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Abstract. This paper presents a novel and computationally efficient methodology for
approximating the queue length (the number of customers in the system) distributions
of time-varying non-Markovian many-server queues (e.g., Gt/Gt/nt queues), where the
number of servers (nt) is large. Our methodology consists of two steps. The first step uses
phase-type distributions to approximate the general interarrival and service times, thus
generating an approximating Pht/Pht/nt queue. The second step develops strong approxi-
mation theory to approximate the Pht/Pht/nt queuewith fluid and diffusion limits whose
mean and variance can be computed using ordinary differential equations. However, by
naively representing the Pht/Pht/nt queue as a Markov process by expanding the state
space, we encounter the lingering phenomenoneven when the queue is overloaded. Linger-
ing typically occurs when the mean queue length is equal or near the number of servers,
however, in this case it also happens when the queue is overloaded and this time is not of
zero measure. As a result, we develop an alternative representation for the queue length
process that avoids the lingering problem in the overloaded case, thus allowing for the
derivation of a Gaussian diffusion limit. Finally, we compare the effectiveness of our pro-
posed method with discrete event simulation in a variety parameter settings and show
that our approximations are very accurate.
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1. Introduction
Real-world applications of large-scale queueing sys-
tems such as data centers, call centers, and health-
care centers have time-varying and dynamic behavior.
Furthermore, the arrival and service processes are not
necessarily Markovian in general (Brown et al. 2005,
Arfeen et al. 2013, Nelson and Taaffe 2004a). Many
of the recent studies on large-scale non-Markovian
queues rely on the asymptotic approaches that utilize
fluid and diffusion limits as described in Billingsley
(1999) and Whitt (2002). Research on non-Markovian
systems has progressed to the point of analyzing
underloaded systems (a.k.a. the offered-load model,
infinite-server queues) as a result of their analytical
or numerical tractability (Whitt 1982; Glynn 1982; Eick
et al. 1993; Nelson and Taaffe 2004a, b). Studies on
the delay model, e.g., Mt/Gt/nt , Gt/Mt/nt , Gt/Gt/nt
queues, have been conducted from the context of fluid
queues or heavy traffic diffusion models in the Halfin-
Whitt regime (Halfin and Whitt 1981; Puhalskii and
Reiman 2000; Pang and Whitt 2009; Reed 2009; Whitt
2006; Liu and Whitt 2012, 2014a, b).

This paper uses the uniform acceleration method
coupled with strong approximations and accelerates
parameters while keeping the traffic intensity constant,
see for example (Kurtz 1978, Mandelbaum et al. 1998,
Hampshire et al. 2006). Kurtz (1978) establishes strong
approximation theorems for state-dependent continu-
ous timeMarkov chains (CTMCs) having differentiable
rate functions. Extending Kurtz (1978), Mandelbaum
et al. (1998) consider time-varying parameters and non-
differentiable rate functions such as min(·, ·) that com-
monly occur in the analysis of queues. Mandelbaum
et al. (2002) prove that the strong approximation results
developed in Kurtz (1978) can also be applied when
the fluid limit stays at the nondifferentiable points of
rate functions for ameasure-zero amount of time.How-
ever, in some queueing processes, it is hard to avoid
themeasure-zero assumption. See for instanceNiyirora
and Pender (2017) and Hampshire and Massey (2005,
2010),Hampshire et al. (2009b, a)whereoptimal staffing
methods force staffing at the nondifferentiable points.

To address the issue of when the fluid limit is near
the nondifferentiable points of the rate functions for
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more than a measure-zero amount of time Ko and
Gautam (2013) propose a Gaussian-based approxima-
tion method that achieves better approximation qual-
ity. Massey and Pender (2011, 2013) improve the result
of Ko and Gautam (2013) by incorporating the skew-
ness of the queueing process and by expanding the
queue length process in terms of Hermite polynomi-
als, which are orthogonal with respect to the Gaussian
distribution. In the same spirit, the work of Pender
(2014, 2015b, a, c) extends the results of Massey and
Pender (2013) and explores the impact of the kurtosis
through a Gram-Charlier expansion and using other
distributions as closure approximations. More work
by Engblom and Pender (2014) also proves that spec-
tral expansions as closure approximations for the func-
tional Kolmogorov forward equations of the queue
length process are provably optimal in an L2 sense for
approximating the moments of nonstationary birth-
death processes. Although the spectral approach offers
great insight especially for higher moments of the
queue length processes and provable error bounds on
the approximation error on themoments, fluid and dif-
fusion limits also offer complementary insight for the
sample path behavior of the queueing process.
In the spirit of fluid and diffusion limits, Liu and

Whitt (2012) prove a weak law of large numbers limit
for the Gt/GI/nt+GI queue and extend the work of
Mandelbaum et al. (1998) in the sense that they con-
sider non-Markovian interarrival, service and aban-
donment times. However, the service times are not
time-varying and the limit does not converge almost
surely as the limit in this work. In a follow-up paper,
Liu andWhitt (2014b) provide a heavy-traffic diffusion
limit for Gt/M/st+GI queues. The methodology used
by Liu and Whitt (2014b) is to paste together the over-
loaded and underloaded intervals of the nonstation-
ary queueing process. Thus, they explicitly avoid the
case where the number of servers is equal to the fluid
limit. As shown in Mandelbaum et al. (2002), Ko and
Gautam (2013), Liu and Whitt (2014b), it appears rea-
sonable to approximate the queue length process with
a Gaussian process. However, estimating the parame-
ters of a Gaussian process depends on both fluid and
diffusion limits. Lastly, Reed (2009) and Dai et al. (2010)
uses the continuous mapping approach to prove diffu-
sion limits for queues with general and phase type ser-
vice respectively. Although this work was a significant
advance in the many server literature, Reed (2009), Dai
et al. (2010) do not explore the impact of nonstation-
ary arrival and service times and this work generalizes
their work in this regard. Lastly, since our approxima-
tions are for nonstationary processes, the approxima-
tions are universally useful and apply in any regime.
Using phase-type distributions for approximating

general distributions in queueing analysis is not new,
see for example Barbour (1976). The matrix-geometric

method (MGM) described in Neuts (1981) is a well-
known approach for the analysis of non-Markovian
queues. MGM, however, can only handle phase-type
distributions with a small number of phases due
to state space explosion. Nelson and Taaffe (2004a)
develop a method based on the partial-moment differ-
ential equations for the analysis of Pht/Pht/∞ queues
that accurately estimates the moments of the num-
ber of entities in the system. The number of differ-
ential equations to evaluate the first two moments
is mA + mS − 1 + mAmS(mS + 1), where mA and mS
are the number of phases in the interarrival and ser-
vice time distributions, respectively. The result, how-
ever, is not applicable to the delay models, such as
Pht/Pht/nt queues studied in our paper. Creemers
et al. (2014) devise a phase-type approximation algo-
rithm for small-to-medium-sized queues (2–10 servers)
using two-moment matching procedures, however, the
downfall is that the method does not scale well with
the number servers and it has a high computational
cost when the number of servers is large. Our goal is
to remove this dependence on the number of servers
since it is very limiting in a computational sense, espe-
cially in large-scale service systems.

1.1. Main Contributions of Paper
The contributions of this work can be summarized
as follows. First, we consider the dynamics of a Gt/
Gt/nt queue. The Gt/Gt/nt queueing model is rela-
tively intractable since we are unable to derive the
exact distribution of the queue length as a function
of time. Thus, we first approximate the general and
non-Markovian arrival and service distributions with
phase-type distributions with an appropriate number
of phases. This reduces our problem to analyzing the
Pht/Pht/nt queue, which is more tractable than its
general counterpart. Second, we derive fluid and diffu-
sion limits for a Pht/Pht/nt queue using uniform accel-
eration coupled with strong approximations of time
changed Poisson processes. Unfortunately, when we
naively keep track of the number of customers being
served in each phase and the number of customers in
the system separately, we encounter the lingering issue;
the fluid limit stays at nondifferentiable points dur-
ing some intervals having positive measure. This pre-
vents us from deriving a Gaussian or continuous dif-
fusion limit. Thus, another important contribution of
our work is our proposal of an alternative Markovian
formulation of the queueing process that enables us
to successfully obtain the diffusion limit. One attrac-
tive feature of our method is its computational effi-
ciency. The number of ordinary differential equations
to obtain the fluid and diffusion limits is O([mA +mS]2)
and it does not depend on the number of servers, nt
like other numerical methods by Creemers et al. (2014).
The number of phases used for approximating inter-
arrival and service time distributions is 8–10 and the
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numerical solution is reached in less than a minute
using a commercial solver (e.g., MATLAB). Most previ-
ous studies only use two phases for matching first two
moments because the increase in the dimension of the
state space makes the analysis extremely difficult oth-
erwise. Lastly, we prove the fluid and diffusion limits in
a different manner than what is given in Mandelbaum
et al. (1998). This is because the proof of Lemma 9.3 of
Mandelbaum et al. (1998) depends on the untrue asser-
tion that if a sequence of non-negative random vari-
ables defined on the same probability space is tight,
then it has a finite limit superior almost surely. More-
over, in Remark 1 of Puhalskii (2013) it is also shown
that there are issues with establishing the martingale
property in the proof of Lemma 9.1.

1.2. Organization of Paper
The remainder of this paper is organized as follows.
Section 2 describes the Gt/Gt/nt queueing model and
the problem settings. Section 3 builds a mathemati-
cal model for describing the dynamics of the system
for the Pht/Pht/nt queue. We explain the impact of
the lingering problem and introduce an alternative
sample path representation for analyzing it. Section 4
constructs the fluid and diffusion limit theorems as
approximations for the sample path dynamics of the
queueing process in the finite server setting. Section 5
discusses the infinite server setting and provides the
fluid and diffusion limits for the infinite server queue-
ing model. Section 6 discusses the numerical exam-
ples used to validate the effectiveness of our proposed
approach. Section 7 concludes and offers suggestions
for future research.

2. Problem Description
We consider a Gt/Gt/nt queue, a time-varying version
of a G/G/n queue, with a general time-varying arrival
process, a general time-varying service time distribu-
tion, and a time-varying number of servers. The system
has an infinite capacity of waiting space and customers
in the waiting space are served under the first-come,
first-served discipline. Let X(t) denote the number of
customers in the system at time t and x̄(t) denote the
corresponding fluid limit. We assume that the fluid
limit (x̄(t)) alternates between the underloaded (i.e.,
x̄(t) < nt) and overloaded (i.e., x̄(t) > nt) regimes and
hits the critically loaded regime (i.e., x̄(t) � nt) at most
a countable number of times. The performance mea-
sures of interest are E[X(t)], Var[X(t)] and, if possible,
the distribution of X(t) for all time 0≤ t ≤ T and T <∞.

More specifically, we analyze a Pht/Pht/nt queue as
an approximation of the Gt/Gt/nt queue since phase-
type distributions are dense in all positive-support dis-
tributions and the use of phase-type distribution in
queueing analysis does not lose generality significantly
(Barbour 1976, Whitt 1982, and Asmussen et al. 1996).

A phase-type distribution with m phases represents
the time taken from an initial state to an absorbing state
of a continuous time Markov chain with the following
infinitesimal generator matrix:

Q�

(
0 0
s S

)
,

where 0 is a 1×m zero vector, s is an m × 1 vector, and
S is an m ×m matrix. Note s �−Se where e is an m × 1
vector of ones. The matrix S and the initial distribu-
tion α which is a 1×m vector identify the phase-type
distributions. Finding the best phase-type distribution
for approximating a general distribution is beyond the
scope of this paper, and we refer to the reader to a
large number of references (Bobbio et al. 2005, Johnson
and Taaffe 1991, Yu et al. 2012, Botta and Harris 1986,
Feldmann and Whitt 1998, Ou et al. 1997, Asmussen
et al. 1996, Osogami and Harchol-Balter 2006). To give
the reader a better understanding of our methodol-
ogy, we describe the fitting algorithm that we use in
Section 6.

We assume that our phase-type distributions have
initial distributions, α and β, and infinitesimal gener-
ator matrices, QA and QS, for the arrival process and
service times respectively. The number of phases in SA
and SS is mA and mS, respectively. The matrices SA
and SS, and the vectors sA and sS can be expressed as

SA �

©­­­«
λ11 · · · λ1mA

...
...

...

λmA1 · · · λmA mA

ª®®®¬ , sA � (λ10 , . . . , λmA0)′ (1)

SS �

©­­­«
µ11 · · · µ1mS

...
...

...

µmS1 · · · µmS mS

ª®®®¬ , sS � (µ10 , . . . , µmS0)′, (2)

where λ jk ’s and µil’s agree with the definition of the
infinitesimal generator matrices, QA and QS. Note that
the time-varying extension can be achieved by replac-
ing λ jk and µil with λ jk(t) and µil(t) and making sure
that their integrals are locally bounded away from
infinity.

3. The Queueing Model
With the phase-type distributions described in Sec-
tion 2, we build a mathematical queueing model to
describe the dynamics of the Pht/Pht/nt queue. We
assume that the system starts with no customers.

Figure 1 illustrates an example of Ph/Ph/n queue
with Coxian inter-arrival and service times. To model
the Pht/Pht/nt queue, we need to keep track of the
phase in which the arriving customer is (area A in
Figure 1), the number of customers being served in
each phase (area C), and the number of customers
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Figure 1. Ph/Ph/n Queue with Coxian Distributions

A

B

C

q1�1p1�1

Ph/Ph/n queue

(1– p1)�1

(1– p2)�2

(1– p3)�3p2�2

p3�3

(1– q1)�1

(1– q2)�2

(1– q3)�3

q3�3

�4�4

in the waiting space (area B). We let Ui(t) be the
number of customers in phase i of the arrival pro-
cess at time t, X j(t) be the number of customers
being served in phase j of the service process, and
Z(t) be the total number of customers in the sys-
tem. Note that the number of customers in the wait-
ing space is Z(t) − ∑mS

i�1 Xi(t) ≥ 0 and ∑mA
i�1 Ui(t) � 1

for all t > 0. Then, the state of the system V(t) �
(U1(t), . . . ,UmA

,X1(t), . . . ,XmS
,Z(t))′ is the solution to

the following integral equations:

U j(t)� U j(0)+
mA∑
k, j

YA
k j

(∫ t

0
λk jUk(s) ds

)
−

mA∑
k, j

YA
jk

(∫ t

0
λ jkU j(s) ds

)
−

mA∑
k, j

mS∑
l�1

YI
jkl

(∫ t

0
λ j0αkβlU j(s)1{Z(s)≤n} ds

)
−

mA∑
k, j

YQ
jk

(∫ t

0
λ j0αkU j(s)1{Z(s)>n} ds

)
+

mA∑
k, j

mS∑
l�1

YI
k jl

(∫ t

0
λk0α jβlUk(s)1{Z(s)≤n} ds

)
+

mA∑
k, j

YQ
k j

(∫ t

0
λk0α jUk(s)1{Z(s)>n} ds

)
for 1 ≤ j ≤ mA , (3)

Xi(t)�
mA∑
j�1

mA∑
k�1

YI
jki

(∫ t

0
λ j0αkβiU j(s)1{Z(s)≤n} ds

)
+

mS∑
l,i

YS
li

(∫ t

0
µliXl(s) ds

)
−

mS∑
l,i

YS
il

(∫ t

0
µilXi(s) ds

)
−YD

i0

(∫ t

0
µi0Xi(s)1{Z(s)≤n} ds

)
−

mS∑
l,i

YD
il

(∫ t

0
µi0Xi(s)1{Z(s)>n}βl ds

)
+

mS∑
l,i

YD
li

(∫ t

0
µl0Xl(s)1{Z(s)>n}βi ds

)
for 1 ≤ i ≤ mS , (4)

Z(t)�
mA∑
j�1

mA∑
k�1

mS∑
l�1

YI
jkl

(∫ t

0
λ j0αkβlU j(s)1{Z(s)≤n} ds

)
+

mA∑
j�1

mA∑
k�1

YQ
jk

(∫ t

0
λ j0αkU j(s)1{Z(s)>n} ds

)
−

mS∑
i�1

YD
i0

(∫ t

0
µi0Xi(s)1{Z(s)≤n} ds

)
−

mS∑
i�1

mS∑
l�1

YD
il

(∫ t

0
µi0Xi(s)1{Z(s)>n}βl ds

)
. (5)

For notational convenience, Equations (3)–(5) rep-
resent the dynamics of a Ph/Ph/n queue. As men-
tioned in Section 2, we can obtain the time-varying
extension by replacing λ jk , µil and n with λ jk(t), µil(t),
and n(t) respectively under mild conditions given in
Mandelbaum et al. (1998). Poisson processes, YA

k j( · )’s
count the number of transitions fromphase k to phase j
of the arrival process. When the waiting space is empty
(Z(t) ≤ n), Poisson processes, YI

jkl( · )’s, count the num-
ber of departures from phase j of the arrival process
to phase l of the service process according to the ini-
tial distribution β and the arrival process restarts from
phase k according to the initial distribution α. When
the waiting space is not empty (Z(t) > n), Poisson pro-
cesses, YQ

jk ( · )’s, count the number of departures from
phase j of the arrival process to the waiting space
and a new arrival process begins in phase k. Pois-
son processes, YS

li( · )’s, count the internal transitions
from phase l to phase j of the service process. When
the waiting space is empty, Poisson processes, YD

i0 ( · )’s,
count the number of departures from phase i of the
service process. When the waiting space is not empty,
Poisson processes, YD

il ( · )’s, count the number of depar-
tures from phase i and a new customer enters phase l
from thewaiting space. Note that the Poisson processes
explained previously have rate 1 (with random time
changes) and are mutually independent.

We can easily figure out that the rate functions in
Equations (3)–(5) (the integrands in Poisson processes)
are not differentiable with respect to the elements of
the state space vector, V(t). Thus, before applying the
uniform acceleration, we conduct a quick check to find

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

23
6.

18
1.

18
2]

 o
n 

11
 J

un
e 

20
18

, a
t 0

7:
09

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Pender and Ko: Queue Length Distributions of Time-Varying Many-Server Queues
692 INFORMS Journal on Computing, 2017, vol. 29, no. 4, pp. 688–704, ©2017 INFORMS

Figure 2. Variance Estimation of Exp. 7
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(b) Variance from the alternative formulation

whether the time during which the fluid limit stays at
the nondifferentiable points has measure zero.
Let v(t) � (ū1(t), . . . , ūmA

(t), x̄1(t), . . . , x̄mS
(t), z̄(t))′ be

the fluid limit of V(t). We check the Poisson pro-
cess, YD

il ( · ) in Equation (4). The fluid limit for YD
il ( · )

is µi0 x̄i(t)1{z̄(t)>n}. When z̄(t) hits n, the non-differen-
tiable point, ∑mS

i�1 x̄(t) � n. However, during the over-
loaded time {t: z̄(t) > n} which can have strictly
positive measure in our setting, ∑mS

i�1 x̄(t) remains
unchanged (i.e., ∑mS

i�1 x̄(t) � n). This implies that the
subvector (x̄1(t), . . . , x̄mS

(t))′ moves on the hyperplane
during the overloaded period and we cannot obtain
the diffusion limit from the result of Kurtz (1978) and
Mandelbaum et al. (2002). When we try to apply fluid
and diffusion limits with Equations (3)–(5) just ignor-
ing the issue, we observe a huge gap between simula-
tion and the numerical solution. For example (Exp. 7
in Section 6), Figure 2(a) shows the gap between the
simulated variance and the variance from the diffusion
limit. We devise an alternative formulation which can
significantly improve the approximation accuracy (see
Figure 2(b)).
The issue occurs because ∑mS

i�1 x̄(t) � n during the
overloaded period. The alternative formulation avoids
this situation but requires an additional assump-
tion that the phase-type distribution for service times
has a unique initial state. Such distributions include
the Erlang distribution and the Coxian distribution.
According to Asmussen et al. (1996), the Coxian distri-
bution provides almost the same quality of fit as the
general phase-type distribution with the same num-
ber of phases. One reason is that the Coxian and
generalized hyperexponential distribution, which are
specific classes of phase-type distributions, are also
dense in the class of positive-support distributions, see
for example Sasaki et al. (2004). Thus, the additional
assumption of restricting to the Coxian class, therefore,
may not be quite restrictive. Without loss of generality,
we assume the unique initial state is phase 1. The main
idea is to maintain the waiting space inside phase 1
and control transition rates from phase 1 so that the

system serves at most n customers. We have the same
state space except for Z(t) because X1(t) accounts for
customers in the waiting space. Using this represen-
tation, we can now write our new formulation of the
queueing process as follows:

U j(t)� U j(0)+
mA∑
k, j

YA
k j

(∫ t

0
λk jUk(s) ds

)
−

mA∑
k, j

YA
jk

(∫ t

0
λ jkU j(s) ds

)
−

mA∑
k, j

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mA∑
k, j

YI
k j

(∫ t

0
λk0α jUk(s) ds

)
for 1 ≤ j ≤ mA , (6)

X1(t)�
mA∑
j�1

mA∑
k�1

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mS∑
l,1

YS
l1

(∫ t

0
µl1Xl(s) ds

)
−

mS∑
l,1

YS
1l

(∫ t

0
µ1l

[
1{∑mS

r�1 Xr (s)≤n}X1(s)

+ 1{∑mS
r�1 Xr (s)>n}

(
n −

mS∑
r�2

Xr(s)
)+]

ds
)

−YD
1

(∫ t

0
µ10

[
1{∑mS

r�1 Xr (s)≤n}X1(s)

+ 1{∑mS
r�1 Xr (s)>n}

(
n −

mS∑
r�2

Xr(s)
)+]

ds
)
. (7)

Xi(t)� YS
1i

(∫ t

0
µ1i

[
1{∑mS

r�1 Xr (s)≤n}X1(s)

+ 1{∑mS
r�1 Xr (s)>n}

(
n −

mS∑
r�2

Xr(s)
)+]

ds
)

+

mS∑
l�2, l,i

YS
li

(∫ t

0
µliXl(s) ds

)
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−
mS∑
l,i

YS
il

(∫ t

0
µilXi(s) ds

)
−YD

i

(∫ t

0
µi0Xi(s) ds

)
for 2 ≤ i ≤ mS . (8)

Poisson processes, YA
k j( · )’s and YS

li( · )’s, are the same
as those in Equations (3) and (4). Poisson processes,
YI

jkl( · )’s in Equation (3) are now replaced by YI
jk( · )’s

because the initial state of the service process is
phase 1, that is, we do not need the index of the starting
phase in the service process. Then, Poisson processes,
YI

jk( · )’s count the number of departures from phase j
that restart from phase k of the arrival process accord-
ing to the initial distribution α. Note that we do not
have to count the number of departures that restart
from the same phase, i.e., we do not count the case
of j � k. Poisson processes, YD

i ( · )’s count departures
from phase i of the service process. Note that the Pois-
son processes explained previously have rate 1 (with
random time changes) and are mutually independent.
We can verify that the issue is not incurred in Equa-
tions (6)–(8). In the following section we describe the
fluid and diffusion approximations.

3.1. Lipschitz Representation
It turns out that we can write our new formulation in
terms of Lipschitz rate functions. This representation
will aid us tremendously when proving the fluid and
diffusion limit theorems for the queueing model.

U j(t)� U j(0)+
mA∑
k, j

YA
k j

(∫ t

0
λk jUk(s) ds

)
−

mA∑
k, j

YA
jk

(∫ t

0
λ jkU j(s) ds

)
−

mA∑
k, j

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mA∑
k, j

YI
k j

(∫ t

0
λk0α jUk(s) ds

)
for 1 ≤ j ≤ mA ,

X1(t)�
mA∑
j�1

mA∑
k�1

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mS∑
l,1

YS
l1

(∫ t

0
µl1Xl(s) ds

)
−

mS∑
l,1

YS
1l

(∫ t

0
µ1l

[(
X1(s)∧

(
n−

mS∑
r�2

Xr(s)
)+)]

ds
)

−YD
1

(∫ t

0
µ10

[(
X1(s) ∧

(
n −

mS∑
r�2

Xr(s)
)+)]

ds
)
.

Xi(t)� YS
1i

(∫ t

0
µ1i

[(
X1(s) ∧

(
n −

mS∑
r�2

Xr(s)
)+)]

ds
)

+

mS∑
l�2, l,i

YS
li

(∫ t

0
µliXl(s) ds

)

−
mS∑
l,i

YS
il

(∫ t

0
µilXi(s) ds

)
−YD

i

(∫ t

0
µi0Xi(s) ds

)
for 2 ≤ i ≤ mS .

4. Fluid and Diffusion Approximations
In this section, we now provide our second main con-
tribution of the paper, fluid and diffusion limit theo-
rems for the queue length process. However, we first
provide some definitions for notational convenience of
the reader that will be used throughout the rest of the
paper.

V(t)� (U1(t), . . . ,UmA
(t),X1(t), . . . ,XmS

(t))′.
v� (u1 , . . . , umA

, x1 , . . . , xmS
)′.

dA
jk : (mA + mS) × 1 vector, jth element is −1, kth

element is 1, and other elements are 0.
dI

jk : (mA + mS) × 1 vector, jth element is −1, kth
element is 1, and other elements are 0.

dS
il : (mA + mS) × 1 vector, (mA + i)th element is −1,
(mA + l)th element is 1, and other elements are 0.

dD
i : (mA + mS) × 1 vector, (mA + i)th element is −1, and

other elements are 0.

f A
jk (t ,v): rate function (integrand) in YA

jk( · ).
f I

jk(t ,v): rate function (integrand) in YI
jk( · ).

f S
il (t ,v): rate function (integrand) in YS

il( · ).
f D
i (t ,v): rate function (integrand) in YD

i ( · ).
WA

jk(t),W I
jk(t),WS

il(t),WD
i (t): mutually independent

standard Brownian motions.

F(t ,v)�
mA∑
j�1

mA∑
k�1, k, j

dA
jk f A

jk (t ,v)+
mA∑
j�1

mA∑
k�1

dI
jk f I

jk(t ,v)

+

mS∑
i�1

mS∑
l�1,l,i

dS
il f S

il (t ,v)+
mS∑
i�1

dD
i f D

i (t ,v).

dH(t ,v)�
mA∑
j�1

mA∑
k�1, k, j

dA
jk

√
f A

jk (t ,v)dWA
jk(t)

+

mA∑
j�1

mA∑
k�1

dI
jk

√
f I

jk(t ,v)dW I
jk(t)

+

mS∑
i�1

mS∑
l�1, l,i

dS
il

√
f S
il (t ,v)dWS

il(t)

+

mS∑
i�1

dD
i

√
f D
i (t ,v)dWD

i (t).

G(t ,v)�
mA∑
j�1

mA∑
k�1, k, j

dA
jkd
′A

jk f A
jk (t ,v)+

mA∑
j�1

mA∑
k�1

dI
jkd
′I

jk f I
jk(t ,v)

+

mS∑
i�1

mS∑
l�1, l,i

dS
ild
′S
il f S

il (t ,v)+
mS∑
i�1

dD
i d′Di f D

i (t ,v).
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With the aforementioned definitions, we rewrite
Equations (6)–(8) in a vector form as follows:

V(t)�V(0)+
mA∑
j�1

mA∑
k�1, k, j

dA
jkYA

jk

(∫ t

0
f A

jk (s ,V(s)) ds
)

+

mA∑
j�1

mA∑
k�1

dI
jkYI

jk

(∫ t

0
f I

jk(s ,V(s)) ds
)

+

mS∑
i�1

mS∑
l�1, l,i

dS
ilY

S
il

(∫ t

0
f S
il (s ,V(s)) ds

)
+

mS∑
i�1

dD
i YD

i

(∫ t

0
f D
i (s ,V(s)) ds

)
.

Following the procedure of the uniform accelera-
tion in Mandelbaum et al. (1998) and Kurtz (1978),
we define a sequence of processes {Vη(t), η ≥ 1, t ≥ 0},
where

Vη(t)�Vη(0)+
mA∑
j�1

mA∑
k�1, k, j

dA
jkYA

jk

(
η

∫ t

0
f A

jk (s , V̄
η(s)) ds

)
+

mA∑
j�1

mA∑
k�1

dI
jkYI

jk

(
η

∫ t

0
f I

jk(s , V̄
η(s)) ds

)
+

mS∑
i�1

mS∑
l,i

dS
ilY

S
il

(
η

∫ t

0
f S
il (s , V̄

η(s)) ds
)

+

mS∑
i�1

dD
i YD

i

(
η

∫ t

0
f D
i (s , V̄

η(s)) ds
)
,

where V̄η(t)�Vη(t)/η.
Note that we accelerate the arrival rate by accelerat-

ing the sum of Uη
j (t) for t ≥ 0, that is,

mA∑
j�1

Uη
j (t)� η, for t ≥ 0.

4.1. Fluid Limit Theorem
Then, we have the following proposition for the fluid
limit:

Theorem 1. Suppose Vη(0)/η→ v(0) as η→∞, then

lim
η→∞

Vη(t)
η

� v(t) almost surely,

where v(t) � (u1(t), . . . , umA
(t), x1(t), . . . , xmS

(t))′ is the
solution to the following system of ordinary differential equa-
tions:

d
dt

v(t)�
mA∑
j�1

mA∑
k, j

dA
jk f A

jk (t ,v(t))+
mA∑
j�1

mA∑
k, j

dI
jk f I

jk(t ,v(t))

+

mS∑
i�1

mS∑
l,i

dS
il f S

il (t ,v(t))+
mS∑
i�1

dD
i f D

i (t ,v(t)). (9)

Proof. See the online supplement.

4.2. Diffusion Limit Theorem
Now that we have the fluid limit, v(t), we can derive
the diffusion limit as follows:

Theorem 2. Let Dη(t)�√η(Vη(t)/η−v(t)), then we have
that

lim
η→∞

Dη(t)�D(t) in distribution,

where D(t) is the solution to the following stochastic differ-
ential equation

dD(t)� dH(t ,v(t))+ ∂F(t ,v(t))D(t) dt ,

and ∂F(t ,v) is the gradient matrix of F(t ,v) with respect
to v. If D(0) is a constant or normally distributed, then
{D(t), t ≥ 0} is a Gaussian process (Arnold 1992).

Proof. See the online supplement.

Now that we have fluid and diffusion limits for the
queue length process, we can therefore, for a large η,
give an approximation for the original model as

Vη(t) ≈ ηv(t)+√ηD(t).

One should note that by increasing η also implies that
we are effectively increasing the number of servers
along with other parameters (Mandelbaum et al. 2002).
Therefore, if the number of servers is sufficiently large
in the original setting (i.e., η � 1), we can approximate
V(t) as follows:

V(t) ≈ v(t)+D(t).

Since {D(t), t ≥ 0} is a Gaussian process, {V(t), t ≥ 0}
is approximately a Gaussian process. If we have the
mean vector and the covariance matrix of D(t), we can
approximately identify the queue length distributions
as follows:

Proposition 1 (Mean and Covariance Matrix of D(t),
Arnold 1992). Let M(t) � E[D(t)] and Σ(t) � Cov[D(t),
D(t)]. Then, M(t) and Σ(t) are the unique solution to the
following ordinary equations:

d
dt

M(t)� ∂F(t ,v(t))M(t), (10)

d
dt
Σ(t)� ∂F(t ,v(t))Σ(t)

+Σ(t)∂F(t ,v(t))′+G(t ,v(t)). (11)

If M(0)� 0, M(t)� 0 for all t ≥ 0.

Recall that we start with an empty queue, which
implies that we do not have to solve Equation (10), i.e.,
M(t)� 0 for all t ≥ 0.
By solving differential Equations (9) and (11), we can

approximate E[V(t)] and Cov[V(t),V(t)] as follows:

E[V(t)] ≈ v(t),
Cov[V(t),V(t)] ≈Σ(t).
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Let X(t) be the number of customers in the system at
time t. Then,

X(t)�
mS∑
i�1

Xi(t).

Note that {X(t), t ≥ 0} is approximately aGaussian pro-
cess and we can obtain the mean and variance of X(t)
as follows:

E[X(t)]�
mS∑
i�1

E[Xi(t)],

Var[X(t)]�
mS∑
i�1

Var[Xi(t)]+ 2
mS−1∑

i�1

mS∑
l�i+1

Cov[Xi(t),Xl(t)].

4.3. Probability of Delay and Excessive Delay
Now armed with our fluid and diffusion approxima-
tions, we can also approximate other performancemea-
sures other than the mean and variance of the queue
length process. One of themost important performance
measures is the probability of delay or the probability
that a customer must wait for service when they arrive
to the queue. However, we derive an approximation for
a more general quantity called the probability of exces-
sive delay, i.e.,

� (Delay > z)� � (W(t) > z),

where W(t) is the waiting time of a customer that joins
the queue at time t. Thus, given our fluid and diffusion
approximations for themean and variance of the queue
length we can derive a Gaussian approximation for the
probability of excessive delay as

� (W(t) > z) ≈ �

(
(X(t) − n(t))+

µ · n(t) > z
)

≈ �

(
(x(t)+ σ(t) · Z̃ − n(t))+

µ · n(t) > z
)

� �

(
Z̃ >

n(t) − x(t)+ z · µ · n(t)
σ(t)

)
� Φ̄

(
n(t) − x(t)+ z · µ · n(t)

σ(t)

)
,

where x(t) � ∑mS
i�1 xi(t), Z̃ is a standard Gaussian ran-

dom variable, and σ(t) is the standard deviation of
the diffusion limit corresponding to X(t). Moreover,
when z � 0, our expression reduces to the probability
of delay, i.e.,

� (Delay) � � (W(t) > 0)
≈ � (X(t) ≥ n(t))

≈ �

(
Z̃ ≥ n(t) − x(t)

σ(t)

)
≈ Φ̄

(
n(t) − x(t)
σ(t)

)
.

5. The Infinite Server Case
In this section, we demonstrate that we can also apply
our fluid and diffusion limits in the infinite server
setting as well. This provides first and second order
approximations for the queue length process that was
first studied by Nelson and Taaffe (2004a). However,
we rigorously justify our approximations by limit
theorems.

5.1. Infinite Server Representation
In the infinite server setting we have the following rep-
resentation for the queue length process,

U j(t) � U j(0)+
mA∑
k, j

YA
k j

(∫ t

0
λk jUk(s) ds

)
−

mA∑
k, j

YA
jk

(∫ t

0
λ jkU j(s) ds

)
−

mA∑
k, j

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mA∑
k, j

YI
k j

(∫ t

0
λk0α jUk(s) ds

)
for 1 ≤ j ≤ mA ,

X1(t) �
mA∑
j�1

mA∑
k�1

YI
jk

(∫ t

0
λ j0αkU j(s) ds

)
+

mS∑
l,1

YS
l1

(∫ t

0
µl1Xl(s) ds

)
−

mS∑
l,1

YS
1l

( ∫ t

0
µ1lX1(s) ds

)
−YD

1

(∫ t

0
µ10X1(s) ds

)
,

Xi(t) � YS
1i

(∫ t

0
µ1iX1(s) ds

)
+

mS∑
l�2, l,i

YS
li

(∫ t

0
µliXl(s) ds

)
−

mS∑
l,i

YS
il

(∫ t

0
µilXi(s) ds

)
−YD

i

(∫ t

0
µi0Xi(s) ds

)
for 2 ≤ i ≤ mS .

The major difference between the finite and infinite
server settings is the rate functions for the Xi Poisson
processes. In the finite setting, at most nt customers
can be processed at any time t, however, in the infinite
server setting, this is no longer a limitation. Thus, all of
the rate functions with the terms X1 ∧ (n −

∑mS
r�2 Xr(s))+

since the term (n −∑mS
r�2 Xr(s))+ is equal to∞.

5.2. Infinite Server Fluid Limit Theorem
We have the following proposition for the fluid limit
for the Pht/Pht/∞ queue.

Proposition 2. Suppose Vη,∞(0)/η→ v∞(0) as η→∞,
then

lim
η→∞

Vη,∞(t)
η

� v∞(t) almost surely,
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Figure 3. Overall Flow of the Numerical Study
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where v∞(t) is the solution to the following system of ordi-
nary differential equations:

d
dt

v∞(t)�
mA∑
j�1

mA∑
k, j

dA
jk f A

jk (t ,v∞(t))+
mA∑
j�1

mA∑
k, j

dI
jk f I

jk(t ,v∞(t))

+

mS∑
i�1

mS∑
l,i

dS
il f S

il (t ,v∞(t))+
mS∑
i�1

dD
i f D

i (t ,v∞(t)),

where the rate functions correspond to the infinite server
representation given in Section 5.1.
Proof. The proof of this result immediately follows
from the proof of the finite case and setting n �∞.

5.3. Infinite Server Diffusion Limit Theorem
Now that we have the fluid limit, v∞(t), we can derive
the diffusion limit as follows:
Proposition 3. Let Dη,∞(t) � √η(Vη,∞(t)/η − v∞(t)),
then we have that

lim
η→∞

Dη,∞(t)�D∞(t) in distribution,

where D∞(t) is the solution to the following stochastic differ-
ential equation

dD∞(t)�H(t ,v∞(t))+ ∂F(t ,v∞(t))D∞(t) dt ,

and ∂F(t ,v∞(t)) is the gradient matrix of F(t ,v∞(t)) with
respect to v∞(t), where the rate functions correspond to the
infinite server representation given in Section 5.1.

Proof. The proof of this result immediately follows
from the proof of the finite case and setting n �∞.

6. Numerical Results
In this section, we provide some numerical results
comparing the proposed method with the simulation
results. Referring to the flow chart in Figure 3, we
choose Coxian distributions to approximate Weibull
and lognormal distributions for interarrival and ser-
vice times. Coxian distributions have a unique ini-
tial state that the proposed method requires and the
overall fitting quality is known to be good (Asmussen
et al. 1996). We use the EM algorithm developed by
Asmussen et al. (1996), although other phase-type dis-
tributions and fitting algorithms can also be used. Since
we want to approximate the distribution itself, we use
8–10 phases to fit the target distributions accurately.
Figure 4 illustrates a density and distribution fitting
with a Coxian distribution. In this example, we use
10 phases to approximate the Weibull distribution. We
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Figure 4. Weibull(1.1271, 2.5) and Corresponding Coxian Distributions
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derive the ordinary differential equations (ODEs) from
Equations (9) and (11), and solve them using MAT-
LAB. We write the simulation code in C++. To gener-
ate a general time-varying arrival process, we imple-
ment the algorithm based on the standard equilibrium
renewal process (SERP) explained in the longer ver-
sion of Liu and Whitt (2012). Explaining SERP briefly,
we have a stationary renewal process with a general
interevent time distribution G( · ) which we call a base
distribution. Then,we can obtain a time-varying arrival
process by applying the change of time technique to the
renewal process with a given time-varying rate func-
tion. Likewise, we find a phase-type distribution Ph(·)
for fitting the base distribution G( · ) and obtain a time-
varying arrival process by applying the same change
of time technique. We, therefore, do not have to run
the fitting algorithm multiple times to find one phase-
type distribution at time t and another one at time t′.
We use Weibull distributions with mean 1 as a base
distribution to generate time-varying arrival times. We
run 5,000 independent instances for each setting and
estimate the mean and the variance of the number of
customers in the system and the probability of (exces-
sive) delay over time.
We choose two Weibull distributions having the

same mean 1 for the arrival processes: the squared
coefficient of variation (SCoV) of Weibull(0.79, 0.7) is
2.1387 which is greater than one, and the SCoV of
Weibull(1.1271, 2.5) is 0.1831 which is less than one.
Time-varying rates are applied to the base distributions
for constructing the actual arrival processes. We do not
consider the case when the SCoV is 1 since it is an
exponential distribution and has been studied exten-
sively in the literature. For the service times, we choose
two lognormal distributions with the different SCoV
values. Without loss of generality, the means of two
service time distributions are 1. Increasing the num-
ber of servers makes us expect more accurate estima-
tions since the fluid and diffusion limits are asymptot-
ically exact. Therefore, we compare the cases when the

number of servers is 50 and 200. The corresponding
time-varying rates to the number of servers are 45 +

30 sin(2πt/10) and 180 + 120 sin(2πt/10) respectively.
Then, we have eight combinations of experiments: two
distributions for arrivals, two distributions for services,
two values of the number of servers:

Exp. 1: 50 servers, SCoV of inter-arrival times > 1
and SCoV of service times > 1

—Time-varying rate: 45+ 30 sin(2πt/10)
—Base interarrival timedistribution:Weibull(0.79,

0.7), SCoV� 2.1387
—Service time distribution: Lognormal(−0.5, 1),

SCoV� 1.7183
Exp. 2: 200 servers, SCoV of interarrival times > 1

and SCoV of service times > 1
—Time-varying rate: 180+ 120 sin(2πt/10)
—Base interarrival timedistribution:Weibull(0.79,

0.7), SCoV� 2.1387
—Service time distribution: Lognormal(−0.5, 1),

SCoV� 1.7183
Exp. 3: 50 servers, SCoV of interarrival times> 1 and

SCoV of service times < 1
—Time-varying rate: 45+ 30 sin(2πt/10)
—Base interarrival timedistribution:Weibull(0.79,

0.7), SCoV� 2.1387
—Service time distribution: Lognormal(−0.2027,

0.6368), SCoV� 0.5
Exp.4: 200 servers, SCoV of interarrival times > 1

and SCoV of service times < 1
—Time-varying rate: 180+ 120 sin(2πt/10)
—Base interarrival timedistribution:Weibull(0.79,

0.7), SCoV� 2.1387
—Service time distribution: Lognormal(−0.2027,

0.6368), SCoV� 0.5
Exp. 5: 50 servers, SCoV of interarrival times< 1 and

SCoV of service times > 1
—Time-varying rate: 45+ 30 sin(2πt/10)
—Base interarrival time distribution:

Weibull(1.1271, 2.5), SCoV� 0.1831
—Service time distribution: Lognormal(−0.5, 1),

SCoV� 1.7183
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Figure 5. Density of the Number of Customers at Time 5, 7.5, 10, 15, 17.5, and 20

No. of customers
368 395 422 449 476 503 530
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Empirical
Analytical

(a) Density at t = 5
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(b) Density at t = 7.5
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(c) Density at t = 10
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(d) Density at t = 15
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(e) Density at t = 17.5
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(f) Density at t = 20

Exp. 6: 200 servers, SCoV of interarrival times > 1
and SCoV of service times > 1

—Time-varying rate: 180+ 120 sin(2πt/10)
—Base interarrival time distribution:

Weibull(1.1271, 2.5), SCoV� 0.1831
—Service time distribution: Lognormal(−0.5, 1),

SCoV� 1.7183
Exp. 7: 50 servers, SCoV of interarrival times< 1 and

SCoV of service times < 1
—Time-varying rate: 45+ 30 sin(2πt/10)
—Base interarrival time distribution:

Weibull(1.1271, 2.5), SCoV� 0.1831

—Service time distribution:
Lognormal(−0.2027, 0.6368), SCoV� 0.5

Exp. 8: 200 servers, SCoV of interarrival times > 1
and SCoV of service times > 1

—Time-varying rate: 180+ 120 sin(2πt/10)
—Base interarrival time distribution:

Weibull(1.1271, 2.5), SCoV� 0.1831
—Service time distribution: Lognormal(−0.2027,

0.6368), SCoV� 0.5.
We mention that the queue length distributions are

approximately Gaussian in Section 4. Figure 5 com-
pares the empirical density and the density from the
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Figure 6. Comparison Between Exp. 1 and Exp. 2
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(f) Delay probability (z = 0), Exp. 2
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Figure 7. Comparison Between Exp. 3 and Exp. 4
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Figure 8. Comparison Between Exp. 5 and Exp. 6
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Figure 9. Comparison Between Exp. 7 and Exp. 8
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diffusion limit at several time points (underloaded
times 5 and 10, critically loaded times 7.5 and 17.5,
and overloaded times 5 and 15). Although we observe
some skewness in the empirical density, the Gaussian
approximation seems to work well.
Figures 6–9 plot the mean and the variance of the

number of customers and the probability of delay over
time comparing the proposed method and the simu-
lation results for the cases of 50 and 200 servers. Each
figure represents a different combination of distribu-
tions for arrival processes and service times. Overall we
observe that the proposed method provides accurate
estimations of themean and the variance of the number
of customers and the probability of delay. Comparing
Figures 6(a) and 6(b), we observe that increasing the
number of servers results in more accurate estimations
of the mean as expected. We observe the same result
for the variance (Figures 6(c) and 6(d)) and the proba-
bility of (excessive) delay (Figures 6(e)–6(h)). The same
results hold across different distribution settings (Fig-
ures 7–9). The distributions in Figure 6 have the largest
SCoV values and those in Figure 9 have the smallest
SCoV values. In Figures 6 and 9, we observe that the
proposed method works better when the SCoV values
are small.

7. Conclusion
This paper describes a new methodology to approxi-
mate the queue length distributions of large-scale Gt/
Gt/nt queues. Instead of analyzing a Gt/Gt/nt directly,
we study a Pht/Pht/nt queue since phase-type distri-
butions can approximate positive-valued distributions
in any level of accuracy. Applying the uniform acceler-
ation and strong approximations to Pht/Pht/nt queues
to obtain fluid and diffusion limits, we encounter
the lingering problem in our formulation and cannot
obtain the diffusion limit. To resolve the issue, we pro-
pose a new formulation with an additional condition
that is not quite restrictive. The new formulation works
well and we successfully derive the fluid and diffusion
limits. We find that the queue length process is approx-
imately a Gaussian process and we derive ordinary
differential equations to obtain the mean and variance
of the queue length over time.
From the numerical study, we observe that the pro-

posed method works better when the distributions for
arrival processes and service times have smaller SCoVs.
Because the uniform acceleration method increases
the number of servers to infinity, the estimations
should becomemore accurate as the number of servers
increases. We exactly observe this phenomenon as
expected.

We suggest two directions for future research. For
example, to obtain the diffusion limit, we put an addi-
tional condition (a unique initial state for phase-type

distributions). Although it does not seem to be criti-
cal, the method will be improved if the restriction can
be removed. Extending the proposed method to mul-
tidimensional queueing networks is another possible
research direction that we plan to pursue in a follow-up
paper.
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