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Abstract

The non-stationary Erlang-A queue is a fundamental queueing model that

is used to describe the dynamic behavior of large scale multi-server service

systems that may experience customer abandonments, such as call centers,

hospitals, and urban mobility systems. In this paper, we develop novel

approximations to all of its transient and steady state moments, the moment

generating function, and the cumulant generating function. We also provide

precise bounds for the difference of our approximations and the true model.

More importantly, we show that our approximations have explicit stochastic

representations as shifted Poisson random variables. Moreover, we are also

able to show that our approximations and bounds also hold for non-stationary

Erlang-B and Erlang-C queueing models under certain stability conditions.
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1. Introduction

Markov processes are important modeling tools that help researchers describe real-

world phenomena. Thus, it comes as no surprise that the Erlang-A model, which is a
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Markovian and multi-server queueing model that incorporates customer abandonments,

is an important modeling tool in a multitude of application settings. Some of the more

prominent applications include telecommunications, healthcare, urban mobility and

transportation, and more recently cloud computing. See for example the following

work by [12, 13, 26, 24]. Despite its importance in many different applications, the

Erlang-A queueing model has remained to be very difficult to analyze and understand.

Even the analysis of the moments of Erlang-A queue beyond the fourth moment has

remained an important topic for additional study.

It is well known that the stationary setting of the Erlang-A is much easier to analyze

than its non-stationary counterpart. Some common approaches used to analyze non-

stationary and state dependent queueing models including asymptotic methods such

as heavy traffic limit theory and strong approximations theory, see for example [5, 11].

Uniform acceleration is extremely useful for approximating the transition probabilities

and moments such as the mean and variance of Markov processes. Moreover, the

strong approximation methods are useful for analyzing the sample path behavior of

the Markov process by showing that the sample paths of properly rescaled queueing

processes converge to deterministic dynamical systems and Gaussian process limits.

However, there are two main drawbacks of these asymptotic methods. The first is

that the method is asymptotic as a function of the model parameters and the results

really only hold when the rates are large and are nearly infinite. Thus, the quality

of the approximations depends significantly on the size of the model parameters and

these asymptotic methods have been shown to be quite inaccruate for moderate sized

model parameter settings, see for example [14, 15]. The second main drawback is that

the asymptotic methods do not generate any important insights for the moments or

cumulant moments beyond order two since the limits are are based on Brownian motion.

Since Brownian motion has symmetry, its cumulants are all zero beyond the second or-

der. Thus, Brownian approximations are limited in their power to capture asymmetries

in higher moments or even the dynamics of the moment generating function, cumulant

generating function, or Fourier transform. Moreover, it has been shown recently by

[19, 2] that the Erlang-A and its variants have non-trivial amounts of skewness and

excess kurtosis, which implies that the Erlang-A are not nearly Gaussian for moderate

sized queues. These results also demonstrate that it is important to capture the
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behavior of the Erlang-A model beyond its second moment as this information can

be used in staffing decisions [16].

One common approximation method that is used in the stochastic networks, queue-

ing, and chemical reactions literature is a moment closure approximation. Moment

closure approximations are used to approximate the moments of the queueing process

with a surrogate distribution. It is often the case that the set of moment equations for

a large number of queueing models are not closed, see for example [17, 20]. Thus, the

closure approximation helps approximate the moments with a closed system using the

surrogate distribution. One such method used by [21, 22] is to use Hermite polynomials

for approximating the distribution of the queue length process. In fact, they show that

using a quadratic polynomial works quite well. Since the Hermite polynomials are

orthogonal to the Gaussian distribution, which has support on the entire real line,

these Hermite polynomial approximations do not take into account the discreteness of

the queueing process and the fact the queueing process is non-negative. However, they

show that Hermite polynomials are natural to analyze since they are orthogonal with

respect to the Gaussian distribution and the heavy traffic limits of multi-server queues

are Gaussian.

In this paper, we perform an in-depth analysis of the moments and the moment

generating function of the non-stationary Erlang-A queue. As the Erlang-B and Erlang-

C queueing models are special cases of the Erlang-A model, we are able to obtain

similar results for those models. Our approach is to use convexity and exploit Jensen’s

and the FKG inequality to obtain bounds on the moments and moment generating

function of the Erlang-A queue. What we find even more exciting is that we are able

to provide a stochastic representation of our approximations and bounds as a Poisson

random variables with a constant shift. This shifted Poisson was observed in peer to

peer networks by [3], however, we will show in the sequel, this novel representation will

allow us to view our bounds and approximations in a new way.

1.1. Main Contributions of the Paper

The main contributions of this work can be summarized as follows:

• We provide new approximations for the moments, moment generating function,

and cumulant generating function for the nonstationary Erlang-A queue exploting
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FKG and Jensen’s inequalities.

• We derive a novel stochastic intepretation and representation of our approxima-

tions as shifted Poisson random variables or M/M/∞ queues, depending on the

context. This sheds new light on the complexity of queues in heavy traffic or

critically loaded regimes.

• We prove precise error bounds for our approximations and we also prove new

upper and lower bounds for the nonstationary Erlang-A queue that become exact

in certain parameter settings.

1.2. Organization of the Paper

The remainder of this paper is organized as follows. Section 2 introduces the

nonstationary Erlang-A queueing model and its importance in stochastic network

theory. In Section 3, we provide approximations for the moments of the Erlang-A

system and use these to bound the true values. In Section 4 we derive approximations

for the moment generating function and cumulant moment generating function of the

Erlang-A queue. We again bound the true values by these approximations, and we

also find a representation for our approximations in terms of Poisson random variables

or M/M/∞ queues, depending on the context.

2. The Erlang-A Queueing Model

The Erlang-A queueing model is a fundamental queueing model in the stochastic

processes literature. The work of [11], shows that the M(t)/M/c+M queueing system

process Q ≡ {Q(t)|t ≥ 0} is represented by the following stochastic, time changed

integral equation:

Q(t) = Q(0)+Π1

(∫ t

0

λ(s)ds

)
−Π2

(∫ t

0

µ · (Q(s) ∧ c)ds
)
−Π3

(∫ t

0

θ · (Q(s)− c)+ds

)
,

where Πi ≡ {Πi(t)|t ≥ 0} for i = 1, 2, 3 are i.i.d. standard (rate 1) Poisson processes.

Thus, we can write the sample path dynamics of the Erlang-A queueing process in

terms of three independent unit rate Poisson processes. A deterministic time change

for Π1 transforms it into a non-homogeneous Poisson arrival process with rate λ(t) that

counts the customer arrivals that occured in the time interval [0,t). A random time
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change for the Poisson process Π2 , gives us a departure process that counts the number

of serviced customers. We implicitly assume that the number of servers is c ∈ Z+ and

that each server works at rate µ. Finally, a the random time change of Π3 gives us a

counting process for the number of customers that abandon service. We also assume

that the abandonment distribution is exponential and the rate of abandonments is

equal to θ.

One of the main reasons that the Erlang-A queueing model has been studied so

extensively is because several important queueing models are special cases of it. One

special case is the infinite server queue. The infinite server queue can be derived

from the Erlang-A queue in two ways. The first way is to set the number of servers to

infinity. This precludes any abandonments since the abandonment rate θ ·(Q(t)−c)+ is

always equal to zero when the number of servers is infinite. The second way to derive

the infinite server queue is to set the service rate µ equal to the abandonment rate

θ. When µ = θ, this implies that the sum of the service and abandonment departure

processes is equal to a linear function i.e. µ·(Q(t)∧c)+θ·(Q(t)−c)+ = µ·Q(t) = θ·Q(t).

Thus, the Erlang-A queueing model becomes an infinite server queue.

One of the main and important insights of [5] is that for multi-server queueing

systems, it is natural to scale up the arrival rate and the number of servers simultane-

ously. This scaling known as the Halfin-Whitt scaling and been an important modeling

technique for modeling call centers in the queueing literature. Since the M(t)/M/c+M

queueing process is a special case of a single node Markovian service network, we can

also construct an associated, uniformly accelerated queueing process where both the

new arrival rate η ·λ(t) and the new number of servers η ·c are both scaled by the same

factor η > 0. Thus, using the Halfin-Whitt scaling for the Erlang-A model, we arrive

at the following sample path representation for the queue length process as

Qη(t) = Qη(0) + Π1

(∫ t

0

η · λ(s)ds

)
−Π2

(∫ t

0

µ · (Qη(s) ∧ η · c)ds
)

−Π3

(∫ t

0

θ · (Qη(s)− η · c)+ds

)
= Qη(0) + Π1

(∫ t

0

η · λ(s)ds

)
−Π2

(∫ t

0

η · µ ·
(
Qη(s)

η
∧ c
)
ds

)
−Π3

(∫ t

0

η · θ ·
(
Qη(s)

η
− c
)+

ds

)
.
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The Halfin-Whitt scaling is defined by simultaneously scaling up the rate of customer

demand (which is the arrival rate) with the number of servers. In the context of call

centers this is scaling up the number of customers and scaling up the number of agents

to answer the phones. In the context of hospitals or healthcare this might be scaling

up the number of patients with the number of beds or nurses. Taking the following

limits gives us the fluid models of [11], i.e.

lim
η→∞

1

η
Qη(t) = q(t) a.s. (1)

where the deterministic process q(t), the fluid mean, is governed by the one dimensional

ordinary differential equation (ODE)

•
q(t) = λ(t)− µ · (q(t) ∧ c)− θ · (q(t)− c)+. (2)

Moreover, if one takes a diffusion limit i.e.

lim
η→∞

√
η

(
1

η
Qη(t)− q(t)

)
⇒ Q̃(t) (3)

one gets a diffusion process where the variance of the diffusion is given by the following

ODE

•
Var

[
Q̃(t)

]
= λ(t) + µ · (q(t) ∧ c) + θ · (q(t)− c)+

−2 ·Var
[
Q̃(t)

]
· (µ · {q(t) < c}+ θ · {q(t) ≥ c}) . (4)

2.1. Mean Field Approximation is Identical to the Fluid Limit

In addtion to using strong approximations to analyze the queue length process one

can also use the functional Kolmogorov forward equations as outlined in [15]. The

functional forward equations for the Erlang-A model are derived as,

•
E[f(Q(t))] ≡ d

dt
E[f(Q(t))|Q(0) = q(0)] (5)

= λ · E [f(Q(t) + 1)− f(Q(t))] + E [δ (Q(t), c) · (f(Q(t)− 1)− f(Q(t)))] ,(6)

for all appropriate functions f and where δ (Q(t), c) = µ · (Q(t) ∧ c) + θ · (Q(t)− c)+.

For the special case where f(x) = x, we can derive an ode for the mean queue length

process as

•
E[Q(t)] = λ(t)− µ · E[(Q(t) ∧ c)]− θ · E[(Q(t)− c)+]. (7)
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The first thing to note is that this equation is not autonomous and one needs to

know the distribution of Q(t) a priori in order to compute the expectations on the

righthand side of Equation 7. To know the distribution a priori is impossible except in

some special cases like the infinite server setting. However, it is easy to derive simple

approximations for the mean queue length by making some assumptions on the queue

length process. This is known as a closure approximation and one common closure

approximation method is to simply take the expectations from outside the function to

inside the function. This implies that the expectation E[f(X)] becomes f(E[X]). This

method is known as a mean field approximation in physics and is also known as the

deterministic mean approximation of [15]. By applying the mean field approximation

to Equation 7, we can show that the resulting differential equation is given by the

following autonomous ODE

•
E[Qf (t)] = λ(t)− µ · (E[Qf ] ∧ c)− θ · (E[Qf ]− c)+. (8)

By careful inspection, one can observe that the ode given by the mean field approxima-

tion is identical to the fluid limit of Equation2. Moreover, if one simulates the queueing

process and compare it to the mean field limit, one notices an ordering property. For

example on the left of Figure 1, we simulate the Erlang-A queue and compare to the

fluid model. We observe that when θ < µ, that the simulated mean is larger than the

fluid mean. This is precisely what our results predict. Moreover, on the right of Figure

1, we simulate the Erlang-A queue and compare to the fluid model when θ > µ and

observe that simulated queue length is smaller than the fluid limit.
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Figure 1: λ(t) = 10 + 2 · sin(t), µ = 1, Q(0) = 0, c = 10.

θ = 0.5 (Left) and θ = 2 (Right).

Our goal in this work is to explain the behavior that we observe in Figure 1, which

we will do in the following section. Before concluding our overview of the Erlang-A

queueing model, we make a brief remark for notational clarity.

Remark 2.1. Throughout the remainder of this work, we use Q(t) to represent the

true queueing process and Qf (t) to represent the fluid approximation of it. This fluid

approximation is a stochastic process that will be fully described in this work. In fact,

in Section 4 we use characterize the fluid approximations and use insight from these

representations to bound the true queue length from above and below.

3. Inequalities for the Moments of the Erlang-A Queue

In this section, we prove when the true moments of the Erlang-A queue are either

dominated or dominates their corresponding fluid limit. We find that the relationship

between the service rate and the abandonment rate determines whether or not the

moment is dominated by the fluid limit. This section is organized as follows. In

Subsection 3.1, we derive inequalities for the true mean of the Erlang-A and its fluid

approximation. In Subsection 3.2 we extend these inequalities to analogous results for

the mth moment of the queueing system. Finally, in Subsection 3.3 we provide figures

from numerical experiments that demonstrate these findings.
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3.1. Inequalities for the Mean

We begin with analysis of the mean of the Erlang-A queue. Before we proceed, we

first establish a lemma for comparisons of ordinary differential equations that will be

fundamental to our approach to the results.

Lemma 1. (A Comparison Lemma.) Let f : R2 → R be a continuous function in both

variables. If we assume that initial value problem

•
x(t) = f(t, x(t)), x(0) = x0 (9)

has a unique solution for the time interval [0,T] and

•
y(t) ≤ f(t, y(t)) for t ∈ [0, T ] and y(0) ≤ x0 (10)

then x(t) ≥ y(t) for all t ∈ [0, T ].

Proof. The the proof of this result is given in [4]. �

With this lemma in hand, we can now derive relationships for the fluid limit and

the true mean. As seen in the proof, these results follow from the application of this

differential equation comparison lemma and the convexity seen in the fluid approxima-

tion.

Theorem 1. For the Erlang-A queue, if Q(0) = Qf (0), then the true mean dominates

the fluid limit when θ < µ, the fluid limit dominates the true mean when θ > µ, and

the two means are equal when θ = µ.

Proof. Recall that the true mean satisfies the following differential equation

•
E[Q(t)] = λ(t)− µ · E[(Q ∧ c)]− θ · E[(Q− c)+]

and the fluid limit satisfies the following differential equation

•
E[Qf (t)] = λ(t)− µ · (E[Qf ] ∧ c)− θ · (E[Qf ]− c)+.

We can simplify both equations by observing that (X ∧ c) + (X − c)+ = X for any

random variable X. Thus, we have the following two equations for the true mean and

the fluid limit

•
E[Q(t)] = λ(t)− θ · E[Q] + (θ − µ) · E[(Q ∧ c)]
•
E[Qf (t)] = λ(t)− θ · E[Qf ] + (θ − µ) · (E[Qf ] ∧ c).
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If we take the difference of the two equations, we obtain the following

•
E[Q(t)]−

•
E[Qf (t)] = λ(t)− θ · E[Q] + (θ − µ) · E[(Q ∧ c)]

− λ(t) + θ · E[Qf ]− (θ − µ) · (E[Qf ] ∧ c)

= θ · (E[Qf ]− E[Q]) + (θ − µ) · (E[(Q ∧ c)]− (E[Qf ] ∧ c))

Now since the minimum function (Q ∧ c) is a concave function, we have that

(E[(Q ∧ c)]− (E[Q] ∧ c)) ≤ 0

for any random variable Q. Thus, we have that for θ < µ

•
E[Q(t)]−

•
E[Qf (t)] ≥ 0,

and for θ > µ

•
E[Q(t)]−

•
E[Qf (t)] ≤ 0.

Finally, for θ = µ, we have that

•
E[Q(t)]−

•
E[Qf (t)] = 0

since both differential equations are initialized with the same value and the origin is

an equilibrium point for the difference. This completes the proof. �

As discussed in Section 2, the Erlang-A model is quite versatile in its relation to

other queueing systems of practical interest. In the two following corollaries, we find

that Theorem 1 can be applied to the Erlang-B and Erlang-C models.

Corollary 1. For the Erlang-B queueing model, if Q(0) = Qf (0), then E[Q(t)] ≤

E [Qf (t)] for all t ≥ 0.

Proof. This is obvious after noticing that the Erlang-B queue is a limit of the Erlang-

A queue by letting θ →∞. �

Corollary 2. For the Erlang-C queueing model, if Q(0) = Qf (0), then E[Q(t)] ≥

E [Qf (t)] for all t ≥ 0.
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Proof. This is obvious after noticing that the Erlang-C queue is an Erlang-A queue

with θ = 0. Since µ is assumed to be positive, then we fall into the case where θ < µ

and this completes the proof. �

Remark 3.1. Given that we use Jensen’s inequality and the FKG inequality later on

in the paper, we find it important to differentiate them. Here we give an example

that sets the two apart. If we have the following function Qn, then Jensen’s inequality

implies that E[Qn] ≥ E[Q]n. However, FKG implies that E[Qn] ≥ E[Qn−1] · E[Q]. We

find it interesting that by iterating the FKG inequality n − 2 more times, it yields

Jensen’s inequality for the moments of random variables.

3.2. Inequalities for the mth Moment

In this subsection we will now extend the previous findings for the mean to higher

moments of the queueing system. Like the result for the mean, this is again built

through observation of the convexity in the differential equation of the fluid approxi-

mation.

Theorem 2. For the Erlang-A queue and m ∈ Z+, if Q(0) = Qf (0), then E [Qm(t)] ≥

E
[
Qmf (t)

]
when θ < µ, E [Qm(t)] ≤ E

[
Qmf (t)

]
when θ > µ, and E [Qm(t)] = E

[
Qmf (t)

]
when θ = µ.

Proof. We will use proof by induction. For the base case we can apply Theorem 1.

Now, suppose that the statement holds for j ∈ {1, 2, . . . ,m− 1}. Recall that the mth

moment satisfies

•
E [Qm(t)] = λ(t)E

 m∑
j=0

(
m

j

)
Qj(t)−Qm(t)


+ E

 m∑
j=0

(
m

j

)
(−1)m−jQj(t)−Qm(t)

(θQ(t)− (θ − µ)(Q(t) ∧ c)
)

= λ(t)

m−1∑
j=0

(
m

j

)
E
[
Qj(t)

]
+ θ

m−1∑
j=0

(
m

j

)
(−1)m−jE

[
Qj+1(t)

]

+ (θ − µ)E

m−1∑
j=0

(
m

j

)
(−1)m−1−jQj+1(t)

 ∧
cm−1∑

j=0

(
m

j

)
(−1)m−1−jQj(t)
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and the approximate autonomous version satisfies

•
E
[
Qmf (t)

]
= λ(t)

m−1∑
j=0

(
m

j

)
E
[
Qjf (t)

]
+ θ

m−1∑
j=0

(
m

j

)
(−1)m−jE

[
Qj+1
f (t)

]

+ (θ − µ)

m−1∑
j=0

(
m

j

)
(−1)m−1−j (E [Qj+1(t)

]
∧ E

[
cQj(t)

])
= λ(t)

m−1∑
j=0

(
m

j

)
E
[
Qjf (t)

]
+ θ

m−1∑
j=0

(
m

j

)
(−1)m−jE

[
Qj+1
f (t)

]

+ (θ − µ)

E

m−1∑
j=0

(
m

j

)
(−1)m−1−jQj+1(t)

 ∧ E

cm−1∑
j=0

(
m

j

)
(−1)m−1−jQj(t)


Now by taking the difference, we have that

•
E [Qm(t)]−

•
E
[
Qmf (t)

]
= λ(t)

m−1∑
j=0

(
m

j

)
E
[
Qj(t)−Qjf (t)

]
+ θ

m−1∑
j=0

(
m

j

)
(−1)m−jE

[
Qj+1(t)−Qj+1

f (t)
]

+ (θ − µ)

(
E

m−1∑
j=0

(
m

j

)
(−1)m−1−jQj+1(t)

 ∧
cm−1∑

j=0

(
m

j

)
(−1)m−1−jQj(t)


− E

m−1∑
j=0

(
m

j

)
(−1)m−1−jQj+1(t)

 ∧ E

cm−1∑
j=0

(
m

j

)
(−1)m−1−jQj(t)

).
Because the minimum is a concave function, we have that for any X and Y with real

means E [X ∧ Y ] ≤ E [X] ∧ E [Y ]. Thus, we have that for θ > µ,

•
E [Qm(t)]−

•
E
[
Qmf (t)

]
≥ 0,

if θ < µ,
•
E [Qm(t)]−

•
E
[
Qmf (t)

]
≤ 0,

and if θ = µ,
•
E [Qm(t)] =

•
E
[
Qmf (t)

]
= 0

since both differential equations are initialized with the same value, the origin is an

equilibrium point for the difference, and all the lower-power terms in the differential

equations follow this structure, which we know from the inductive hypothesis. There-

fore we see this holds for m, which completes the proof. �

Again as we have seen for the mean, we can exploit the versatility of the Erlang-A

queue to extend these insights to the Erlang-B and Erlang-C models as well.
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Corollary 3. For the Erlang-B queueing model, if Q(0) = Qf (0), then E[Qm(t)] ≤

E
[
Qmf (t)

]
for all t ≥ 0 and m ∈ Z+.

Proof. This is obvious after noticing that the Erlang-B queue is a limit of the Erlang-

A queue by letting θ →∞. �

Corollary 4. For the Erlang-C queueing model, if Q(0) = Qf (0), then E[Qm(t)] ≥

E
[
Qmf (t)

]
for all t ≥ 0 and m ∈ Z+.

Proof. This is obvious after noticing that the Erlang-C queue is an Erlang-A queue

with θ = 0. Since µ is assumed to be positive, then we fall into the case where θ < µ

and this completes the proof. �

3.3. Numerical Results

In this section we describe numerical results for approximating the moments of the

Erlang-A queue and examine them relative to our findings. In Figures 2 and 3, we show

the first four moments of the Erlang-A queue and their respective fluid approximations

for cases of θ < µ and θ > µ, respectively. In these plots, we take the arrival rate

at time t ≥ 0 to be λ(t) = 10 + 2 sin(t). We initialize the queue as empty, and we

assume that the queueing system has c = 10 servers each with exponential service rate

µ = 1. We test two different cases for the abandonment rate: θ = 0.5 and θ = 2. In

these settings, we observe that when θ < µ the fluid approximations are below their

corresponding simulated stochastic values and that when θ > µ the fluid values are

greater than the simulations, and this matches the statements of Theorems 3 and 2.

We observe the same relationships in Figures 4 and 5. For these plots we instead

set λ(t) = 100 + 20 sin(t) and c = 100 and otherwise use the same values as for Figures

2 and 3. With this increase in the arrival intensity and the number of servers, we see

that the gaps between the fluid approximations and the simulations are again present,

albeit proportionally smaller.
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(a) First Moment
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(b) Second Moment
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Figure 2: λ(t) = 10 + 2 · sin(t), µ = 1, θ = 0.5, Q(0) = 0, c = 10.
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Figure 3: λ(t) = 10 + 2 · sin(t), µ = 1, θ = 2, Q(0) = 0, c = 10.
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Figure 4: λ(t) = 100 + 20 · sin(t), µ = 1, θ = 0.5, Q(0) = 0, c = 100.
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Figure 5: λ(t) = 100 + 20 · sin(t), µ = 1, θ = 2, Q(0) = 0, c = 100.

4. Inequalities and Characterizations for Generating Functions of the

Erlang-A Queue

Building on what we have found for the moments of the Erlang-A, we can provide

similar inequalities for the moment generating function and the cumulant generating

function again through convexity in the differential equations for the fluid approxi-

mations. We provide these inequalities in Subsections 4.1 and 4.2, respectively. In

doing so, we find forms for the fluid approximations that we can interpret in terms of

expectations of other random quantities. Through these recognitions, we characterize

the fluid approximations. We describe these representations for systems in steady-state
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in Subsection 4.3 and for nonstationary systems in Subsection 4.4. We conclude this

section with a variety of demonstrations of these results through empirical experiments

in Subsection 4.5.

4.1. An Inequality for the Moment Generating Function of the Erlang-A

Queue

Using the functional forward equations [15], we can show that the moment generat-

ing function for the Erlang-A queue satisfies the following partial differential equation

•
E
[
eα·Q(t)

]
= λ(t) · (eα − 1) · E

[
eα·Q(t)

]
+ θ · (e−α − 1) · E

[
Q(t) · eα·Q(t)

]
(11)

−(θ − µ) · (e−α − 1) · E
[
(Q(t) ∧ c) · eα·Q(t)

]
(12)

= λ(t) · (eα − 1) · E
[
eα·Q(t)

]
+ θ · (e−α − 1) · ∂M(t, α)

∂α
(13)

−(θ − µ) · (e−α − 1) · E
[
(Q(t) ∧ c) · eα·Q(t)

]
. (14)

Just like the non-autonomous differential equation for the mean in Equation 7, we

also cannot directly compute the moment generating function since we do not know

the distribution of the queue length a priori. This is also true for numerical purposes.

Unless we can compute the expectation that includes the minimum function it is

impossible to know the moment generating function, except in special cases such as the

infinite server queue and some cases of the Erlang-B queue. Thus, it is useful to obtain

approximations that are explicit upper or lower bounds for the moment generating

function. By using Jensen’s inequality for concave functions, we can approximate the

moment generating function with the following partial differential equation

•
E
[
eα·Qf (t)

]
= λ(t) · (eα − 1) · E

[
eα·Qf (t)

]
+ θ · (e−α − 1) · ∂Mf (t, α)

∂α

−(θ − µ) · (e−α − 1) ·
(

E
[
Qf (t) · eα·Qf (t)

]
∧ E

[
c · eα·Qf (t)

])
(15)

∂Mf (t, α)

∂t
= λ(t) · (eα − 1) ·Mf (t, α) + θ · (e−α − 1) · ∂Mf (t, α)

∂α

−(θ − µ) · (e−α − 1) ·
(
∂Mf (t, α)

∂α
∧ c ·Mf (t, α)

)
. (16)

The following theorem determines exactly when E
[
eα·Qf (t)

]
is a lower or upper

bound for the exact moment generating function of the Erlang-A queue.
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Theorem 3. For the Erlang-A queue, if Q(0) = Qf (0), then E
[
eα·Q(t)

]
≥ E

[
eα·Qf (t)

]
when θ < µ, E

[
eα·Q(t)

]
≤ E

[
eα·Qf (t)

]
when θ > µ, and E

[
eα·Q(t)

]
= E

[
eα·Qf (t)

]
when

θ = µ.

Proof. If we take the difference of the two partial differential equations, we obtain

the following

•
E
[
eα·Q(t)

]
−
•
E
[
eα·Qf (t)

]
= λ(t) · (eα − 1) · E

[
eα·Q(t)

]
+ θ · (e−α − 1) · E

[
Q(t) · eα·Q(t)

]
−(θ − µ) · (e−α − 1) · E

[
(Q(t) ∧ c) · eα·Q(t)

]
−λ(t) · (eα − 1) · E

[
eα·Qf (t)

]
− θ · (e−α − 1) · E

[
Qf (t) · eα·Qf (t)

]
+(θ − µ) · (e−α − 1) ·

(
E
[
Qf (t) · eα·Qf (t)

]
∧ E

[
c · eα·Qf (t)

])
= λ(t) · (eα − 1) ·

(
E
[
eα·Q(t)

]
− E

[
eα·Qf (t)

])
+θ · (e−α − 1) ·

(
E
[
Q(t) · eα·Q(t)

]
− E

[
Qf (t) · eα·Qf (t)

])
−(θ − µ) · (e−α − 1) · E

[
(Q(t) ∧ c) · eα·Q(t)

]
+(θ − µ) · (e−α − 1) ·

(
E
[
Qf (t) · eα·Qf (t)

]
∧ E

[
c · eα·Qf (t)

])
.

Now by exploiting the positive scalability property and the concavity of the minimum

function, we have by Jensen’s inequality that

E
[
(Q(t) ∧ c) · eα·Q(t)

]
= E

[(
Q(t) · eα·Q(t) ∧ c · eα·Q(t)

)]
≤

(
E
[
Qf (t) · eα·Qf (t)

]
∧ E

[
c · eα·Qf (t)

])
.

Thus, we have when θ < µ that

•
E
[
eα·Q(t)

]
−
•
E
[
eα·Qf (t)

]
≥ 0, (17)

when θ > µ
•
E
[
eα·Q(t)

]
−
•
E
[
eα·Qf (t)

]
≤ 0, (18)

and finally when θ = µ,
•
E
[
eα·Q(t)

]
−
•
E
[
eα·Qf (t)

]
= 0 (19)

since they solve the same partial differential equation. This completes our proof. �

As with the moments, we can observe these relationships occurring in numerical

experiments. We provide figures demonstrating this in Subsection 4.5.
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4.2. An Inequality for the Cumulant Moment Generating Function of the

Erlang-A Queue

As a consequence of the findings for the moment generating function, we can also

provide similar inequalities for the cumulant moment generating function. Using

Equation 11, we have

•
log
(
E
[
eα·Q(t)

])
≡ ∂

∂t
log
(

E
[
eα·Q(t)

])
=

•
E
[
eα·Q(t)

]
E
[
eα·Q(t)

] (20)

= λ(t) · (eα − 1) + θ · (e−α − 1) ·
E
[
Q(t) · eα·Q(t)

]
E
[
eα·Q(t)

]
−(θ − µ) · (e−α − 1) ·

E
[
(Q(t) ∧ c) · eα·Q(t)

]
E
[
eα·Q(t)

] (21)

= λ(t) · (eα − 1) + θ · (e−α − 1) · ∂G(t, α)

∂α

−(θ − µ) · (e−α − 1) ·
E
[
(Q(t) ∧ c) · eα·Q(t)

]
E
[
eα·Q(t)

] . (22)

Like for the MGF, we note that we cannot compute the cumulant moment generating

function directly without knowing the distribution of the queue length. So, by again

applying Jensen’s inequality, we can describe the fluid approximation as follows.

•
log
(
E
[
eα·Qf (t)

])
= λ(t) · (eα − 1) + θ · (e−α − 1) · ∂Gf (t, α)

∂α

−(θ − µ) · (e−α − 1) ·

(
E
[
Qf (t) · eα·Qf (t)

]
∧ E

[
c · eα·Qf (t)

]
E
[
eα·Q(t)

] )
(23)

∂Gf (t, α)

∂t
= λ(t) · (eα − 1) + θ · (e−α − 1) · ∂Gf (t, α)

∂α

−(θ − µ) · (e−α − 1) ·
(
∂G(t, α)

∂α
∧ c
)
. (24)

Using this observation and our approach in finding the inequalities for the moment

generating function, we find the equivalent inequalities for the cumulant moment

generating function in the following corollary.

Corollary 5. For the Erlang-A queue, if Q(0) = Qf (0), then log
(
E
[
eα·Q(t)

])
≥

log
(
E
[
eα·Qf (t)

])
when θ < µ, log

(
E
[
eα·Q(t)

])
≤ log

(
E
[
eα·Qf (t)

])
when θ > µ, and

log
(
E
[
eα·Q(t)

])
= log

(
E
[
eα·Qf (t)

])
when θ = µ.

Proof. The proof follows from the same argument that was given in Theorem 3 and

the fact that the log function is strictly increasing. �
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4.3. Characterization of the Moment Generating Function in Steady-State

From what we have observed for the moment generating function, we can derive an

exact representation for the fluid approximation of the moment generating function

in steady-state. We assume a stationary arrival rate λ > 0. We will investigate the

stationary fluid approximation differential equations in a casewise manner based on

the relationship of λ and the system’s service parameters. To do so, we begin with a

lemma bounding the fluid approximation of the mean.

Lemma 2. Suppose that λ is constant. If λ < cµ, then E[Qf (∞)] < c. Moreover, if

λ ≥ cµ, then E[Qf (∞)] ≥ c.

Proof. We will prove this by contradiction. For the first part, we assume that

E[Qf (∞)] ≥ c. Now by using the differential equation for the mean in steady state,

we have that

0 = λ− µ · (E[Qf (∞)] ∧ c)− θ · (E[Qf (∞)]− c)+

= λ− µ · c− θ(E[Qf (∞)]− c)+.

Since we assumed that E[Qf (∞)] ≥ c, then this yields the following inequality

λ ≥ cµ,

which yields a contradiction. For the second case, where we assume that λ ≥ cµ and

E[Qf (∞)] < c, then by the same differential equation we have that

λ = µ · (E[Qf (∞)] ∧ c) + θ · (E[Qf (∞)]− c)+

= µ · (E[Qf (∞)] ∧ c)

= cµ+ µ · (E[Qf (∞)]− c)

< cµ,

which yields another contradiction. �

We now begin characterizing the fluid approximations with our first case, λ ≥ cµ,

in the following proposition.

Proposition 1. If λ ≥ cµ, then in steady-state we have that

∂Mf (∞, α)

∂α
=

λ · (eα − 1) + (θ − µ) · (1− e−α) · c
θ · (1− e−α)

·Mf (∞, α) (25)
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which yields a solution of

Mf (∞, α) = e
α·(θ−µ)·c+λ·(eα−1)

θ (26)

for α ∈ R.

Proof. To find the partial differential equation, we use functional cumulant bound for

any non-decreasing function h(·) (which can be seen as a form of the FKG inequality),

E[h(X) · eα·X ]

E[eα·X ]
≥ E[h(X)]. (27)

In the case that λ ≥ cµ we have that E [Qf (t)] ≥ c in steady-state by Lemma 2, and

so we know how to evaluate the minimum in the fluid equation. Thus, we have that

the derivative of Gf (α) = log(Mf (∞, α)) with respect to α is

dGf (α)

dα
=
λ(eα − 1) + c(θ − µ)(1− e−α)

θ(1− e−α)
=
λeα

θ
+
c(θ − µ)

θ
(28)

where here we have used the identity ex = ex−1
1−e−x , which can be observed by multiplying

each side of the equation by 1− e−x. Because the MGF is equal to 1 when α = 0, we

also have that Gf (0) = 0. Using this initial condition and integrating left and right

sides of Equation 28 with respect to α, we find that

Gf (α) =
λ(eα − 1) + cα(θ − µ)

θ

and since Mf (∞, α) = eGf (α), we attain the stated result. �

We can now observe that the fluid approximation is equivalent in distribution to a

Poisson random variable shifted by γ ≡ c(θ−µ)
θ , as the moment generation function for

the Poisson distribution is eβ(eα−1), where β is the rate of arrival and α is the space

parameter of the MGF. This gives rise to the following.

Theorem 4. For the Erlang-A queue with λ ≥ cµ and m ∈ Z+, if θ > µ

E [(Qf (∞)− γ)m] ≤ E [(Q(∞))m] ≤ E [(Qf (∞))m]

and if θ < µ

E [(Qf (∞))m] ≤ E [(Q(∞))m] ≤ E [(Qf (∞)− γ)m]

where γ = c(θ−µ)
θ .
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Proof. From Proposition 1, we have that the fluid approximation of the MGF in

steady-state is

Mf (∞, α) = e
λ(eα−1)+cα(θ−µ)

θ = E
[
eα(Γ+γ)

]
where Γ ∼ Pois

(
λ
θ

)
and γ = c(θ−µ)

θ . From the uniqueness of MGF’s, we have that

E [(Qf (∞))m] = E [(Γ + γ)m]

for all m ∈ Z+. Now, recall that for an M/M/∞ queue with arrival rate λ and

service rate θ, the stationary distribution is that of a Poisson random variable with

rate parameter λ
θ . So, we can think of Γ as representing the steady-state distribution

of an infinite server queue with Poisson arrival rate λ and exponential service rate θ.

Suppose now that θ > µ. Then, by Theorem 2 and our preceding observation,

we have that E [(Q(∞))m] ≤ E [(Γ + γ)m]. Additionally, by comparing the steady-

state infinite server queue representation of Γ to Q(∞), we can further observe that

E [(Q(∞))m] ≥ E [Γm], as for any state j the service rate in Q(∞) is no more than the

service rate in the same state in the Γ queueing system. Thus we have that

E [(Qf (∞)− γ)m] = E [Γm] ≤ E [(Q(∞))m] ≤ E [(Γ + γ)m] = E [(Qf (∞))m]

for all m ∈ Z+ whenever θ > µ. By symmetric arguments, we can also find that if

µ > θ then

E [(Qf (∞))m] = E [(Γ + γ)m] ≤ E [(Q(∞))m] ≤ E [Γm] = E [(Qf (∞)− γ)m]

for all m ∈ Z+, as in this case γ = c(θ−µ)
θ < 0. �

Remark 4.1. Note that in Theorem 2, we require that Q(0) = Qf (0) but in this case

we have not assumed such a condition. This is because the inequalities in Theorem 2

hold for all time, and we simply need the relationship to hold in steady-state, which

can be seen to occur regardless of initial conditions.

By knowing the fluid form of moment generating function explicitly as a Poisson

distribution, we can also provide exact expressions for the fluid moments and the fluid

cumulant moments. These are given in the two following corollaries.
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Corollary 6. If λ ≥ cµ, then in steady-state we have that the first n moments have

the following steady-state expressions:

E[Qnf (∞)] =

n∑
j=0

(
n

j

)
·
(
c(θ − µ)

θ

)j
· Pn−j

(
λ

θ

)
(29)

where Pm
(
λ
θ

)
is the mth Touchard polynomial with parameter λ

θ .

Proof. This can be seen by direct use of the Poisson form of the fluid MGF. Let

Γ ∼ Pois
(
λ
θ

)
and let γ = c(θ−µ)

θ . Then,

E[Qnf (∞)] = E[(Γ + γ)n]

=

n∑
j=0

(
n

j

)
· γj · E

[
Γn−j

]
=

n∑
j=0

(
n

j

)
· γj · Pn−j

(
λ

θ

)

=

n∑
j=0

(
n

j

)
·
(
c(θ − µ)

θ

)j
· Pn−j

(
λ

θ

)
.

�

Corollary 7. If λ ≥ cµ, then in steady-state we have that

dGf (∞, α)

dα

∣∣∣
α=0

=
λ

θ
+
c(θ − µ)

θ
= E[Qf (∞)] (30)

and for n ∈ Z+

dnGf (∞, α)

dnα

∣∣∣
α=0

=
λ

θ
= C(n)[Qf (∞)] (31)

where C(n)[Qf (∞)] is defined as the nth cumulant moment of Qf (∞).

We now consider the second case, which is λ < cµe−α. Note that this now also re-

quires a relationship involving the space parameter of the moment generating function,

α. This is less general than the first case, but it allows us to derive Lemma 3.

Lemma 3. For α ≥ 0,

∂Mf (∞, α)

∂α
< cMf (∞, α)

if and only if λ < cµe−α.
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Proof. To begin, suppose that
∂Mf (∞,α)

∂α < cMf (∞, α). Using this information in

conjunction with the steady-state form of the partial differential equation for the fluid

MGF given in Equation 16, we have that

0 = λ(eα − 1)Mf (∞, α) + θ(e−α − 1)
∂Mf (∞, α)

∂α
− (θ − µ)(e−α − 1)

∂Mf (∞, α)

∂α

which simplifies to
∂Mf (∞, α)

∂α
=
λ

µ
eαMf (∞, α).

Using our assumption, we see that

λ

µ
eαMf (∞, α) < cMf (∞, α)

and this yields that λ < cµe−α, which shows one direction.

We now move to showing the opposite direction and instead assume that
∂Mf (∞,α)

∂α ≥

cMf (∞, α). In this case, Equation 16 is given by

0 = λ(eα − 1)Mf (∞, α) + θ(e−α − 1)
∂Mf (∞, α)

∂α
− c(θ − µ)(e−α − 1)Mf (∞, α)

and this simplifies to

∂Mf (∞, α)

∂α
=
λ(eα − 1) + c(θ − µ)(1− e−α)

θ(1− e−α)
Mf (∞, α) =

λeα + c(θ − µ)

θ
Mf (∞, α).

Again by use of this case’s assumption, we have

λeα + c(θ − µ)

θ
Mf (∞, α) ≥ cMf (∞, α)

and this now yields

λ ≥ e−α (cθ − c(θ − µ)) = cµe−α,

thus completing the proof. �

We can now use this lemma to find an explicit form for the fluid approximation of

the steady-state moment generating function when λ < cµe−α.

Proposition 2. For α ≥ 0, if λ < cµe−α, then in steady-state we have that

∂Mf (∞, α)

∂α
=

λ · eα

µ
·Mf (∞, α) (32)

which yields a solution of

Mf (∞, α) = e
λ·(eα−1)

µ (33)

for α ∈ R.



26 A. DAW AND J. PENDER

Proof. By Lemma 3 and our assumption that λ < cµe−α, we know that
∂Mf (∞,α)

∂α <

cMf (∞, α). Thus, by observing this in the steady-state MGF equation, we easily

obtain the result in Equation 32. Moreover, the solution to Equation 32 can be

easily seen by inserting our proposed solution in and noting that it satisfies our

differential equation. Moreover, the solution is unique by the properties of linear

ordinary differential equation theory. �

Remark 4.2. We now pause to note that the λ ≥ cµe−α case of Lemma 3 implies

Proposition 1 (and its following consequences) with a weaker assumption. However,

because the condition λ ≥ cµ does not depend on the choice of α it is more general,

and thus we leave those results as stated with that assumption instead of λ ≥ cµe−α.

Here we observe that Equation 33 is equivalent to the moment generating function

of a Poisson random variable with parameter λ
µ . Now, by recalling again that the

steady-state distribution of a M/M/∞ queue is a Poisson distribution with parameter

equal to the arrival rate over the service rate, we find the following inequalities.

Theorem 5. Let λ < cµ and m ∈ Z+. Then, if θ > µ

E [Γmθ ] ≤ E [Q(∞)m] ≤ E
[
Γmµ
]
, (34)

and if µ > θ

E
[
Γmµ
]
≤ E [Q(∞)m] ≤ E [Γmθ ] (35)

where Γx ∼ Pois
(
λ
x

)
for x > 0.

Proof. In each case, the inequality involving Γµ ∼ Pois
(
λ
mu

)
follows directly from

Proposition 2 and Theorem 2 via the observation that the fluid form of the moment

generating function is equivalent in distribution to that of Γµ. Here we are using

Proposition 2 with α = 0, and by continuity we know this holds for some ball around

0. This validates the use of the derivatives of the steady-state MGF with respect to α

evaluated at α = 0 in finding the moments for the fluid approximation. Thus, we are

left to prove the inequalities for Γθ ∼ Pois
(
λ
θ

)
.

To do so, let’s first note that the stationary distribution of a M/M/∞ queue with

service rate θ is equivalent to that of Γθ. Suppose now that θ > µ. Then, any state
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of such a M/M/∞ queue has a larger rate of departure than the same state in the

Erlang-A system. Thus, we have that

E [Γmθ ] ≤ E [Q(∞)m] ≤ E
[
Γmµ
]

for all m ∈ Z+. By symmetric arguments in the θ < µ case, we complete the proof. �

As we did for the case when λ ≥ cµ, we can use these findings to give explicit

expressions for the fluid approximations of the moments and the cumulant moments.

Corollary 8. If λ < cµ, then in steady-state we have that

dGf (∞, α)

dα

∣∣∣
α=0

=
λ

µ
= E[Qf (∞)] (36)

and for n ∈ Z+,

dnGf (∞, α)

dnα

∣∣∣
α=0

=
λ

µ
= C(n)[Qf (∞)] (37)

dnMf (∞, α)

dnα

∣∣∣
α=0

= Pn
(
λ

µ

)
= E [Qf (∞)n] (38)

where C(n)[Qf (∞)] is defined as the nth cumulant moment of Qf (∞) and Pm
(
λ
µ

)
is

the mth Touchard polynomial with parameter λ
µ .

4.4. Characterization of the Nonstationary Moment Generating Function

Many scenarios that feature customer abandonments may also feature an arrival

process that is nonstationary. To incorporate this, we now incorporate a point process

that can be used to approximate any periodic mean arrival pattern, as discussed in [1].

Specifically, we define λ(t) by a Fourier series: let λ0 and {(ak, bk), k ∈ Z+} be such

that

λ(t) = λ0 +

∞∑
k=1

ak sin(kt) + bk cos(kt). (39)

We now take λ(t) as the rate of arrivals at time t in the Erlang-A model. Under

this setting, we derive the following expression for the cumulant moment generating

function of the fluid approximation and its corresponding partial differential equation

whenever the arrival rate is sufficiently large. We do so through a series of technical

lemmas. First, we bound the fluid mean when the arrival rate and initial value are

sufficiently large.
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Lemma 4. Suppose that λ ≡ inft≥0 λ(t) > cµ and that E [Qf (0)] > c. Then,

E [Qf (t)] > c

for all time t ≥ 0.

Proof. We have seen that E [Qf (t)] evolves according to

•
E [Qf (t)] = λ(t)− µ(E [Qf (t)] ∧ c)− θ(E [Qf (t)]− c)+

at all times t. Now, suppose that t̂ > 0 is a time such that E
[
Qf (t̂)

]
= c+ ε for some

ε > 0. Then, if ε < λ−cµ
θ we have that

•
E
[
Qf (t̂)

]
= λ(t̂)− cµ− θε ≥ λ− cµ− θε > 0.

By the continuity of the fluid mean and the fact that E [Qf (0)] = q(0) > c, we see that

E [Qf (t)] > c for all time t ≥ 0. �

With this in hand, we now also provide the moment generating function for anM/M/∞

queue with nonstationary arrival rate λ(t), which we will use for comparison later in

this section.

Lemma 5. Let Q∞(t) be an infinite server queue with nonstationary Poisson arrival

rate λ(t) and exponential service rate µ and initial value Q∞(t) = q0. Then,

E
[
eαQ∞(t)

]
= e

(eα−1)

(
λ0
µ (1−e−µt)+

∑∞
k=1

(akµ+bkk) sin(kt)+(bkµ−akk)(cos(kt)−e
−µt)

µ2+k2

) (
e−µt(eα − 1) + 1

)q0
for all t ≥ 0 and α ∈ R.

Proof. To start, we have that time derivative of the MGF is

dE
[
eαQ∞(t)

]
dt

= λ(t)(eα − 1)E
[
eαQ∞(t)

]
+ µ(e−α − 1)E

[
Q∞(t)eαQ∞(t)

]
where λ(t) is as defined previously:

λ(t) = λ0 +

∞∑
k=1

ak sin(kt) + bk cos(kt).

This differential equation can be view as a partial differential equation when expressed

as

µ(1− e−α)
∂M(α, t)

∂α
+
∂M(α, t)

∂t
= λ(t)(eα − 1)M(α, t)
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where M(α, t) is the moment generating function at time t and space parameter α.

To simplify our effort, we instead consider the differential equation for the cumulant

MGF, which is G(α, t) = log(M(α, t)). This PDE is

µ(1− e−α)
∂G(α, t)

∂α
+
∂G(α, t)

∂t
= λ(t)(eα − 1)

with the initial condition that

G(α, 0) = log
(

E
[
eαQ∞(0)

])
= log (eαq0) = αq0.

Using the notation that Gx = ∂G
∂x , we seek to solve the systemµ(1− e−α)Gα +Gt = λ(t)(eα − 1)

G(α, 0) = αq0

and we do so via the method of characteristics. For this approach we introduce variables

the characteristic variables r and s and establish the characteristic equations, which

are ODE’s, as

dα

ds
(r, s) = µ(1− e−α),

dt

ds
(r, s) = 1,

dg

ds
(r, s) = λ(t)(eα − 1)

with the initial conditions

α(r, 0) = r,

t(r, 0) = 0,

g(r, 0) = rq0.

We can first see that the ODE’s for α and t solve to

α(r, s) = log(ec1(r)+µs + 1) −→ α(r, s) = log ((er − 1)eµs + 1)

t(r, s) = s+ c2(r) −→ t(r, s) = s

and so we can now use these to solve the remaining ODE. After substituting we have

dg

ds
(r, s) = λ(s)(er − 1)eµs
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which gives a solution of

g(r, s) = (er − 1)

(
λ0

µ
(eµs − 1) +

∞∑
k=1

(akµ+ bkk) sin(ks)eµs + (bkµ− akk)(cos(ks)eµs − 1)

µ2 + k2

)
+ rq0.

So, using s = t and r = log (e−µt(eα − 1) + 1), we have that

G(α, t) = g(log
(
e−µt(eα − 1) + 1

)
, t)

= (eα − 1)

(
λ0

µ
(1− e−µt) +

∞∑
k=1

(akµ+ bkk) sin(kt) + (bkµ− akk)(cos(kt)− e−µt)
µ2 + k2

)

+ log
(
e−µt(eα − 1) + 1

)
q0

and therefore by solving for M(α, t) = eG(α,t) we attain the stated result. �

Now that we have established these lemmas we proceed with the analysis of the

nonstationary Erlang-A. In the next theorem we give explicit forms for the fluid form

of the cumulant MGF and its corresponding partial differential equation.

Theorem 6. If inft≤∞ λ(t) ≡ λ > cµ and q(0) > c, then in for all t ≥ 0 we have that

∂Gf (t, α)

∂t
= λ(t) · (eα − 1) + θ · (e−α − 1) · ∂Gf (t, α)

∂α
− c · (θ − µ) · (e−α − 1) (40)

which gives a solution of

Gf (t, α) = (eα − 1)

(
λ0

θ
(1− e−θt) +

∞∑
k=1

(akθ + bkk) sin(kt) + (bkθ − akk)(cos(kt)− e−θt)
θ2 + k2

)

+
c(θ − µ)

θ
α+ log((eα − 1)e−θt + 1)

(
q(0)− c(θ − µ)

θ

)
(41)

for all t ≥ 0 and all α ∈ R.

Proof. From Equation 24, we have that the PDE for the fluid approximation’s

cumulant moment generating function is

∂Gf (t, α)

∂t
= λ(t)(eα − 1) + θ(e−α − 1)

∂Gf (t, α)

∂α
− (θ − µ)(e−α − 1)

(
∂G(t, α)

∂α
∧ c
)
.

Now, recall that
∂Gf (t,α)

∂α =
E[Qf (t)eαQf (t)]

E[eαQf (t)]
. Using the FKG inequality and our obser-

vation from Lemma 4 that E [Qf (t)] > c, we have that

E
[
Qf (t)eαQf (t)

]
≥ E [Qf (t)]E

[
eαQf (t)

]
> cE

[
eαQf (t)

]
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and so
(
∂Gf (t,α)

∂α ∧ c
)

= c. Thus, we have the PDE given in Equation 40 and so now we

seek to find it’s solution. We approach this via the method of characteristics. Because

Gf (0, α) = log(E
[
eαQf (0)

]
) = αq(0), we see that we seek to solve the following systemθ(1− e

−α)G(α) +G(t) = λ(t)(eα − 1) + c(θ − µ)(1− e−α)

Gf (0, α) = αq(0)

where G(x) =
∂Gf
∂x . Introducing characteristic variables r and s, we have the charac-

teristic ODE’s as

dα

ds
(r, s) = θ(1− e−α)

dt

ds
(r, s) = 1

dg

ds
(r, s) = λ(t)(eα − 1) + c(θ − µ)(1− e−α)

with initial conditions α(r, 0) = r, t(r, 0) = t, and g(r, 0) = rq(0). Then, we can solve

the first two ODE’s to see that

α(r, s) = log((er − 1)eθs + 1)

t(r, s) = s

and so we can use these to solve the remaining equation. Substituting in, we have the

ODE as
dg

ds
(r, s) = λ(s)eθs(er − 1) + c(θ − µ)

eθs(er − 1)

eθs(er − 1) + 1

and this now solves to

g(r, s) = (er − 1)

(
λ0

θ
(eθs − 1) +

∞∑
k=1

(akθ + bkk) sin(ks)eθs + (bkθ − akk)(cos(ks)eθs − 1)

θ2 + k2

)

+
c(θ − µ)

θ

(
log
(
(er − 1)eθs + 1

)
− r
)

+ rq(0).

Now, we can rearrange our solutions to find s = t and r = log((eα−1)e−θt+ 1). Then,

we have that

Gf (t, α) = g(log((eα − 1)e−θt + 1), t)

= (eα − 1)e−θt

(
λ0

θ
(eθt − 1) +

∞∑
k=1

(akθ + bkk) sin(kt)eθt + (bkθ − akk)(cos(kt)eθt − 1)

θ2 + k2

)

+
c(θ − µ)

θ

(
α− log((eα − 1)e−θt + 1)

)
+ log((eα − 1)e−θt + 1)q(0)
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and this simplifies to the stated result. �

Like the approach in our investigation of the steady-state scenario, we can now

observe that the fluid approximation is equivalent in distribution to a infinite server

queue shifted by γ ≡ c(θ−µ)
θ . This gives rise to the following.

Theorem 7. For the Erlang-A queue with nonstationary arrival rate λ(t) such that

λ ≡ inft≥0 λ(t) > cµ and initial value q(0) > c, the fluid approximation of the MGF

is equivalent to that of a shifted M/M/∞ queue with arrival rate λ(t), service rate θ,

initial value q(0)− c(θ−µ)
θ , and linear shift c(θ−µ)

θ .

Proof. Observe from Theorem 6 that the fluid MGF for the Erlang-A under these

conditions is

Mf (t, α) = eGf (t,α)

= e
(eα−1)

(
λ0
θ (1−e−θt)+

∑∞
k=1

(akθ+bkk) sin(kt)+(bkθ−akk)(cos(kt)−e
−θt)

θ2+k2

)
+
c(θ−µ)
θ α (

(eα − 1)e−θt + 1
)q(0)− c(θ−µ)θ

which is of a form that we can recognize. Comparing it to Lemma 5, we can see that

Qf is of the form of a shifted M/M/∞ queue with arrival rate λ(t), service rate θ,

initial value q(0)− c(θ−µ)
θ , and linear shift c(θ−µ)

θ , thus enforcing that the fluid model

does start at q(0). �

This representation of the fluid approximation allows us to now provide upper and

lower bounds for the moments of the Erlang-A system.

Corollary 9. Let Q(t) represent the Erlang-A queue with nonstationary arrival rate

λ(t) such that λ ≡ inft≥0 λ(t) > cµ and initial value q(0) > c, and let Qf (t) represent

the corresponding fluid approximation. Then, if θ > µ

E [(Qf (t)− γ)
m

] ≤ E [Q(t)m] ≤ E [Qf (t)m]

and if θ < µ

E [Qf (t)m] ≤ E [Q(t)m] ≤ E [(Qf (t)− γ)
m

]

for all time t > 0 and all m ∈ Z+, where γ = c(θ−µ)
θ .

Proof. In each case, the bound involving the fluid approximation of the moment is

a direct consequence of Theorem 2 and so only the other two bounds remain to be
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shown. We now note that since we have characterized the fluid approximation as a

shifted M/M/∞ queue, the remaining bounds are from the unshifted version of this

system and, by following the same arguments as in Theorems 4 and 5 regarding the

rates of departure in the corresponding states of the Erlang-A queue and the M/M/∞

queue, this completes the proof. �

4.5. Numerical Results

In this subsection we describe various numerical experiments demonstrating these

findings. We first have Figures 6, 7, 8, and 9, which compare simulated value of the

moment generating function to their fluid approximations. In the first two figures,

the arrival intensity is λ(t) = 5 + sin(t), the service rate is µ = 1, and the number

of servers is c = 5. The abandonment rates are the differing component of these

plots, with θ = 0.5 and θ = 2 as the two respective values. These same comparisons

are made in the latter two figures, however in this case the arrival rate is instead

λ(t) = 10 + 2 sin(t) and the number of servers is c = 10.

Through these plots one can observe that the true MGF dominates the fluid approx-

imation when θ < µ and that the fluid dominates the stochastic value when θ > µ. This

is of course stated with the understanding that for small values of α or for times near

0 the values of the MGF and the approximation are quite close and so with numerical

error the surfaces may overlap.

Figure 6: λ(t) = 5 + sin(t), µ = 1, θ = 0.5, Q(0) = 0, c = 5.

Front view (left) and rear view (right).
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Figure 7: λ(t) = 5 + sin(t), µ = 1, θ = 2, Q(0) = 0, c = 5.

Front view (left) and rear view (right).

Figure 8: λ(t) = 10 + 2 · sin(t), µ = 1, θ = 0.5, Q(0) = 0, c = 10.

Front view (left) and rear view (right).

Figure 9: λ(t) = 10 + 2 · sin(t), µ = 1, θ = 2, Q(0) = 0, c = 10.

Front view (left) and rear view (right).



New perspectives on the Erlang-A queue 35

In Figure 10 we plot the limiting distribution for the steady-state Erlang-A. For

these plots we take λ = 20 and µ = 1, and then vary θ and c. For the three plots on

the left we take the abandonment rate to be θ = 0.5 and for those on the right we set

θ = 2. For the top two plots we set the number of servers as c = 15, in the middle

two c = 20, and in the bottom two we make c = 25. We observe that the approximate

distribution is quite close when λ is not near cµ but the approximation is less accurate

when λ = cµ. This finding is consistent with much of the literature that focuses

on finding novel approximations for queueing networks and optimal control of these

networks, see for example [7, 6, 8, 22, 18, 25]. We note here that these approximations

are not all of the same form: recall that when λ ≥ cµ the fluid approximation is

equivalent in distribution to a shifted Poisson random variable with parameter λ
θ , but

when λ < cµ it is equivalent to a Poisson distribution with parameter λ
µ .
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(a) θ = 0.5, c = 15 (b) θ = 2, c = 15

(c) θ = 0.5, c = 20 (d) θ = 2, c = 20

(e) θ = 0.5, c = 25 (f) θ = 2, c = 25

Figure 10: Empirical and Fluid Limiting Distributions for λ = 20 and µ = 1.

In Figure 11 we examine the limiting distributions for the single server case. In
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these plots we set µ = 1 and then vary the arrival rate and the abandonment rate.

On all plots on the left we set θ = 0.5 and on the right θ = 2. Further, in the top

pair we make λ = 0.8, in the middle we let λ = 1, and in the bottom pair λ = 1.2.

As in Figure 10, Figure 11 shows that our approximations are quite good. Thus, we

are able to capture single server dynamics as well as large-scale multi-server dynamics

even though they are quite different. This is even more useful as our approximations

are non-asymptotic and don’t rely on scaling the number of servers.
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(a) θ = 0.5, λ = 0.8 (b) θ = 2, λ = 0.8

(c) θ = 0.5, λ = 1 (d) θ = 2, λ = 1

(e) θ = 0.5, λ = 1.2 (f) θ = 2, λ = 1.2

Figure 11: Empirical and Fluid Limiting Distributions for c = 1 and µ = 1.

In Figures 12, 13, and 14, we take the arrival rate as λ(t) = 6.5 + sin(t), the service
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rate as µ = 1, and the number of servers as c = 5. Because inft≥0 λ(t) > cµ, we use the

characterization of the fluid approximation as a shifted M/M/∞ queue and compare

the simulated system, the fluid approximation, and the unshifted M/M/∞. In the first

figure we consider the mean for θ = 1.1 and and θ = 0.9 and find that while the fluid

approximation is quite close the unshifted system is not near to the Erlang-A system,

even for these relatively similar rates of service and abandonment. We find the same

for the latter two figures, in which we plot the moment generating function for θ = 1.1

and θ = 0.9, respectively.

Figure 12: Queue Mean for λ(t) = 6.5 + sin(t), µ = 1, Q(0) = 6, c = 5.

θ = 1.1 (left) and θ = 0.9 (right).

Figure 13: MGF for λ(t) = 6.5 + sin(t), µ = 1, θ = 1.1, Q(0) = 6, c = 5.

Front view (left) and rear view (right).
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Figure 14: MGF for λ(t) = 6.5 + sin(t), µ = 1, θ = 0.9, Q(0) = 6, c = 5.

Front view (left) and rear view (right).

5. Conclusion

In this paper we have investigated the Erlang-A queueing system through compari-

son to the fluid approximations of its moments and moment generating function as well

as of its cumulants and cumulant moment generating function. Through recognizing

the convexity in the differential equations describing these approximations, we have

found fundamental relationships between the values of these quantities and their fluid

counterparts: when the rate of abandonment is less than the rate of service the true

value dominates the approximation, when the service rate is larger the approximation

dominates the true value, and when the rates of abandonment and service are equal,

the two are equivalent.

In forming these inequalities, we have found explicit representations of the fluid

approximations through equivalences in distribution with Poisson random variables

and infinite server queues, in the stationary and non-stationary cases, respectively.

These characterizations both give insight into the approximations themselves and yield

natural inequalities that complement those from the approximations. We have demon-

strated the performance of these bounds through simulations. Through consideration of

both these findings and the empirical experiments, we can identify interesting directions

of future work.

For example, it would be of great interest to gain more explicit insights into the
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gap between the fluid approximations and the true values. This is a non-trivial

endeavor, which stems from the non-differentiablility and non-closure in the differential

equations for the true expectations. The numerical experiments in this work indicate

that the fluid approximations may often be quite close but not exact, and additional

understanding would be useful in practice. Moreover, extending our results to more

complicated queueing systems where the arrival and service processes follow phase type

distributions is of interest given the new work of [22, 9, 10].

Additionally, it would be even more useful to gain a better understanding of the

limiting distribution of the Erlang-A queue. As we discuss in the paper, the empirical

experiments in Subsection 4.5 indicate that the true limiting distributions closely

resemble the shifted Poisson distributions that we have found as characterizations of

our fluid approximations. In particular, the approximations seem quite close when λ

is not near cµ. As a simple extension of this work, it can be observed that some sort of

combination of the approximation when λ < cµ and of the approximation when λ > cµ

could make a nice choice for approximation of the distribution when λ = cµ. In some

sense, it is not surprising that these approximations are similar to the true limiting

distribution, as the Erlang-A appears to be a M/M/∞ queue with service rate µ (the

approximation when λ < cµ), when only considering the states up to c, and it also

resembles some sort of shifted M/M/∞ queue with service rate θ (which also describes

the approximation when λ ≥ cµ) for states c + 1 and beyond. Finally, it would be

interesting to extend this to networks of Erlang-A queues like in [23], however, we

would have to keep track of the routing probabilities carefully to keep track of the

convexity/concavity of the rate functions.
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