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Abstract The multi-server queue with non-homogeneous Poisson arrivals and cus-
tomer abandonment is a fundamental dynamic rate queueing model for large-scale
service systems such as call centers and hospitals. Scaling the arrival rates and num-
ber of servers arises naturally when a manager updates a staffing schedule in response
to a forecast of increased customer demand. Mathematically, this type of scaling ulti-
mately gives us the fluid and diffusion limits as found inMandelbaum et al. (Queueing
Syst 30(1):149–201, 1998) for Markovian service networks. These asymptotics were
inspired by the Halfin and Whitt (Oper Res 29(3):567–588, 1981) scaling for multi-
server queues. In this paper, we provide a review and an in-depth analysis of the
Erlang-A queueing model. We prove new results about cumulant moments of the
Erlang-A queue, the transient behavior of the Erlang-A limit cycle, new fluid limits for
the delay time of a virtual customer, and optimal static staffing policies for healthcare
systems.Wecombine tools fromqueueing theory, ordinary differential equations, com-
plex analysis, cumulant moments, orthogonal polynomials, and dynamic optimization
to obtain new insights about this fundamental queueing model.
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1 Introduction

The year of 2017, whenwe are celebrating the 75th birthday ofWardWhitt, alsomarks
the centennial of the Erlang blocking formula Erlang [8]. This was derived by Agner
Krarup Erlang and published in 1917.

His innovation a century ago was to model the performance of telephone trunk
line usage, commonly referred to as “all circuits are busy”, as a constant rate or
time-homogeneous Markov process. In our telephony context, an average customer
telephone calling rate is the constant rate. We assume that the mean calling times or
abandonment items never have any time of day or hour effects. The transient distri-
bution for such a discrete state Markov processes is the unique solution to a set of
ordinary differential equations that form a linear dynamical system. The general the-
ory for such processes and chains provides analysis for the long run distribution of
these Markov models. There is also a unique stationary distribution. The analysis for
determining this stationary limit reduces to solving a set of linear equations.

The Erlang blocking formula paved the way for 20th century queueing theory as
an active branch of applied probability. Unfortunately, real life rates are dynamic in
nature. Empirically, for example, average telephone call arrival rates can be a function
of the time of day, the day of the week, and the week of the year. Hence, a queueing
analysis is needed that focuses on time-inhomogeneousMarkov processes. When this
occurs, any closed-form solution for the distribution of a Markovian queueing model
quickly becomes intractable.

Typical approaches for analyzing time and state dependent queueingmodels include
asymptotic methods such as heavy traffic limit theory, strong approximation theory,
and uniform acceleration; see, for example, Massey [32], Halfin andWhitt [11], Man-
delbaum et al. [29], Pender and Phung-Duc [49], Puhalskii [54]. Uniform acceleration,

123



Queueing Syst (2018) 89:127–164 129

introduced in Puhalskii [32], and extended to time-inhomogeneous, finite stateMarkov
processes in Massey and Whitt [36], is a dynamic generalization of steady state anal-
ysis. It has successfully captured the dynamic and transient behavior for the transition
probabilities and moments such as the mean and variance for the dynamic rate ana-
logues of many fundamental queueing models.

Moreover, the strong approximation methods are useful for extending the uniform
acceleration analysis, frommoments and transition probabilities, directly to the sample
path behavior of the Markov process. This analysis can show that properly rescaled
queueing sample paths converge to deterministic andGaussian-like diffusion limits. In
Hampshire et al. [14] for example, this sample path approach allows us to analyze the
sojourn times for a processor sharing queue with non-homogeneous Poisson arrivals.
However, one drawback of these methods is that they are asymptotic as we scale the
rate functions upwards. Hence, the convergence of these methods depends on how
large the rates are in the problem of interest. The inaccuracy for queueing processes
with moderate to small rates has been noted by Massey and Pender [34].

Another method that is quite common in the queueing literature is moment closure
approximation. Moment closure approximations are used to approximate the queueing
process distribution with a lower-dimensional dynamical system. These deterministic
systems are then used to compute approximate moments of the original queueing
process. They can also be used to approximate unknown functions of the queue length
to yield a set of equations that only depend on the moments that are being estimated.

One such method used by Massey and Pender [33,34], Pender [41,44,46], Pender
et al. [50], Pender and Ko [47], Engblom and Pender [7] is to use Hermite polynomials
for approximating the distribution of the queue length process. In fact, they show that
using a quadratic polynomial works quite well. Since the Hermite polynomials are
orthogonal to the Gaussian distribution, which has support on the entire real line,
these Hermite polynomial approximations do not take into account the discreteness
of the queueing process and the fact that the queueing process is positive (including
zero). However, they show that Hermite polynomials are natural to analyze since they
are orthogonal with respect to the Gaussian distribution, and the heavy traffic limits
of multi-server queues, which were pioneered by Ward Whitt, are Gaussian.

This paper is an in-depth analysis of the Erlang-A queue with dynamic rates. It
is a fundamental and canonical queueing model for the dynamic behavior of cus-
tomer abandonments, telecommunication system design, transportation system design
and control, as well as emerging applications for resource sharing in healthcare and
cloud computing. The lack of simple formulas for the transition probabilities of the
Markovian version of the Erlang-A queue is circumvented by finding low-dimensional
dynamical system approximations and representations. Our results are inspired by two
papers co-authored byWardWhitt. The first one, Halfin andWhitt [11], proves many-
server heavy traffic limits for a multi-server queueing model, and the second one,
Duffield et al. [4], exploits the cumulant generating function and cumulant moments
to derive expressions for themean and variance of packet networks. By combining new
closure approximations, orthogonal polynomials, new types of cumulants, differential
equations, and complex analysis, we are able to derive several new results that reveal
the complex dynamics of the Erlang-A queue.
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1.1 Organization and summary of results

This paper is organized both to review classic as well as recent results and to present
new results for the Erlang-A queue. Section 2 describes the dynamic rate Erlang-A
queue and its fluid and diffusion limits. Section 3 introduces cumulants and the new
notion of a functional cumulant. Here, we derive several properties for both types of
cumulants. We also rederive the classic result that all “analytic” distributions with a
finite number of nonzero cumulant moments are Gaussian.

Section4uses the functional cumulantmoments to express the forward equations for
the cumulant moments of the Erlang-A queue. We use them to analyze these cumulant
moments and obtain some new results for the Erlang-A departure process. We also
show in this section an example of the phase space dynamics for an infinite server
queue with a period arrival rate. It is an ellipse of a fixed shape with a moving center
point. This center achieves a limit point whichmakes the resulting ellipse a limit cycle.
Lastly, in this section, we review Hermite polynomials and introduce various closure
approximations for the Erlang-A queue. They were referred to in Massey and Pender
[34] as the deterministic mean approximation, the Gaussian variance approximation,
and the Gaussian skewness approximation. These closure methods follow from the
dynamics of the cumulant moments for the Erlang-A queue.

Section 5 reviews fluid limit approximations to the mean delay of the Erlang-A
queue and develops new algorithms related to computing the mean delay using the
Gaussian variance and skewness methods. We show how to use the closure methods
to stabilize the probability of delay in the Erlang-A model.

Section 5.4 uses the Erlang-A fluid limit and dynamic optimization, as formulated
in Hampshire [12], Hampshire and Massey [13], to derive the static optimal number
of service agents and the dynamics of customer opportunity costs over a finite time
period (0, T ]. Problems involving the static optimization of dynamical systems are
inspired by the type of healthcare issues arising over large time scales as found in
nursing home management. Finally, we conclude in Sect. 6 and offer suggestions for
future research.

2 Erlang-A queueing and Halfin–Whitt scaling

The Erlang-A queueing model is a fundamental queueing model for 21st century
queueing. Thework ofMandelbaumet al. [29] shows that this queueing systemprocess
Q ≡ {Q(t)|t ≥ 0} is represented by the following stochastic, time changed integral
equation:

Q(t) = Q(0) + Π+
(∫ t

0
λ(s)ds

)
− Π−

(∫ t

0
δ(Q(s), c(s)) ds

)
, (1)

whereΠ+ ≡ {Π+(t)|t ≥ 0} andΠ− ≡ {Π−(t)|t ≥ 0} are independent and identically
distributed standard (rate 1) Poisson processes and

δ(Q, c) ≡ μ · (Q ∧ c) + β · (Q − c)+ . (2)
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Thus, we can write the sample path dynamics of the Erlang-A queueing process in
terms of two independent unit rate Poisson processes. A deterministic time change for
Π+ transforms it into a non-homogeneous Poisson arrival process with rate function λ.
This process counts the customer arrivals that occur over some time interval. A random
time change for the Poisson process Π− gives us a departure process that counts the
number of both the serviced and abandoning customers. We implicitly assume that
the number of servers is a deterministic function of time, c(t), and that each server
works at rate μ. We also assume that the abandonment distribution is exponential and
the rate of abandonments is equal to β. When the mean number in the system EQ(t)
is less than the number of servers c(t), or EQ(t) < c(t), we say that the system is
underloaded. Conversely, when EQ(t) > c(t), we say that the system is overloaded.
Finally, when EQ(t) = c(t), we say that the system is critically loaded.

The Erlang-A queueing system, when underloaded for all t , behaves like a dynamic
rate, infinite server queue. This is equivalent to setting the number of servers is equal to
∞. When initialized by a Poisson distribution, the dynamic rate infinite server queue
always has a Poisson transient distribution. Detailed explorations of infinite server
queueing dynamics with non-homogeneous input can be found in the works of Palm
[39], Khinchin et al. [20], and Eick et al. [5,6]. Moreover, under general conditions,
the Poisson distribution is uniquely characterized by having all its cumulant moments
equal to its mean [20].

The Erlang-A queue provides a unifying framework for the following three funda-
mental classical queueing models of the 20th century:

1. The M(t)/M/c/c queue is a special case of the Erlang-A queue in the limit as
the abandonment rate β approaches infinity. We liken this model to the extreme
case of a multiple service agent system with highly impatient customers. Here, the
output rate is μ · Q, but we always have the constraint Q ≤ c.

2. The M(t)/M/∞ queue is also special case of the Erlang-A queue, both for the
case of an unlimited number of service agents and the case of a finite number of
service agents, with the abandonment rate equaling the service rate, or β = μ. For
either case, the output rate is μ · Q.

3. The M(t)/M/c/∞ queue is a special case of the Erlang-A queue when the
abandonment rate β equals zero. We liken this model to the extreme case of a
multiple service agent system with highly patient customers. Here, the output rate
is μ · min(Q, c).

The enduring importance of the Halfin and Whitt [11] scaling is that for multiple
service agent queueing systems, it is natural to scale up the arrival rate and the number
of servers simultaneously. This is equivalent to applying the same scale factor to both
the demand (customer arrival rate) and the supply (total number of available service
agents) of a service enterprise. In the context of a telephone call center, this scaling
of supply is called resource pooling. Since the Erlang-A queueing process is a special
case of a single node Markovian service network, we can construct an associated,
uniformly accelerated queueing process where both the new arrival rate η · λ(t) and
the new number of servers η · c(t) are scaled by the same factor η > 0. Thus, the
Halfin–Whitt scaling gives us the following sample path representation for the Erlang-
A queue length process:
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Qη(t) = Qη(0) + Π+
(∫ t

0
η · λ(s)ds

)
− Π−

(∫ t

0
δ
(
Qη(s), η · c(s)) ds

)
.

Observe that this scaling of supply and demand for a call center does not require
the customers to speak to their service agents or decide to abandon the system more
quickly. TheHalfin–Whitt scaling is only for the aggregate ormacroscopic phenomena
of the queueing system.

Taking the following limits gives us the fluid and diffusion limit models of Man-
delbaum et al. [29], i.e.,

lim
η→∞

Qη(t)

η
= q(t) a.s. and lim

η→∞
√

η ·
(
Qη(t)

η
− q(t)

)
d= Q̂(t), (3)

where the deterministic process q(t) or the fluid limit is governed by the one-
dimensional dynamical system

•
q = λ − δ(q, c), where

•
q(t) ≡ dq

dt
(t). (4)

The latter statement is the “dot notation” of physics that we use to denote a time
derivative when we are suppressing the time dependence for the given function of
time.

As pointed out inMandelbaum et al. [29], if the set of time points { t | q(t) = c(t) }
has measure zero, then Q̂(t) is a Gaussian diffusion process (with mean zero when
Qη(0) is only a constant scaled by η) whose variance combines with the fluid mean
to form a two-dimensional dynamical system given by (4) and

•
v + •

q

2
= λ − (μ · {q < c} + β · {q ≥ c}) · v, where {q < c} ≡

{
1 if q < c,
0 otherwise,

(5)

v ≡ VarQ̂, and {q < c} denotes an example of an indicator function for the event
q < c.

In the case where the arrival rate function is a constant for all time, we can recover
the result of Halfin and Whitt [11]. To bypass this asymptotic approach and apply
closure approximation methods, we develop the notions of cumulant moments in the
next section.

3 Cumulant moments and functional generalizations

3.1 Cumulant moments

We define a real-valued random variable X to be analytic if its moment generating
function,
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EezX =
∞∑

m=0

zm

m! · EXm, (6)

is an analytic function for all complex z in a neighborhood of zero. Thus, the dis-
tribution for an analytic random variable is uniquely characterized by all its existing
moments.

The value of this function is close to one when z is close to zero. From this, it
follows that the function log EezX is also analytic in a neighborhood of zero. We can
then define the cumulant moments of X or

{
C (k)X

∣∣ k ≥ 1
}
to be

∞∑
k=1

zk

k! · C (k)X ≡ log EezX , (7)

where the first four moments are

C (1)X = EX, (8)

C (2)X = VarX ≡ E(X − EX)2, (9)

C (3)X = E(X − EX)3, (10)

C (4)X = E(X − EX)4 − 3 · (VarX)2. (11)

Now, define the SkewX and KurtX , respectively, to be the (generalized) skewness and
kurtosis of the random variable X , where

SkewX ≡ C (3)X√
(VarX)3

and KurtX ≡ C (4)X

(VarX)2
. (12)

These are the normalized versions of the third and fourth cumulant moments, in the
same manner that the correlation of two random variables is the normalized version
of their covariance.

Now, we summarize the queueing theoretic appeal and utility of cumulant moments
for analytic random variables.

Theorem 1 For all analytic random variables X and Y , we have:

1. For all constants a, we have

C (k) [aX ] = ak · C (k)X. (13)

2. The pair X and Y are independent if and only if

C (k) [a · X + b · Y ] = ak · C (k)X + bk · C (k)Y (14)

for all strictly positive integers k as well as all constants a and b.
3. All cumulant moments for X of degree 2 or higher are zero if and only if X has

the distribution of a constant (point mass distribution).
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4. All cumulant moments for X of degree 3 or higher are zero if and only if X has a
Gaussian distribution.

5. All the cumulant moments of X are equal to the mean of X if and only if X is
Poisson.

Proof See the Appendix of Hampshire [12] or the Appendix of Pender [53]. 	

All cumulative moments are then additive over independent superpositions of random
variables as pointed out in Whitt [61] and Choudhury and Whitt [1]. Hence, cumula-
tive moments can give us a stochastic principal component analysis of our queueing
processes.

Skewness and kurtosis are also invariant under both constant translations and
scalings of analytic random variables. Since any Gaussian random variable is the
translation and scaling of one that is standard (mean zero and variance one) Gaussian,
the skewness and kurtosis of a random variable serve as intrinsic measures of how far
an analytic random variable is from being Gaussian.

Cumulant moments give a simple characterization of Gaussian random variables
but they can also identify Gaussian random variables with the following stronger result
due to Marcinkiewicz [31].

Theorem 2 Analytic random variables have a finite number of nonzero cumulant
moments if and only if they are Gaussian.

Proof For any complex number z, define the complex value g(z), where

g(z) ≡ log Eez·X . (15)

Notice that g(r) is a real number whenever r is real. Moreover, we can apply Jensen’s
inequality and obtain g(r) ≥ r · EX . This gives us

log Eer ·(X−EX) = g(r) − r · EX ≥ 0. (16)

Without any loss of generality, we can assume that EX = 0 and g is a positive real
function when its domain is restricted to the real line.

For all complex z, we have

Re g(z) = Re log Eez·X = log
∣∣∣Eez·X ∣∣∣ ≤ log E

∣∣∣ez·X ∣∣∣ = log EeRez·X = g(Re z).

(17)

Moreover, if X has only a finite number of nonzero cumulant moments, then g must
be a polynomial of some degree n. The leading coefficient of this polynomial must be
some strictly positive real number α > 0, since

α = lim
r→+∞

g(r)

rn
. (18)

This means that positive scalings of functions like g gives us functions like zn ,
since

zn = lim
r→+∞

g(r z)

α · rn . (19)
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Hence, the function zn satisfies the same inequality as g, or

Re
(
zn

) ≤ (Rez)n (20)

for all complex z.
Restricting ourselves to the unit circle, or z = eiθ , reduces this inequality to

cos nθ ≤ (cos θ)n (21)

for all real θ . Now, the question is for which positive integers n does this hold? This
inequality is true for the case of n = 1. It is also true for the case of n = 2 since
cos 2θ = (cos θ)2 − (sin θ)2 ≤ (cos θ)2.

However, for n ≥ 3, a contradiction occurs when we set θ ≡ 2π/n. We have
0 < θ < π but now (cos θ)n < 1 = cos nθ . Hence, requiring that g be a polynomial
forces its degree to be less than or equal to 2. 	


3.2 Functional cumulant moments

Consider a random variable X for which there exists some positive real number r with
Eer X < ∞. Now, define an exponential change of measure to be an expectation Er

such that

Er f (X) ≡ E
[
f (X) · er X ]
Eer X

, (22)

for all bounded continuous functions f .
If X is analytic, then, by using analytic continuation, we can define an analytic

function Ez , when z is close to zero, which is

Ez X = E
[
X · ezX ]
EezX

= d

dz
log EezX =

∞∑
k=0

zk

k! · C (k+1)X. (23)

From this, it follows that

C (k+1)X = dk

dzk

∣∣∣∣
z=0

Ez X. (24)

Moreover, these cumulant moments uniquely characterize the underlying distribution
for X .

We now define the functional cumulant of X with respect to some bounded contin-
uous function f to be equal to

C (k+1)
z f [X ] ≡ dk

dzk

∣∣∣∣
z=0

Ez [ f (X)] . (25)

The following result relates functional cumulants to exponential changes of measure.
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Theorem 3 Whenever Ez f (X) is analytic in z, then

dk

dzk
Ez f (X) = C (k+1)

z f [X ], (26)

for all positive integers k.

Proof Observe that

Ez+w f (X) = E
[
f (X)e(z+w)X

] /
EezX

Ee(z+w)X
/
EezX

= Ez f (X)ewX

EzewX
= (Ez)w [ f (X)] . (27)

From this, it follows that

C (k+1)
z f [X ] = ∂k

∂wk

∣∣∣∣
w=0

Ez+w f (X) = dk

dzk
Ez f (X). (28)

This completes the proof. 	

Corollary 1 The first four functional cumulant moment formulas are:

C (1) f [X ] = E f (X),

C (2) f [X ] = Cov [ f (X), X ] ,

C (3) f [X ] = Cov
[
f (X), (X − EX)2

]
,

C (4) f [X ] = Cov
[
f (X), (X − EX)3

]
− 3 · VarX · Cov [ f (X), X ] .

Proof Without loss of generality, we can assume that EX = 0 and redefine f since

Ez f (X) = E
[
f (X) · ezX ]
EezX

= E
[
f (X) · ez·(X−EX)

]
Eez·(X−EX)

= E
[
f (Y + EX) · ezY ]

EezY
,

(29)

where Y ≡ X − EX . We can expand the numerator of the final ratio and obtain

E
[
f (Y ) · ezY

]
= E f (Y ) + z · E [ f (Y ) · Y ]

+ z2

2
· E

[
f (Y ) · Y 2

]
+ z3

6
· E

[
f (Y ) · Y 3

]
+ O(z4).

Expanding the denominator of the final ratio yields

E
[
ezY

]
= 1 + z2

2
· VarY + z3

6
· C (3)Y + O(z4), (30)

123



Queueing Syst (2018) 89:127–164 137

which gives us

1

E
[
ezY

] = 1 − z2

2
· VarY − z3

6
· C (3)Y + O(z4). (31)

Finally, by combining these expansions, we have

Ez f (Y ) = E f (Y ) + z · E [ f (Y ) · Y ] + z2

2
·
(
E

[
f (Y ) · Y 2

]
− E f (Y ) · VarY

)

+ z3

6
·
(
E

[
f (Y ) · Y 3

]
− E [ f (Y )] · C (3)Y − 6

2
· E [ f (Y ) · Y ] · VarY

)

+O(z4).

	

When f is a scaling function, like f (x) = δ(x, c) = μ · x whenμ = β, then all the

functional cumulant moments of X are equal to μ times the corresponding cumulant
moment of X . In general, a functional moment of a random variable may not be equal
or proportional to its cumulant moment or even a cumulant moment of the function
applied to the random variable.

4 Closure approximations for the Erlang-A queue

In this section, we derive the functional forward equations for the Erlang-A queueing
model and approximate the cumulant moments of the Erlang-A queue using Gaussian-
based closure approximations.We show that these closure approximations are effective
at approximating the cumulantmoments of theErlang-Aqueue. They also approximate
other important performance measures like the probability of delay.

4.1 Functional forward equations

To gain a better understanding of the dynamics of the mean, variance, and third cumu-
lant moment of the Erlang-A queueing process, we need to study their rates of change
over time. Hence, we employ the functional version of the Kolmogorov forward equa-
tions for the Erlang-A queue, which is of the form

•
E f (Q) = λ · E [ f (Q + 1) − f (Q)] + E [δ (Q, c) · ( f (Q − 1) − f (Q))] , (32)

for all appropriate functions f . We always assume, for the remainder of this paper,
that quantities such as β and μ are constant. To simplify our notation, time dependent
quantities such as Q(t), λ(t), and c(t) are denoted in this paper as Q, λ, and c, with
their time dependence suppressed. We again use the dot notation of physics to denote
a time derivative.
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Theorem 4 The dynamics for the cumulant moment generating function of an Erlang-
A queueing process are

•
log

(
EezQ

) = (1 − e−z) · (λ · ez − Ezδ(Q, c)
)
. (33)

Proof For any given function f , the functional forward equation for the Erlang-A
queue is

•
E [ f (Q)] = λ · E [ f (Q + 1) − f (Q)] + E [δ (Q, c) · ( f (Q − 1) − f (Q))] .

(34)

For the special case of f (Q) ≡ ezQ , this reduces to

•
EezQ = λ · (ez − 1) · EezQ + (e−z − 1) · E

[
δ(Q, c) · ezQ

]
. (35)

Dividing both sides by EezQ gives us

•
log

(
EezQ

) = λ · (ez − 1) + (e−z − 1) · E
[
δ(Q, c) · ezQ(t)

]/
EezQ (36)

= (1 − e−z) · (λ · ez − Ezδ(Q, c)
)
. (37)

	

Functional cumulant moments give us the language to express a new result for the

steady state distribution of the Erlang-A queue.

Corollary 2 For an Erlang-A queueing process with a constant arrival rate, we have,
in steady state,

λ = C (k)δc[Q], (38)

for all strictly positive integers k, where δc(·) ≡ δ(·, c).
Proof When λ is a constant and we are in steady state, then the time derivative of the
logarithm term is zero. This gives us

0 = (1 − e−z) · (λ · ez − Ezδ(Q, c)
)
. (39)

The rest follows by factoring out (1−e−z), differentiating with respect to z and setting
z = 0. 	

Corollary 3 The dynamics of the cumulant moments for the dynamic rate Erlang-A
queue are

•
C

(k)

Q(t) = λ(t) −
k∑
j=1

(
k

j − 1

)
(−1)k− j · C ( j)δc [Q(t)] , (40)

for all strictly positive integers k.
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Proof If we differentiate this formula k times, with respect to z, then we have, for all
strictly positive integers k,

•
C

(k)

z Q=λ · ez+(
e−z − 1

) · C (k+1)
z δc [Q] + e−z ·

k∑
j=0

(
k

j

)
(−1)k− j · C ( j+1)

z δc [Q] .

(41)

Setting z = 0 gives us the rest. 	

Corollary 4 We have the following dynamics for the first six cumulant moments:

•
C

(1)
Q = λ − C (1)δc [Q] , (42)

•
C

(1)
Q

2
+

•
C

(2)
Q

2
= λ − C (2)δc [Q] , (43)

•
C

(1)
Q

6
+

•
C

(2)
Q

2
+

•
C

(3)
Q

3
= λ − C (3)δc [Q] , (44)

•
C

(2)
Q

4
+

•
C

(3)
Q

2
+

•
C

(4)
Q

4
= λ − C (4)δc [Q] , (45)

−
•
C

(1)
Q

30
+

•
C

(3)
Q

3
+

•
C

(4)
Q

2
+

•
C

(5)
Q

5
= λ − C (5)δc [Q] , (46)

−
•
C

(2)
Q

12
+ 5

•
C

(4)
Q

12
+

•
C

(5)
Q

2
+

•
C

(6)
Q

6
= λ − C (6)δc [Q] . (47)

Proof Rewriting cumulant moments dynamics in infinite matrix form gives us

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

•
C

(1)
Q

•
C

(2)
Q

•
C

(3)
Q

•
C

(4)
Q

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

λ

λ

λ

λ
...

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
−1 2 0 0 · · ·
1 −3 3 0 · · ·

−1 4 −6 4 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

C (1)δc [Q]
C (2)δc [Q]
C (3)δc [Q]
C (4)δc [Q]

. . .

⎤
⎥⎥⎥⎥⎦ . (48)

The column vector where all entries equal λ is an eigenvector for this matrix, or

⎡
⎢⎢⎢⎢⎢⎣

λ

λ

λ

λ
...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
−1 2 0 0 · · ·
1 −3 3 0 · · ·

−1 4 −6 4 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎣

λ

λ

λ

λ
...

⎤
⎥⎥⎥⎥⎥⎦

. (49)
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Combining this result with the inverse of this infinite matrix gives us

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
−1 2 0 0 · · ·
1 −3 3 0 · · ·

−1 4 −6 4 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

−1

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

•
C

(1)
Q

•
C

(2)
Q

•
C

(3)
Q

•
C

(4)
Q

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

λ

λ

λ

λ
...

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

C (1)δc [Q]
C (2)δc [Q]
C (3)δc [Q]
C (4)δc [Q]

...

⎤
⎥⎥⎥⎥⎥⎦

. (50)

Observing that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 · · ·
−1 2 0 0 0 0 · · ·
1 −3 3 0 0 0 · · ·

−1 4 −6 4 0 0 · · ·
1 −5 10 −10 5 0 · · ·

−1 6 −15 20 −15 6 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 · · ·
1/2 1/2 0 0 0 0 · · ·
1/6 1/2 1/3 0 0 0 · · ·
0 1/4 1/2 1/4 0 0 · · ·

−1/30 0 1/3 1/2 1/5 0 · · ·
0 −1/12 0 5/12 1/2 1/6 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

gives us the equations. 	

We can write the first three of these equations more explicitly as

•
EQ = λ − Eδ(Q, c), (51)

•
EQ +

•
VarQ

2
= λ − Cov [Q, δ(Q, c)] , (52)

and

•
EQ

6
+

•
VarQ

2
+

•
C (3)Q

3
= λ − Cov

[
(Q − EQ)2, δ(Q, c)

]
. (53)

From a computational perspective, we want the ensemble of formulas for the time
derivatives of the mean, variance, and third cumulant moment, as summarized in (51)–
(53), to be an autonomous set of differential equations. This means that their current
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behavior should be some integral functional of their past behavior. We can achieve this
by making a closure approximation in the same spirit as Rothkopf and Oren [56]. The
philosophy that they give for this technique is as follows (see page 524 of Rothkopf
and Oren [56]):

. . . The basic strategy of a closure technique is to reduce an infinite system of
equations to a finite system by making a “closure assumption” in the form of a
functional relationship between the variables of the system.

Similar techniques for approximating non-stationary (dynamic rate) queueing models
are also used in Taaffe and Ong [60], Clark [2], Ingolfsson et al. [17], Taaffe and Clark
[59], Schwarz et al. [57], Pender [46].

In general, we start by assuming that our underlying closure distribution for the
queueing process is uniquely defined by a finite set of parameters.We assume that these
parameters are uniquely defined by the same number of expectations of some distinct
functions of the queueing process. The resulting approximation of the corresponding
forward equations for these functional expectations now forms a finite-dimensional
dynamical system for these parameters. Whereas Rothkopf and Oren [56] and Taaffe
and Ong [60] assume an underlying discrete distribution for their closure assumptions,
our underlying distribution is continuous and is based on polynomials of Gaussian
random variables. Our choice of distributions is based on the diffusion limit that arises
from the Halfin–Whitt asymptotic scalings.

4.2 Deterministic mean approximation is the fluid limit

Using our closure methodology, we can define a deterministic mean approximation
(DMA) for our queueing model by assuming that some underlying deterministic pro-
cess q ≡ {q(t)|t ≥ 0} approximates our Markovian queueing process, or Q ≈ q. If
we replace Q by q in the Kolmogorov forward equation for the mean of Q as given
by (51), then q solves the resulting one-dimensional dynamical system:

•
q = λ − μ · (q ∧ c) − β · (q − c)+, (54)

where we set Q(0) = q(0). This method, however, takes us right back to the fluid
limit given by (4). We can also write this fluid equation as

•
q =

{
λ − μ · q when q < c,
λ + (β − μ) · c − β · q when q ≥ c.

(55)

The left-hand graph of Fig. 1 is the plot of both a single sample path of DMA or the
fluid limit against an averaging of 10,000 sample paths from a stochastic simulation
of the underlying Markovian queueing model. Given the trade-off in the number of
simulation runs, DMA works well as an approximation. However, the gap between
DMA and the simulation average shows that there is room for improvement. DMA
consistently underestimates the average queue length behavior. This can be explained
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Fig. 1 λ(t) = 10 + 2 · sin t , μ = 1, β = 0.5, Q(0) = 100, c = 10

by Jensen’s inequality in combination with the fact that the minimum function is
concave and the service rate is larger than the abandonment rate.

The right-hand graph of Fig. 1 shows that the variance of the diffusion limit is not
a good estimator of the variance of the queue length process. This inaccuracy of the
fluid and diffusion limits motivated the method first introduced by Ko and Gautam
[21] and extended by Massey and Pender [34]. This technique is discussed in a later
subsection.

First, consider a visualization of the DMA dynamical system for the special case
of λ(t) = a + â · cos bt and β = μ. Our Erlang-A system now reduces to the case
of an M/M/∞ queue, which was extensively analyzed by Eick et al. [5,6], Massey
and Whitt [35], McCalla and Whitt [37]. Note that here, the mean behavior of the
infinite server queue is a one-dimensional dynamical system that equals its fluid limit.
Moreover, like a Brownian bridge, the transient behavior of this system captures the
dynamics of the corresponding Erlang-A system for the distinct cases of q < c and
q ≥ c.

Theorem 5 If q(t) is the mean for an M(t)/M/∞ queue, then the phase space pair(
q(t),

•
q(t)

)
satisfies the quadratic relation

b2 ·
(
q(t) − a

μ
− x · e−μt

)2

+
( •
q(t) − y · e−μt

)2 = â2b2

μ2 + b2
. (56)

This is an ellipse of extremal radii r∗ and r∗, where

r∗ = âb√
μ2 + b2

and r∗ = â√
μ2 + b2

, (57)

that is centered at (a/μ + x · e−μt , y · e−μt ), where

x = q(0) − a

μ
− âμ

μ2 + b2
and y = •

q(0) − âb2

μ2 + b2
. (58)
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Note that for this example, the phase space dynamics of the mean behavior forms an
ellipse of a fixed shape and size. Moreover, the dynamics of the centerpoint converge
to a limit point. The resulting ellipse is then the limit cycle of the system as discussed
in Horne et al. [16]. This cycle is a geometric summary of results first presented in
Eick et al. [5].

Proof First, the solution for
•
q = λ − μ · q is

q(t) = q(0) · e−μt +
∫ t

0
λ(s) · e−μ·(t−s) ds = q(0) · e−μt +

∫ t

0
λ(t − s) · e−μs ds.

(59)

Using complex numbers, we can rewrite the arrival rate function as

λ(t) = a + â · cos bt = a + 〈eibt , â〉, (60)

where the angle bracket expression is the inner product for the complex numbers, or

〈z, w〉 ≡ Re(z · w) (61)

for all complex z and w, where w is a complex conjugate of w.
Now, we have

q(t) = q(0) · e−μt +
∫ t

0

(
a + â · 〈eibs, 1〉

)
· e−μ(t−s) ds (62)

= q(0) · e−μt + a ·
∫ t

0
e−μ(t−s) ds + â · e−μt

〈∫ t

0
e(μ+ib)s ds, 1

〉
(63)

= q(0) · e−μt + a

μ
· (1 − e−μt) + â · e−μt

〈
e(μ+ib)t − 1

μ + ib
, 1

〉
(64)

= a

μ
+

(
q(0) − a

μ
− âμ

μ2 + b2

)
· e−μt + â

μ2 + b2
〈eibt , μ + ib〉. (65)

Now, if we take the time derivative of the second integral representation of q(t), then
we have

•
q(t) = −μ · q(0) · e−μt + λ(0) · e−μt +

∫ t

0
âb ·

〈
ieib·(t−s), 1

〉
· e−μs ds (66)

= (λ(0) − μ · q(0)) · e−μt + âb ·
〈
ieibt ·

∫ t

0
e−(μ+ib)·s ds, 1

〉
(67)

= •
q(0) · e−μt + âb ·

〈
i · e

ibt − e−μt

μ2 + b2
, μ + ib

〉
(68)

=
( •
q(0) − âb2

μ2 + b2

)
· e−μt + âb

μ2 + b2

〈
ieibt , μ + ib

〉
. (69)
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Fig. 2 Plot of M(t)/M/∞ queue limiting ellipse

Finally, we obtain our quadratic relation by observing that

〈
eiθ , z

〉2 +
〈
i · eiθ , z

〉2 = |z|2. (70)

	


4.3 2D and 3D dynamic analytics

Figure 2 shows a two-dimensional picture of the limiting ellipse generated from the
infinite server queue in phase space. The x-axis represents the queue length and the
y-axis represents the time derivative of the queue length.

Figure 3 shows a three-dimensional plot of the Erlang-A queue in three different
settings. The x-axis represents the queue length, the y-axis represents the time deriva-
tive of the queue length, and the z-axis represents time. We plot three different settings
of the Erlang-A queue. The first setting in blue is the impatient case where the aban-
donment rate β is twice that of the service rate μ; this represents the setting where
customers are more impatient. The second setting is when the abandonment rate is
equal to the service rate, thus yielding an infinite server queue. The third and last
setting is where the abandonment rate is half that of the service rate; this represents
the setting where customers are more patient. In Fig. 3, we observe an ordering of
the queue length processes, where we see that when customers are more patient, the
higher the queue length is going to be since more of them do not leave. Thus, we see
the periodic behavior of an Erlang-A queue with more patient customers can have a
larger amplitude.

Figure 3 plots the maximum and minimum queue lengths when
•
q(t) equals zero.

This reveals a recurring theme in the dynamics of queues with dynamic rates. It shows
that the times of a locally peak queue length always lag behind the times of a locally
peak arrival rate. A similar lag occurs for the times of local minimums.
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Fig. 3 Erlang-A queue 3D cylinder (t, d
dt q(t), q(t)). λ(t) = 100 + 20 · sin t , μ = 1, Q(0) = 80,

β ∈ {0.5, 1, 2}

Moreover, we observe a bit of symmetry in the case where the abandonment rate
and the service rate are equal. In this case, the queue length in steady state is an ellipse.
However, when the abandonment and the service rate are not equal, the dynamics are
equal to an ellipse since there are different dynamics above and below the number of
servers.

4.4 Gaussian variance approximation

Let us now extend this closure method to the case of a two-dimensional dynamical
system. Inspired by our diffusion limit typically being Gaussian, consider a dynamical
system { q(t), v(t) | t ≥ 0 }, where v is a strictly positive for all t > 0, such that

Q
d≈ q + G · √

v, (71)

where G is a standard (mean zero, unit variance) Gaussian random variable.
Such a condition would then give us both q ≈ EQ and v ≈ VarQ. This two-

dimensional closure approximation should give us some insight into the distribution
of Q, or more formally

P {Q ≥ c} ≈ P {G ≥ χ} , where χ ≡ c − q√
v

(72)

for all t ≥ 0. We also define ϕ and Φ to be the density and the cumulative distribution
functions, for G, respectively, where

ϕ(x) ≡ 1√
2π

e−x2/2, Φ(x) ≡
∫ x

−∞
ϕ(y) dy,

and Φ(x) ≡ 1 − Φ(x) =
∫ ∞

x
ϕ(y) dy. (73)
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Making the substitutions of q, v, and G into the forward equations for the mean
and the variance of Q, i.e., (51) and (52), the dynamical system for q and v is then the
set of differential equations

•
q = λ − μ · q − Eδ(G, χ) · √

v (74)

and

•
q + •

v

2
= λ − Cov[G, δ(G, χ)] · v. (75)

We can call the resulting two-dimensional dynamical system the Gaussian variance
approximation (GVA).

We can solve these equations numerically ifwe can easily evaluate these expectation
and covariance terms involving functions of the standard Gaussian random variable
G. We can show that we can express these quantities in terms of generic functions
such as the Gaussian density and lookup tables for the error function or the cumulative
distribution function of a standard Gaussian distribution. If such functions are applied
to χ , then they are generic functions of q and v.

We can simplify theseGaussian functional expectation terms by using the following
lemma:

Lemma 1 (Stein [58]) The random variable G is Gaussian(0, 1) if and only if

E [G · f (G)] = E

[
d

dG
f (G)

]
, (76)

for all generalized functions f .

In this framework, the derivative of the indicator function {G ≥ χ} (which is a
unit step function of the value χ ) is a generalized function and is the unit point mass
measure at χ . As a result, Stein’s lemma gives us

E [G · {G ≥ χ}] = ϕ(χ). (77)

Moreover, since (G − χ)+ = G − G ∧ χ , we have

E [G ∧ χ ] = −E(G − χ)+ = χ · Φ(χ) − ϕ(χ). (78)

Since (G − χ)+ = (G − χ) · {G ≥ χ}, then we also have

E(G − χ)+ = E [G · {G ≥ χ}] − χ · P {G ≥ χ} = ϕ(χ) − χ · Φ(χ). (79)

Since the generalized derivative of the function x ∨ χ is the indicator function of
{x ≤ χ}, then similar arguments give us

Cov [G,G ∧ χ ] = E [G · (G ∧ χ)] = P {G ≤ χ} = Φ(χ) (80)
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and

Cov
[
G, (G − χ)+

] = 1 − Cov [G,G ∧ χ ] = Φ(χ). (81)

These positive covariances are in keeping with the FKG inequality by Fortuin et al.
[10]. This theorem states that increasing functions of the same random variable are
always positively correlated.

When we make the substitutions into (74) and (75), the GVA dynamical system
reduces to

•
q = λ − μ · q + (β − μ) · (χ · Φ(χ) − ϕ(χ)

) · √
v (82)

and

•
q + •

v

2
= λ − (

μ · Φ(χ) + β · Φ(χ)
) · v. (83)

These equations are precisely the g functions used in Ko and Gautam [21]. The left-
hand graph of Fig. 4 shows that GVA yields a better approximation to the simulated
mean than DMA. In fact, it almost matches the simulation so well that the plot of three
lines can easily be mistaken for a plot of two lines. One reason for the better accuracy
is that the GVA method includes the stochastic fluctuations of deviations from the
mean that the fluid limit or DMA does not.

The right-hand graph of Fig. 4 shows that the GVAplot is a significant improvement
over the diffusion variance approximation. The gap does show that there is room for
improvement. This motivated us to construct a new approximation called theGaussian
Skewness Approximation (GSA), which we review in the next subsection. Just as GVA
is a refinement to the fluid and diffusion limits, GSA is a refinement to GVA.
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Fig. 4 λ(t) = 10 + 2 · sin t , μ = 1, β = 0.5, Q(0) = 100, c = 10
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4.5 Gaussian skewness approximation

Now, we extend our closure method to the case of a three-dimensional dynamical
system. We want to construct a deterministic system { q(t), v(t), sθ (t) | t ≥ 0 } that
gives us

Q
d≈ q + Hθ · √

v, (84)

with

Hθ ≡ G cos θ + G2 − 1√
2

sin θ. (85)

This should give us EQ ≈ q, VarQ ≈ v, and

SkewQ ≈ sθ = SkewHθ = √
2 · (3 − sin2 θ) · sin θ, (86)

or equivalently

sin θ = 2 · sin
(
1

3
sin−1

(
sθ

2
√
2

))
, (87)

and finally

P {Q ≥ c} ≈ P {Hθ ≥ χ} . (88)

Consider the Hilbert space of square integrable random variables whose inner prod-
uct is the expectation of the product of the two random variables. In this space, Hermite
polynomials applied toG form a complete orthogonal family of randomvariables. This
is the inspiration for the choice of (G2 − 1)/

√
2. This random variable along with 1

and G form an orthonormal basis for a three-dimensional subspace. Our representa-
tion of this subspace corresponds to cylindrical coordinates. Here, q parameterizes the
z-“coordinate” which maps to the component vector 1. The remaining (x, y)-“plane”
maps to the basis vectors G and (G2 − 1)/

√
2. However, we parameterize this plane

in polar coordinates where
√

v is the “radius” with “angle” θ . Finally, there is an
invertible mapping between sθ and sin θ . This gives us the G and G2 − 1 components
of

√
v cos θ and

√
v sin θ , respectively.

Skewness is invariant with respect to deterministic translations and positive scal-
ings of the underlying random variable. Hence, it captures an intrinsic property of the
distribution. For example, any Gaussian random variable (regardless of mean or vari-
ance) has the same skewness (or kurtosis) as the standard Gaussian distribution for G,
which is zero. Moreover, a Gaussian random variable is uniquely characterized among
analytic random variables by having its third and all higher degree cumulant moments
all equal to zero. Thus, we can use skewness informally as a metric that determines
how close a random variable is to being Gaussian. The number of customers in a
system is always a positive number. This ultimately limits the success of anyGaussian
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approximation to a queueing process. Using Hθ , we can go beyond this restriction.
Finally, we have an approximating distribution for the queueing process where q, v,
and sθ arise as independent variables and, respectively, as the mean, variance, and
skewness of this distribution.

In Massey and Pender [34], we show that our three-dimensional closure approxi-
mation leads to the dynamical system

•
q = λ − μ · q − Eδ(Hθ , χ) · √

v, (89)
•
q + •

v

2
= λ − Cov [Hθ , δ(Hθ , χ)] · v, (90)

and

•
q

6
+

•
v

2
+

•
(sθ · √

v3)

3
= λ − Cov

[
H2

θ , δ(Hθ , χ)
]

·
√

v3. (91)

We call this the Gaussian skewness approximation (GSA).
The next couple of figures explore the effectiveness of the GSA method, by com-

paring it to simulation, GVA, as well as to the fluid and diffusion limits. The left-hand
graph of Figure 5 shows that GSA is as good an estimator of the mean as GVA. How-
ever, the right graph of Fig. 5 shows that GSA is a better estimator of the simulated
variance for the queue length process. By incorporating the skewness of the queue
length distribution, we are better able to capture the non-Gaussian dynamics of the
queue length process. The left-hand graph of Figure 6 shows that the GSA method
captures the simulated skewness of the queue length distribution. Note that we have
positive skewness. This implies that extreme values of the queue length aremore likely
to be positive and the mean is larger than the median. The right-hand graph of Fig. 6
shows that the mean queue length is larger than the median queue length.
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Fig. 5 λ(t) = 10 + 2 · sin t , μ = 1, β = 0.5, Q(0) = 100, c = 10
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Fig. 6 λ(t) = 10 + 2 · sin t , μ = 1, β = 0.5, Q(0) = 100, c = 10

4.6 Related closure approximations

Although we describe a hierarchy of successively better closure approximations for
the Erlang-A queue, it is important to highlight other closure approximation methods
that exist. The first method that we mention here is that of Pender [40]. The major
insight of this method was to approximate the queue length density with a Gram-
Charlier series expansion and a Gaussian surrogate distribution. Using this method,
Pender [40] was able to demonstrate that one can view the Gram-Charlier series as a
perturbation of the GVA method that incorporates higher cumulant moments linearly.
This method was also applied successfully to dynamic rate Erlang-loss queues with
abandonment in Pender [43].

The Gram-Charlier method works well in practice but it is not satisfying theoret-
ically. The difficulty in proving error bounds for the methodology follows from the
Gram-Charlier series (or any continuous distribution) approach not approximating the
discreteness of the queue length process itself. However, an initial idea of Pender [42],
inspired by the infinite server queue, approximates the queue length process with a
Poisson distribution.

However, rigorous error bounds of this method in Pender [42] are difficult to obtain
since it uses a process approximation idea instead of a density approach. Engblom
and Pender [7], however, using Poisson-Charlier polynomial expansions and weighted
Sobolev spaces, derive a newdiscrete closure approximationmethodbased on a density
approximation with rigorous error bounds. This is the first closure approximation
method that guarantees error bounds for all moments as a function of the number of
terms that are used in the approximation.

5 Performance analysis

In this section, we analyze various performance measures of the Erlang-A queue using
the closure approximations we have developed. However, before we begin, we provide
a 3D plot of the Erlang-A queue to understand its behavior in a variety of settings.

123



Queueing Syst (2018) 89:127–164 151

5.1 Delay analysis

The Erlang-A queue is a delay queueing model. This means arriving customers that
discover all the service agents are busy must wait in the buffer until one of them
becomes available. It follows that our Erlang-A queueing analysis should ultimately
lead us to a queueing delay analysis, where we assume that the queueing service disci-
pline is first-come, first-serve (FCFS). A dynamic queueing rate perspective provides
us a simple way to make this transition.

Given a time τ , let Qτ ≡ {Qτ (t)|t ≥ 0} be anErlang-Aqueueing process,where the
only change to the original model is that the arrival process after time τ has been set to
zero or turned off. This approach was used in Mandelbaum et al. [30] and corresponds
to a virtual customer arriving at time τ . According to the FCFS service discipline,
only the customer still in the queue right before this time influences the delay of this
customer. Arrivals after time τ have no effect on the delay for this customer.

More precisely, our Poisson arrival rate process is now {λτ (t)|t ≥ 0} and equals

λτ (t) ≡ λ(t) · {t ≤ τ }, (92)

where the second factor denotes an indicator function that equals 1 if t ≤ τ and 0
otherwise. The sample path construction of Qτ reduces to

Qτ (t) = Qτ (τ ) − Π

(∫ t

τ

δ (Qτ (s), c) ds

)
. (93)

It follows that the process Qτ (t) has decreasing sample paths. We can then define the
virtual delay process to be Dτ ≡ {Dτ |τ ≥ 0}:

Dτ ≡ min {t |Qτ (τ + t) < c } . (94)

Assuming the FCFS discipline, Dτ is the time that an incoming customer arriving at
time τ has to wait to get service from an agent. Note that, for all positive t , we have

{Qτ (τ + t) ≥ c} = {Dτ > t} . (95)

Note that the indicator event for the delay is a strict inequality, while on the left of
Eq. (95) it is not. There is a nonzero probability that a customer arriving a time τ

experiences no delay at all. Hence, the delay distribution always has a point mass at
zero.

Taking expectations on both sides of Eq. (95) gives us the following probabilities:

P {Qτ (τ + t) ≥ c} = P {Dτ > t} . (96)

After a virtual customer arrives at time τ , we then set the arrival rate to zero. This
reduces our notion of uniform acceleration to only scaling up the total number of
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service agents. Hence, the uniformly accelerated version of virtual delay time process
is defined to be

Dτ [ηc] = min {t | Qτ [ηc](τ + t) < ηc } . (97)

Our key result below then shows how we can approximate the mean virtual customer
delay by using the fluid limit for the queueing process. The final result we call the
fluid limit delay for a virtual customer that arrives at some specific time.

Theorem 6 The fluid limit delay equals

lim
η→∞ Dτ [ηc] = dτ a.s., (98)

where

dτ ≡ min {t |qτ (τ + t) ≤ c } , (99)

and

dτ = 1

β
log

(
1 + β · (qτ (τ ) − c)+

μ · c
)

. (100)

Proof Observe that

Dτ [ηc] = min

{
t

∣∣∣∣ Qτ [ηc](τ + t)

η
< c

}
. (101)

If qτ (τ ) is smaller than the number of servers c, then the delay time is equal to
zero. This agrees with our formula given in Eq. (100). Thus, it only remains to show
the proof for the case when qτ (τ ) is greater than the number of servers c. The queue
length satisfies the following differential equation:

•
q

τ (τ + t) = −μ · c − β · (qτ (τ + t) − c) = (β − μ) · c − β · qτ (τ + t). (102)

Since the differential equation is linear, we can solve it explicitly. The solution to the
differential equation is given by

qτ (τ + t) = (β − μ) · c
β

· (1 − e−βt ) + qτ (τ ) · e−βt . (103)

Now, we set the solution of the differential equation equal to c, where the customer
has the opportunity to receive service

c = (β − μ) · c
β

· (1 − e−β·dτ ) + qτ (τ ) · e−β·dτ . (104)
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Table 1 Mean delay
comparisons
λ(t) = 10.0 + 2.0 · sin t ,
μ = 1.0, β = 0.5, Q(0) = 0,
c = 10

τ Fluid approx GVA GSA Simulation

7.0 0.0 0.0590 0.0620 0.1298

8.0 0.1336 0.2140 0.2140 0.2102

9.0 0.1910 0.2680 0.2670 0.2456

10.0 0.1013 0.1790 0.1770 0.1956

11.0 0.0 0.0180 0.0170 0.1252

Solving for dτ , we finally have the following solution to the delay time:

dτ = 1

β
log

(
1 + β · (qτ (τ ) − c)

μ · c
)

, (105)

when qτ (τ ) > c, otherwise dτ = 0. This completes the proof. 	

Similar to the fluid delay approximation, we can also make a similar approximation

for theGVAandGSAmethods. In the case ofGVA, the delay time can be approximated
by

dGVAτ ≡ min
{
t
∣∣∣qGVAτ (τ + t) ≤ c

}
. (106)

For GSA, we have

dGSAτ ≡ min
{
t
∣∣∣qGSAτ (τ + t) ≤ c

}
. (107)

The fluid limit delay has a simple formula so it can easily be compared with many
other estimators of the mean delay. Moreover, we have numerical examples showing
that GVA and GSA are better approximations for the dynamics of the queueing mean
and variance. This suggests that a delay approximation based on the GVA and GSA
methods should be more accurate. The graphs of Table 1 show that GVA and GSA are
better estimators of the mean delay time.

Moreover, Table 1 shows that the fluid limit delay consistently underestimates the
mean delay time. This holds since the fluid mean underestimates the true mean queue
length process for this example. However, in Table 2, the fluid delay approximation
is better than the one in Table 1. This follows from both the demand (arrival rate) and
supply (number of service agents) being increased ten fold. This larger scaling plays
to the strength of the fluid approximation.

5.2 Computing the probability of delay with diffusion limits, GVA and GSA

Now, we compare the usefulness of approximating the probability of delay using the
fluid and diffusion limits, GVA or GSA for the Erlang-A queue. This probability is
defined as the probability that the queue length exceeds or is equal to the number of
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Table 2 Mean delay
comparisons
λ(t) = 100.0 + 20.0 · sin t ,
μ = 1.0, β = 0.5, Q(0) = 0,
c = 100

τ Fluid approx GVA GSA Simulation

7.0 0.0 0.0 0.0010 0.0426

8.0 0.1336 0.1480 0.1480 0.1377

9.0 0.1910 0.2020 0.2020 0.1938

10.0 0.1013 0.1120 0.1120 0.1133

11.0 0.0 0.0 0.0 0.0248

servers, i.e.,

P {Dt > 0} = P {Q(t) ≥ c} . (108)

For the fluid and diffusion limits and GVA, we can approximate the probability of
delay with the Gaussian tail cdf. This implies that

P {Q(t) ≥ c} ≈ P {G ≥ χ} = Φ(χ), (109)

where the mean and variance pair q and v is due to either the fluid and diffusion
limiting processes or GVA. However, for GSA, we have that

P {Q(t) ≥ c} ≈ P {Hθ ≥ χ} = Ψ θ(χ), (110)

where the mean, variance, and skewness triplet q, v, and sθ (which gives us sin θ ) is
due to GSA and Ψ θ is the tail distribution for the random variable Hθ . Its cumulative
distribution function is denoted by Ψθ .

We can evaluate this distribution by solving for the roots of a specific quadratic
equation. If sin θ = 0, then Hθ reduces to a Gaussian random variable. We now
assume that sin θ �= 0 and observe that

{Hθ ≤ χ} = {z−(θ, χ) ≤ G ≤ z+(θ, χ)} , (111)

where

z+(θ, χ) = 2χ + √
2 · sin θ

cos θ +
√
1 + 2χ

√
2 · sin θ + sin2 θ

(112)

and

z−(θ, χ) = cos θ +
√
1 + 2χ

√
2 · sin θ + sin2 θ

−√
2 · sin θ

. (113)
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This follows from the quadratic formula, which gives us

Hθ − χ = sin θ√
2

· (G − z+(θ, χ)) · (G − z−(θ, χ)) . (114)

Finally, we obtain from equating the two events that

Ψθ(χ) = P {Hθ ≤ χ} = Φ (z+(θ, χ)) − Φ (z−(θ, χ)) . (115)

Since the parameters q, v, and c are independent of θ , then χ can range over all the
real numbers.

In the next subsection, we show that we can construct delay stabilizing staffing
schedules for the queue length process by inverting our delay probability approxima-
tions.

5.3 Stabilizing the probability of delay

We can use this closed-form expression for the probability of delay to construct a
staffing algorithm that stabilizes the probability of delay. This notion of stabilizing
performance measures was introduced by Ward Whitt and colleagues in the work of
Jennings et al. [19]. They produced stable staffing schedules for themulti-server queue
with general service and arrival distributions. A follow-up paper [9] constructed a
simulation staffing algorithm to stabilize the probability of delay for arbitrary queueing
networks. More work on the topic has been also pursued by Ward Whitt, his students
and collaborators in Liu and Whitt [25–27], Li et al. [24], Pender [45], He et al. [15],
Liu and Whitt [28], Whitt and Zhao [62], Pender and Massey [48].

Recall that both thediffusion limit coupledwith thefluid limit andGVAapproximate
the probability of delay with the Gaussian tail distribution. We can invert this function
and get

P {Q(t) ≥ c} = Φ(χ) = ε ⇔ c =
⌈
q + Φ

−1
(ε) · √

v
⌉

. (116)

For GSA, our stabilizing staffing schedule for a target delay probability ε is given by

P {Q(t) ≥ c} = Ψ θ(χ) = ε ⇔ c =
⌈
q + Ψ

−1
θ (ε) · √

v
⌉

. (117)

Although the first two Gaussian-based staffing procedures appear to be the same, the
actual staffing functions are different because the dynamics for the mean and variance
of the GVA and GSA methods are better estimates than the fluid and diffusion limits
of the true mean and variance.

Our method of stabilization is deterministic. Hence, it bypasses any use of Monte
Carlo simulation. Unlike Jennings et al. [19] and Feldman et al. [9], there is no need
to actually simulate the queueing system in order to update the staffing schedule. Our
method is completely scalable. It only requires the numerical solution of two ordinary
differential equations for GVAor three such equations for GSA regardless of the actual
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Fig. 7 Stabilizing the probability of delay with (FD) target levels: ε = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}: stabilized delay probabilities (left), the number of servers (right), λ(t) = 100.0+ 20.0 · sin t ,
μ = 1.0, β = 0.5, Q(0) = 100
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Fig. 8 Stabilizing the probability of delay with (GVA) target levels: ε = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}: stabilized delay probabilities (left), the number of servers (right), λ(t) = 100.0 + 20.0 · sin t ,
μ = 1.0, β = 0.5, Q(0) = 100

number of servers being modeled. To demonstrate the effectiveness of our algorithms,
we plot in Figs. 7, 8 and 9 the delay probabilities produced by our algorithms on the
left and the number of servers on the right.

For this example, all three algorithms produce stable delay probabilities. However,
GSA is the best at producing the most stable delay probabilities for each of the target
values, especially near the value ε = 0.5. This value produces the median queue
length, and Figure 9 shows that the GSA does a better job of stabilization there (see
the middle or magenta colored curve). The median value when the delay probability
attains the value ε = 0.5 is also where the fluid limit is more likely to “linger” near
the number of servers. This is also when the queue length distribution is the most
non-Gaussian.
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Fig. 9 Stabilizing the probability of delay with (GSA) target levels: ε = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}: stabilized delay probabilities (left), the number of servers (right), λ(t) = 100.0 + 20.0 · sin t ,
μ = 1.0, β = 0.5, Q(0) = 100

5.4 Static staffing of the Erlang-A

Wenowdiscuss a problem that illustrates the utility of theErlang-Aqueueingmodel for
emerging healthcare applications. In the spirit of Jennings et al. [18] aswell asMcCalla
and Whitt [37], we use our dynamic analysis methods to develop a static staffing
algorithm for a nursing home during a time interval (0, T ]. This is in contrast to the
work of Niyirora and Pender [38] and Qin and Pender [55], where the optimal staffing
algorithms are dynamic and varied over time. In the context of capacity planning in a
nursing home, the time scale is larger and it is not practical to change the number of
beds or rooms dynamically with time. Our goal is to find an algorithm that determines
the optimal number of beds needed in a nursing home to minimize costs or achieve
profit optimality.

5.4.1 Lagrangian algorithm to find the optimal number of beds

The fluid model for the mean behavior of an Erlang-A model is defined by the dynam-
ical system {q(t) |t ≥ 0 },

•
q = λ − μ · (q ∧ c) − β · (q − c)+, (118)

where q and λ are implicitly time dependent. We use q[c] with square brackets (not
circular) to stress the fluid model dependency on a fixed total number of service agents
c. When c equals zero or infinity, we have

•
q[0] = λ − β · q[0] and

•
q[∞] = λ − μ · q[∞]. (119)

Now, let r equal the revenue obtained from each successfully served customer, i.e.,
one that departs as a service completion and not as a customer abandonment. If w

equals the cost rate of each agent, then we define P[c] to equal the mean nursing
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home profit over the time interval (0, T ], or

PT [c] ≡
∫ T

0
(rμ · (q ∧ c) − wc) dt. (120)

Since PT [0] = 0 and PT [c] < 0 as c becomes sufficiently large, then there exists
some total number of service agents c∗ such that

PT [c∗] = max
c≥0

PT [c]. (121)

We construct an algorithm to find c∗ by superimposing a Lagrangian structure, as
formulated in Hampshire [12], Hampshire and Massey [13], onto the profit function
for fixed c. Observe that, for any fixed c,

PT [c] = max
q:•q=λ−μ·(q∧c)−β·(q−c)+

∫ T

0
(rμ · (q ∧ c) − wc) dt. (122)

We can rewrite this as a constrained optimization problem, i.e.,

PT [c] = max
p,q:•q=λ−μ·(q∧c)−β·(q−c)+

∫ T

0
L

(
c, p, q,

•
q
)
dt, (123)

where our Lagrangian is

L
(
c, p, q,

•
q
)

= rμ · (q ∧ c) − w · c + p ·
(•
q − λ + μ · (q ∧ c) + β · (q − c)+

)
.

(124)

The resulting Euler-Lagrange equations are

d

dt

∂L
∂

•
q

(
c, p, q,

•
q
)

= ∂L
∂q

(
c, p, q,

•
q
)

⇔ •
p=μ · (p + r) · {q < c}+β · p · {q ≥ c},

∂L
∂p

(
c, p, q,

•
q
)

= 0 ⇔ •
q = λ − μ · (q ∧ c) − β · (q − c)+.

We can now rewrite PT [c] as

PT [c] =
∫ T

0
L

(
p, q,

•
q
)

[c] dt, (125)

where

L
(
p, q,

•
q
)

[c](t) ≡ L
(
c, p[c](t), q[c](t), •

q[c](t), t
)

, (126)
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and the Lagrange multiplier p[c] solves the dynamical system

•
p[c] = μ · (p[c] + r) · {q[c] < c} + β · p[c] · {q[c] ≥ c} (127)

with terminal condition p[c](T ) = 0. For the next result, we suppress the explicit
dependence on c.

Theorem 7 If p is the opportunity cost process for the Erlang-A fluid profit function,
then we have

− r < p(t) ≤ 0 (128)

for all 0 ≤ t ≤ T , with p(T ) = 0. Moreover, if p(t) = 0 for some 0 ≤ t < T then
p = 0 and q ≥ c over the entire closed interval [t, T ].

Proof If p(t) ≤ −r for some 0 ≤ t ≤ T , then
•
p(t) ≤ 0. This forces p to be a

decreasing function on the interval (0, T ] bounded above by −r . This rules out the
possibility of p(T ) = 0; hence, the premise is false.

Similarly, the assumption of p(t) > 0 for some 0 ≤ t ≤ T also leads to a contra-
diction. Hence, p(t) = 0 for such a t holds only if p = 0 and q ≥ c on the entire
interval [t, T ]. 	


Given some real-valued function f on (0, T ], we define the decreasing rearrange-
ment of f to be the unique right continuous, decreasing function f ↓ on (0, T ] such
that

∫ T

0
{ f (t) > x} dt =

∫ T

0
{ f ↓(t) > x} dt (129)

for all real values x . For all decreasing functions g, we define its generalized inverse
to be g−1, where

g−1(x) ≡ inf {y |g(y) ≥ x } . (130)

For all x less than some number in the range of f , we have

∫ T

0
{ f (t) > x} dt = ( f ↓)−1(x). (131)

This method was first developed for queueing applications to analyze profit optimality
in private telephone line services [18] using an M/M/∞ queueing model. Below we
create a new analysis for the Erlang-A queue that is a synthesis of this rearrange-
ment approach with the Lagrangian and Hamiltonian techniques of Hampshire [12],
Hampshire and Massey [13].

We nowmake the following two operational business assumptions that are relevant
to nursing homes:
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1. We assume that w/μ < r , or w < rμ. We are motivated here by wanting the
average amount of money spent on an agent providing service to a customer to be
less than the revenue received by the departing customer who did not abandon.

2. We assume that 1/β < 1/μ, or β > μ. We are motivated here by wanting the
average time that a customer wants to spend on a waiting list for service to be less
that the average amount of time for the actual service.

This leads us to our fundamental result

Theorem 8 Assume that w < rμ, β > μ, q↓[c] is the decreasing rearrangement of
q over the time interval (0, T ], and

c ≡ q↓[c]
(

w

rμ
T + β − μ

rμ

∫ q↓[c]−1(c)

0
p↓[c] dt

)
, (132)

where p↓[c] is defined to be the time-rearrangement of p that transforms q into its
decreasing rearrangement q↓. We then have

P ′
T [c] ≥ 0 ⇒ c ≤ c and c ≤ q↓[c]

(
w

rβ
T

)
. (133)

Similarly, we also have

P ′
T [c] ≤ 0 ⇒ c ≥ c ≥ q↓[c]

(
w

rμ
T

)
. (134)

Proof Using the sensitivity results for Lagrangian optimality, we have

P ′
T [c] = d

dc

∫ T

0
L

(
p, q,

•
q
)

[c] dt

=
∫ T

0

∂L
∂c

(
c, p[c], q[c], •

q[c]
)

[c] dt

=
∫ T

0
rμ · {q[c] > c} − w + p · (μ · {q[c] > c} − β · {q[c] > c}) dt

= rμ ·
∫ T

0
{q[c] > c} dt −

(
wT + (β − μ) ·

∫ T

0
p[c] · {q[c] > c} dt

)

= rμ ·
∫ T

0
{q↓[c] > c} dt −

(
wT + (β − μ) ·

∫ T

0
p[c] · {q↓[c] > c} dt

)

= rμ · q↓[c]−1(c) −
(

wT + (β − μ) ·
∫ q↓[c]−1(c)

0
p↓[c] dt

)
.

This completes the proof. 	

Corollary 5 For any Erlang-A system, the number of service agents c∗ needed for
profit optimality has the following properties:
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1. We have c∗ = c∗ or

c∗ = q↓[c∗]
(

w

rμ
T + β − μ

rμ

∫ q↓[c∗]−1(c∗)

0
p↓[c∗] dt

)
. (135)

2. We have the following upper and lower bounds for c∗:

q↓[c∗]
(

w

rμ
T

)
≤ c∗ ≤ q↓[c∗]

(
w

rβ
T

)
. (136)

3. Given our rearrangement p↓[c∗] of p[c∗], there exists a unique τ that solves the
equation

τ = w

rμ
T + β − μ

rμ

∫ τ

0
p↓[c∗] dt. (137)

We then have c∗ = q↓[c∗] (τ ).

Proof Part 1 and Part 2 follow from the previous theorem. However, for Part 3, we
have with −r < p[c∗] ≤ 0 on (0, T ] and β ≥ μ so that

0 <
w

rμ
· T + β − μ

rμ
·
∫ 0

0
p↓ dt = w

rμ
· T, (138)

and

w

rμ
· T + β − μ

rμ
·
∫ T

0
p↓ dt ≤ w

rμ
· T < T . (139)

This gives us the unique fixed point value τ , where 0 ≤ τ ≤ T , and completes the
proof. 	


6 Conclusion and final remarks

In this paper,weprove and reviewseveral important results for the dynamic rateErlang-
A queue. Althoughwe providemany new results, there aremany areas that are still ripe
for new research. One interesting area of research would be to explore the possibilities
for extending and replicating our closure approximations and cumulantmoment results
for non-Markovian queueing systems. For example, the many-server limit theorems in
the spirit of Halfin and Whitt have been extended to phase-type, general distributions
and self-exciting processes as in the work of Ko and Pender [22], Pender and Ko
[47], Ko and Pender [23], Daw and Pender [3]. Future work should explore how well
these closure approximations work for non-Markovian systems. Moreover, there is
new research that explores the new aspect of adding delayed information to drive
the arrival processes of queueing networks; see, for example, Pender et al. [50–52].
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It would be interesting to extend this work to the dynamic rate Erlang-A queueing
model and generalizations of it. We plan to pursue some of this work in the future.
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