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a b s t r a c t

In this paper, we prove strong approximations for the (MAPt/Pht/∞)N queueing network. These strong
approximations allowus to derive fluid and diffusion limits for the queue length processes of the network.
This extends recent work that provides fluid and diffusion limits in the single station setting.

© 2017 Published by Elsevier B.V.
1. Introduction

Queueing networks are very useful for analyzing and approxi-
mating real stochastic systems. Many queueing networks assume
that the arrivals to the network follow a Poisson process. This is
a natural assumption when there is no dependence or correlation
between arrivals. However, an independence assumption is not
warranted in many applications. Stochastic models for describing
the dynamics of internet data traffic in telecommunication net-
works are notoriously difficult since they have dependencies. One
example of this is when a user downloads a file from the inter-
net; the arrival of the first packet often indicates that more pack-
ets are going to arrive subsequently. Despite the assertions of the
Palm–Khintine theorem, which asserts that the superposition of a
large number of renewal processes will converge to a Poisson pro-
cess, it is well known in the teletraffic literature that arrival traffic
is not renewal.

There are many applications and scenarios where data traffic
is not renewal, see for example [9,8]. To this end, we construct
a queueing network where the arrivals are not Poisson and are
constructed from Markovian Arrival Processes (MAP’s). MAP’s,
unlike phase type distributions, allow one to consider non-renewal
processes for the arrival process and offer more flexibility when

∗ Corresponding author.
E-mail addresses: youngko@postech.ac.kr (Y.M. Ko), jjp274@cornell.edu

(J. Pender).

http://dx.doi.org/10.1016/j.orl.2017.03.006
0167-6377/© 2017 Published by Elsevier B.V.
modeling arrival traffic. One main reason that the MAP is a
generalization of a phase type distribution is that the MAP is not
restarted independently of its past history. In a MAP, unlike phase
type distributions, the next interarrival time is dependent on the
exit state of the Markov chain and this feature allows one to
capture memory into the arrival process.

For the analysis of queues involving the MAP and phase-type
distributions, the matrix-geometric method (MGM) introduced
in [16] is frequently used. We, however, cannot escape from state
space explosion when we have a large number of states and
servers. [14] propose the partial-moment differential equations for
the analysis of Pht/Pht/∞ queues and [15] extend the result to
the [Pht/Pht/∞]

N networks. [5] use phase-type distributions for
approximating small-size Gt/Gt/nt + Gt queues.

In this paper, we study the (MAP t/Pht/∞)N queueing network.
As a result, we extend recent work by [23,11], which only
considers the single station setting. To this end, we prove strong
approximations for the (MAP t/Pht/∞)N queueing network and
extend the Poisson process representation to the network setting.
These strong approximations not only allow us to derive fluid and
diffusion limits for the queueing network, but also they provide
us with simple differential equations that can be integrated
numerically to approximate the sample path behavior of the
mean and variance of the queueing network. Lastly, there are
already many useful algorithms available for fitting phase-type
distributions and MAP’s from data such as [2,7,1,3] and there we
can exploit this feature to approximate very complicated arrival
processes that arise in practice.

http://dx.doi.org/10.1016/j.orl.2017.03.006
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1.1. Main contributions of paper

The contributions of this work can be summarized as follows.

• We derive a Poisson process representation for the (MAP t/Pht/
∞)N queueing network and prove strong approximations for
the network.

• Using strong approximations for Poisson processes, we develop
fluid and diffusion limits for the (MAP t/Pht/∞)N queueing
network to understand the sample path mean and variance
dynamics of the network.

1.2. Organization of paper

The remainder of this paper is organized as follows. Section 2
describes the construction of a MAP and phase type distributions.
Section 3 builds amathematicalmodel for describing the dynamics
of the system for the (MAP t/Pht/∞)N queueing network via time-
changed Poisson processes. Using the Poisson representation in
Section 3, we also prove the fluid and diffusion limits for the
(MAP t/Pht/∞)N queueing network. Finally, Section 4 concludes
and offers suggestions for future research.

2. Markovian Arrival Processes (MAP’s)

In this section, we give a brief description of MAP’s. The reader
should review Section 2 of [11] and Chapter 11 of [1] for a more
extensive discussion on MAP’s and their versatility in stochastic
modeling and queueing theory.

In order to define a MAP, we will follow the construction given
in [4]. We first consider an irreducible continuous time Markov
chain (CTMC)with h transient states. At the end of a sojourn in state
i, that is exponentially distributedwith parameter λi, there are two
possible events that can happen. The first possibility corresponds
to an event or arrival and the CTMC can visit state j (including j = i)
with probability pij. The second possible event corresponds to no
arrival and the CTMC can visit state j (j ≠ i) with probability qij.
Therefore, the CTMC is able to go from state i to state ithrough an
arrival. Then, we define matrices D0 where [D0]ij = d0ij and D1

where [D1]ij = d1ij where d0ii = −λi, 1 ≤ i ≤ h; d0ij = λi · qij, j ≠ i,

1 ≤ i, j ≤ h; d1ij = λipij, 1, ≤ i, j ≤ h, with
h

j=1 pij +
h

j≠i qij


=

1, for 1 ≤ i ≤ h. In our description of theMAP, we have suppressed
its dependence on time. However, all of our results apply to the
time varying setting when the parameters are locally integrable
with respect to time and therefore, we suppress time for notational
convenience.

With the above construction, a MAP is described by the two
h×hmatricesD0 andD1. ThematrixD0 corresponds to transitions
where there is no arrival and D1 corresponds to the transitions
that generate an actual arrival. With this construction, it is also
obvious that this is more general than the renewal process with
phase type inter-event time distributions. Dependence between
arrivals is created by the fact that when an arrival is generated,
then theMarkov chain can re-enter the same state, however, when
no arrival is generated, it cannot re-enter the same state. Now that
we have defined a MAP, it is now important to understand how
the MAP is a generalization of some well known stochastic arrival
processes.

2.1. Phase-type distributions

A very special case of MAP’s is the phase type distribution. Un-
likeMAP’s, phase type distributions can only approximate renewal
processes with arbitrary precision. A phase-type distribution with
h phases can be viewed as the time taken from an initial state to
an absorbing state of a continuous timeMarkov chain with the fol-
lowing infinitesimal generator matrix:

Q =


0 0
s S


,

where 0 is a 1 × h zero vector, s = is an h × 1 vector, and S is an
h × h matrix. Note s = −Se where e is an h × 1 vector of ones.
The matrix S and the initial distribution β which is a 1 × h vector
identify the phase-type distributions.

We assume that our phase-type distributions for the service
times have an initial distribution, β and infinitesimal generator
matrix, QS. The number of phases in SS is hS and the matrix SS and
vector sS can be expressed as:

SS =

µ11 · · · µ1hS
...

...
...

µhS1 · · · µhShS

 , sS = (µ10, . . . , µhS0)
′, (2.1)

where the µil’s agree with the definition of the infinitesimal
generator matrix QS. For notational consistency, we use a term
phase to indicate the state of CTMC for both the MAPs and phase-
type distributions throughout this paper.

3. Poisson construction of (MAP t/Pht/∞)N network

With the MAP’s and phase-type distributions described in
Section 2, we now build a mathematical queueing model to
describe the dynamics of the (MAP t/Pht/∞)N queueing network.
To this end, we need to provide the primitives of the queueing
network. The network consists of N stations. For station m in the
network, we assume that the external arrivals are generated by a
MAP, Ujm(·), j ∈ {1, . . . , hA,m}, where hA,m is the number of phases
of the MAP. Similarly for service, given that we are in station m,
we assume that the initial distribution for the phase-type service
distribution is given by βm = (β1m, . . . βhS,mm). We let Xim(t)
denote the number of customers in phase i, i ∈ {1, . . . , hS,m}, of
the phase-type service distribution at time t ≥ 0. After a customer
in station m is served, the customer moves to station i with
probability pmi and leaves the network with probability pm0 = 1−N

i=1 pmi. Lastly, we assume that the queueing network starts with
no customers. Fig. 3.1 illustrates an example of a (MAP t/Pht/∞)N

queueing network with two stations.
Thus, in the infinite-server setting, we have the following

Poisson process representation for the (MAP t/Pht/∞)N queueing
network,

Ujm(t) = Ujm(0)  
Initial Value of Token

+

hA,m
k≠j

5A0
kjm

 t

0
dA0kjmUkm(s)ds


  

MAP in stationmmoves from state k to j (no arrival generated)

+

hA,m
k=1

hS,m
i=1

5A1
kjim

 t

0
dA1kjmβimUjm(s)ds


  

MAP in stationmmoves from state k to j (arrival generated)

−

hA,m
k≠j

5A0
jkm

 t

0
dA0jkmUjm(s)ds


  

MAP in stationmmoves from state j to k (no arrival generated)
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Fig. 3.1. A (MAP t/Pht/∞)N network with two stations.
−

hA,m
k=1

hS,m
i=1

5A1
jkim

 t

0
dA1jkmβimUjm(s)ds


  

MAP in stationmmoves from state j to k (arrival generated)

for 1 ≤ j ≤ hA,m, (3.1)

Xim(t) =

hA,m
j=1

hA,m
k=1

5A1
jkim

 t

0
dA1jkmβimUjm(s)ds


  

External arrivals into phase i of service

+

hS,m
l≠i

5S
lim

 t

0
µlimXlm(s)ds


  

Internal transitions from phase l to phase i

−

hS,m
l≠i

5S
ilm

 t

0
µilmXim(s)ds


  

Internal transitions from phase i to phase l of service

− 5D
im

 t

0
µi0mpm0Xim(s)ds


  
Departures of phase i from network

−

hS,m
l=1

N
n≠m

5R
ilmn

 t

0
µi0m pmnβlnXim(s)ds


  
Routing transitions from phase i to phase l (station m to n)

+

hS,m
l=1

N
n≠m

5R
linm

 t

0
µl0n pnmβimXin(s)ds


  
Routing transitions from phase l to phase i (station n tom)

for 1 ≤ i ≤ hS,m (3.2)

where Ujm(t) represents phase j of the MAP in station m of the
network and Xim(t) is the phase i of the phase type distribution
in station m of the network at time t .

We assume that each of the Poisson processes in the
representation of the (MAP t/Pht/∞)N queueing network is of unit
rate and pairwise independent. First we begin by describing the
Poisson processes that help generate the arrival process. Poisson
process,5A0

kjm(·), counts the number of transitions that a token will
make from phase k to phase j of the non-arrival producing part
of the MAP in station m with transition rate dA0kjm. Poisson process,
5A1

kjim(·), counts the number of transitions that a token will make
from phase k to phase j of the arrival producing part of the MAP
in station m with transition rate dA1kjm and the arrival is heading to
phase i of the service process according to the initial distribution of
stationm given by βm. Poisson process, 5S

lim(·), counts the internal
transitions within each station from phase l to phase i in stationm
of the service process. Poisson process, 5D

im(·), counts the number
of departures from phase i in station m of the service process
completely out of the network. Lastly, Poisson process, 5R

ilmn(·),
counts the routing transitions from phase i in station m to phase
l in station n of the service process. For the remainder of the paper,
we will use the following notation for the stochastic queue length
process and its fluid version.

Q(t) = Q(0) +

N
m=1

hA,m
j=1

hA,m
k≠j

lA0jkm5A0
kjm

 t

0
f A0jkm(s,Q(s))ds



+

N
m=1

hA,m
j=1

hA,m
k=1

hS,m
i=1

lA1jkim5A1
jkim

 t

0
f A1jkim(s,Q(s))ds



+

N
m=1

hS,m
i=1

hS,m
l≠i

lSilm5S
ilm

 t

0
f Silm(s,Q(s))ds



+

N
m=1

hS,m
i=1

lDim5D
im

 t

0
f Dim(s,Q(s))ds



+

N
m=1

N
n=1

hS,m
i=1

hS,m
l=1

lRilmn5
R
ilmn

 t

0
f Rilmn(s,Q(s))ds


,

where we define

Qm(t) = (U1m(t), . . . ,UhA,mm(t), X1m(t), . . . , XhS,mm(t))′,

Q(t) = (Q1(t)′, . . . ,QN(t)′)′,

lA0jkm :

N
m=1

(hA,m + hS,m) × 1 vector,m−1
r=1

(hA,r + hS,r) + j

th element is − 1,m−1

r=1

(hA,r + hS,r) + k

th element is 1,
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and other elements are 0,

lA1jkim :

N
m=1

(hA,m + hS,m) × 1 vector,m−1
r=1

(hA,r + hS,r) + j

th element is − 1,m−1

r=1

(hA,r + hS,r) + k

th element is 1,m−1

r=1

(hA,r + hS,r) + hA,m + i

th element is 1,

and other elements are 0,

lSilm :

N
m=1

(hA,m + hS,m) × 1 vector,m−1
r=1

(hA,r + hS,r) + hA,m + i

th element is − 1,m−1

r=1

(hA,r + hS,r) + hA,m + l

th

element is 1, and other elements are 0,

lDim :

N
m=1

(hA,m + hS,m) × 1 vector,m−1
r=1

(hA,r + hS,r) + hA,m + i

th element is − 1,

and other elements are 0,

lRilmn :

N
m=1

(hA,m + hS,m) × 1 vector,m−1
r=1

(hA,r + hS,r) + hA,m + i

th element is − 1,n−1

r=1

(hA,r + hS,r) + hA,n + l

th element is 1,

and other elements are 0.

Moreover, we use the following notation for the rate functions
(integrands of the Poisson processes) and the jump vectors (a value
determining whether a jump is added or subtracted).

f A0jkm(t, q) : rate function of the (integrand) in 5A0
jkm(·),

f A1jkim(t, q) : rate function of the (integrand) in 5A1
jkim(·),

f Silm(t, q) : rate function of the (integrand) in 5S
ilm(·),

f Dim(t, q) : rate function of the (integrand) in 5D
im(·),

f Rilmn(t, q) : rate function of the (integrand) in 5R
ilmn(·),

where

qm = (u1m, . . . , uhA,mm, x1m, . . . , xhS,mm)′ ∈ R
(hA,m+hS,m)

+

form ∈ {1, . . . ,N} and

q = (q′

1, . . . , q
′

N)′ ∈ R

N
m=1

(hA,m+hS,m)

+ .

3.1. Fluid limit

With the Poisson process representation for the (MAP t/Pht/
∞)N , wenowshowhowwecanuse the Poisson representation and
strong approximations in order to prove fluid limits for the queue
length process. First, we define a sequence of stochastic processes
{Qη(t), η ∈ N , t ∈ R+}:

Qη(t) = Qη(0) +

N
m=1

hA,m
j=1

hA,m
k≠j

lA0jkm5A0
kjm


η

 t

0
f A0jkm(s, Q̄η(s))ds



+

N
m=1

hA,m
j=1

hA,m
k=1

hS,m
i=1

lA1jkim5A1
jkim


η

 t

0
f A1jkim(s, Q̄η(s))ds



+

N
m=1

hS,m
i=1

hS,m
l≠i

lSilm5S
ilm


η

 t

0
f Silm(s, Q̄η(s))ds



+

N
m=1

hS,m
i=1

lDim5D
im


η

 t

0
f Dim(s, Q̄η(s))ds



+

N
m=1

N
n=1

hS,m
i=1

hS,m
l=1

lRilmn5
R
ilmn


η

 t

0
f Rilmn(s, Q̄

η(s))ds


where we define

Q̄η(t) =
1
η
Qη(t).

Note that we accelerate the arrival rate by setting
hA,m

j=1 Uη

jm(t)

= η and
N

m=1
hA,m

j=1 Uη

jm(t) = ηN for t ≥ 0. Then, the following
proposition describes the fluid limits for the (MAP t/Pht/∞)N

queueing network.

Theorem 3.1 (Fluid Limit). Suppose Qη(0)/η → q(0) almost surely
as η → ∞, then

lim
η→∞

1
η
Qη(t) = q(t) almost surely,

where we define

qm(t) = (u1m(t), . . . , uhA,mm(t), x1m(t), . . . , xhS,mm(t))′

for m ∈ {1, . . . ,N} and

q(t) = (q1(t)′, . . . , qN(t)′)′,

and q(t) is the solution to the following system of ordinary differential
equations:

d
dt

q(t) =F(t, q(t)),

where

F(t, q(t)) =

N
m=1

hA,m
j=1

hA,m
k≠j

lA0jkmf
A0
jkm(t, q(t))

+

N
m=1

hA,m
j=1

hA,m
k=1

hS,m
i=1

lA1jkimf
A1
jkim(t, q(t))

+

N
m=1

hS,m
i=1

hS,m
l≠i

lSilmf
S
ilm(t, q(t))

+

N
m=1

hS,m
i=1

lDimf
D
im(t, q(t))

+

N
m=1

N
n=1

hS,m
i=1

hS,m
l=1

lRilmnf
R
ilmn(t, q(t)).
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Proof. By adding and subtracting the integrand of each Poisson
process, we now have the following bound of the difference of the
scaled queue length and the fluid limit,1ηQη(t) − q(t)

 ≤

 t

0
|F(s, Q̄η(s)) − F(s, q(s))|ds + |Vη(t)|

where | · | denotes the absolute value function and is equal to the
sum of the absolute value of each component of the vector. The
remainder of the proof follows from a standard argument using
Gronwall’s lemma. �

3.2. Diffusion limit

Now that we have the fluid limit, q(t), we derive the diffusion
limit with the following proposition.

Let Dη(t) =
√

η


1
η
Qη(t) − q(t)


and suppose that

√
η


1
η
Qη(0) − q(0)


converges toD(0) in distribution as η → ∞.

Proposition 3.2. Suppose that we define D̃η(t) as the solution of the
following integral equation:

D̃η(t) =

 t

0
∂F(s, q(s))D̃η(s)ds +

√
η · Vη(t),

D̃η(0) = Dη(0),
(3.3)

then

lim
η→∞

sup
0≤t≤T

|Dη(t) − D̃η(t)| = 0 in probability. (3.4)

Proof. To prove this, we define the difference between the two
processes as

Eη(t) = Dη(t) − D̃η(t)

=

 t

0
(∂F(s, ζ η(s)) − ∂F(s, q(s)))Dη(s)ds

+

 t

0
∂F(s, q(s))Eη(s)ds,

where ζ η(s) is defined as a multivariate stochastic process that
lies between Q̄η(s) and q(s) like in the standard mean value
theorem. Thus, by the mean value theorem, the fact that the
rate functions in the Poisson representations are continuously
differentiable, stochastic boundedness of Dη(t), and the fluid limit
convergence, we obtain our diffusion limit result by applying
Gronwall’s lemma. �

Theorem 3.3 (Diffusion Limit).

lim
η→∞

Dη(t) = D(t) in distribution on t ∈ [0, T ],

where T < ∞ and D(t) is the solution to the following stochastic
differential equation:

dD(t) = dH(t, q(t)) + ∂F(t, q(t))D(t)dt,

and ∂F(t, q(t)) is the gradient matrix of F(t, q(t)) with respect to
q(t). Moreover,

dH(t, q(t))

=

N
m=1

hA,m
j=1

hA,m
k≠j

lA0jkm

f A0jkm(t, q(t))dW A0

jkm(t)

+

N
m=1

hA,m
j=1

hA,m
k=1

hS,m
i=1

lA1jkim

f A1jkim(t, q(t))dW A1

jkim(t)
+

N
m=1

hS,m
i=1

hS,m
l≠i

lSilm

f Silm(t, q(t))dW S

ilm(t)

+

N
m=1

hS,m
i=1


f Dim(t, q(t))dWD

im(t)

+

N
m=1

N
n=1

hS,m
i=1

hS,m
l=1

lRilmn


f Rilmn(t, q(t))dW R

ilmn(t)

where W A0
jkm(t),W A1

jkim(t),W S
ilm(t),WD

im(t),W R
ilmn(t) are mutually in-

dependent standard Brownian motions.

Proof. In order to construct the diffusion limit, we need to subtract
the fluid limit and multiply by

√
η. This yields the following

expression for Dη(t)

Dη(t) =
√

η


1
η
Qη(t) − q(t)


=

√
η ·

 t

0
F(s, Q̄η(s)) − F(s, q(s))ds


+

√
η · Vη(t).

We know by the continuousmapping theorem and the fact that
Brownian motion is Hölder continuous, which shows that

√
η ·

Vη(t) converges to time changed brownianmotions. Moreover, we
know that D̃η(t) converges to D(t) in distribution on t ∈ [0, T ].
Thus, from the result of Proposition 3.2, Dη(t) converges weakly to
D(t) on t ∈ [0, T ]. �

Remark (Steady State Behavior). Although the weak-convergence
is proved on a compact set [0, T ], we can think of the stationary
distribution for the diffusion process when t → ∞. Considering
a (MAP/Ph/∞)N network (i.e., all rate functions do not have a
parameter t), the fluid limit, q̄ = q(∞), should satisfy

d
dt

q(t)|t=∞ = F(q̄) = 0.

Then, the diffusion limit in steady state would be a multi-
dimensional Ornstein–Uhlenbeck process given by

dD(t) = dH(q̄) + ∂F(q̄)D(t)dt,

which we know has a steady state distribution that is normally
distributed.

4. Conclusion and future research

In this paper, we analyze the (MAP t/Pht/∞)N queueing
network and prove fluid and diffusion limits for the queue
length processes. It is critical to fully understand the behavior of
the (MAP t/Pht/∞)N queueing network before we can begin to
understand networks such as (MAP t/MAP t/nt +MAP t)

N networks
since the infinite-server case represents the offered load of the
system with unlimited resources. As future work in the context
of finite-server and abandonment settings, it is interesting to
apply the methods of [10,12,13,6,22,18,17,20,21,19] to these non-
Markovian networks since we should consider the critically-loaded
regime under which some conditions for deriving diffusion limits
are violated.
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