/Ct+Mt queueing model is an example of a Markovian service
network, which was studied extensively in [8]. The primary numerical example that
we study in this paper to demonstrate the usefulness of our approximation methods
has an arrival rate of λ(t) = 10 + 5 sin(t), a service rate of μ = 1, an abandonment
rate of β = .05, and c = 10 servers. Moreover, we simulate our queueing model over
the time interval (0, 20] for 105 independent sample paths.

In Figure 1(left) is a plot of the simulated mean E[Q(t)] and variance Var[Q(t)] of
our queueing process. In Figure 1(right) we plot the simulated values of the skewness
Skew[Q(t)] and kurtosis Kur[Q(t)] of the queueing system. The skewness and kurtosis
are related to the third and fourth cumulant moments and are given by the formulas
(2.1)

Skew[Q(t)] =
E[(Q(t)− E[Q(t)])3]

Var[Q(t)]3/2
and Kur[Q(t)] =

E[(Q(t)− E[Q(t)])4]

Var[Q(t)]2
− 3.

As Figure 1(right) shows, the skewness and kurtosis are nonzero quantities. Since
the skewness and kurtosis for a Gaussian random variable are defined to be zero,
Figure 1(right) gives us supporting evidence that the queueing process distribution
is non-Gaussian. However, one also observes from Figure 1 that while the skewness
and kurtosis are nonzero, they are not extremely large quantities. Since they are
not large, this gives us some confidence that using asymptotic expansions around a
Gaussian distribution might be reasonable. Moreover, the skewness and kurtosis have
the potential to give us valuable information about the properties of our queueing
distribution. In fact, compared to a Gaussian distribution, the skewness can tell us
whether the median of the queueing distribution is to the left or right of the mean of
the distribution, and the kurtosis can provide information on the peakedness of the
distribution. The skewness is especially important since the real queueing process is
nonnegative, unbounded, and asymmetric, while the Gaussian distribution can realize
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negative values and is symmetric around the mean. Thus, the skewness is critical in
capturing asymmetries of the queueing distributions. Although the skewness and
kurtosis are important statistical and mathematical quantities, they also have some
practical value because they can help managers adjust or refine the staffing levels
appropriately according to the information about the values of the skewness and
kurtosis. In fact when the skewness and kurtosis are near zero, they validate the use
of the Gaussian approximations. However, when they are away from zero, they can
serve to refine Gaussian behavior predicted from rigorous limit theorems.

To understand the time varying dynamics of our queueing model it is necessary to
study its cumulant moment behavior. In this paper, we study the time derivatives of
the mean, the variance, the third cumulant moment, and the fourth cumulant moment,
which in turn gives us important information about the average number of customers
in the queue, the deviations from the mean, whether the queueing distribution is
skewed to the left or right of the mean, and the peakedness of the queueing distribu-
tion, respectively. To study the behavior of the cumulant moments, we choose to use
the functional version of the Kolmogorov forward equations for the Mt/Mt/Ct +Mt

queue, which are of the form

•
E[f(Q)] = λ · E[f(Q+ 1)− f(Q)] + μ ·E[(Q ∧ c) · (f(Q− 1)− f(Q))]

+β ·E[(Q − c)+ · (f(Q− 1)− f(Q))].

For the special cases of the mean, variance, third cumulant moment, and fourth
cumulant moment, we obtain the following set of differential equations:

•
E[Q] = λ− μ ·E[Q ∧ c]− β ·E[(Q − c)+],
•

Var[Q] = λ+μ · E[Q ∧ c]+β · E[(Q−c)+]−2
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
,

•
C[3]

[Q] = λ−μ · E[Q ∧ c]−β · E[(Q−c)+]+3
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
− 3

(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])
,

•
C [4][Q] = λ+ μ ·E [Q ∧ c] + β ·E [(Q− c)+

]
− 4 · (μ · Cov [Q,Q ∧ c] + β · Cov [Q, (Q− c)+

])
+ 6 ·

(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])
− 4 ·

(
μ · Cov

[
Q

3
, Q ∧ c

]
+ β · Cov

[
Q

3
, (Q− c)+

])
+ 12 · (μ · Var[Q] · Cov [Q,Q ∧ c] + β ·Var[Q] · Cov [Q, (Q− c)+

])
,

where Q = Q− E[Q].
In addition to having an expression for the dynamics for the cumulant moments for

the queueing process, one can also derive several asymptotic limits for the Markovian
multiserver queue with abandonment. In the seminal paper [8] it was shown that the
Markovian multiserver queue with abandonment has fluid and diffusion limits, i.e.,

(2.2)
1

η
Qη = q a.s. u.o.c. and

√
η ·
(
1

η
Qη − q

)
d⇒ Q̂,

where the fluid mean q is governed by the one-dimensional dynamical system

(2.3)
•
q = λ− μ · (q ∧ c)− β · (q − c)+.
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Fig. 2. Left: Comparisons of simulated mean and its fluid limit. Right: Comparisons of
simulated variance and diffusion limit.

It can be shown that the fluid mean q has three basic modes of operation. When the
mean number of the system represented by q is less than the number of servers c, we
say that the system is underloaded. Conversely, when q is greater than the number of
servers c, we say that the system is overloaded. Lastly, when q = c, we say the system
is critically loaded. Moreover, if we make the assumption that the set {t|q(t) = c}
has measure zero, then Q̂ is a Gaussian diffusion whose variance v ≡ Var[Q̂] combines
with the fluid mean to form a two-dimensional dynamical system given by (2.3) and

(2.4)
•
v = λ+ μ · (q ∧ c) + β · (q − c)+ − 2 · v · (μ · {q < c}+ β · {q ≥ c}) ,

where {q < c} denotes an indicator function equaling one if q < c and zero otherwise.
Remark 2.1. It is important to note that the fluid and diffusion limits are a

partially coupled system. Although the variance is a function of the mean, the mean
or fluid limit equation (2.3) is independent of the variance behavior. Thus, for small
η, where it might be useful for the mean dynamics to have some information about
the distributional behavior of the queueing process, the fluid limit does not depend
on any information other than the mean behavior of the queueing process, which is
quite limiting.

Remark 2.2. When our queueing system is extremely underloaded it behaves
like an infinite server queue, which has a Poisson transient distribution. A Poisson
distribution is characterized by all of its cumulant moments equaling its mean, which
forces the fluid mean and the diffusion variance to be equal, i.e., q = v. In the context
of dispersion theory, the underloaded system is neither overdispersed or underdis-
persed. However, in other regions where the queue does not behave like an infinite
server queue, we do not in general have that q = v. Thus, when q > v, we have
that the queue is underdispersed, and when q < v, the queue length distribution is
overdispersed.

In the left and right of Figure 2, we compare simulations of the mean and variance
of the queueing process to its fluid limit and diffusion limit, respectively. We use the
fluid limit as an approximation for the mean and the diffusion limit variance as an
approximation to the variance. In this example, the fluid limit is a good approximation
to the dynamics of the mean, but seems to underestimate the queue length most of the
time. The diffusion variance does not work quite as well, especially the kinked areas
where the simulated mean is equal to the number of servers. Thus, for small values
of η, the fluid and diffusion limits may not be the best approximations for estimating
the dynamics of the queueing system as they were intended for large values of η. This
inaccuracy in the small η case motivates the rest of the paper.
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3. Summary of previous methods. Now armed with the Kolmogorov forward
equations, we are ready to use them to model the stochastic behavior of our queueing
model. However, upon inspection of the forward equations, one notices that they are
not an autonomous system unless c = ∞. This means that we cannot compute the
expectations or covariance terms that define the dynamics. Thus, we are forced to
assume an underlying distribution for our stochastic queueing process. If we assume a
particular distribution, we are able to compute the expectation and covariance terms
and close the system, thus making it autonomous. This closure approximation is not
new in the queueing theory literature; see, for instance, Rothkopf and Oren [13] as
well as Taaffe and Ong [15]. However, one reason our closure approximation method
is different is that it is motivated from the fluid and diffusion limits. Moreover, we
use a continuous, rather than a discrete, distribution for our underlying queueing
distribution. This is also motivated from the fluid and diffusion limits, as the limiting
distribution is Gaussian under appropriate scalings. Similar to [11], we will motivate
our estimation procedures via a series of approximations that are special cases of our
general method.

3.1. Deterministic mean approximation. For the first approximation of our
queueing process, we define the deterministic mean approximation (DMA) by assum-
ing {q(t)|t ≥ 0} is a deterministic process that approximates the queueing process.
In this approximation, we assume that Q ≈ q, and we replace Q in the Kolmogorov
forward equation by the mean of Q, which is q. Thus, the mean solves the following
autonomous, one-dimensional, dynamical system:

•
q = λ− μ · (q ∧ c)− β · (q − c)+.(3.1)

Since we approximate the stochastic process by a deterministic one, we implicitly
assume that the higher cumulant moments are identically zero. Moreover, one should
note that the deterministic mean approximation is also equivalent to the fluid limit
given by (2.3). Although the DMA gives us information about the predictable varia-
tion of the stochastic queueing process, it does not give us any information about the
variations of our queueing process since it implicitly assumes that the variations are
zero.

3.2. Gaussian variance approximation. Unlike the DMA, we now assume
that our queueing model follows a Gaussian distribution. This approximation, i.e.,
the Gaussian variance approximation (GVA), was first developed by Ko and Gautam
[7], and further expanded by Massey and Pender [11], although we should mention
that [7] did not use the functional forward equations to derive their approximation.
In [11], it was shown that the functional forward equations approach is equivalent to
the Gaussian mollifier approach used by [7]. The Gaussian distribution assumption
on the queue length is equivalent to

(3.2) Q(t)
d
= q(t) +X ·

√
v(t)

for all t ≥ 0, where {q(t), v(t)|t ≥ 0} is some two-dimensional dynamical system where
the v process is always positive and X is a standard Gaussian random variable. The
functional forward equations for the mean and variance of the queue length process
Q are

(3.3)
•
E[Q] = λ− (μ ·E[Q ∧ c] + β ·E[(Q − c)+]

)
,
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Fig. 3. Left: Comparison of simulation, fluid, and GVA means. Right: Comparison of simu-
lation, diffusion, and GVA variances.

(3.4)
•

Var[Q] = λ+μ·E[Q∧c]+β ·E[(Q−c)+ ]−2
(
μ · Cov[Q,Q ∧ c] + β · Cov[Q, (Q− c)+]

)
.

Now if we define the variable χ = c−q√
v
, we get the following differential equations

for the mean and variance of the queueing process under the distributional assump-
tions of GVA:

•
E[Q] = λ− (μ · √v · E[X ∧ χ] + β · √v · E[(X − χ)+]

)
,

•
Var[Q] = λ+ μ · √v ·E[X ∧ χ] + β · √v · E[(X − χ)+]

− 2
(
μ · v · Cov[X,X ∧ χ] + β · v · Cov[X, (X − χ)+]

)
.

Thus, in order to understand the dynamics via numerical integration, it only
remains to compute closed form expressions for the expectations and covariance terms
in the cumulant moment forward equations. Like [11], we resort to using Stein’s lemma
to derive the expectations and covariance terms. The use of Stein’s lemma [14] yields
the following equations for the mean and variance dynamics of our queueing process:

•
E[Q] = λ− μ · q +√

v · (μ− β) · (φ(χ)− χ · Φ(χ)) ,
•

Var[Q] = λ+ μ · q −√
v · (μ− β) · (φ(χ)− χ · Φ(χ))− 2 · v · (μ · Φ(χ) + β · Φ(χ)) .

Unlike the DMA, the GVA derives equations that are different from the fluid and
diffusion limits. Not only are the mean and variance equations different, but also
they are fully coupled to one another. This implies that the mean is incorporating
information from the variance. Thus, we expect that the mean dynamics of the GVA
should be different and better than the fluid limits or the DMA.

In Figure 3, we compare the fluid and diffusion limits derived in [8] with the
GVA method, and we see that GVA does a better job of estimating the mean and
variance dynamics of the true queueing process. It improves the variance and does
a better job at approximating the mean behavior. This confirms the fact that the
mean equation is obtaining more information by using the distributional information
of the queueing model. Although GVA does a much better job of approximating the
true behavior of our queueing model than the fluid and diffusion limits, it still needs
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1246 JAMOL PENDER

some improvement for its estimate for the variance. The inaccuracy of the variance
motivates the next section which introduces our method, the Gram Charlier series
expansion.

4. Gram Charlier expansion technique. In this section, we introduce our
new approximation method for estimating the time varying dynamics of our queueing
process. We do not know the true density of the time varying queueing process,
but our idea is to use a statistical series expansion of the queueing distribution to
derive an approximation of the true queueing process distribution. Suppose that the
true distribution of our queueing process is a continuous function τ(x). Using this
distribution, we can calculate the moment generating function as

M(t) =

∫ ∞

−∞
τ(x)etxdx.(4.1)

Moreover, the moment generating function has a Taylor series expansion of the form

M(t) =

∞∑
n=0

mn · t
n

n!
,(4.2)

where the moments mn are defined as

mn =

∫ ∞

−∞
xn · τ(x)dx.(4.3)

Although the moments are important quantities, it is often convenient to use the
cumulant generating function K(t), which is the logarithm of the moment generating
function, i.e.,

K(t) = log (M(t)) .(4.4)

Like the moment generating function, the cumulant generating function also has a
Taylor series expansion, which is of the form

K(t) =

∞∑
n=1

κn · t
n

n!
.(4.5)

In fact, by differentiating in the time variable and setting t = 0, we see that moments
are related to the cumulant moments by the following expression:

mn+1 =

n∑
j=0

(
n

j

)
mn−j · κj+1.(4.6)

Now that we have an understanding of the cumulant generating function, we can use
it to construct the Gram Charlier expansion using a finite number of terms. Using
Fourier transform techniques, we can write the true density as

τ(x) = F−1 (M(it))(4.7)

=
1

2 · π
∫ ∞

−∞
M(it) · e−itxdt,(4.8)
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where F−1 is defined as the inverse Fourier transform and where we now define M(it)
as

M(it) =

∫ ∞

−∞
τ(x)eitxdx.(4.9)

Now if we use the cumulant moment representation for M(it) and note that the true
probability distribution is a real function, then we have that the true distribution has
the representation

τ(x) =
1

2 · π
∫ ∞

−∞
M(it) · e−itxdt

=
1

2 · π
∫ ∞

−∞
exp

( ∞∑
n=1

κn · (it)
n

n!

)
· e−itxdt

=
1

2·π
∫ ∞

−∞
exp

⎛
⎝ ∞∑

j=1

(−1)j ·κ2j · t2j

(2j)!

⎞
⎠ · cos

⎛
⎝xt+

∞∑
j=1

(−1)j ·κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠dt

=
1

π

∫ ∞

0

exp

⎛
⎝ ∞∑

j=1

(−1)j ·κ2j · t2j

(2j)!

⎞
⎠ · cos

⎛
⎝xt+

∞∑
j=1

(−1)j ·κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠dt.

Now suppose that only the first two cumulant moments are nonzero. This gives
us the following integral representation for the true distribution as

τ(x) =
1

π

∫ ∞

0

exp

(
−1

2
κ2 · t2

)
· cos (xt− κ1 · t) dt

=
1√

2π · κ2
exp

(
−1

2

(
x− κ1√

κ2

)2
)
,

which is the Gaussian distribution with mean κ1 and standard deviation κ2.
However, it is often the case that two cumulant moments are not sufficient to

accurately approximate a distribution; thus if we add more cumulant moments, we
get the following expression for the true density τ(x) by using the properties of the
exponential function and Euler’s formula:

τ(x) =
1

2π

∫ ∞

−∞
exp

⎛
⎝ ∞∑

j=1

(−1)j ·κ2j · t2j

(2j)!

⎞
⎠ · cos

⎛
⎝xt−

∞∑
j=1

(−1)j ·κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠dt

=
1

2π

∫ ∞

−∞
exp

(
−κ2t

2

2

)
· cos (xt− κ1 · t) · exp

⎛
⎝ ∞∑

j=2

(−1)j · κ2j · t2j

(2j)!

⎞
⎠

· cos
⎛
⎝ ∞∑

j=2

(−1)j · κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠ dt

− 1

2π

∫ ∞

−∞
exp

(
−κ2t

2

2

)
· sin (xt− κ1 · t) · exp

⎛
⎝ ∞∑

j=2

(−1)j · κ2j · t2j

(2j)!

⎞
⎠

· sin
⎛
⎝ ∞∑

j=2

(−1)j · κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠ dt.
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1248 JAMOL PENDER

Now to derive the Gram Charlier expansion, we must expand the functions

(4.10) exp

⎛
⎝ ∞∑

j=2

(−1)j · κ2j · t2j

(2j)!

⎞
⎠ · cos

⎛
⎝ ∞∑

j=2

(−1)j · κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠

and

(4.11) exp

⎛
⎝ ∞∑

j=2

(−1)j · κ2j · t2j

(2j)!

⎞
⎠ · sin

⎛
⎝ ∞∑

j=2

(−1)j · κ2j−1 · t2j−1

(2j − 1)!

⎞
⎠

using a Taylor series expansion around t = 0. By using this expansion and setting
to zero all cumulant moment terms greater than four, we derive the Gram Charlier
expansion

τ(x) ≈ φ(x) +
κ3

3! · κ1.5
2

· h3(x) · φ(x) + κ4

4! · κ2
2

· h4(x) · φ(x),(4.12)

where hj(x) is the jth Hermite polynomial and φ is the Gaussian density. A brief
introduction to the Hermite polynomials is given in Appendix A.

4.1. Convergence of the Gram Charlier expansion. It is important to note
that the error of the expansion in (4.12) does not necessarily converge uniformly to
zero as we add more terms to the series. This implies that (4.12) is not a true
asymptotic expansion. However, there exists a rigorous asymptotic series expansion
where the error term does converge uniformly to zero as we add more terms. This
expansion is known as the Edgeworth series expansion and can be expressed as

τ(x) = φ(x) +
κ3

3! · κ1.5
2

· h3(x) · φ(x) + κ4

4! · κ2
2

· h4(x) · φ(x)(4.13)

+
10 · κ2

3

6! · κ3
2

· h6(x) · φ(x) + ε(x).

Although the two expansions given in (4.12) and (4.13) differ by one term, neither
expansion has theoretical superiority over the other due to the different moment
assumptions needed to derive the expansion. However, for the remainder of the paper,
we will consider (4.12) as the approximation to our true density.

5. Gram Charlier skewness approximation. In this section, we introduce
our first new method for modeling the dynamics of our queueing process called the
Gram Charlier skewness approximation (GCS). The Gram Charlier expansion method
has been used successfully in the mathematical finance literature to accurately price
stock options using the Black–Scholes model as a base model; see, for example, Cor-
rado and Su [1], who use the skewness seen in financial returns to correctly price
option prices seen in the current market. In the same spirit our method is a natural
extension of the GVA method because we expand the true density around the Gaus-
sian density. Our goal is to use the skewness of the queueing process to correct the
mean and variance behavior of the queueing dynamics. Using the same methodology
as [1], we assume that our queueing process under the GCS method has the following
approximate density:

φSkew(x) = φ(x) ·
(
1 +

κ3

3! ·
√
v3

· h3(x)

)
= φGVA(x) + φGCS(x),(5.1)

where {q, v, κ3} are the mean, variance, and third cumulant moment of the queueing
process and h3(x) is a Hermite polynomial of order 3. This representation of the
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Fig. 4. Left: Comparison of simulated, GVA, and GCS means. Right: Relative error of means
using GVA and GCS approximations.

density also shows that the GCS method is a perturbation of the GVA method, which
adds the skewness of the queueing system. We will show that the skewness will allow
us to better estimate the mean and variance dynamics of the queueing system with
our first main theorem.

Theorem 5.1. Using the density given in (5.1) for the distribution of our queue-
ing system, we have the following equations for the mean, variance, and third cumulant
moment of our multiserver queue with abandonment:

•
E[Q] = λ− μ · E[Q ∧ c]− β · E[(Q− c)+],
•

Var[Q]=λ+μ ·E[Q ∧ c]+β ·E[(Q−c)+]−2
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
,

•
C[3]

[Q]=λ−μ ·E[Q ∧ c]−β ·E[(Q − c)+]+3
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
−3
(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])
,

where we have the following expressions for the unknown expectations and covariances:

E [(Q ∧ c)] = q
√
v ·φ(χ)+χ·√v ·Φ(χ)−χ · φ(χ) · κ3

6 · v ,

E
[
(Q− c)+

]
=

√
v · φ(χ) − χ · √v · Φ(χ) + χ · φ(χ) · κ3

6 · v ,

Cov
[
Q, (Q− c)+

]
= v · Φ(χ) + (χ2 + 2) · φ(χ) · κ3

6
√
v

,

Cov [Q, (Q ∧ c)] = v · Φ(χ)− (χ2 + 2) · φ(χ) · κ3

6
√
v

,

Cov
[
Q

2
, (Q − c)+

]
=

√
v3 · φ(χ) + κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)] ,

Cov
[
Q

2
, (Q ∧ c)

]
= κ3 −

√
v3 · φ(χ) − κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)] .

Proof. See Appendix A.

5.1. GCS numerical results. In Figure 4(left), we compare the simulated
mean with its estimates using GVA and GCS methods. Our new GCS method does
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1250 JAMOL PENDER

Fig. 5. Left: Comparison of simulated, GVA, and GCS variances. Right: Relative error of
variances using GVA and GCS approximations.

a slightly better job at estimating the mean behavior of the queueing process. This
slight improvement is easier to see with the graph in Figure 4(right) which plots over
time the logarithm (base 10) of the relative errors of both GVA and GCS versus the
simulated mean.

In Figure 5(left), we also compare the simulated variance with its estimates using
the GVA and GCS methods. Unlike the mean behavior, we can even see an improve-
ment of the estimates of the variance without resorting to the relative error. However,
we also show in Figure 5(right) that the GCS method does a significantly better job of
approximating the variance dynamics of the queueing system when we use the relative
error comparison. These results show that the skewness provides valuable informa-
tion about the mean and variance of our stochastic process and should be taken into
consideration more often.

Lastly, in Figure 6 we compute the L1 norm of the error over time. It is easy
to see that the GCS method does a better job than GVA of reducing the error from
approximating the real system over longer periods of time. It is a slight improvement
for the mean behavior, but it is a significant improvement for the variance. It is
apparent that the skewness can add valuable information to the understanding of the
dynamics of our queueing system. We expect that the kurtosis will add a smaller
amount of information about our queueing system, but how small is it?

6. Gram Charlier kurtosis approximation. For this section, we again add
another term to our Gram Charlier expansion to capture the kurtosis of our queueing
system. We call this new approximation the Gram Charlier kurtosis approximation
(GCK). Similarly to the GCS method, we hope that adding another term will further
refine our approximations for the mean, variance, and skewness of the queueing model.
This will help us attain even better estimates for the mean, variance, and skewness,
which can be used for better staffing and optimization purposes. For the GCK method,
we assume that our queueing process has the following approximate density:

φKur(x) = φ(x) ·
(
1 +

κ3

3! ·
√
v3

· h3(x) +
κ4

4! · v2 · h4(x)

)
(6.1)

= φGV A(x) + φGCS(x) + φGCK(x).

Using the GCK approximation as the model for our queueing dynamics allows us
to give our next main approximation result.

Theorem 6.1. Using the approximate density given in (6.1), we have the follow-
ing equations for the mean, variance, third cumulant moment, and fourth moment of
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our multiserver queue with abandonment:

•
E[Q] = λ− μ ·E[Q ∧ c]− β ·E[(Q − c)+],
•

Var[Q]=λ+μ · E[Q ∧ c]+β ·E[(Q − c)+]−2
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
,

•
C[3]

[Q]=λ−μ · E[Q ∧ c]−β ·E[(Q−c)+]+3
(
μ · Cov[Q,Q ∧ c]+β · Cov[Q, (Q−c)+]

)
− 3

(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])
,

•
C [4][Q] = λ+ μ ·E [Q ∧ c] + β ·E [(Q− c)+

]
− 4 · (μ · Cov [Q,Q ∧ c] + β · Cov [Q, (Q− c)+

])
+ 6 ·

(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])
− 4 ·

(
μ · Cov

[
Q

3
, Q ∧ c

]
+ β · Cov

[
Q

3
, (Q− c)+

])
+ 12 · (μ · Var[Q] · Cov [Q,Q ∧ c] + β ·Var[Q] · Cov [Q, (Q− c)+

])
,

where we have the following expressions for the unknown expectations and covariances:

E [(Q ∧ c)]=q−√
v · φ(χ)+χ · √v · Φ(χ)−χ · φ(χ) · κ3

6 · v − (χ2 − 1) · φ(χ) · κ4

6 ·
√
v3

,

E
[
(Q− c)+

]
=

√
v · φ(χ)− χ · √v · Φ(χ) + χ · φ(χ) · κ3

6 · v +
(χ2 − 1) · φ(χ) · κ4

6 · √v3
,

Cov
[
Q, (Q− c)+

]
= v · Φ(χ) + (χ2 + 2) · φ(χ) · κ3

6 · √v
+

(χ3 + χ) · φ(χ) · κ4

24 · v ,

Cov [Q, (Q ∧ c)] = v · Φ(χ)− (χ2 + 2) · φ(χ) · κ3

6 · √v
− (χ3 + χ) · φ(χ) · κ4

24 · v ,

Cov
[
Q

2
, (Q− c)+

]
=

√
v3 · φ(χ) + κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]

+
κ4

24 · √v
· (χ4 + 3 · χ2 + 6) · φ(χ),

Cov
[
Q

2
, (Q ∧ c)

]
= κ3 −

√
v3 · φ(χ)− κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]

− κ4

24 · √v
· (χ4 + 3 · χ2 + 6) · φ(χ),

Cov
[
Q

3
, (Q− c)+

]
= v2 · ((χ2 + 1) · φ(χ))+ 3 · v2 · Φ(χ)

+
κ3 · √v

6
· ((h4(χ) + 12 · h2(χ) + 27) · φ(χ))

+
κ4

24 · v2 ·
√
v3 ·((h5(χ)+15·h3(χ)+48 · h1(χ))·φ(χ)+24·Φ(χ)) ,

Cov
[
Q

3
, (Q ∧ c)

]
= 3 · v2 + κ4 − Cov

[
Q

3
, (Q− c)+

]
.

Proof. See Appendix A.

6.1. GCK numerical results. In Figure 7(left), we compare the simulated
mean with its estimates using GCS and GCK methods. Our new GCK method
does a slightly better job at estimating the mean behavior of the queueing process.
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Fig. 6. Left: Comparisons of L1 norm of fluid, GVA, and GCS versus simulation means.
Right: Comparisons of L1 norm of diffusion, GVA, and GCS versus simulation variances.

Fig. 7. Left: Comparison of GCS and GCK means. Right: Relative error of means using GCS
and GCK approximations.

This slight improvement is easier to see in Figure 7(right), which plots over time the
logarithm of the relative errors of both GCS and GCK versus the simulated mean.

In Figure 8(left), we also compare the simulated variance with its estimates using
the GCS and GCK methods. Since the GCS did a decent job of approximating the
variance, we have to resort to looking at the relative error in Figure 8(right). By
adding the kurtosis, we can see that the GCK method is approximating the variance
behavior better than the GCS. These results indicate that the kurtosis provides valu-
able information about the variance of our stochastic process and, like the skewness,
should be analyzed more often in the literature.

In Figure 9, we compute the L1 norm of the error over time of the GCS and
GCK methods. It is easy to see that the GCK method does a better job than GCS
of reducing the error from approximating the real system over longer periods of time.
This is because we are adding more stochastic behavior to the model via the kurtosis.
This also shows that our method is more stable over time.

In Figure 10, we compare the skewness generated by our simulation, GCS, and
GCK. It is clear from the left and right plots that the GCK method is doing a better
job of approximating the dynamics of the skewness. This is important because we use
the skewness in the GCS method, so if we have better estimates for the skewness, we
can get better corrections for the mean and variance as well, which is what we saw
in the previous plots. In Figure 10(right), we see that GCK is doing a good job of
approximating the kurtosis as well. It does not do a good job in the initial transient
phase; however, it does well as time progresses.
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Fig. 8. Left: Comparison of GCS and GCK variances. Right: Relative error of variances using
GCS and GCK approximations.

Fig. 9. Left: Comparisons of L1 norm GCS and GCK versus simulation means. Right:
Comparisons of L1 norm of GCS and GCK versus simulation variances.

7. Performance measure approximations: Probability of delay.

7.0.1. Probability of delay for GVA, GCS, and GCK methods. By using
the GVA, GCS, and GCK approximations for our queueing process we can also derive
an approximate formula for the probability of delay or the probability that a customer
who enters the queue at time t will have to wait for service. For GCK, the probability
of delay is

P(Q ≥ c) = EKur[{X ≥ χ}]
= EGVA[{X ≥ χ}] + EGCS[{X ≥ χ]}+ EGCK [{X ≥ χ}]
= Φ(χ) + (χ2 − 1) · φ(χ) · κ3

6 ·
√
v3

+ (χ3 − 3 · χ) · φ(χ) · κ4

24 · v2 .

Like the density, the GCK approximation for the probability of delay is a perturbation
of the probability of delay of the GCS, which includes the kurtosis. Thus, if the
kurtosis is set to be zero, we get back the GCS probability of delay and, if we also set
the skewness to zero, we get the GVA probability of delay. In fact, the perturbations of
the skewness and kurtosis terms correspond to the second and third order Edgeworth
expansion terms, respectively.

Moreover, in Figure 11, we also simulated the probability of delay for the queue-
ing system and compared it with the different approximations via our Edgeworth
expansion. In Figure 11(right) via our L1 norm comparison, we see that the GCK
method outperforms the GCS and GVA methods when approximating this important
probabilistic metric.
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1254 JAMOL PENDER

Fig. 10. Left: Simulated skewness, GCS, and GCK approximations. Right: Simulated kurtosis
and GCK approximation.

Fig. 11. Left: Comparisons of the simulated probability of delay against GVA, GCS, and GCK.
Right: Comparisons of the L1 norm of the simulated probability of delay against GVA, GCS, and
GCK.

7.1. Special case μ = β and constant arrival rate λ. In the special case
that μ = β, our queueing process dynamics reduces to that of an infinite server queue.
This is because we have the following relationship when μ = β:

(7.1) μ · E[Q ∧ c] + β · E[(Q− c)+] = μ ·E[Q] = β ·E[Q].

We know that the infinite server queue when initialized with zero customers has a
Poisson distribution with rate λ

μ for fixed t. One property of the Poisson distribution
is that all of the cumulant moments are equivalent to its mean. This implies that the
mean is equivalent to the variance. Using this property one can show that the Berry–
Esseen bound and central limit theorem imply that

(7.2) P (Q ≤ c) = Φ(χ) +O(λ−1/2) as λ → ∞.

In fact using the Edgeworth expansion for the Poisson distribution yields the following
estimates for the probability of delay:

(7.3) P (Q ≤ c) = Φ(χ)− φ(χ) · (χ2 − 1)

6 · √λ
+O

(
1

λ

)
as λ → ∞.

In the constant rate case, these bounds for the probability of delay are proved rigor-
ously; see [5] for an example and for a list of more references. Although we do not
prove these bounds in the time varying case, these bounds give us hope that the Gram
Charlier expansions we use in this paper are useful for approximating the moment
dynamics and the probability of delay dynamics for time varying queues as well.
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Table 1

Dynamic staffing parameters.

Parameter Value

λ(t) 10 + 5 · sin t
μ 1

c(t) �λ(t) · 3
2
�

β .25

Table 2

Two server parameters.

Parameter Value

λ(t) 2 + 1 · sin t
μ 1

c(t) 2
β .25

8. Additional numerical examples. In this section, we give additional nu-
merical examples of our methods with skewness and kurtosis corrections. These ad-
ditional examples give support that our new methods work in a variety of parameter
settings that are important in practice. Software to implement some of these methods
is available on the author’s website.

8.1. Dynamic staffing example. In Figure 12 we give an example of a queue-
ing system, with the parameters given in Table 1, where the number of servers changes
dynamically through time. On the top left of Figure 12 we see that the GCS and GCK
are doing a better job of approximating the mean behavior of the queueing process
than the fluid limit or the GVA. This is also confirmed in the middle left of Figure
12, where we see that GCS and GCK have lower log relative errors than GVA and
the fluid limit. In the top right of Figure 12, we see a similar picture for the variance.
Once again on the top right and the middle right of Figure 12, we see that the GCS
and GCK are estimating the variance better than GVA or the diffusion limit. On the
bottom left of Figure 12 we see that the GCS and GCK are estimating the skewness
quite well. Lastly, on the bottom right of Figure 12, we see that GCS and GCK are
doing well at mimicking the probability of delay. This example provides evidence that
our methods work well when the number of servers dynamically changes throughout
time and is not just a constant.

8.2. Two server example. In the following numerical example, with the pa-
rameters given in Table 2, the purpose is to illustrate that the GCS and GCK methods
can give reasonable approximation for the smallest multiserver queue with abandon-
ment, i.e., when c = 2. As in Figure 12 we see in the top left of Figure 13 that the
GCS and GCK are doing a better job of estimating the mean behavior of the queueing
process than the fluid limit. Moreover, in the top right of Figure 13 we also see the
same improvements for the variance. Unlike in systems with more servers, the im-
provement of the skewness and kurtosis is easily seen. This is also further supported
in the bottom right of Figure 13, where we see that the log relative errors for GCS and
GCK are much lower than the DMA, GVA, or diffusion limit. Lastly, we see in the
bottom left of Figure 13 that the GCS and GCK methods provide accurate estimates
of the skewness of the queueing system; however, it seems apparent that the GCK
method is providing a better estimate for the skewness in this example. It is also im-
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1256 JAMOL PENDER

Fig. 12. Sinusoidal arrival rate and sinusoidal staffing schedule.

portant to note that the system has a larger skewness value than the other numerical
examples, which should be expected since we are as far away from the many server
Gaussian heavy traffic limits as we could be. Thus, this example gives evidence that
the GCS and GCK can accurately estimate the dynamics of systems where there are
a small number of servers and when the queueing process is clearly not in the many
server heavy traffic regime.

8.3. High arrival rate and large number of servers example. In Figure
14, we give an example of the dynamics of a queueing system, with the parameters
given in Table 3, with a high arrival rate and a large number of servers. We see in the
top of Figure 14 that the mean and variance are approximated very well regardless
of the method used. One reason is that we are very close to operating in the many
server heavy traffic regime, and distribution is becoming more Gaussian like. In the
middle of Figure 14 we see that the log relative error indicates that the GCS and GCK
methods are doing the best at approximating the mean and variance dynamics. In the
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Fig. 13. Sinusoidal arrival rate and constant staffing schedule c = 2.

bottom left of Figure 14, we see that GCS is doing a better job of approximating the
skewness of the queueing distribution, which might explain why the Gram Charlier
expansion is not uniformly better as we add more terms. Lastly, on the bottom right
of Figure 14, we see that GVA, GCS, and GCK are all doing a good job of estimating
the probability of delay very well. With a high arrival rate and large number of
servers, it is not necessary to use the skewness and kurtosis, as there is not much
room for correcting the estimates of the mean and variance dynamics. One small
thing to notice is that the skewness has a local maximum when the queueing process
is critically loaded, i.e., (q = c), where we expect the queueing system not to be
Gaussian.

9. Conclusions and future work. We have shown in this paper that the skew-
ness and kurtosis and higher moments can add valuable information to our under-
standing of queueing system dynamics. As the skewness and kurtosis of our queueing
system are nonzero, it is apparent that it is not sufficient to study just mean and
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Fig. 14. Sinusoidal arrival rate and constant staffing schedule c = 100.

Table 3

High arrival rate parameters.

Parameter Value

λ(t) 100 + 50 · sin t
μ 1

c(t) 100
β .25

variance behavior of time dependent stochastic systems. By using the Gram Charlier
expansion, we were able to add the skewness and kurtosis effects to the behavior of
our queueing model and take the first step toward moving beyond mean and variance
analysis, which is the main focus of the current literature. We can mimic very accu-
rately the real behavior of the mean, variance, skewness, and kurtosis of our queueing
system by using four simple differential equations. As a result, to understand impor-
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tant quantities such as the probability of delay for our queueing system, it suffices
to integrate four differential equations instead of spending much time simulating the
system. Moreover, we can show that the refinements of our approximations are small
in regions where the fluid and diffusion limits are warranted, and are large when these
approximations are not warranted. We see that the skewness adds significant informa-
tion for the non-Gaussian behavior of the queueing process. The information gained
by including the kurtosis is also useful, but not as influential on accurate dynamics
as the skewness information. Thus, this analysis yields insight and information for
managers who want to optimally staff their service systems.

We should also mention that our method easily extends to the case of a fast
abandonment queueing model, which was introduced by Hampshire, Jennings, and
Massey [3] as an approximation of a multiserver loss queueing process. This method
might even be more enlightening and useful when the queue is overloaded and the
distribution is skewed to the right where customers are blocked from accessing the
system.

Although this paper considers only a one-dimensional Markovian service network
example, there exists multivariate forms of the Gram Charlier expansion such as the
following two-dimensional version:

φSkew(x1, x2, ρ) = φ(x1, x2, ρ) + φ(x1) · φ(x2) ·
(γ3,0

6
· h3(x1) +

γ0,3
6

· h3(x2)
)

+ φ(x1) · φ(x2) ·
(γ2,1

2
· h2(x1) · h1(x2) +

γ1,2
2

· h1(x1) · h2(x2)
)
.

One would hope that using a multivariate Gram Charlier expansion might yield insight
on approximating the skewness and kurtosis behavior in multidimensional Markovian
stochastic networks. We expect that this multivariate approach yields better approxi-
mations for larger networks as well. We are currently pursuing this extension for other
types of Markovian service networks. Our approach is not uniformly better as we add
more terms. It would be interesting to find an asymptotic method that uniformly
yields better results as we add more terms to the approximation. Lastly, we have
expanded our queueing process around a Gaussian density, which is motivated from
the diffusion limit being a Gaussian diffusion. However, in the infinite server case, we
know that the queueing process has a Poisson distribution. It would be interesting
to expand around a non-Gaussian distribution such as the Poisson distribution with
Poisson–Charlier polynomials and analyze this problem as well.

Appendix A.

A.1. Hermite polynomials. In this section, we give a brief introduction to
Hermite polynomials and their main properties. The building blocks of our approxi-
mation method or the expectations and covariance terms found in Theorem 5.1 can
be computed using the Hermite polynomial calculus developed in [11]. The Hermite
polynomials (probabilistic) are defined as

hn(x) ≡ ex
2/2

(
− d

dx

)n

e−x2/2.

We give the first eight probabilistic Hermite polynomials for future reference, as they
will be used throughout the rest of this section for the proofs and derivations of the
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unknown expectation and covariances terms:

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x,

h6(x) = x6 − 15x4 + 45x2 − 15, h7(x) = x7 − 21x5 + 105x3 − 105x.

Remark A.1. It is important to note that all of the Hermite polynomials evaluated
at X , except for the first, have expectation zero. This will simplify the analysis of
future computations to come since many expectations with respect to some of these
polynomials will vanish.

Proposition A.2. If X is a standard Gaussian random variable, then

E[f(X) · hn(X)] = E[f (n)(X)],

where f is any generalized function.
This follows easily from integration by parts since the Gaussian density is a

smooth density. From this result follows the orthogonality property of Hermite poly-
nomials.

Proposition A.3. Hermite polynomials satisfy the following orthogonality prop-
erties:

E[hi(X)] =

{
1 if i = 0,

0 if i �= 0.

E[hi(X) · hj(X)] =

{
j! if i = j,

0 if i �= j.

Proposition A.4. ( 1√
n!
Hn) is an orthonormal basis of L2(R, ν), where ν is the

Gaussian measure.
Proof. It suffices to show that the Hermite polynomials are orthogonal and that

the set of Hermite polynomials (Hn)n≥0 is complete in L2(R, ν); i.e., the set of linear
combinations of Hermite polynomials is dense in L2(R, ν). The first part was proven
in the previous theorem. The second part can be found in [12].

Proposition A.5. Any L2 function can be written as an infinite sum of Hermite
polynomials of X, i.e.,

f(X)
L2

=

∞∑
n=0

1

n!
E[f (n)(X)] · hn(X)

and

E[f(X) · g(X)] =

∞∑
n=0

1

n!
· E[f (n)(X)] ·E[g(n)(X)]

and

Cov[f(X), g(X)] =

∞∑
n=1

1

n!
·E[f (n)(X)] ·E[g(n)(X)].D
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A.2. Calculations of unknown expectations and covariance terms. In
this section, we derive explicit formulas for the expectations and covariances needed
to construct our dynamical system approximation for our queueing process.

We have the following expression of polynomials in terms of the Hermite poly-
nomials. These lemmas will be extremely useful for calculating the Gram Charlier
expectations.

Lemma A.6.

X = h1(X),

X2 = h2(X) + h0(X),

X3 = h3(X) + 3 · h1(X),

X4 = h4(X) + 6 · h2(X) + 3 · h0(X),

X5 = h5(X) + 10 · h3(X) + 15 · h1(X),

X6 = h6(X) + 15 · h4(X) + 45 · h2(X) + 15 · h0(X),

X7 = h7(X) + 21 · h5(X) + 105 · h3(X) + 105 · h1(X).

Lemma A.7.

X · h3(X) = h4(X) + 3 · h2(X),

X2 · h3(X) = h5(X) + 7 · h3(X) + 6 · h1(X),

X3 · h3(X) = h6(X) + 12 · h4(X) + 27 · h2(X) + 6 · h0(X),

X · h4(X) = h5(X) + 4 · h3(X),

X2 · h4(X) = h6(X) + 9 · h4(X) + 12 · h2(X),

X3 · h4(X) = h7(X) + 15 · h5(X) + 48 · h3(X) + 24 · h1(X).

We give expressions for the variance, third cumulant moment, and fourth cumu-
lant moment in terms of the raw moments of a random variable.

Lemma A.8.

Var[Q] = E[(Q− E[Q])2]

= E[Q2]− E[Q]2,

C [3][Q] = E[(Q− E[Q])3]

= E[Q3]− 3 · E[Q2] · E[Q] + 2 · E[Q]3,

C [4][Q] = E[(Q− E[Q])4]− 3 · Var[Q]2

= E[Q4]− 4 · E[Q3] · E[Q]− 3 · E[Q2]2 + 12 ·E[Q2] · E[Q]2 − 6 · E[Q]4.

Now by taking the time derivative, we have the following expressions for the
cumulant moments in terms of the moments and their time derivatives.

Lemma A.9.

•
Var[Q] =

•
E[Q2]− 2 ·

•
E[Q] ·E[Q],

•
C [3][Q] =

•
E[Q3]− 3 ·

•
E[Q2] ·E[Q]− 3 ·E[Q2] ·

•
E[Q] + 6 ·

•
E[Q] · E[Q]2,

•
C [4][Q] =

•
E[Q4]− 4 ·

•
E[Q3] ·E[Q]− 4 ·E[Q3] ·

•
E[Q]− 6 ·

•
E[Q2] · E[Q2],

+12 ·
•
E[Q2] · E[Q]2 + 24 ·E[Q2] ·E[Q] ·

•
E[Q]− 24 ·

•
E[Q] ·E[Q]3.D
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Now we compute all of the unknown expectations and covariance terms of Theo-
rems 5.1 and 6.1. It suffices to prove the results for Theorem 6.1 as it is a generalization
of Theorem 5.1. Moreover, it suffices to prove only the terms (Q− c)+ since we have
the relationship

(1.1) Q ∧ c = Q− (Q − c)+.

A.2.1. Computation of first order terms. Now we compute the first order
terms, using the Hermite polynomial machinery explained above, which are important
for deriving the approximations for the mean behavior. We compute only the terms
for the GCK method since GCS can be obtained by setting κ4 to zero. Moreover,
GVA terms can be obtained by setting both κ3 and κ4 to zero. Thus, it suffices to
compute only the expectation and covariance terms only for the case of the GCK:

E
[
(Q − c)+

]
=

√
v · E [(X − χ)+

]
=

√
v·EGV A

[
(X−χ)+

]
+
√
v ·EGCS

[
(X−χ)+

]
+
√
v ·EGCK

[
(X−χ)+

]
=

√
v · E [(X − χ)+

]
+

κ3

6 · v ·E [h3(X) · (X − χ)+
]

+
κ4

24 ·
√
v3

·E [h4(X) · (X − χ)+
]

=
√
v · φ(χ)− χ · √v · Φ(χ) + χ · φ(χ) · κ3

6 · v +
(χ2 − 1) · φ(χ) · κ4

6 ·
√
v3

,

E [Q ∧ c] = E[Q]− E
[
(Q − c)+

]
= q −√

v · φ(χ) + χ · √v · Φ(χ)− χ · φ(χ) · κ3

6 · v − (χ2 − 1) · φ(χ) · κ4

6 ·
√
v3

.

A.2.2. Computation of second order terms. Now we compute the second
order terms, which are useful for deriving the variance approximations:

Cov
[
Q, (Q− c)+

]
= Cov

[
q +

√
v ·X, (Q− c)+

]
= Cov

[√
v ·X, (Q− c)+

]
= v · Cov [X, (X − χ)+

]
= v ·E [X · (X − χ)+

]
= v ·EGVA

[
X ·(X−χ)+]+v ·EGCS

[
X ·(X−χ)+]+v ·EGCK

[
X ·(X−χ)+]

= v ·E [X · (X − χ)+
]
+

κ3

6 · √v
·E [h3(X) ·X · (X − χ)+

]
+

κ4

24 · v · E [h4(X) ·X · (X − χ)+
]

= v ·E [X · (X−χ)+
]
+

κ3

6 · √v
· E [(h4(X)+3 · h2(X)) · (X−χ)+

]
+

κ4

24 · v · E [(h5(X) + 4 · h3(X)) · (X − χ)+
]

= v · Φ(χ) + κ3

6 · √v
· (χ2 + 2) · φ(χ) + κ4

24 · v · (χ3 + χ) · φ(χ),D
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Cov [Q, (Q ∧ c)] = Cov [Q,Q]− Cov
[
Q, (Q− c)+

]
= v − Cov

[
Q, (Q− c)+

]
= v · Φ(χ)− κ3

6 · √v
· (χ2 + 2) · φ(χ) − κ4

24 · v · (χ3 + χ) · φ(χ).

A.2.3. Computation of third order terms.

Cov
[
Q

2
, (Q− c)+

]
= Cov

[
v ·X2, (Q− c)+

]
=

√
v3 · Cov [X2, (X − χ)+

]
=

√
v3 ·CovGVA

[
X2−1, (X−χ)+

]
+
√
v3 ·CovGCS

[
X2, (X−χ)+

]
+
√
v3 · CovGCK

[
X2, (X − χ)+

]
=

√
v3 ·E [δχ(X)] +

κ3

6 · √v3
·
√
v3 · Cov [X2 · h3(X), (X − χ)+

]
+

κ4

24 · v2 ·
√
v3 · Cov [X2 · h4(X), (X − χ)+

]
=

√
v3 · φ(χ) +

√
v3 · κ3

6 ·
√
v3

· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]
+

κ4

24 · v2 ·
√
v3 · (χ4 + 3 · χ2 + 6) · φ(χ)

=
√
v3 · φ(χ) +

√
v3 · κ3

6 · √v3
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]

+
κ4

24 · v2 ·
√
v3 · (χ4 + 3 · χ2 + 6) · φ(χ)

=
√
v3 · φ(χ) + κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]

+
κ4

24 · √v
· (χ4 + 3 · χ2 + 6) · φ(χ),

Cov
[
Q

2
, (Q ∧ c)

]
= Cov

[
Q

2
, Q
]
− Cov

[
Q

2
, (Q− c)+

]
= κ3 − Cov

[
Q

2
, (Q− c)+

]
= κ3 −

√
v3 · φ(χ) − κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)]

− κ4

24 · √v
· (χ4 + 3 · χ2 + 6) · φ(χ).D
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A.2.4. Computation of fourth order terms.

Cov
[
Q

3
, (Q− c)+

]
= Cov

[√
v3 ·X3, (Q− c)+

]
= v2 · Cov [X3, (X − χ)+

]
= v2 · CovGVA

[
X3, (X−χ)+

]
+v2 · CovGCS

[
X3, (X−χ)+

]
+ v2 · CovGCK

[
X3, (X − χ)+

]
= v2 · Cov [X3 − 3X, (X − χ)+

]
+ v2 · Cov [3X, (X − χ)+

]
+

κ3

6 · √v3
·
√
v3 · Cov [X3 · h3(X), (X − χ)+

]
+

κ4

24 · v2 ·
√
v3 · Cov [X3 · h4(X), (X − χ)+

]
= v2 · ((χ2 + 1) · φ(χ))+ 3 · v2 · Φ(χ)

+
κ3

6 · √v3
·v2 ·Cov [h6(X)+12·h4(X)+27·h2(X)+6, (X−χ)+

]
+

κ4

24 · v2 ·
√
v3 ·Cov[h7(X)+15·h5(X)+48·h3(X)+24·h1(X),(X−χ)+]

= v2 · ((χ2 + 1) · φ(χ))+ 3 · v2 · Φ(χ)

+
κ3 · √v

6
· ((h4(χ) + 12 · h2(χ) + 27) · φ(χ))

+
κ4

24 · v2 ·
√
v3 ·((h5(χ)+15·h3(χ)+48·h1(χ))·φ(χ)+24·Φ(χ)) ,

Cov
[
Q

3
, (Q ∧ c)

]
= Cov

[
Q

3
, Q
]
− Cov

[
Q

3
, (Q− c)+

]
= v2 · Cov [X3, X

]
+

κ3 · √v

6
· Cov [h3(X) ·X3, X

]
+ v2 · κ4·

24 · v2 · Cov [h4(X) ·X3, X
]− Cov

[
Q

3
, (Q− c)+

]
= 3 · v2 + κ4 − Cov

[
Q

3
, (Q− c)+

]
.
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