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Abstract The multi-server queue with non-homogeneous Poisson arrivals and cus-
tomer abandonment is a fundamental dynamic rate queueing model for large scale
service systems such as call centers and hospitals. Scaling the arrival rates and num-
ber of servers arises naturally when a manager updates a staffing schedule in response
to a forecast of increased customer demand. Mathematically, this type of scaling ulti-
mately gives us the fluid and diffusion limits as found in Mandelbaum et al., Queueing
Syst 30:149–201 (1998) for Markovian service networks. The asymptotics used here
reduce to the Halfin and Whitt, Oper Res 29:567–588 (1981) scaling for multi-server
queues. The diffusion limit suggests a Gaussian approximation to the stochastic behav-
ior of this queueing process. The mean and variance are easily computed from a two-
dimensional dynamical system for the fluid and diffusion limiting processes. Recent
work by Ko and Gautam, INFORMS J Comput, to appear (2012) found that a modified
version of these differential equations yield better Gaussian estimates of the original
queueing system distribution. In this paper, we introduce a new three-dimensional
dynamical system that is based on estimating the mean, variance, and third cumulant
moment. This improves on the previous approaches by fitting the distribution from a
quadratic function of a Gaussian random variable.
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1 Introduction

Large scale service systems, such as telephone call centers or healthcare centers such
as hospitals, have customer inflow–outflow dynamics with many common features.
For example:

• The customer arrival patterns have both time of day and seasonal effects.
• Customer population sizes are large where the individual customer actions are

mutually independent.
• Multiple service agents allow many customers simultaneous access to services in

parallel.

In a call center, these service agents are the telephone operators. For a hospital, these
service agents can be the beds, attendant nurses, or doctors. Other common features
for these service systems include:

• Arriving customers wanting to engage in service are delayed if all the available
service agents are busy.
• Waiting customers may decide to leave the system if their delay is excessively

long.

In the case of a hospital emergency room, this can be a patient “leaving without being
seen” and deciding to go to a second hospital.

To understand and predict the customer dynamics of these service systems, we need
to construct a queueing model. The resulting queueing analysis, which is a probabilistic
study of the number of customers currently engaged in or requesting services, gives us
various performance measurements. One such quality of service metric is the average
number of customers in the system at any given time.

Inputs to this queue are due to customer arrivals. Outputs to this queue are due to
either customers who complete service or ones who leave prematurely. Let us assume
that all customers have a personal expectation of how long their queueing delay should
be. It then follows that this latter group departs the system when those expectations are
not met. This phenomenon is referred to in the queueing literature as abandonment.

For a large population of customers with independent actions, we model the arrival
pattern of customers as a simple (single jump), random counting process with inde-
pendent increments. The latter statement means that the number of customer arrivals
during disjoint time intervals are statistically independent. According to Prékopa [18],
this is equivalent to saying that our customer arrival model is a non-homogeneous
Poisson process. In practice, we can use historical customer arrival data to infer some
average arrival rate function { λ(t) | t ≥ 0 } forecast, which parameterizes this process.

Now we model both the service and abandonment times for each arriving customer
as two independent sequences of i.i.d. random variables. For mathematical simplicity,
we assume that the service time distributions are exponentially distributed with mean
1/μ. We also assume that the abandonment time distributions are exponential with
mean 1/β.
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Letting c equal the deterministic process of c(t) service agents at time t , we define
our service model to be an M(t)/M/c(t) + M queue where “M(t)” denotes a non-
homogeneous Poisson arrival process and “+M” denotes an exponential distribution
for the abandonment time. We also refer to this as an Erlang-A queueing model [4].
This is a discrete state space Markov process that is time inhomogeneous or has
dynamic rates. It is the canonical Markovian queueing process for multi-agent service
center models that we study in this paper.

The standard analysis for the time homogeneous or constant rate version of this
queueing system process is to compute the steady state distribution as t →∞. For the
dynamic rate case, this is a static equilibrium analysis that may not be applicable and
gives no insight into how the system evolves over time. The probability distribution
for the queue can be studied as a dynamical system but it is infinite dimensional. At
first glance, the most viable alternative would be to apply Monte-Carlo simulation
methods directly to the sample paths of this Markov process.

Mandelbaum et al. [13] used the theory of strong approximations to develop fluid
and diffusion limit theorems for the stochastic sample path behavior of Markovian
service networks, where the Erlang-A model is the special case of a single node
network. The resulting fluid and diffusion limits are characterized by low-dimensional
dynamical systems that approximate the stochastic evolution of the queueing process.
Moreover, the precise meaning of “low” for multi-server queueing networks is that
the dynamical system dimension is only a quadratic function of the number of nodes
in the network and not the number of agents at any of the service centers.

Moreover, Mandelbaum et al. [14] illustrate that these approximations for the mean
and variance of the Erlang-A model are at their best when the scaling parameter η

is large and the queue does not “linger” through periods of “critical loading.” This
corresponds to times when the mean number of customers in the queueing system
nearly matches the number of agents. Ko and Gautam [11] extended the applicability
of these approximations by using Gaussian convolutions to smooth the rates as non-
smooth functions of the states. They obtained better approximations for the mean and
variance dynamics which suggest that there is still room for improvement.

The contribution of this paper is to present a simple method that generates new algo-
rithms that are successively better approximations of the stochastic dynamics for the
M(t)/M/c(t)+ M model. This is achieved by computing a low-dimensional, deter-
ministic, dynamical system. Computing a single run of such a deterministic process
is a significant savings in computational time, compared to averaging over the typical
10,000 runs of a Monte Carlo simulation. Papers by Hampshire [6] and with co-authors
in [7] and [8] show how low-dimensional dynamical systems can approximate the sta-
tistics of the stochastic evolution for many different types of fundamental queueing
models. We plan to show in a subsequent paper how to extend this method to a similar
approximate analysis for all Markovian service networks.

The rest of the paper is as follows. In Sect. 2, we review the approximation methods
for the mean and variance of our queueing process as derived from papers [13] and [14].
In Sect. 3, we introduce our method. We show how its one-dimensional case reduces
to the fluid model and its two-dimensional case reduces to the Gaussian smoothing
methods of Ko and Gautam [11]. In Sect. 4, we introduce our new method, the Gaussian
skewness approximation. This improves on the one- and two-dimensional cases of the
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method to offer a three-dimensional approximating dynamical system. We use this
technique to improve our estimation of the distribution for our queueing process.
We compare simulated histograms of the queueing system distribution at specific
time points with the corresponding density distributions constructed by our algorithm.
Section 6 concludes the paper with insights and possible extensions. Finally, all the
necessary technical proofs and calculations to produce the simple formulas for the
algorithm appear in Appendix A. A detailed sketch of our simulation algorithm for
multi-server queues is contained in Appendix B.

2 Stochastic analysis of the queueing model

Mandelbaum et al. [13] shows that the queueing system process Q ≡ {Q(t)|t ≥ 0} is
represented by the following stochastic, time changed integral equation:

Q(t) = Q(0)+Π1

⎛
⎝

t∫

0

λ(s)ds

⎞
⎠−Π2

⎛
⎝

t∫

0

μ · (Q(s) ∧ c(s))ds

⎞
⎠

−Π3

⎛
⎝

t∫

0

β · (Q(s)− c(s))+ds

⎞
⎠ ,

where Πi ≡ {Πi (t)|t ≥ 0} for i = 1, 2, 3 are i.i.d. standard (rate 1) Poisson processes.
The deterministic time change for Π1 transforms it into a non-homogeneous Poisson
arrival process with rate λ(t) that counts the customer arrivals. Subjecting Π2 to a
random time change rate μ · (Q(t) ∧ c(t)), at time t , gives us a departure process that
counts the number of serviced customers. Here we assume that there are a deterministic
number of c(t) servers, at time t , and i.i.d. exponentially distributed service times of
mean 1/μ. Similarly the random time change of Π3 gives us a counting process
for the number of queueing abandonments from c(t) servers and i.i.d. exponentially
distributed abandonment times of mean 1/β. When the mean number of the system
E[Q(t)] is less than the number of servers c(t) or E[Q(t)] < c(t), we say that the
system is underloaded. Conversely, when E[Q(t)] > c(t), we say that the system is
overloaded. Finally, when E[Q(t)] = c(t), we say that the system is critically loaded.

The numerical example that we consider in this paper to illustrate our approximation
methods evolves over the time interval (0, 40). Moreover, we assume an arrival rate
function λ(t) = 10+ 5 sin t , a constant service rate μ = 1.0, a constant abandonment
rate β = 0.25, and the number of servers is constant with c = 10. We summarize this
in Table 1. All our simulations are averaged over 10,000 runs with an initial load of zero
or Q(0) = 0. Figure 1 is a plot over time of the simulated estimations for the actual
mean E[Q(t)], variance Var[Q(t)], and third cumulant moment C (3)[Q(t)], where
the first two cumulant moments are given by the mean and variance. The second and
third cumulant moments are given by the formulas

Var [Q(t)]≡E
[
(Q(t)−E[Q(t)])2

]
and C (3) [Q(t)]≡E

[
(Q(t)−E[Q(t)])3

]
.

(2.1)
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Table 1 Main numerical
example

Parameter Value (at time t)

λ 10.0+ 5.0 ∗ sin t

μ 1.0

c 10

β 0.25

Fig. 1 Simulation of mean,
variance, and third cumulant
moment of the queueing process
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When the M(t)/M/c(t) + M queueing system is underloaded for all t , then it
behaves more like an infinite server queue or c = ∞. Even with a dynamic arrival
rate, when initialized by a Poisson distribution, such a queue always has a Poisson
transient distribution. A more detailed exploration of infinite server queueing dynamics
with non-homogeneous input can be found in the works of Palm [17], Khintchine [10],
and Eick et al. [1].

Under general conditions, the Poisson distribution is uniquely characterized by
having all its cumulant moments equal to its mean [10]. During the initial period of
underloaded behavior, starting at the trivial Poisson distribution of Q(0) = 0, all
the curves in Fig. 1 appear to be identical during the initial underloaded period. The
divergence of these three curves starts during the overloaded period. Note that during
the recurring, but brief, periods of underloading the three curves attempt to reconverge.
The longer that the number in the queueing system stays below the number of servers
c, the more its infinite server behavior forgets about its initial conditions. At this point,
the system distribution more closely resembles a Poisson distribution, whose three
cumulant moments all equal each other.

To gain a better understanding of the dynamics of the mean, variance, and third
cumulant moment for our queueing process, we need to study their rates of change
over time. This leads us to the functional version of the Kolmogorov forward equations
for the M(t)/M/c(t)+ M queue, which is of the form

•
E [ f (Q)] = λ · E [ f (Q + 1)− f (Q)]+ μ · E [(Q ∧ c) · ( f (Q − 1)− f (Q))]

+β · E [
(Q − c)+ · ( f (Q − 1)− f (Q))

]
, (2.2)
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for all appropriate functions f . We always assume, for this paper, that quantities such
as β and μ are constant. To simplify our notation, time dependent quantities such as
Q(t), λ(t), and c(t) are denoted in this paper as Q, λ, and c, with their time dependence
suppressed. For an expression like E [ f (Q(t))] we use the “dot” notation of physics
to denote its time derivative when we do not make time explicit or

•
E [ f (Q)] ≡ d

dt
E [ f (Q(t))] . (2.3)

Using special cases of f , such as f (Q) equalling Q, Q2, or Q3, we can then obtain
the following set of cumulant moment, Kolmogorov forward equations:

•
E[Q] = λ− μ · E[Q ∧ c] − β · E [

(Q − c)+
]

•
Var[Q] = λ+ μ · E [Q ∧ c]+ β · E [

(Q − c)+
]

−2
(
μ · Cov [Q, Q ∧ c]+ β · Cov

[
Q, (Q − c)+

])
,

and

•
C

(3)

[Q] = λ− μ · E [Q ∧ c]− β · E [
(Q − c)+

]

+3
(
μ · Cov [Q, Q ∧ c]+ β · Cov

[
Q, (Q − c)+

])

−3
(
μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q − c)+

])
,

where Q ≡ Q − E[Q]. We can write the final equations more compactly as

•
E[Q] = λ− μ · E [Q ∧ c]− β · E [

(Q − c)+
]
, (2.4)

•
E[Q] +

•
Var[Q]

2
= λ− μ · Cov [Q, Q ∧ c]− β · Cov

[
Q, (Q − c)+

]
, (2.5)

and

•
E[Q]

6
+

•
Var[Q]

2
+

•
C (3)[Q]

3
=λ− μ · Cov

[
Q

2
, Q ∧ c

]
− β · Cov

[
Q

2
, (Q − c)+

]
.

(2.6)

Since the M(t)/M/c(t) + M queueing process is a special case of a single node
Markovian service network, we can also construct an associated, uniformly accelerated
queueing process where both the new arrival rate η · λ and the new number of servers
η · c are both scaled by the same factor η > 0. A call center interpretation of this
is called resource pooling. We are scaling up simultaneously the customer demand
(arrival rate) and the customer resource supply (number of service agents). Taking the
following limits gives us the fluid and diffusion models of [13], i.e.,
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lim
η→∞

Qη

η
= q a.s. and lim

η→∞
√

η ·
(

Qη

η
− q

)
d= Q̂, (2.7)

where the deterministic process q, the fluid mean, is governed by the one-dimensional
dynamical system

•
q = λ− μ · (q ∧ c)− β · (q − c)+. (2.8)

Moreover, as pointed out in [13], if the set of time points { t | q(t) = c } has measure
zero, then Q̂ is a Gaussian diffusion process (with mean zero when Qη(0) is only a
constant scaled by η) whose variance combines with the fluid mean to form a two-
dimensional dynamical system given by (2.8) and

•
v = λ+ μ · (q ∧ c)+ β · (q − c)+ − 2 · (μ · {q < c} + β · {q ≥ c}) · v, (2.9)

where v ≡ Var[Q̂] and {q < c} denotes an indicator function that equals one if the
statement is true, i.e., if q < c, and zero if the statement is false. We can write these
equations more compactly as

•
q = λ− μ · (q ∧ c)− β · (q − c)+ (2.10)

•
q + •v

2
= λ− (μ · {q < c} + β · {q ≥ c}) · v. (2.11)

In Fig. 2, we compare simulations of the mean and variance for the M(t)/M/c(t)+M
queueing process to our dynamical system fluid and diffusion estimates given by
(2.10) and (2.11). We do this using the fluid limit as an approximation for the mean
of queueing process, as shown in the left hand graph. We then use the diffusion limit
variance as an approximation to the variance of the queueing process, as shown in the
right hand graph. In this example, the fluid limit works everywhere as a “reasonable”
approximation (i.e., relative error of 10 %) to the dynamics of the mean. There are
only a few time periods where the diffusion variance is a reasonable approximation
of the queueing process variance, such as during the initial period of underloading.
In the next section, we discuss new sets of low-dimensional dynamical systems that
yield better approximations of the relevant stochastic queueing behavior.

3 Deterministic and Gaussian approximations

From a computational perspective, we want the ensemble of formulas for the time
derivatives of the mean, variance, and third cumulant moment, as summarized in
(2.4)–(2.6), to be an autonomous set of differential equations. This means that their
current behavior should be some integral functional of their past behavior. We can
achieve this by making a closure approximation in the same spirit as Rothkopf and
Oren [20]. The philosophy that they give for this technique is as follows (see page 524
of [20]):
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Fig. 2 Comparisons of simulated mean and its fluid limit (left). Comparisons of simulated variance and
diffusion limit (right)

. . . The basic strategy of a closure technique is to reduce an infinite system of
equations to a finite system by making a “closure assumption” in the form of a
functional relationship between the variables of the system.

Similar techniques for non-stationary (dynamic rate) queueing models are also used
in Taaffe and Ong [23].

In general, we start by assuming that our underlying closure distribution for the
queueing process is uniquely defined by a finite set of parameters. Next, we assume
that these parameters are uniquely defined by the same number of expectations of some
distinct functions of the queueing process. The forward equations for these functional
expectations then form a finite dimensional, dynamical system for these parameters.
Whereas [20] and [23] assume an underlying discrete distribution for their closure
assumptions, our underlying distribution is continuous and based on polynomials of
Gaussian random variables.

For example, we can define a deterministic mean approximation for our queueing
model by assuming that some underlying deterministic process q ≡ {q(t)|t ≥ 0}
approximates our Markovian queueing process. If we replace Q by q in the Kol-
mogorov forward equation for the mean of Q as given by (2.4), then q solves the
resulting autonomous, one-dimensional, dynamical system.

•
q = λ− μ · (q ∧ c)− β · (q − c)+, (3.1)

where we set q(0) = Q(0). This method, however, takes us right back to the dynamical
system characterization of the fluid limit given by (2.8).

Let us now extend this method to the two-dimensional, dynamical system case.
Inspired by our diffusion limit being Gaussian, suppose that we approximate the
dynamics of the mean and variance of Q by a random process Q ≡ {Q(t)|t ≥ 0}
such that

Q(t)
d= q(t)+ X ·√v(t). (3.2)
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for all t ≥ 0, where {q(t), v(t)|t ≥ 0} is some two-dimensional, deterministic, dynam-
ical system, where the v process is always positive. In this paper, we always define X
to be a standard Gaussian random variable or Gaussian(0, 1). Either one is shorthand
for a Gaussian distribution with zero mean and unit variance. We define ϕ and � to
be the density and the cumulative distribution functions, for X , respectively, where

ϕ(x)≡ 1√
2π

e−x2/2, �(x) ≡
x∫

−∞
ϕ(y) dy, and �(x)≡1−�(x) =

∞∫

x

ϕ(y) dy.

(3.3)

Now we make this substitution of q, v, and X into the forward equations for the mean
and the variance of Q, i.e., (2.4) and (2.5). We can call the resulting two-dimensional
dynamical system the Gaussian variance approximation (GVA). The new autonomous
differential equations for q and v are

•
q = λ− μ · q − (

μ · E[X ∧ χ ] + β · E[(X − χ)+]) · √v (3.4)

and

•
q + •v

2
= λ− (

μ · Cov[X, X ∧ χ ] + β · Cov[X, (X − χ)+]) · v, (3.5)

where

E[Q] = q, Var[Q] = v, and χ ≡ c − q√
v

. (3.6)

To solve these equations numerically, we need to compute the expectation and covari-
ance terms involving functions of the standard Gaussian random variable X . The final
results yield generic functions of χ , which is a simple function of q and v. We compute
these Gaussian terms using the following lemma:

Lemma 3.1 (Stein [21]) The random variable X is Gaussian(0, 1) if and only if

E [X · f (X)] = E

[
d

d X
f (X)

]
, (3.7)

for all generalized functions f .

For example, since (X − χ)+ = (X − χ) · {X ≥ χ}, then Stein’s lemma can be
used to obtain

E
[
(X − χ)+

] = E [X · {X ≥ χ}]− χ · P {X ≥ χ} = ϕ(χ)− χ ·�(χ). (3.8)

Observe that as a function of X, {X ≥ χ} is an increasing unit, single step function.
Moreover, the density ϕ is an infinitely differentiable function. Finally, the derivative
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of {X ≥ χ}, as a generalized function evaluated at X , is the delta function δχ centered
at χ . As a result, Stein’s lemma gives us

E [X · {X ≥ χ}] = E
[
δχ (X)

] =
∞∫

−∞
δχ (y) · ϕ(y) dy = ϕ(χ). (3.9)

Moreover, since (X − χ)+ = X − X ∧ χ , we have

E [X ∧ χ ] = −E
[
(X − χ)+

] = χ ·�(χ)− ϕ(χ). (3.10)

Similar arguments give us

Cov [X, X ∧ χ ] = E [X · (X ∧ χ)] = E [{X ≤ χ}] = P {X ≤ χ} = �(χ)

(3.11)

and

Cov
[
X, (X − χ)+

] = 1− Cov [X, X ∧ χ ] = �(χ). (3.12)

These positive covariances are in keeping with the FKG inequality by Fortuin et al.
[3]. This theorem states that increasing functions of the same random variable are
always positively correlated.

When we make the substitutions into (3.4) and (3.5), the GVA dynamical system
reduces to

•
q = λ− μ · q − (μ− β) · (χ ·�(χ)− ϕ(χ)

) · √v (3.13)

and

•
q + •v

2
= λ− (

μ ·�(χ)+ β ·�(χ)
) · v. (3.14)

These equations are the same as the ones with the “g functions” as used in Ko and
Gautam [11]. In Fig. 3, the GVA estimation for the mean (given by the square plots)
yields a better approximation to the simulated mean than the fluid model (given by the
triangular plots) in the left hand graph. For the variance, however, the GVA plot does
not match the simulation as well, but it is a significant improvement over the diffusion
variance approximation in the right hand graph. In the next section, we introduce a new
approximation that is a refinement to the GVA estimate just as GVA is a refinement to
the fluid model.
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Fig. 3 Comparison of simulation, fluid, and GVA means (left). Comparison of simulation, diffusion, and
GVA variances (right)

4 Gaussian skewness approximation

First, recall that the skewness of a random variable Z is defined to be

Skew[Z ] ≡ C (3) [Z ]√
Var[Z ]3 . (4.1)

Skewness captures an intrinsic property of the distribution that is invariant with respect
to deterministic translations and positive scalings of the underlying random variable.
It follows from these invariance properties that any Gaussian distribution has the same
skewness as the standard Gaussian distribution for X , which is zero. We can show that
under general conditions, a Gaussian distribution is uniquely characterized by having
its third and all higher degree cumulant moments equal to zero. Thus we can use
skewness informally as a metric for how “close” a distribution is to being Gaussian.

The graphs of Fig. 4 compare the simulated mean (top graph) to the skewness
(bottom graph) as they both evolve over time. We see that the skewness here is locally
the furthest from zero, more precisely when it is positive and a local maximum, exactly
when the queueing system is nearly critically loaded or its mean is close to the number
of servers c = 10. This suggests that critical loading times occur precisely at the times
when a Gaussian approximation for the queue length distribution is the least effective.

Our diffusion limit theorem suggests that a Gaussian distribution is a good first
order approximation for the queueing process distribution. However, for any given
distribution we can always find some function of a standard Gaussian random variable
whose distribution matches it. This is due to the inverse transform method (see Ross
[19], p 67) and the fact that �(X) has a uniform distribution on the interval (0, 1). If
F is the cumulative distribution function of the queueing process at some fixed time,
then the random variable F−1 ◦ �(X) has the same distribution function defined by
F , where

F−1(y) ≡ inf { x | F(x) ≥ y } .

123



254 Queueing Syst (2013) 75:243–277

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Time

M
ea

n

Mean−Sim
Mean−GVA

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

S
ke

w
ne

ss

Skew−Sim

Fig. 4 Comparison of simulation and GVA means (top graph) with skewness (bottom graph)

Since all polynomials of X are square integrable random variables, it follows that
the distribution for any square integrable random variable can be approximated to
arbitrary precision by such a polynomial. All linear functions are polynomials of
degree 1 and they generate random variables for every possible Gaussian distribution
when applied to X . This suggests that the next step in approximating the queueing
process distribution uses quadratic functions (degree 2 polynomials) of X .

The family of all square integrable functions of X forms a Hilbert space with respect
to an inner product defined as the expectation of the product of two such random vari-
ables. The fluid approximation evolves within the one-dimensional Hilbert subspace
of constants for our queueing process approximation where the unit basis vector is the
constant 1. The GVA method evolves within the two-dimensional subspace for linear
functions of X where the orthonormal basis vectors 1 and X generate random vari-
ables for every Gaussian distribution. The three-dimensional subspace for quadratic
polynomials of X leads to a new unique orthogonal component in the direction of
X2 − 1 (we can divide it by

√
2 to make it orthonormal). Inductively, this leads us to

the family of Hermite polynomials, see Fedoryuk [2]. As functions of X , they form
an orthogonal family of polynomials and are a basis for square integrable functions
of X .

We now introduce a new approximation method and call it the Gaussian
skewness approximation (GSA). For some three-dimensional, dynamical system
{q(t), v(t), σθ (t)|t ≥ 0}, we assume that

Q(t)
d= q(t)+

(
X cos θ(t)+ X2 − 1√

2
sin θ(t)

)
·√v(t), (4.2)
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for all t ≥ 0, where X is a Gaussian(0,1) random variable. Since 1, X , and X2 − 1
are orthogonal vectors, they are all uncorrelated as random variables. This means that
E [Q] = q and Var [Q] = v. We also define σθ (t) to be the skewness of Q(t) or

σθ (t) ≡ Skew [Q(t)] . (4.3)

This approximation is a natural extension of the GVA method since we are using
the next orthogonal Hermite polynomial of X . Notice that neither the mean nor the
variance are a function of θ . Moreover, the second and third orthonormal components
of Q, i.e., X and (X2−1)/

√
2, are multiplied by

√
v cos θ and

√
v sin θ , respectively.

This is the general representation for any two-dimensional rectangular coordinate
system in terms of its polar coordinates, i.e., the “radius”

√
v and the “angle” θ . Any

two-dimensional vector in this subspace with mean squared norm
√

v would have this
form for some value of θ .

Now observe that the one-dimensional distributions of the process Q are uniquely
parameterized by the deterministic processes given by q, v, and sin θ where v ≥ 0.
This is due to the fact that the squares of either cos θ or − cos θ plus the square of
sin θ equals 1. Moreover, X and −X are identically distributed since X is a standard
Gaussian random variable. Hence X cos θ and −X cos θ are identically distributed
with X2 = (−X)2.

The next theorem shows that σθ is an invertible function of sin θ . This means
that the one-dimensional distributions of Q are also uniquely parameterized by the
deterministic processes q, v, and σθ . Now we state and prove our main result.

Theorem 4.1 Suppose that the one-dimensional distributions of the process Q are
given by

Q d= q + Yθ ·√v, where Yθ ≡ X cos θ + 1√
2

(
X2 − 1

)
sin θ (4.4)

and the time dependent parameters q and v, combined with σθ or sin θ , form a three-
dimensional dynamical system.

If Q solves the same moment forward equations as our queueing process Q for
its mean, variance, and third cumulant moment, then we must have

E[Q] = q, Var[Q] = v, and Skew[Q] = C (3)[Yθ ] = σθ , (4.5)

where

σθ ≡
√

2 ·
(

3− sin2 θ
)
· sin θ, (4.6)

which holds if and only if

sin θ = 2 · sin

(
1

3
sin−1

(
σθ

2
√

2

))
. (4.7)
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Moreover, the differential equations are

•
q = λ− μ · q − (

μ · E[Yθ ∧ χ ] + β · E[(Yθ − χ)+]) · √v, (4.8)
•
q + •v

2
= λ− (

μ · Cov[Yθ , Yθ ∧ χ ] + β · Cov[Yθ , (Yθ − χ)+]) · v, (4.9)

and

•
q

6
+
•
v

2
+

•
(σθ ·
√

v3)

3
= λ−

(
μ · Cov[Y 2

θ , Yθ ∧ χ ]+β · Cov[Y 2
θ , (Yθ − χ)+]

)
·
√

v3,

(4.10)

with χ ≡ (c − q)/
√

v or equivalently c = q + χ ·√v.

Proof We defer this to Appendix A. ��
Requiring that the closure approximation version of the Kolmorgov forward equa-

tions for the mean, variance, and third cumulant moment all hold is what finally dictates
the values of q, v, and sin θ , or equivalently, q, v, and σθ .

To compute the expectations involving functions of Yθ , we first define z+(θ, χ) and
z−(θ, χ) to be the two roots of the quadratic polynomial

z · cos θ + (z2 − 1) · sin θ√
2
= χ. (4.11)

As functions of χ and θ , where sin θ = 0, they have the following form

z+(θ, χ) =
√

2 · sin θ + 2χ

cos θ +
√

1+ 2
√

2 · χ sin θ + sin2 θ

(4.12)

and

z−(θ, χ) = cos θ +
√

1+ 2
√

2 · χ sin θ + sin2 θ

−√2 · sin θ
. (4.13)

Now we can characterize the distribution for Yθ .

Theorem 4.2 If 0 < θ < π/2, then the cdf of Yθ is for all a > −(θ)

P{Yθ ≤ a} = �(z+(θ, a))−�(z−(θ, a))

with density function

∂

∂a
P {Yθ ≤ a} = ϕ(z+(θ, a))− ϕ(z−(θ, a))√

1+ 2 · √2 · a · sin θ + sin2 θ
,
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where

(θ) ≡ 1+ sin2 θ

2
√

2 · sin θ
. (4.14)

Moreover, both the cdf and density functions are zero when a ≤ −(θ).

Proof First, we observe that the event {Yθ ≤ a} occurs with probability zero when we
have a ≤ −(θ). Second, for all a > −(θ), we have

{Yθ ≤ a} = {z−(θ, a) ≤ X ≤ z+(θ, a)} (4.15)

Moreover, since the sum of z+(θ, a)+ z−(θ, a) is not a function of a, we have

∂z+
∂a

(θ, a) = −∂z−
∂a

(θ, a) = 1√
1+ 2 · √2 · a · sin θ + sin2 θ

. (4.16)

��
Here are simple formulas for the covariance terms of Yθ used in Theorem 3.1. We
prove these results in the Appendix A using Hermite polynomials.

Theorem 4.3 For all θ and χ , we have

E
[
(Yθ − χ)+

] = −χ · P {Yθ ≥ χ} + cos θ · (ϕ(z+)− ϕ(z−))

+ 1√
2
· sin θ · (z+ · ϕ(z+)− z− · ϕ(z−)) ,

Cov
[
Yθ , (Yθ − χ)+

] = P {Yθ ≥ χ} + 3
√

2

2
· sin θ · cos θ · (ϕ(z+)− ϕ(z−))

+ sin2 θ · (z+ · ϕ(z+)− z− · ϕ(z−)) ,

and

Cov
[
Y 2

θ , (Yθ − χ)+
]
=

(
3− sin2 θ

)
· √2 · sin θ · P {Yθ ≥ χ}

+
(

1+ 3
√

2

2
· χ · sin θ + 8 sin2 θ

)

· cos θ · (ϕ(z+)− ϕ(z−))

+
(

3
√

2

2
+ χ · sin θ + 2

√
2 sin2 θ

)

· sin θ · (z+ · ϕ(z+)− z− · ϕ(z−)) ,

where z+ ≡ z+(θ, χ) and z− ≡ z−(θ, χ).
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Observe that Yθ ∧ χ = Yθ − (Yθ − χ)+, so we also have

E [(Yθ ∧ χ)] = −E
[
(Yθ − χ)+

]
,

Cov [Yθ , (Yθ ∧ χ)] = 1− Cov
[
Yθ , (Yθ − χ)+

]
,

and

Cov
[
Y 2

θ , (Yθ ∧ χ)
]
= σθ − Cov

[
Y 2

θ , (Yθ − χ)+
]
.

5 Numerical examples

Now let f (q, v, σθ ), g(q, v, σθ ), and h(q, v, σθ ), respectively, represent the right hand
sides of (4.8)–(4.10). We can numerically solve these equations by applying the stan-
dard Euler scheme (see Strogatz [22] on page 32), which implies that if �t is the time
step, then we make the following substitutions

q(t +�t)←− q(t)+�t · f (q(t), v(t), σθ (t)),
q(t +�t)+ v(t +�t)

2
←− q(t)+ v(t)

2
+�t · g(q(t), v(t), σθ (t)),

and

⎛
⎝q

6
+ v

2
+

(
σθ ·
√

v3
)

3

⎞
⎠ (t +�t)←−

⎛
⎝q

6
+ v

2
+

(
σθ ·
√

v3
)

3

⎞
⎠ (t)

+�t · h(q(t), v(t), σθ (t)).

If v = 0, then the GVA and GSA equations are discontinuous. We can avoid this case,
by assigning the non-zero initial value of v to be v(0) = 10−5. The error for such a
forward Euler scheme is of order �t as it becomes small. For our numerical examples,
we set �t = 10−3.

For our simulations, the time step here is also �t = 10−3. The sample variance
averages around 25.0 and the number of total runs is 10,000. This gives us a 99 %
confidence interval close to plus or minus 0.15 for a mean queue number that averages
over time around 12.0. For the histograms of the distribution at given time points,
since the queueing process is integer valued, we always set the bin size to be 1. In
Appendix B we describe, with a simple (i.e., abandonment rate zero) multi-server
example, the queueing simulation algorithm that we used.

5.1 General numerical case and histogram plots

In Fig. 5, we see that the estimate for the mean behavior is nearly identical for GVA
and GSA. This give us confidence that our method at least gives us good estimates
for the mean behavior. A more refined picture of the difference of GVA and GSA is
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Fig. 5 Comparison of simulated, GVA, and GSA means (left). Relative error of means using GVA and
GSA approximations (right)
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Fig. 6 Comparison of simulated, GVA, and GSA variances (left). Relative error of variances using GVA
and GSA approximations (right)

given in the right hand graph of Fig. 5. This shows that GSA is slightly outperforming
the GVA estimate for the mean behavior since the log10 or common logarithm of the
relative error for GSA is smaller. In Fig. 6 we see that the variance estimate for the
GSA is much better than the estimate by GVA. The curves for the simulated variance
and the GSA variance are nearly identical. When one refines the picture on the right
of 6 one notices that GSA is outperforming GVA by one order of magnitude. Finally,
in Fig. 7 we compare the estimates of the skewness from the GSA method with the
simulated skewness of the queueing process. A more refined look reveals a worst case
accuracy of 10 % relative error.

In addition to exploring the mean, variance, and skewness of the queueing process,
we also compared the queue length distributions for fixed time points. The set of points
that we considered were {1.0, 1.4, 2.75, 4.90}. These points represent the following
different queueing time periods: underloaded (t = 1.0), underloaded to critically
loaded (t = 1.4), fully overloaded (t = 2.75), and overloaded to critically loaded
(t = 4.90). These periods correspond to the ones considered in Massey [15] as well as
Mandelbaum and Massey [12]. Figure 8 shows the queue length distributions for each
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Fig. 7 Comparison of simulated and ODE approximation of skewness (left). Relative error of GSA approx-
imation (right)
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Fig. 8 Comparison of fluid/diffusion, GVA, and GSA densities to histograms of simulated queue length
distributions

of these time points. As we can see in the bottom two histograms that accommodating
distributions with asymmetric tails is a key feature of the GSA method, over both GVA
and a Gaussian distribution with a fluid mean and a diffusion variance.
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5.2 Square wave arrival rate

Now consider the case of discontinous arrival rate as given by Table 2. In the top left
of Fig. 9 we see that the GSA and GVA are doing a better job of approximating the
mean behavior of the queueing process than the fluid limit. This is also confirmed in
the bottom right of Fig. 9 where we see that GSA is doing slightly better than GVA. In
the top right of Fig. 9 we also see that the GSA is estimating the variance better than
in the case of GVA and the diffusion limit. Finally, we see in the bottom left of Fig. 9
that the GSA provides a good estimate of the skewness of the queueing system, when
the arrival rate is a discontinuous function of time. This provides some more evidence
that the GSA method can handle rather arbitrary arrival rate functions that are not just
sinusoidal. In this and all the subsequent numerical examples, we deliberately plot the
GSA estimate graph twice on the bottom left and right. This makes it easier to compare
the approximations to the mean and variance with the times that the skewness has a
locally extreme value.

5.3 Dynamic staffing

This numerical example, given by Table 3, is for the case of the staffing function
varying over time. In the top left of Fig. 10 we see that the GSA and GVA are doing a
better job of approximating the mean behavior of the queueing process than the fluid
limit. This is also confirmed in the bottom right of Fig. 10, where we see that GSA is
doing moderately better than GVA. In the top right of Fig. 10 we also see that the GSA
is estimating the variance better than in the case of GVA and the diffusion limit. Finally,
we see in the bottom left of Fig. 10 that the GSA provides a quite good estimate of
the skewness of the queueing system, when the arrival rate is a discontinuous function
of time. This provides some more evidence that the GSA method can handle rather
arbitrary staffing functions that are not just constant since our staffing function is
piecewise constant over time.

5.4 High arrival rate and large number of servers

This numerical example, given by Table 4, shows that the GSA method can handle
a large number of servers. On top left of Fig. 11, the fluid limit is comparable to
GSA and GVA in estimating the mean behavior of the queueing process. This is also
further supported in the bottom right of Fig. 11 where we see that it is achieving 10−2

Table 2 Square wave
parameters

Parameter Value (at time t)

λ 17.0 if 2k ≤ t/π < 2k + 1, otherwise 7.0

μ 1.0

c 10

β 0.25
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Fig. 9 Square wave arrival rate and constant staffing schedule c = 10

Table 3 Dynamic staffing
parameters

Parameter Value (at time t)

λ 10.0+ 5.0 ∗ sin t

μ 1.0

c �λ(t) ∗ 1.5�
β 0.25
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Fig. 10 Sinusoidal arrival rate and sinusoidal staffing schedule

Table 4 High arrival rate
parameters

Parameter Value (at time t)

λ 100.0+ 50.0 ∗ sin t

μ 1.0

c 100

β 0.25

123



264 Queueing Syst (2013) 75:243–277

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

Time

M
ea

n 
Q

ue
ue

 L
en

gt
h

Mean−Sim
Mean−Fluid
Mean−GVA
Mean−GSA
C

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

Time

V
ar

ia
nc

e

Var−Sim
Var−Diff
Var−GVA
Var−GSA

0 5 10 15 20 25 30 35 40
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Time

R
el

at
iv

e 
E

rr
or

 o
f M

ea
n 

(L
og

 S
ca

le
)

Mean−Fluid
Mean−GVA
Mean−GSA

0 5 10 15 20 25 30 35 40
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Time

R
el

at
iv

e 
E

rr
or

 o
f V

ar
ia

nc
e 

(L
og

 S
ca

le
)

Var−Diff
Var−GVA
Var−GSA

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

S
ke

w
ne

ss

Skew−Sim
Skew−GSA

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

S
ke

w
ne

ss

Skew−Sim
Skew−GSA

Fig. 11 Sinusoidal arrival rate and constant staffing schedule c = 100

accuracy. In the top right of Fig. 11 we also see that the GSA estimate of the variance
is slightly better than both GVA and the diffusion limit. Finally, in the bottom left
of Fig. 11 the GSA estimates the skewness of the queueing system by a 10 percent
error at worst. Note that the skewness peaks when the queueing process is critically
loaded. Moreover, the skewness values are about half the size when compared to the
two server case. We expect this because as the number of arrivals and servers tends to
infinity, the diffusion should be Gaussian, which implies a negligible skewness value.
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Table 5 Two server parameters
Parameter Value (at time t)

λ 2.0+ sin t

μ 1.0

c 2

β 0.25

5.5 Two servers

The purpose of this numerical example, given by Table 5, is to show how the GSA
method handles a small number of servers, i.e., c = 2. On top left of Fig. 12 we see
that the GSA and GVA are doing a better job of estimating the mean behavior of the
queueing process than the fluid limit. Moreover, in the bottom right of Fig. 12, we see
that GSA is doing slightly better than GVA. In the top right graph, we also see that
GSA is estimating the variance better than GVA or the diffusion limit. Finally, we see
in the bottom left graph that the GSA provides a decent estimate of the skewness of
the queueing system; however, it may need some improvement. It is also important to
note that the system has a larger skewness value. One should expect that the skewness
should be higher as one moves away from the limiting regime of large arrival rates
and large number of servers.

5.6 Single server

Our last numerical example, given by Table 6, explores the case of a single server
queue. Unlike some of earlier examples, the GSA does not provide a good estimate
of the mean. The GSA estimate is better than GVA and the fluid limit; however, the
GSA estimate is close to 10 percent relative error, as shown on the top left of Fig. 13.
This is also further supported in the bottom right of Fig. 13 where we see that the
fluid, GVA, and GSA equations are all achieving similar results. In the top right of
Fig. 13, we also see that the GSA estimates the variance better than with GVA or the
diffusion limit and this improvement is very large. Finally, we see in the bottom left
of Fig. 11 that the GSA provides a decent estimate of the skewness of the queueing
system; however, this estimate also has the potential for improvement. Furthermore,
like in the two server case, the skewness value is quite high and for the most part is
above 1, which suggests that the queueing process is less Gaussian here for the entire
duration of time. This example suggest that the GSA is limited for the single server
queue and might benefit from a kurtosis expansion in this case.

6 Conclusion and final remarks

The results we have discussed can be extended to any Markovian service network
as we will discuss in a future paper. Their fluid and diffusion limits suggest that a
Gaussian approximation captures a significant component of their stochastic behavior.
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Fig. 12 Sinusoidal arrival rate and constant staffing schedule c = 2

Table 6 Single server
parameters

Parameter Value (at time t)

λ 1.0+ 0.5 ∗ sin t

μ 1.0

c 1

β 0.25
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Fig. 13 Sinusoidal arrival rate and constant staffing schedule c = 1.

This makes the case for a Hermite polynomial Gaussian expansion of the queueing
process distribution as a natural basis for an approximation. Another future paper will
address the equations needed to estimate kurtosis. By GSA, we have constructed a
“non-Gaussian” approximation of our queueing system that is a quadratic function of
a standard Gaussian random variable X , using only the first three Hermite–Gaussian
basis elements. GSA generates a finite dimensional dynamical system that improves
our estimation of both the mean and variance of the original queueing process. This is
especially needed during the times of critical loading, where the queueing distribution
is less “Gaussian.” GSA also helps to capture random phenomena like the asymmetry
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in the tail behavior of the queue. This method can be naturally extended to develop
higher dimensional dynamical systems as closure approximations.
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Appendix A: Hermite polynomials and derivation of equations

The probabilistic Hermite polynomials as described in Nualart [16] are defined as:

hn(x) = 1

ϕ(x)
·
(
− d

dx

)n

ϕ(x). (6.1)

The first four Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x, (6.2)

and in general they solve the recurrence relation

hn+1(x) = x · hn(x)− n · hn−1(x). (6.3)

We have the following Hermite polynomial generalization of Stein’s lemma.

Theorem 6.1 If X is a standard Gaussian random variable, then

E [ f (X) · hn(X)] = E

[
dn

d Xn
f (X)

]

where f is any generalized function.

This follows from induction and integration by parts, since the Gaussian density is
smooth (infinitely differentiable). From this result follows the orthogonality property
of Hermite polynomials, namely

E [hn(X) · hm(X)] =
{

m! if n = m,

0 if n = m.

This follows from the fact that m derivatives of a degree n polynomial is always zero
when m > n. Moreover, we get m! when m = n since hm(x) is always a monic
polynomial. Since h0(X) = 1, it now follows that all random variables of the form
hn(X) have expectation zero, when n ≥ 1.

If f (X) is square integrable, then it can be written as an infinite sum of Hermite
polynomials of X , i.e.,

f (X) =
∞∑

n=0

1

n! E
[

dn

d Xn
f (X)

]
· hn(X),
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where the convergence is with respect to the mean square (or L2) norm. From this
orthogonal series expansion, it follows that

E [ f (X) · g(X)] =
∞∑

n=0

1

n! · E
[

dn

d Xn
f (X)

]
· E

[
dn

d Xn
g(X)

]

or equivalently

Cov [ f (X), g(X)] =
∞∑

n=1

1

n! · E
[

dn

d Xn
f (X)

]
· E

[
dn

d Xn
g(X)

]
.

Proof of Theorem 4.1 This proof follows from the forward equations for the first,
second, and third cumulant moments or Eq. 2.2 and our assumption that Q=q+√v·Yθ .
We show it for two of the terms. All remaining expressions are derived similarly.

E
[
(Q− c)+

] = E
[
(Yθ − χ)+

] · √v. (6.4)

Using the property that the covariance of any random variable with a constant is zero,
then we have

Cov
[Q, (Q− c)+

] = Cov
[
Yθ , (Yθ − χ)+

] · v. (6.5)

��
Recall that for our GSA algorithm, we need to find simple expressions for terms

like

Cov
[
Yθ , (Yθ − χ)+

]
and Cov

[
Y 2

θ , (Yθ − χ)+
]
.

Observing that (Yθ − χ)+ = (Yθ − χ) · {Yθ ≥ χ}, motivates the next two lemmas.

Lemma 6.2 For all n ≥ 1, we have

E

[
dn

d Xn
{Yθ ≥ χ}

]
= hn−1(z+) · ϕ(z+)− hn−1(z−) · ϕ(z−)

Proof We use the identity {Yθ ≥ χ} = {z− ≤ X ≤ z+} , where we use the overline
of an event to denote its complement. ��

123



270 Queueing Syst (2013) 75:243–277

Lemma 6.3 For all n ≥ 3, we have

E

[
dn

d Xn (Yθ − χ)+
]

= cos θ · (hn−2(z+) · ϕ(z+)− hn−2(z−) · ϕ(z−))

+√2 · sin θ · ((z+ · hn−2(z+)+ hn−3(z+)) · ϕ(z+)

− (z− · hn−2(z−)+ hn−3(z−)) · ϕ(z−)) .

with

E

[
d2

d X2 (Yθ − χ)+
]

=cos θ · (ϕ(z+)− ϕ(z−))+√2 · sin θ · ((z+ · ϕ(z+)−z− · ϕ(z−))+ P {Yθ ≥ χ}) .

and

E

[
d

d X
(Yθ − χ)+

]
= cos θ · P {Yθ ≥ χ} + √2 · sin θ · (ϕ(z+)− ϕ(z−)) . (6.6)

Proof We prove the first equality to establish the idea and omit the proof of the latter
two terms as they are proved in an identical fashion. Define f (z±) = f (z+)− f (z−)

and ζ(z) ≡ z. We then have

E

[
dn

d Xn (Yθ − χ)+
]

= E

[
hn−1(X) · d

d X
(Yθ − χ)+

]

= E

[
hn−1(X) · (Yθ − χ) · d

d X
{Yθ ≥ χ}

]

+E

[
hn−1(X) · {Yθ ≥ χ} · d

d X
(Yθ − χ)

]

= E
[
hn−1(X) · (Yθ − χ) · δz±(X)

]+ E
[
hn−1(X) · {Yθ ≥ χ} · Y ′θ

]

= cos θ ·E [
hn−1(X) · {Yθ ≥χ}]+√2 · sin θ · E [

hn−1(X)·X ·{Yθ ≥ χ}] (6.7)

= cos θ · E
[

dn−1

d Xn−1 · {Yθ ≥ χ}
]
+√2 · sin θ · E

[
dn−1

d Xn−1 · X · {Yθ ≥ χ}
]

= cos θ · E [
(hn−2 · δz±) (X)

]

+√2 · sin θ ·
(

E

[
X · dn−1

d Xn−1
{Yθ ≥ χ}

]
+ (n − 1) · E

[
dn−2

d Xn−2
{Yθ ≥ χ}

])

= cos θ · E [
(hn−2 · δz±) (X)

]

+√2 · sin θ · (E
[
(hn−1 · δz±) (X)

]+ (n − 1) · E [
(hn−3 · δz±) (X)

])

= cos θ · E [
(hn−2 · δz±) (X)

]
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+√2 · sin θ · (E
[
((ζ · hn−2 − (n − 2) · hn−3) · δz±) (X)

]

+(n − 1) · E [
(hn−3 · δz±) (X)

]) = cos θ · E [
(hn−2 · δz±) (X)

]

+√2 · sin θ · E [
((ζ · hn−2 + hn−3) · δz±) (X)

]
. (6.8)

��
Now that we have established our main lemmas, we use them to obtain the following

simple expressions for the covariance terms that are used in the forward equations for
the mean, variance, and skewness of the GSA.

Proof of Theorem 4.3

Cov
[
Yθ , (Yθ − χ)+

] = E

[
d

d X
Yθ

]
· E

[
d

d X
(Yθ − χ)+

]

+1

2
· E

[
d2

d X2 Yθ

]
· E

[
d2

d X2 (Yθ − χ)+
]

= cos θ · E
[

d

d X
(Yθ − χ)+

]

+1

2
· √2 · sin θ · E

[
d2

d X2 (Yθ − χ)+
]

= cos θ ·
(

cos θ · P {Yθ ≥ χ} + √2 · sin θ · ϕ(z±)
)

+ sin θ√
2
·
(

cos θ · ϕ(z±)+√2 · sin θ · ((ζ · ϕ)(z±)

+P{Yθ ≥ χ})
)

= P {Yθ ≥ χ} + 3
√

2

2
· sin θ · cos θ · ϕ(z±)

+ sin2 θ · (ζ · ϕ) (z±).

For the next set of calculations, we define

Y ′θ ≡
d

d X
Yθ and Y ′′θ ≡

d2

d X2 Yθ (6.9)

and use them when convenient. Moreover, for the second covariance term, we have

Cov
[
Y 2

θ , (Yθ − χ)+
]

= E

[
d

d X
Y 2

θ

]
· E

[
d

d X
(Yθ − χ)+

]
+ 1

2
· E

[
d2

d X2 Y 2
θ

]
· E

[
d2

d X2 (Yθ − χ)+
]

+1

6
· E

[
d3

d X3 Y 2
θ

]
· E

[
d3

d X3 (Yθ − χ)+
]
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+ 1

24
· E

[
d4

d X4 Y 2
θ

]
· E

[
d4

d X4 (Yθ − χ)+
]

= 2
√

2 sin θ cos θ · E
[

d

d X
(Yθ − χ)+

]

+1

2
· 2

(
1+ sin2 θ

)
· E

[
d2

d X2 (Yθ − χ)+
]

+1

6
· 6√2 sin θ cos θ · E

[
d3

d X3 (Yθ − χ)+
]

+ 1

24
· 12 sin2 θ · E

[
d4

d X4 (Yθ − χ)+
]

= 2
√

2 sin θ cos θ · E
[

d

d X
(Yθ − χ)+

]

+
(

1+ sin2 θ
)
· E

[
h1(X) · d

d X
(Yθ − χ)+

]

+√2 sin θ cos θ · E
[

h2(X) · d

d X
(Yθ − χ)+

]

+ sin2 θ

2
· E

[
h3(X) · d

d X
(Yθ − χ)+

]

= 2
√

2 sin θ cos θ · E [{Yθ ≥ χ} · Y ′θ
]+

(
1+ sin2 θ

)
· E [

h1(X) · {Yθ≥χ} · Y ′θ
]

+√2 sin θ cos θ · E [
h2(X) · {Yθ ≥χ} · Y ′θ

]+ sin2 θ

2
· E [

h3(X) · {Yθ ≥χ} · Y ′θ
]

= 2
√

2 sin θ cos2 θ · P {Yθ ≥ χ}+
(

1+sin2 θ
)
· E [

δz±(X) · Y ′θ
]

+4 sin2 θ cos θ · E [{Yθ ≥ χ} · X ]+
(

1+ sin2 θ
)
· E [{Yθ ≥ χ} · Y ′′θ

]

+√2 sin θ cos θ · E [
(h1 · δz±) (X) · Y ′θ

]+ sin2 θ

2
· E [

(h2 · δz±) (X) · Y ′θ
]

+√2 sin θ cos θ ·E [
h1(X)· {Yθ ≥ χ} · Y ′′θ

]+ sin2 θ

2
· E [

h2(X) · {Yθ ≥χ} · Y ′′θ
]

= 2
√

2 sin θ cos2 θ · P {Yθ ≥ χ} +
(

1+ sin2 θ
)
· E [

δz±(X) · Y ′θ
]

+4 sin2 θ cos θ · E [
δz±(X)

]+√2 sin θ
(

1+ sin2 θ
)
· E [{Yθ ≥ χ}]

+√2 sin θ cos θ · E [
(h1 · δz±) (X) · Y ′θ

]+ sin2 θ

2
· E [

(h2 · δz±) (X) · Y ′θ
]

+2 sin2 θ cos θ · E [h1(X) · {Yθ ≥ χ}]+ sin2 θ

2

√
2 sin θ · E [h2(X) · {Yθ ≥ χ}]

= 2
√

2 sin θ cos2 θ · P {Yθ ≥ χ} +
(

1+ sin2 θ
)
· E [

δz±(X) · Y ′θ
]

+4 sin2 θ cos θ · E [
δz±(X)

]+√2 sin θ
(

1+ sin2 θ
)
· P {Yθ ≥ χ}
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+√2 sin θ cos θ · E [
(h1 · δz±) (X) · Y ′θ

]+ sin2 θ

2
· E [

(h2 · δz±) (X) · Y ′θ
]

+2 sin2 θ cos θ · E [
δz±(X)

]+ sin2 θ

2

√
2 sin θ · E [

(h1 · δz±) (X)
]

Finally, we have

Cov
[
Y 2

θ , (Yθ − χ)+
]

=
(

2
√

2 sin θ − 2
√

2 sin3 θ +√2 sin θ +√2 sin3 θ
)
· P {Yθ ≥ χ}

+
(

1+ sin2 θ
)
· E [

δz±(X) · Y ′θ
]+ 6 sin2 θ cos θ · E [

δz±(X)
]

+
√

2

2
sin θ cos θ · E [

(h1 · δz±) (X) · Y ′θ
]+ sin2 θ

2
· E [

(h2 · δz±) (X) · Y ′θ
]

+
√

2

2
sin θ cos θ · E [

(h1 · δz±) (X) · Y ′θ
]+ sin2 θ

2

√
2 sin θ · E [

(h1 · δz±) (X)
]

=
(

3− sin2 θ
)√

2 sin θ · P {Yθ ≥ χ} +
(

1+ sin2 θ
)
· E [

δz±(X) · Y ′θ
]

+6 sin2 θ cos θ · E [
δz±(X)

]

+ sin θ√
2
· E

[((
cos θ · h1 + sin θ√

2
· h2

)
· δz±

)
(X) · Y ′θ

]

+
√

2

2
sin θ cos θ · E [

(h1 · δz±) (X) · Y ′θ
]+ sin2 θ

2

√
2 sin θ · E [

(h1 · δz±) (X)
]

=
(

3− sin2 θ
)√

2 sin θ · P {Yθ ≥ χ} +
(

1+ sin2 θ
)
· E [

δz±(X) · Y ′θ
]

+6 sin2 θ cos θ · E [
δz±(X)

]+ sin θ√
2
· E [

(χ · δz±) (X) · Y ′θ
]

+ sin θ√
2
· cos θ · E [

(h1 · δz±) (X) · Y ′θ
]+ sin3 θ√

2
· E [

(h1 · δz±) (X)
]

=
(

3− sin2 θ
)√

2 sin θ · P {Yθ ≥ χ} +
(

1+ sin2 θ
)

cos θ · E [
δz±(X)

]

+
(

1+ sin2 θ
)√

2 sin θ · E [
(h1 · δz±) (X)

]+ 6 sin2 θ cos θ · E [
δz±(X)

]

+ sin θ√
2

cos θ · E [
(χ · δz±) (X)

]+ χ · sin θ√
2

√
2 sin θ · E [

(h1 · δz±) (X)
]

+ sin θ√
2
· cos2 θ · E [

(h1 · δz±) (X)
]

+ sin θ√
2
· cos θ · √2 sin θ · E [

((h2 + 1) · δz±) (X)
]

+ sin3 θ√
2
· E [

(h1 · δz±) (X)
]

=
(

3− sin2 θ
)√

2 sin θ · P {Yθ ≥ χ}
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+
(

1+ χ · sin θ√
2
+ 8 sin2 θ

)
cos θ · E [

δz±(X)
]

+
(

3

2
+ sin2 θ

)√
2 sin θ · E [

(h1 · δz±) (X)
]

+χ · sin θ√
2

√
2 sin θ · E [

(h1 · δz±) (X)
]

+ cos θ sin θ
√

2 · E [
((χ − cos θ · h1) · δz±) (X)

]

=
(

3− sin2 θ
)√

2 sin θ · P {Yθ ≥ χ}

+
(

1+ 3
√

2

2
· χ sin θ + 8 sin2 θ

)
cos θ · E [

δz±(X)
]

+
(√

2

2
+ χ · sin θ + 2

√
2 sin2 θ

)
sin θ · E [

(h1 · δz±) (X)
]
.

��

Appendix B: Monte Carlo queueing simulation

To simulate the mean of our queueing process, we implement an algorithm similar to
the one illustrated below for a Monte Carlo simulation of the transient mean for an
M/M/c queue. As shown in Fig. 14, the inner loop is for each i.i.d. Markov sample
path labeled by “run.” In theory, we are summing up all the sample path realizations of
the number in the queue at a fixed “time.” In practice, however, the sum of the previous
instance, “time” minus “tick,” is known. Determining which “next event time” for a
given “run” exceeds the current “time” is now a “run” whose queue must be updated.
Applying this same update of a customer arrival or departure to the total sum, or “queue
run sum,” updates the total sum. After we are done with all the “total runs,” we then
move forward in time by a small amount “tick.” Care must be taken to make sure that
the size tick is smaller than any of the average holding times for any state.

Using this approach, we do not have to store the discretized version of each sample
path. For our numerical example, we would have to store 10,000 vectors of dimension
40,000. The latter number is the length of the time interval 40.0 divided by �t = 10−3.
We only need to store a single vector of this type which corresponds to the sample
mean of the number in the queue as it evolves over time.

Figure 15 illustrates what is going on inside the “Update” subroutine in more detail.
At state n, the holding time for our M/M/c queue has an exponential distribution with
rate λ + μ ∗ min(n, c). The next transition state is n + 1 (or using the programming
language of C, n++, see Kernighan and Richie for details [9]) with probability λ

divided by the holding time rate. Otherwise, the next transition state is n − 1 (or n--
when programming in C), if this is possible, or nothing happens. We refer to the state
as “queue state[run]” and the holding time rate as “event rate[run].”

Using a pseudo random number generator, we simulate a random variable U that
is uniformly distributed on the interval (0, 1] (see Ross for more details [19]). The
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Fig. 14 Flow chart diagram for simulation algorithm

Fig. 15 Flow chart diagram for update subroutine of simulation algorithm

random event of the holding time rate times U being less than λ has the desired
probability of λ divided by the holding time rate. When this event occurs, we then
execute the arrival simulation as “queue state[run]++” and “queue run sum++”. Now
that we are in our new state, we compute its holding time rate. If we generate another
uniform random variable V , then − log V divided by the next holding time rate gives
us an exponentially distributed random variable with the holding rate, again see Ross
[19]. Adding this to the current time gives us the time of the next event or updates
“next event time[run].”
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Finally, to simulate this model with a time varying arrival rate function, according
to a Poisson thinning method as found in Ross [19], two things need to be done. First,
change the previous use of λ to the maximum possible value for the arrival rate over
the given, finite time interval. Second, after a positive test for the product of U times
the holding rate being less than the maximum arrival rate occurs, now test for almost
the same event except that the maximum possible arrival rate is replaced by the arrival
rate that happens at the current “time.” If this is also true, then the arriving customer
event is still valid. Otherwise, the arrival event does not happen.

For this given “time,” the average of value for “mean queue” is “queue run sum”
divided by “total runs.” The confidence interval for simulating the mean is plus or
minus 3 times the square root of the ratio for the simulation of the variance divided
by the number of “total runs.”
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